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Overview

In contrast to the classical linear regression model, in which the components of the dependent

variable vector y are not identically distributed (because its mean vector varies with the regressors) but

may be independently distributed, time series models have dependent variables which may be identically

distributed, but are typically not independent across ovbservations. Such models are applicable for data

that are collected over time. A leading example, to be discussed more fully below, is the �rst order

autoregression model, for which the dependent variable yt for time period t satis�es

yt = �+ �yt�1 + "t;

for "t satisfying the assumptions of the error terms in a classical linear regression model (i.e., mean zero,

constant variance, and uncorrelated across t). For some values of the parameters, yt will have constant

mean and variances over t; but the covariance between yt and ys will generally be nonzero when t 6= s: The

�rst-order autoregression model can be viewed as a special case of a dynamic regression model, with

yt = �+ �yt�1 + x
0
t� + "t;

with xt a vector of regressors.

The usual purpose of these models is prediction; given the recursive structure of such models, realizations

of the dependent variable today are useful in forecasting its value in the future. In much of time series

modeling, the values of the parameters themselves are not the objects of interest, but rather the ability of

the speci�ed model to forecast out of the observed sample; thus, much of the statistical methodology is

devoted to �nding a �good�model for the data rather than the �right�model.

Stationarity and Ergodicity

The statistical theory for time series data views the sequence of dependent variables fytg as a

stochastic process, i.e., a realization of a random function whose argument is the time index t: (Unless

stated otherwise, the discussion here will assume yt is scalar.) Without restrictions on the parameters of
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the joint distribution of the values of yt over t �so that, for example, the means and variances of yt are

allowed to vary freely over t �it would clearly be impossible to construct consistent estimators of those

parameters with a single realization of history. The concept of stationarity imposes such restrictions.

The process fytg is said to be weakly stationary (or covariance stationary) if the second moments of yt

exist, and the �rst and second moments satisfy

E(yt) = �;

V ar(yt) = �2 � 
y(0)

Cov(yt; ys) = 
y(t� s) = 
y(jt� sj):

That is, the mean values of yt are constant, and the covariance between any pair yt and ys of observations

depends only on the (absolute) di¤erence of their indices jt � sj: By reducing the means, variances, and

covariances between pairs of observations to a single time-invariant parameter, there is some hope of

consistently estimating those parameters with a single realization of the process fytg: The function 
y(s)

is called the autocovariance function of the yt process.

A �stronger� de�nition of stationarity, suggestively titled strong stationarity, restricts the joint dis-

tribution of any �nite collection of consecutive realizations of yt to be invariant across t; in the sense

that

Prf(yt; yt+1; :::yt+K) 2 Bg = Prf(y0; y1; :::yK) 2 Bg

for any integer K and corresponding event B: This is not, strictly speaking, stronger than weak stationarity

without the additional conditions that the second moment of yt is �nite, with which it does indeed imply

covariance stationarity. For the theoretical development, when deriving the mean-squared error of forecasts,

etc., the assumption of weak stationarity usually su¢ ces; when deriving probability limits and asymptotic

distributions for statistics, typically strong stationarity (or a similar strengthening of weak stationarity) is

assumed.

Since econometric modeling typically involves characterization of relationships for several variables, it

is useful to extend the notion of stationarity to vector processes, where yt 2 RM for some M > 1: Such a
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process is covariance stationary if

E(yt) = �;

V ar(yt) = � � �y(0)

C(yt;ys) = E
�
(yt � �) (yt � �)0

�
= �y(t� s)

= [�y(s� t)]0 :

Extension of the concept of strong stationarity to vector processes is similarly straightforward.

Even if a scalar dependent variable yt is stationary, it need not be true that a law of large numbers

applies, i.e., stationarity does not imply that

�yT �
1

T

TX
t=1

yt
p! E(yt) = �:

If this condition is satis�ed, yt is said to be ( weakly) ergodic; It is said to be strongly ergodic if

1

T

TX
t=1

f(yt; yt+1; :::; yt+K)
a:s:! E(f(yt; yt+1; :::; yt+K))

whenever the latter moment exists. It is easy to construct examples of stationary processes which are not

ergodic; for example, if

yt � z � N(�; 1);

then yt is clearly (weakly and strongly) stationary, but �yT � z 6= � with probability one. Another example

is

yt =

�
z1 � N(�; 1) when t is even,
z2 � N(�; 1) when t is odd,

where z1 and z2 are independent. Such processes are special cases of deterministic processes, which can be

perfectly predicted by a linear combination of past values:

yt = �1yt�1 + �2yt�2 + ::::

For the �rst process, �1 = 1 and the rest are zero, while for the second, only �2 = 1 is nonzero; in

general, the � coe¢ cients must sum to one to ensure stationarity. In practice, seasonal factors (which are

periodically-recurring �constant terms�) are good examples of deterministic processes; for these processes,
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it is usually possible to consistently estimate the realized values (from noisy data), but not the parameters

of the distributions which generated them

For a process to be ergodic, the some measure of the dependence between observations yt and ys must

vanish as jt� sj increases. If so, a law of large numbers should be applicable, as in the following result:

Weak Ergodic Theorem: If yt is covariance stationary with E(yt) = �; Cov(yt; yt�s) = 
y(s); and if

1X
s=�1

j
y(s)j <1;

then

�yT �
1

T

TX
t=1

yt
p! �:

Proof: Since E(�yT ) = �; quadratic mean convergence of �yT to � will follow if V ar(�yT )! 0 as T !1:

But

V ar(�yT ) =
1

T 2

TX
s=1

TX
t=1


y(t� s)

� 1

T 2

TX
s=1

TX
t=1

j
y(t� s)j

=
1

T 2

T�1X
s=�(T�1)

(T � jsj) � j
y(s)j

� 1

T

1X
s=�1

j
y(s)j

! 0 as T !1:

The middle equality in this proof, which rewrites the double sum as a single sum, is easiest to understand

by considering two ways to add up all elements in a T �T matrix with element j
y(t� s)j in row t; column

s; the double sum adds across columns and rows, while the single sum adds along the diagonals (whose

elements are constant by stationarity).

The condition
P1
s=�1 j
y(s)j < 1; known as absolute summability of the autocovariance function, is

obviously satis�ed for i.i.d. processes (since the doubly-in�nite sum reduces to V ar(yt) in that case); it

su¢ ces for weak ergodicity but is by no means necessary for it. It is easy to see how to modify the proof

while imposing only the weaker condition

1

T

T�1X
s=0

j
y(s)j ! 0;
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that is, it su¢ ces that the (sample) average covariance between yt and all values of yt in the sample

(including yt itself) converges to zero as T increases. This is one way that declining dependence between

observations in a sample implies ergodicity; there are a number of other ergodic theorems (weak and

strong) that restrict other measures of dependence across observations to obtain a law of large numbers

for dependent data.

Even stronger restrictions on dependence between observations and existence of moments are needed to

obtain central limit theorems; some of the restrictions on dependence have the headings �mixing conditions�

or �martingale di¤erence sequences.� Such conditions will not be presented here; su¢ ce it to say that, for

all the processes considered below, it is possible to �nd su¢ cient regularity conditions to ensure that a

central limit theorem applies:
p
T (�yT � �)

d! N(0; V0);

where V0 is the limit of the variance of the normalized average
p
T (�yT � �);

V0 = lim
T!1

V ar(
p
T (�yT � �))

=
1X

s=�1

y(s):

For i.i.d. data, V0 reduces to the usual 
y(0) = V ar(yt) � �2y:

All of the results discussed above extend to the case when yt is a random vector; in this case, weak

stationarity is de�ned in terms of autocovariance matrices

�s � C(yt;yt�s);

and, for example, a dependent CLT for vector stochastic processes would yield

p
T (�yT��)

d! N(0;V0);

with the asymptotic covariance matrix V0 de�ned as

V0 �
1X

s=�1
�s:

Autoregressive and Moving Average Processes

A �exible class of models for (possibly) stationary univariate time series, proposed by Box and

Jenkins in the mid-1960s, are autoregressive moving average models � ARMA models for short. The
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fundamental building block for ARMA models is a white noise process, which is just a colorful mixed

metaphor (light and sound) for a stochastic process "t which satis�es the properties imposed upon error

terms in the standard linear model.

White Noise Process: The process f"tg is called a white noise process with parameter �2; denoted

"t �WN(�2); if it is weakly stationary with

E("t) = 0;

V ar("t) = �2;

Cov("t; "s) = 0 if t 6= s:

From this simplest example of a weakly stationary and weakly ergodic process (which is strongly

stationary if "t is assumed to be i.i.d.), it is possible to build other processes yt with more interesting

autocovariance patterns by assuming yt is generated by a linear combination of its past values plus a linear

combination of current and past values of a white noise error term "t: First are the purely autoregressive

processes, which only involve a single, contemporaneous white noise term.

First-order Autoregressive Process: The process yt is �rst-order autoregressive, denoted yt � AR(1); if

it satis�es

yt = �+ �yt�1 + "t;

where "t �WN(�2) and Cov("t; yt�s) = 0 if s � 1:

Not all AR(1) processes are stationary; if the process is stationary, then E(yt) = E(yt�1); implying

E(yt) = �+ �E(yt)

=
�

1� �;

which requires � 6= 1: Furthermore V ar(yt) = V ar(yt�1); which requires

V ar(yt) = �2V ar(yt) + V ar("t) + 2 � Cov(yt�1; "t)

= �2V ar(yt) + �
2

=
�2

1� �2
;
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which is only well-de�ned and nonnegative if j�j < 1: This latter condition is su¢ cient for weak stationarity

of yt; calculations analogous to those for the variance yield


y(s) = Cov(yt; yt�s) = �
s �2

1� �2
= �sV ar(yt);

so the covariance between yt and yt�s declines geometrically as s increases; if � is negative, the autoco-

variance function oscillates between positive and negative values.

Generalizations of the AR(1) process include more lagged dependent variables on the right-hand side

of the equation for yt :

pth-order Autoregressive Process: The process yt is pth-order autoregressive, denoted yt � AR(p); if it

satis�es

yt = �+ �1yt�1 + :::+ �pyt�p + "t;

where "t �WN(�2) and Cov("t; yt�s) = 0 if s � 1:

The conditions for stationarity of this process are related to the conditions for stability of the corre-

sponding deterministic di¤erence equation

yt = �+ �1yt�1 + :::+ �pyt�p;

speci�cally, the AR(p) process is stationary if any (real or complex) root z� of the associated polynomial

equation

0 = ~�(z) � zp � �1zp�1 � :::� �p�1z � �p

is inside the unit circle, i.e., jz�j < 1.

Another simple class of time series models aremoving average processes. Unlike autoregressive processes,

these are weakly stationary by construction.

First-order Moving Average Process: The process yt is a �rst-order moving average process, denoted

yt �MA(1); if it can be written as

yt = �+ "t + �"t�1;
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where "t �WN(�2): This process is covariance stationary with

E(yt) = �;

V ar(yt) = �2(1 + �2);

Cov(yt; yt�1) = �2�;

Cov(yt; yt�s) = 0 if s > 1:

q th-order Moving Average Process: The process yt is a q th-order moving average process, denoted

yt �MA(q); if it can be written as

yt = �+ "t + �1"t�1 + :::+ �q"t�q;

where "t �WN(�2): Here

E(yt) = �;

V ar(yt) = �2(1 + �21 + :::+ �
2
q);

Cov(yt; yt�1) = �2(�1�2 + :::+ �q�1�q);

:::

Cov(yt; yt�s) = 0 if s > q:

The autoregressive and moving average processes can be combined to obtain a very �exible class of

univariate processes (proposed by Box and Jenkins), known as ARMA processes.

ARMA(p,q) Process: The time series yt is an ARMA(p,q) process, written yt � ARMA(p; q); if

yt = �+ �1yt�1 + :::+ �pyt�p + "t + �1"t�1 + :::+ �q"t�q;

where "t � WN(�2) and Cov("t; yt�s) = 0 if s � 1: The requirements for stationarity of this process are

the same as for stationarity of the corresponding AR(p) process.

The Wold Decomposition

If we permit the order q of a MA(q) process to increase to in�nity �that is, if we write

yt = �+
1X
�=0

�s"t�s
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with "t � WN(�2) and �0 � 1; we obtain what is known as a linearly indeterministic process, denoted

yt �MA(1): This process is well-de�ned (in a mean-squared error sense) if the sequence of moving average

coe¢ cients f�sg is square-summable,
1X
�=0

�2s <1:

By recursion, stationary ARMA processes can be written as linearly deterministic processes; for example,

a stationary AR(1) process yt = � + �yt�1 + "t has �s � �s: Conversely, the MA coe¢ cients for any

linearly indeterministic process can be arbitrarily closely approximated by the corresponding coe¢ cients

of a suitable ARMA process of su¢ ciently high order.

Wold showed that all covariance stationary stochastic processes could be written as the sum of deter-

ministic and linearly indeterministic processes which were uncorrelated at all leads and lags; that is, if yt

is covariance stationary, then

yt = xt + zt;

where xt is a covariance stationary deterministic process (as de�ned above) and zt is linearly indeterministic,

with Cov(xt; zs) = 0 for all t and s. This result gives a theoretical underpinning to Box and Jenkins�

proposal to model (seasonally-adjusted) scalar covariance stationary processes as ARMA processes.

Common Factors and Identi�cation

In a sense, ARMA processes are too �exible, in the sense that low-order processes (i.e., those

with p and q small) are nested in higher-order processes with certain parameter restrictions. In general,

if yt � ARMA(p; q); then it can always be rewritten as an ARMA(p + r; q + r) process for arbitrary

positive integer r by suitable �generalized di¤erencing�. For example, suppose yt = "t � WN
�
�2
�
; so

that yt � ARMA(0; 0): Then for any � with j�j < 1;

yt � �yt�1 = "t � �"t�1;

or

yt = �yt�1 + "t � �"t�1;

so yt � ARMA(1; 1) with a particular restriction on the parameters (i.e., the sum of the �rst-order

autoregressive and moving average coe¢ cients is zero). For this example this redundancy is easy to �nd,

but for more complicated ARMA processes the restrictions on the parameters may be di¢ cult to �nd in

the population, and even harder to detect in estimation.
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Box and Jenkins�proposed solution to this common factors problem, which they called their �principle

of parsimony�, is simple enough �just pick p and q to be small enough to do the job (of forecasting, etc.). To

implement this general idea, however, they proposed a methodology for model selection which they termed

time series identi�cation procedures. In econometric applications, the tradition has been to consider only

purely autoregressive processes, i.e., assume that yt � AR(p) for some value of p (chosen in practice by

a suitable model selection procedure). Purely autoregressive processes, while typically requiring a higher

number of parameters to approximate complicated dynamic patterns, do not su¤er from the common factor

problem, since a redundant generalized di¤erence in the autoregressive component is accompanied by an

error term which is not white noise (i.e., q = r > 0). Furthermore, as will be discussed later, purely

autoregressive processes are simpler to estimate, requiring only linear (not nonlinear) LS estimation.

Vector Autoregressions

The de�nition of ARMA processes is straightforward to extend a vector yt 2 RM of dependent

variables; here, though, restriction to purely autoregressive models for the vector process can yield complex

dynamic patterns for the individual components of yt: A pth-order vector autoregression, denoted yt �

V AR(p); is a vector process of the form

yt = �+B1yt�1 + :::+Bpyt�p + "t;

where � is an M -dimensional vector of intercept terms, B1 through Bp are (M �M) matrices of unknown

coe¢ cients, and "t is a vector white noise process, denoted "t � VWN(�) and de�ned to satisfy

E("t) = 0;

V("t) = �; and

C(yt;ys) = 0 if t 6= s:

If yt � V AR(p); then each component of yt can be shown to have a univariate ARIMA(Mp; (M�1)p)

representation, with the same AR parameters for each component. Consider, for example, the special case

M = 2 and p = 1; where yt � (yt; xt)0, "t = (ut; vt)0; � = 0 and

B1 =

�
�1 �2
�1 �2

�
;
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i.e.,

yt = �1yt�1 + �2xt�1 + ut;

xt = �1yt�1 + �2xt�1 + vt:

Since the �rst equation for yt implies

�2yt�1 = �1�2yt�2 + �2�2xt�2 + �2ut�1;

subtracting this from the original equation for yt yields

yt � �2yt�1 = �1 (yt�1 � �2yt�2) + �2 (xt�1 � �2xt�2) + (ut � �2ut�1) : (*)

But from the equation for xt;

xt � �2xt�1 = �1yt�1 + vt;

which, when substituted into (*), yields

yt � �2yt�1 = �1 (yt�1 � �2yt�2) + �2 (�1yt�1 + vt) + (ut � �2ut�1) ;

or

yt = (�2 + �1 + �2�1) yt�1 � (�1�2) yt�2 + wt;

where

wt = ut + �2vt � �2ut�1

� MA(1);

since the autocovariances of wt are zero after the �rst lag. So yt � ARMA(2; 1); and the same algebra

can be used to show that the univariate process for xt is also ARMA(2; 1); with the same autoregressive

coe¢ cients but a di¤erent MA(1) component.

Nonstationarity, Detrending, and Di¤erencing

Most observed time series for levels (or logarithms) of economic variables do not appear to be

stationary; generally the mean value of the process appears to increase over time. The traditional means

to accommodate such �drift�in the level of the process over time was by use of a trend-stationary dynamic
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model, in which a linear (or polynomial) function of the time index t is appended to the right-hand side of

a stationary ARMA process. For example, a trend-stationary AR(1) model

yt = �+ � � t+ �yt�1 + "t

with "t �WN(�2) could be rewritten as

y�t � yt � (1� �)�1
��
�+

�

1� �

�
+ � � t

�
= �y�t�1 + "t;

so the detrended series y�t follows a stationary AR(1) process. Traditional practice would be to apply time

series estimation methods to the residuals of a regression of yt on a constant term and time.

However, for many economic time series, the variability of the process also appears to increase over time,

just as for its level. This led Box and Jenkins to propose di¤erencing rather than detrending to transform

nonstationary series into (hopefully) stationary versions. The �rst di¤erence operator � is de�ned as

�yt � yt � yt�1;

a d th-order di¤erence is de�ned by the recursion relation

�dyt � �
�
�d�1yt

�
for any d > 1: A series yt for which �dyt is covariance stationary is called an integrated process of order d;

and denoted yt � I(d):

A simple example of a �rst-order integrated process is a random walk with drift, for which

�yt = 
 + "t; "t �WN(�2):

Assuming this representation is correct for all positive integers t; with y0 taken to be a �xed (nonrandom)

initial condition, the level of the process yt has the form

yt = y0 + 
t+

tX
s=1

"s:

Like the trend-stationary process, the mean of yt is linear in t;

E(yt) = y0 + 
t;
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but the variance of yt also increases linearly (actually, proportionally) in t;

V ar(yt) = �
2t;

which is often a more realistic model for observed series.

Generalizations of the random walk model replace the white noise error term "t with a more general

covariance stationary process ut and the �rst di¤erence with a dth di¤erence. When the dth di¤erence of

yt is an ARMA process, i.e., when �dyt � ARMA(p; q); then the level yt of the process is said to satisfy

an ARIMA model, denoted yt � ARIMA(p; d; q): Much of Box and Jenkins�statistical methodology was

devoted to procedures to select the �best�ARIMA model �i.e., the best values of p; d; and q �for a given

process, an objective that they termed �ARIMA identi�cation.�

Estimation of Time Series Models

Estimation of the parameters of ARMA(p; q) models (and thus of ARIMA(p; d; q) models, after

appropriate di¤erencing of the dependent variable) can be based upon nonlinear least squares, in which

a sum of squared residuals is minimized over the possible values of the unknown coe¢ cients. Letting

� � (�; �1; :::; �p; �1; :::; �q)0 denote those coe¢ cients for the ARMA(p; q) speci�cation, the error terms

"t � "t(�) can be written recursively in terms of p+1 current and past values of yt and q past values of "t:

"t(�) =yt � (�+ �1yt�1 + :::+ �pyt�p + �1"t�1(�) + :::+ �q"t�q(�)):

To start this recursion for a particular choice of � values, we can treat the initial p values of yt as �xed �

essentially conditioning on these initial values �and set the corresponding "t values for these initial time

periods equal to zero, their unconditional expectation. (More sophisticated procedures would exploit the

relationship between these initial values of yt and the unknown � parameters, but such re�nements, involv-

ing only a �xed number p of observations, would not a¤ect the asymptotic distribution of the estimators.)

The nonlinear least squares procedure would then estimate the unknown parameters by minimizing the

conditional sum of squares criterion

CSS(�) �
TX

t=p+1

("t(�))
2

over �; and would estimate the variance �2 of the white noise error terms "t by �̂2 = T�1CSS(�̂): The

corresponding estimator �̂ cannot generally be written in closed form, since the � parameters enter the

residuals nonlinearly through the lagged residual terms; while derivation of the asymptotic properties
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of such estimators would require more asymptotic theory (for extremum estimation), their asymptotic

distribution will be similar to that for a linear least squares estimator, with derivative vector

~xt �
@"t(�)

@�

replacing the usual vector of regressors xt in the asymptotic variance formulae. (Such a result would

require stronger regularity conditions on the model, e.g., the assumption that "t is i.i.d., not just serially

uncorrelated with common mean and variance.)

When there are no moving average components �i.e., when q = 0; so that the model is purely autore-

gressive �then the residuals "t(�) are linear in the unknown coe¢ cients � � (�; �1; :::; �p)0 coe¢ cients, and

minimization of the CSS(�) criterion reduces to linear least squares regression of the (T � p) dimensional

vector y on the (T � p)� (p+ 1) matrix X; where

y �

0BB@
yp+1
yp+2
:::
yT

1CCA and X �

2664
1 yp ::: y1
1 yp+1 ::: y2
::: ::: ::: :::
1 yT�1 ::: yT�p

3775 :
The usual �nite-sample properties of least squares for the classical regression model will clearly not apply.

For example, even if "t is i.i.d., the mean of y will not be linear in X;

E[yjX] 6= X�;

because of the overlap of components of X and lagged components of y; so the usual demonstration of

unbiasedness of least squares fails. Still, assuming the "t are i.i.d. and other regularity conditions (higher

order moments, etc.) hold, the appropriate ergodic theorems and central limit theorems can be invoked to

show that �̂ is consistent and asymptotically normal, with approximate distribution

�̂
A� N(�;�̂2X0X);

where, again, �̂2 = T�1CSS(�̂): If, in addition, the "t is assumed to be normally distributed, then the

least squares estimation is also a conditional maximum likelihood estimator (conditioning on the initial

observations y1;:::; yp); and it thus inherits the e¢ ciency properties of maximum likelihood estimators.

The same general results apply for vector autoregressions �namely, that consistent estimation of their

parameters can be based upon least squares regressions, equation by equation, and the estimators will be

asymptotically normal, with asymptotic covariance matrices given from the usual LS formulae.
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Asymptotic Normality of LS for AR(1)

To see how such asymptotic results might be obtained, it is useful to consider the simplest autore-

gressive model, a stationary AR(1) model with zero intercept,

yt = �yt�1 + "t;

where the initial value y0 of yt is assumed known, and where the error terms "t are assumed to be i.i.d.

with expectation zero with plenty of well-behaved moments. Here the (linear) least squares estimator of �

is clearly

�̂ =

PT
t=1 yt�1ytPT
t=1 y

2
t�1

:

Making the usual substitution of �yt�1 + "t for yt, rearranging terms, and multiplying by
p
T; we get

p
T (�̂ � �) =

1p
T

PT
t=1 yt�1"t

1
T

PT
t=1 y

2
t�1

:

The denominator is a sample analogue of the second (central) moment of yt�1; applying a suitable law of

large numbers for dependent data will yield

1

T

TX
t=1

y2t�1
p! E[y2t�1] = V ar(yt�1) =

�2"
1� �2

by stationarity. And the numerator is a normalized average of mean-zero, serially-uncorrelated random

variables yt�1"t with constant variance
p
T (�̂ � �)

V0 = V ar(yt�1"t)

= E[y2t�1"
2
t ]

= E[y2t�1]E["
2
t ]

=

�
�2"
�2

1� �2

so a suitable central limit theorem can be invoked to show that

1p
T

TX
t=1

yt�1"t
d! N

�
0;

�4"
1� �2

�
:

Application of Slutzky�s Theorem gives an expression for the asymptotic (normal) distribution of �̂

p
T (�̂ � �) d! N

�
0; 1� �2

�
;
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and a consistent estimator of the asymptotic variance is obviously easy to obtain, particularly under the

null hypothesis H0 : � = 0; under which
p
T �̂

d! N (0; 1):

Note that, as � ! 1; the asymptotic distribution of the normalized estimator
p
T (�̂ � �) approaches

a degenerate distribution at zero. In fact, under some slightly di¤erent conditions (like y0 = 0 and is

nonrandom), when � = 1 the least squares estimator has asymptotic distribution

T (�̂ � 1) d! DF ;

where DF is a non-normal limiting distribution, the "Dickey-Fuller coe¢ cient" distribution. So the asymp-

totic distribution theory for the LS estimator �̂ breaks down at � = 1 �the normalization changes from
p
T

to T and the right approximating distribution is a non-normal distribution that is skewed downward and

more variable than a standard normal distribution. This discontinuity implies that the usual asymptotic

normal approximation should not be trusted when � may be close to one, and a normal approximation is

certainly inappropriate for testing the "unit root" hypothesis H0 : � = 1.
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