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Univariate Density Estimation via Numerical Derivatives
Consider the problem of estimating the density function f(x) of a scalar, continuously-distributed i.i.d.

sequence xi at a particular point x. If the density f is in a known parametric family (e.g., Gaussian),
estimation of the density reduces to estimation of the finite-dimensional parameters that characterize that
particular density in the parametric family. Without a parametric assumption, though, estimation of the
density f over all points in its support would involve estimation of an infinite number of parameters, known
in statistics as a nonparametric estimation problem (though “infinite-parametric estimation” might be a
more accurate title).

Since the density function f(x) is the derivative of the cumulative distribution function F (x) ≡ Pr{xi ≤
x}, and since the empirical c.d.f.

F̂ (x) ≡ 1

n

nX
i=1

1{xi ≤ x}

is the natural nonparametric of the c.d.f., it seems natural to base estimation of f on the empirical c.d.f.
However, while F̂ is

√
n-consistent and asymptotically normal, it would be clearly nonsensical to estimate

f by differentiating F̂ , since its derivative is either zero or undefined. Using the definition of the density
f as the (right-) derivative of the c.d.f.,

f(x) = lim
h→0

F (x+ h)− F (x)
h

,

we might estimate the density f by a corresponding difference ratio of F̂ :

f̂(x) =
F̂ (x+ h)− F̂ (x)

h

=
1

nh

nX
i=1

1{x < xi ≤ x+ h},

where the “perturbation” h, also known as a “bandwidth” or “window width”) is positive but “small,”
depending upon the sample size (i.e., h ≡ hn).

To show MSE consistency of f̂ , it suffices to choose the bandwidth sequence hn so that the mean bias
and variance of f̂ both tend to zero as the sample size increases. Since the empirical c.d.f. F̂ is an unbiased
estimator of F — that is, E[F̂ (x)] = F (x) — the bias of f̂ is evidently

E[f̂(x)]− f(x) =
F (x+ h)− F (x)

h
− f(x)

→ 0

if

h = hn → 0 as n→∞.
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The variance of f̂(x) is

V (f̂(x)) = V

Ã
1

nh

nX
i=1

1{x < xi ≤ x+ h}
!

=
1

nh2
V (1{x < xi ≤ x+ h})

=
1

nh

·
F (x+ h)− F (x)

h
(1− (F (x+ h)− F (x)))

¸
=

f(x)

nh
+O(

1

n
),

which will tend to zero if

nh = nhn →∞ as n→∞.

Thus, if the bandwidth sequence hn tends to zero as n tends to infinity, but at a slower rate than 1/n, the
MSE of f̂ will converge to zero, ensuring its (weak) consistency.

To narrow down the choice of bandwidth sequence hn, we might want to choose it to maximize the rate
of convergence of the MSE of f̂ to zero. To do this, we need an explicit expression for its bias as a function
of h. Assuming F (x+h) is smooth enough to admit a second-order Taylor’s series expansion around h = 0,

F (x+ h) = F (x) + f(x) · h+ f
0(x)
2
h2 + o(h2),

the MSE of f̂ can be expressed as

MSE(f̂(x);h) =
h
E(f̂(x))− f(x)

i2
+ V (f̂(x))

=

µ
f 0(x)
2
h

¶2
+ o(h2) +

f(x)

nh
+O(

1

n
).

Because the squared bias is directly related to h, while the variance is inversely related to h, the fastest
convergence of the MSE to zero occurs when the squared bias and variance converge to zero at the same
speed. (If they converge at different speeds, the slower speed dominates.) Thus the optimal bandwidth
sequence h∗ will satisfy

O
¡
(h∗)2

¢
= O

µ
1

nh∗

¶
,

so

h∗ = O

Ãµ
1

n

¶1/3!

will give the fastest rate of convergence of the MSE to zero,

MSE(f̂(x);h∗) = O

Ãµ
1

n

¶2/3!
.

This rate is slower than the usual parametric rate of convergence of the MSE (if it exists) to zero, which
is O( 1n) for, e.g., the sample mean.
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Although the optimal rate of convergence of h∗ to zero does not depend upon f itself, the optimal level
would require knowledge of f(x). Assuming the bandwidth sequence is of the form

h∗ =
c

n1/3
,

we can choose c to minimize the limiting normalized MSE

lim
n→∞n

2/3MSE(f̂(x);h∗) =
µ
f 0(x)
2
c

¶2
+
f(x)

c
,

which is minimized in c at

c∗ =

Ã
(f 0(x))2

2f(x)

!−1/3
.

So the optimal bandwidth sequence

h∗ =
µ

2f(x)

(f 0(x))2 n

¶1/3
that minimizes the leading terms in the MSE formula is infeasible, since it requires knowledge of the density
f(x) itself and its first derivative. Though it can be shown (under additional conditions) that consistent
estimation of the constant c∗ will not affect the rate of convergence of f̂ , etc., nonparametric estimation
of f 0(x) cannot be based upon f̂(x) directly (since its derivative is zero wherever it is defined), but would
require a similar “numerical derivate” approach, which would entail its own bandwidth choice problem.
An alternative is to “standardize” the choice of the constant term c∗ for some known parametric density
function; for example, if f(x) = 1

σφ(
x−µ
σ ), where φ is the standard normal density, then

c∗ =
µ
x2φ(x)

2

¶−1/3
σ,

and estimation of the optimal constant would reduce to estimation of the standard deviation σ of the xi
distribution.

Instead of choosing the bandwidth for a specific value of x, we might want to choose it to minimize a
“global” MSE criterion over all possible x values, such as the integrated mean-squared error criterion

IMSE(f̂ ;h) =

Z ∞

−∞
MSE(f̂(x);h)dx

=

Z ∞

−∞

µ
f 0(x)
2
h

¶2
dx+

1

nh
+ o(h2) +O(

1

n
).

The same calculations as for the pointwise optimal bandwidth h∗ yield the optimal IMSE bandwidth h+

to be

h+ =

Ã
2

n
R
(f 0(x))2 dx

!1/3
,

which still depends upon the derivative of f. (A similar expression holds for the bandwidth minimizing an
average MSE criterion, where “dx” is replaced by “f(x)dx” in the formula for the IMSE.) For the Gaussian
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density f(x) = 1
σφ(

x−µ
σ ), the optimal IMSE bandwidth would be

h+ =

Ã
2

n
R
(−xφ(x))2 dx

!−1/3
σ

∼= 2.4σ

n1/3
,

so standardizing the bandwidth choice to be optimal for normal densities reduces the bandwidth choice
problem to estimation of the standard deviation σ.

Multivariate Kernel Density Estimation
The numerical derivative estimator of the univariate density f(x) above is a special case of a general

class of nonparametric density estimators called kernel density estimators. Now supposing xi ∈ Rp, we can
think of “smoothing out” the empirical c.d.f. F̂ (x) for xi by replacing it with a convolution of F̂ and the
distribution of an independent, continuously-distributed “noise” term h ·ε, where h = hn is a small positive
“bandwidth” as above and ε has a known density function K(ε) (also known as the “kernel” function).
For a particular realized value of xi, the density function for Xi ≡ xi + h · ε would be

fXi(x) =
1

hp
K

µ
x− xi
h

¶
by the usual change-of-variables formula for multivariate densities. (Here the absolute value of the deter-
minant of the Jacobian dε/dX 0

i is h
−p.) Thus the kernel density estimator f̂(x) is the average of fXi over

the observed values of xi in the sample,

f̂(x) =
1

n

nX
i=1

1

hp
K

µ
x− xi
h

¶
.

As long as
R
K(u)du = 1, the density estimator f̂(x) will also integrate to one over x, as befitting a

density function. The numerical derivative estimator discussed above is a special case with p = 1 and
K(u) = 1{−1 ≤ u < 0}, the density function for a Uniform(−1, 0) random variable.

The MSE calculations are straightforward extensions of those for the numerical derivative estimator.
The expectation of f̂ is

E[f̂(x)] = E

"
1

n

nX
i=1

1

hp
K

µ
x− xi
h

¶#

= E

·
1

hp
K

µ
x− xi
h

¶¸
=

Z
1

hp
K

µ
x− z
h

¶
f(z)dz.

Making the change-of-variables u = u(z) = h−1(x− z) (with du = h−pdz),

E[f̂(x)] =

Z
K(u)f(x− hu)du,

which clearly tends to f(x) as h → 0 if f is continuous and bounded above (by dominated convergence),
as long as

R
K(u)du = 1. (The last condition implies

R |K(u)| du < ∞, a condition that will be more
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relevant later, when the nonnegativity restriction K(u) is relaxed). Assuming that f(x) is smooth enough
for f(x− hu) to admit a second-order Taylor’s expansion around h = 0, i.e.,

f(x− hu) = f(x)− ∂f(x)

∂x0
(hu) +

1

2
(hu)0

∂2f(x)

∂x∂x0
(hu) + o(h2)

= f(x)− h
µ
∂f(x)

∂x0
· u
¶
+
h2

2
tr

µ
∂2f(x)

∂x∂x0
uu0
¶
+ o(h2),

the bias of f̂ can be expressed as

E[f̂(x)]− f(x) = −h
µ
∂f(x)

∂x0
·
Z
uK(u)du

¶
+
h2

2
tr

µ
∂2f(x)

∂x∂x0
·
Z
uu0K(u)du

¶
+ o(h2).

If the “mean” of the kernel,
R
uK(u)du, is nonzero (as with the “one-sided” numerical derivative estimator

above), then the bias is O(h); however, if the kernel function K(u) is chosen to be symmetric about zero,
or, more generally, if Z

uK(u)du = 0, (*)

then the bias is

E[f̂(x)]− f(x) = O(h2).

Similarly, the variance of f̂(x) can be calculated as

V ar(f̂(x)) = V ar

Ã
1

n

nX
i=1

1

hp
K

µ
x− xi
h

¶!

=
1

n
V ar

µ
1

hp
K

µ
x− xi
h

¶¶
=

1

n
E

µ
1

hp
K

µ
x− xi
h

¶¶2
− 1
n

µ
E

·
1

hp
K

µ
x− xi
h

¶¸¶2
=

1

n

Z
1

h2p

·
K

µ
x− z
h

¶¸2
f(z)dz − 1

n
(E[f̂(x)])2

=
1

nhp

Z
[K (u)]2 f(x− hu)du− 1

n
(E[f̂(x)])2

=
f(x)

nhp

Z
[K (u)]2 du+ o

µ
1

nhp

¶
.

(The second equality exploits the fact that xi is i.i.d., and the fifth makes the same change-of-variables as
for the bias formula.) So the bias of f̂(x) is O(h2) under condition (*), and its variance is O((nhp)−1); the
optimal bandwidth sequence h∗, which equates the rate of convergence of the squared bias and variance to
zero, thus satisfies

O((h∗)4) = O
µ

1

n (h∗)p

¶
so

h∗ = O
µ
1

n

¶1/(p+4)
,
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and the MSE evaluated at h∗ is

MSE(f̂(x);h∗) = O

Ãµ
1

n

¶4/(p+4)!
.

Note that, as p increases — i.e., the number of components in xi, number of arguments of f(x) increases
— the best rate of convergence of the MSE declines, a phenomenon referenced by the catch phrase, “the
curse of dimensionality.”

The Asymptotic Distribution of the Kernel Density Estimator
The kernel density estimator f̂(x) can be rewritten as a sample average of independent, identically-

distributed random variables

f̂(x) =
1

n

nX
i=1

zin,

where

zin ≡ f̂(x) = 1

hp
K

µ
x− xi
h

¶
.

Here the second subscript in zin denotes its dependence on the sample size n through the bandwidth term
h = hn. Such doubly-subscripted random variables, where the range of the first subscript is bounded above
by the second, are known as triangular arrays, and classical limit theorems must be modified to account
for the changing distribution of the observations as the sample size increases.

To demonstrate asymptotic normality of f̂(x), a convenient central limit theorem is Liapunov’s Cen-
tral Limit Theorem for Triangular Arrays. It statest that, if the scalar random variable zin is
independently (but not necessarily identically) distributed with variance V ar(zin) ≡ σ2in and r-th absolute
central moment E[|zin −E(zin)|r] ≡ ρin <∞ for some r > 2, and if

(
Pn
i=1 ρin)

1/r¡Pn
i=1 σ

2
in

¢1/2 → 0

as n→ 0 (known as the Liapunov condition), then

zn ≡ 1

n

nX
i=1

zin

is asymptotically normal,

zn −E[zn]p
V ar(zn)

→d N (0, 1).

Applying this theorem to f̂(x), we obtain the variance of the zin terms as

σ2in ≡ V ar(zin)

= V ar

µ
1

hp
K

µ
x− xi
h

¶¶
=

f(x)

hp

Z
[K (u)]2 du+ o

µ
1

hp

¶
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from our earlier calculations; setting r = 3, we get an upper bound for the third central moment of zin as

ρin ≡ E[|zin −E(zin)|3]
≤ 8E[|zin|3]

= 8E

"¯̄̄̄
1

hp
K

µ
x− xi
h

¶¯̄̄̄3#

=
8f(x)

h2p

Z
|K (u)|3 du+ o

µ
1

h2p

¶
,

where the inequality uses the expansion

E[|zin −E(zin)|3] ≤ E[(|zin|+ |E(zin)|)3]
= E[|zin|3] + 3E[|zin|2] · |E(zin)|+ 3E[|zin|] · |E(zin)|2 + (E(zin))3

and the last equality makes the same change-of-variables calculations as for the variance of zin. Thus, for
this problem the Liapunov condition is

(
Pn
i=1 ρin)

1/r¡Pn
i=1 σ

2
in

¢1/2 ≤
³
n8f(x)
h2p

R |K (u)|3 du+ o ¡ n
h2p

¢´1/3
³
nf(x)hp

R
[K (u)]2 du+ o

¡
n
hp

¢´1/2
= O

Ã
n1/3

h2p/3

!
·O
Ã
n−1/2

h−p/2

!
= O((nhp)−1/6)
→ 0

if

nhp →∞,
the same condition imposed to ensure that V ar(f̂(x))→ 0 as n→∞. Under this condition, then,

f̂(x)−E[f̂(x)]q
V ar(f̂(x))

→d N (0, 1),

or, subtituting the expression for V ar(f̂(x)) = O((nhp)−1) and collecting terms,
√
nhp(f̂(x)−E[f̂(x)])→d N (0, f(x)

Z
[K (u)]2 du).

This is almost, but not quite, in the form of the usual expression for an asymptotic distribution of an
estimator; the difference is that the expectation of the estimator E[f̂(x)] rather than the true value f(x)
is subtracted from f̂(x) in this expression. Writing

√
nhp(f̂(x)− f(x)) =

√
nhp(f̂(x)−E[f̂(x)]) +

√
nhp(E[f̂(x)]− f(x)),

the asymptotic normality of f̂(x) around f(x) will require the second, bias term to converge to a constant.
Inserting the expression for the bias,

√
nhp(E[f̂(x)]− f(x)) =

√
nhp

µ
h2

2
tr

µ
∂2f(x)

∂x∂x0
·
Z
uu0K(u)du

¶
+ o(h2)

¶
= O(

√
nhp+4).
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If the bandwidth h = hn takes the form

hn = c

µ
1

n

¶1/(p+4)
,

so that it converges to zero at the optimal rate, then

√
nhp(E[f̂(x)]− f(x)) → c(p+4)/2

2
tr

µ
∂2f(x)

∂x∂x0
·
Z
uu0K(u)du

¶
≡ δ(x),

and
√
nhp(f̂(x)− f(x))→d N (δ(x), f(x)

Z
[K (u)]2 du).

Here the approximating normal distribution for f̂(x) would be centered at f(x) + δ(x), not f(x), and
construction of the usual confidence regions or test statistics would be complicated by the fact that δ(x)
depends upon the unknown second derivative of f(x).

If the bandwidth tends to zero faster than the optimal rate, i.e.,

h∗ = o
µ
1

n

¶1/(p+4)
,

then
√
nhp(E[f̂(x)]− f(x))→ 0,

and the bias term vanishes from the asymptotic distribution,

√
nhp(f̂(x)− f(x))→d N (0, f(x)

Z
[K (u)]2 du).

Often in practice this sort of “undersmoothing” — which implies the bias of f(x) is negligible relative to
the variance — is assumed, and confidence intervals of the form

f(x) ∈
"
f(x)− 1.96

s
f̂(x)

Z
[K (u)]2 du, f(x) + 1.96

s
f̂(x)

Z
[K (u)]2 du

#
are reported, though it is best to view the claimed 95% asymptotic coverage rate with some skepticism.
Note that if the bandwidth tends to zero slower than the optimal rate, e.g.,

h∗ = o
µ
1

n

¶γ

, γ >
1

p+ 4
,

then the bias of f̂(x) dominates its standard deviation, and the normalized difference
√
nhp(f̂(x)− f(x))

diverges.

Rescaling for Multivariate Kernels

Derivatives of the Kernel Density and Regression Estimators

Higher-Order (Bias-Reducing) Kernels
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