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Abstract

We analyze a 2 × 2 simultaneous game. We start by showing that a likelihood function
defined over the set of four observable outcomes and all possible variations of the game
exists only if players have incomplete information. We assume a general incomplete
information structure, where players’ beliefs are conditioned on a vector of signals ZZZ
observable by the researcher but whose exact distribution is known only to the players.
The resulting Bayesian-Nash equilibrium (BNE) is characterized as a vector of conditional
moment restrictions. We show how to exploit the information contained in these equilibrium
conditions efficiently. The proposal takes the form of a two-step estimator. The first step
estimates the unknown equilibrium beliefs using semiparametric restrictions analog to the
population BNE conditions. The second step maximizes a trimmed log-likelihood function
using the estimates from the first step as plug-ins for the unknown equilibrium beliefs.
The trimming set is an interior subset of the support of ZZZ where the BNE conditions
have a unique solution. The resulting estimator of the vector of structural parameters
‘θθθ’ is

√
N−consistent and exploits all information in the model efficiently. We allow ZZZ to

include continuous and/or discrete random variables. Tests for uniqueness of equilibrium
either for a given value of ZZZ or for its entire support are also presented. As an empirical
example we estimate a simple game of investment under uncertainty in industries with only
two publicly traded firms. Results are consistent with a model in which the smaller firm
has a comparatively greater incentive to predict the actions of the larger one, which bases
its decisions mainly on private information and indicators of industry uncertainty, giving
relatively less weight to the expected actions of the smaller firm.
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1 Introduction

The econometric analysis of game-theoretic models has been an increasingly active area of

research over the last decade. In these types of models, agents’ actions are interdependent

because each agent’s utility function depends directly on others’ choices and/or character-

istics. These models have been used to study a wide variety of socioeconomic phenomena

ranging from industry entry decisions to the role of neighborhood influences on socioeconomic

outcomes such as education or marriage. The formulation and analysis of a game-theoretical

model must be accompanied by an appropriately defined equilibrium solution, which is

typically some variation of the notion of Nash Equilibrium1. Econometric analyses of these

models generically assume that agents’ observed actions constitute an equilibrium of the

underlying game. As a consequence, given a set of stochastic assumptions of the model,

the resulting equilibrium properties play a critical role in the econometric study of game-

theoretic models. Specifically, given the primitives of the game, a well-defined likelihood

function over the entire set of observable outcomes will not exist if, with strictly positive

probability, the game has either multiple or no equilibria . Hence, econometric analysis of

these models depends fundamentally on the equilibrium features of the underlying game.

In general, a researcher has two choices when it comes to estimating a game with multiple

equilibria. The first option is to use some theory of equilibrium selection. An appropriately

chosen equilibrium selection mechanism assures the existence of a well-defined likelihood

function for the entire space of observable outcomes. Examples of papers which have assumed

equilibrium selection rules in the estimation of games include those by Bjorn and Vuong

1In this paper we will assume that players maximize expected utility and their resulting optimal strategy

profile constitutes a Nash Equilibrium. Alternatives to Nash equilibrium abound. For example, modern

non-Nash solution concepts with learning and/or evolution foundations are detailed in Weibull (1997) and

Fudenberg and Levine (1998). An elegant refutation to expected utility maximization can be found in Rabin

(2000).
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(1984, 1985) and Kooreman (1994) in games of complete information, and Sweeting (2004)

in a game with incomplete information. The disadvantage of this approach is that while the

Nash Equilibrium concept has been used extensively in many and diverse contexts, there

is no generally accepted procedure for determining which equilibrium will be played when

equilibrium is multiple2. Consistency of the estimation depends critically on the validity

of the assumed selection rule. The second option is to redefine the game in a way that

makes it estimable without the need for an equilibrium selection rule. One alternative

is to redefine the space of outcomes of the game and transform it into one that exhibits

uniqueness of equilibrium (Bresnahan and Reiss (1990, 1991)). More recently, Tamer (2003)

used probability bounds for each outcome instead of their exact (not well-behaved) likelihood

function. These alternatives are robust in the sense that they depend only on the concept of

Nash Equilibrium, without developing a theory of equilibrium selection. The disadvantage

of this type of approach is that the transformations/redefinitions result in some loss of

resolution in the model. This in turn translates into efficiency losses. It also limits the the

ability of the researcher to predict over the entire set of observable outcomes.

Conditions for uniqueness of equilibrium depend on the primitive elements that char-

acterize the underlying game. Following Fudenberg and Tirole (1991), in non-cooperative

games these elements consist of: (i) the set of players, (ii) the order of moves -i.e, who moves

when, (iii) the players’ payoffs as a function of their moves, (iv) the set of available choices

at each move, (v) what each player knows when he makes his choices and (vi) the probability

distributions over all exogenous events. This paper concentrates on the econometric

2One of the most thorough attempts to present a general equilibrium selection theory based on the same

principles of rational behavior can be found in Harsanyi and Selten (1988). These authors propose a theory

of equilibrium selection that selects a unique Nash equilibrium for any non-cooperative N -person game. The

heart of their theory is given by a “tracing” procedure, a mathematical construction that adjusts arbitrary

prior beliefs into equilibrium beliefs. A learning/evolutionary theory of equilibrium selection is presented in

Samuelson (1998).
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implications of (v) for a simultaneous game. We assume an incomplete information

environment more general and flexible than those that have been previously employed in

existing econometric work. First, we show that a well-behaved likelihood function for the

entire space of observable outcomes exists under generically weaker conditions if players

have incomplete information vis-à-vis perfect information. The game’s resulting Bayesian-

Nash equilibrium (BNE) conditions can be expressed as a vector of conditional moment

restrictions. Then, we show how to exploit the information in the BNE conditions efficiently

by imposing semiparametric restrictions analog to the BNE. In the end, the presence of

incomplete information allows the econometrician to estimate the structural parameters of

the model without losing resolution in the model. As we mentioned above, such losses are

unavoidable in the perfect information version of the game unless some equilibrium selection

rule is imposed.

Specifically, this paper focuses on a 2×2 simultaneous game proposed first by Bresnahan

and Reiss in the context of industry entry models and later studied by Tamer. These

authors analyzed the game assuming that players possess perfect information and that

they only choose pure strategies. Under these assumptions, players’ optimal strategies are

described by a simultaneous discrete response system. Heckman (1978) studied the properties

of such nonlinear systems3. Using his results, the aforementioned authors conclude that

a well-defined likelihood function exists for the four observable outcomes only if the so-

called “coherency” condition is satisfied. Imposing this condition eliminates the strategic

interaction from the game. This negative result is a consequence of the presence of multiple

equilibria. Bresnahan and Reiss, as well as Tamer propose different estimation techniques

that avoid both the coherency condition and the use of equilibrium selection rules. These

3Other pioneering papers on systems of nonlinear simultaneous equations include those by Jorgenson

and Laffont (1974), Amemiya (1974) and Schmidt (1981). Surveys of methods for estimation of nonlinear

multivariate regressions and systems of nonlinear simultaneous equations can be found in Amemiya (1983).
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methods result in some loss of resolution in the model, which translates into efficiency losses

and reduces the ability to make predictions for all observable outcomes of the game.

Using the results of a companion paper (Aradillas-Lopez (2004)) we first show that if

players have complete information and if mixed strategies are allowed, then a well-behaved

likelihood function for the four observable outcomes exists under weaker assumptions than

the coherency condition. However, we show that if players have complete information,

nonexistence of a likelihood function prevails for an entire family of variations of this game,

which we call “symmetric”. We then concentrate on an incomplete information version of the

game. In this setting players must use all relevant available information to construct beliefs

about their opponent’s expected behavior. Assuming expected utility maximization, in a

Bayesian-Nash equilibrium (BNE) each player selects a best response against the expected

action of his opponent. Equilibrium beliefs correspond to actual average behavior. Existing

econometric literature on simultaneous games with incomplete information is relatively

scarce. Existing papers include those of Seim (2002) in the context of an entry model

and Sweeting (2004) in the context of a coordination game. Both authors assume that the

only source of incomplete information among players is an idiosyncratic component which is

unobservable to the econometrician. The BNE conditions in both cases can be expressed as

(unconditional) moment restrictions.

This paper shows how to estimate efficiently a simultaneous game assuming a general form

of incomplete information. First, instead of confining the source of incomplete information

exclusively to an idiosyncratic component unobserved by the econometrician, we allow the

possibility that some of the privately observed variables become available to the researcher

after the game has been played. Second, we also allow the existence of a vector of publicly

observed “signals” ZZZ used by both players to construct their beliefs. These signals are

assumed to be statistically related to some of the privately observed variables. They

are also assumed to be available to the econometrician. Except for a set of smoothness
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assumptions, the exact distribution of ZZZ is left unspecified. The game’s resulting BNE can

be expressed as a vector of conditional moment restrictions. We detail sufficient conditions

for uniqueness of BNE and assume that these conditions hold at least inside a subset in the

interior of the support of ZZZ4. Using this result, we show that conditions for existence of a

well-defined likelihood function are generically weaker than in the complete information

case. In particular, a well-defined likelihood function for the four observable outcomes

of the game exists for a subset of symmetric variations of the game only if players have

incomplete information. Equilibrium beliefs in our model are in fact conditional probabilities.

Lack of knowledge about the distribution of ZZZ implies that these equilibrium probabilities

(beliefs) must be estimated using nonparametric methods. Replacing unknown conditional

probabilities with nonparametric estimates in discrete choice models with uncertainty -but

no strategic interaction- was suggested by Manski (1991, 1993) and thoroughly analyzed by

Ahn and Manski (1993).

The estimation procedure takes the form of a trimmed quasi Maximum Likelihood

maximization, where uniqueness of equilibrium prevails everywhere in the trimming set.

Unknown equilibrium probabilities (beliefs) are replaced with semiparametric plug-ins.

In an attempt to increase efficiency, we exploit the information about the structural

parameter vector ‘θθθ’ contained in the BNE conditions. Employing the usual (e.g kernel-

based) nonparametric conditional probability estimators as plug-ins would be consistent,

but would imply losing this information. Instead, we propose alternative plug-ins based on

a semiparametric analog version of the BNE condition. We also show how to adapt this

estimation procedure to the case in which uniqueness of equilibrium prevails everywhere in

the support of the signals ZZZ. In this case, the proposed methodology allows us to use the

entire support ofZZZ. We then characterize the asymptotic properties of the resulting estimator

for θθθ which is
√
N−consistent and exploits all available information. The methodology also

4We also provide sufficient conditions for uniqueness of BNE to hold everywhere in the support of ZZZ.

5



allows us to test the hypothesis of uniqueness of equilibrium, either for a given realization ofZZZ

or for its entire support. Even though the paper focuses on a particular game, the procedure

can be adapted to game-theoretic models with more players and/or available actions. An

immediate example would be the kind of Local Interaction Models surveyed by Brock and

Durlauf (2001).

The paper proceeds as follows: section 2 describes the normal form representation of the

game that will be analyzed here. Section 3 details the equilibrium properties of the game

under complete and incomplete information. Section 4 focuses on the incomplete information

case and presents two semiparametric quasi maximum likelihood estimators that exploit the

information contained in the equilibrium conditions along with a detailed characterization

of their asymptotic properties. Section 5 presents an empirical application of the game for

an investment game in industries with two publicly traded firms. Section 6 includes some

concluding remarks.

The proofs to all results can be found in the accompanying Mathematical Appendix.

2 Description of the game

We focus on a 2 × 2 simultaneous game with the following normal-form representation. As

usual in game-theory, each entry in the matrix represents the Neumann-Morgenstern utility

of each player for each one of the four outcomes

PLAYER 2

Y2 = 1Y2 = 1Y2 = 1 Y2 = 0Y2 = 0Y2 = 0

PLAYER 1 Y1 = 1Y1 = 1Y1 = 1 XXX ′
1βββ1−ε1+α1 ,XXX ′

2βββ2−ε2+α2 XXX ′
1βββ1 − ε1 , 0

Y1 = 0Y1 = 0Y1 = 0 0 , XXX ′
2βββ2 − ε2 0 , 0
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This payoff structure was first formally studied -in the context of empirical industry entry

models- by Bresnahan and Reiss (1991), it was also the focus of Tamer(2003). Following

the aforementioned authors, we will assume throughout that the econometrician observes the

realization of the random variablesXXX1 ∈ R
k1 andXXX2 ∈ R

k2 but doesn’t observe those of ε1 ∈ R

nor ε2 ∈ R. The focus of this paper will be to analyze the properties of the game according

to the information available to each player. Let XXX = (XXX1,XXX2) ∈ R
k, with k ≡ k1 + k2

and denote εεε = (ε1, ε2) ∈ R2. Also denote the vector of parameters θθθ1 = (βββ1, α1) ∈ Rk1+1,

θθθ2 = (βββ2, α2) ∈ Rk2+1 and θθθ = (θθθ1, θθθ2) ∈ Rk+2, all of which are assumed as constants,

unknown to the econometrician. According to the signs of α1 and α2 we say that the game

is “symmetric” if α1 × α2 > 0 , “asymmetric” if α1 × α2 < 0 and “not jointly strategic” if

α1 × α2 = 0.

3 Properties of the game under incomplete informa-

tion

Assuming perfect knowledge of payoffs is a good approximation in some economic situations.

When players do not have exact knowledge about the payoffs of their opponents the game

is said to have “incomplete information”. In this section we will assume that each player

has complete information about his own payoff but has incomplete information about his

opponent’s payoff. Specifically, we will assume that the information structure satisfies the

following properties:

3.1 Information assumptions

(I): 1.− The realizations of (XXX1, ε1) and (XXX2, ε2) are perfectly observed by players 1 and 2

respectively, who also know the value of θθθ.
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2.− ε1 and ε2 are purely idiosyncratic shocks, privately observed by players 1 and 2

respectively.

3.− We allow some elements of XXX1 and XXX2 to be publicly observed by both players,

but we also allow the possibility that at least one element of XXX1 and one element

of XXX2 are privately observed by players 1 and 2 respectively. We will assume the

privately observed components of XXX1 and XXX2 to be statistically independent of

each other.

4.− There exist publicly observable variables ZZZ1 ∈ R
L1 and ZZZ2 ∈ R

L2 that are statis-

tically related to the privately observed components of XXX1 and XXX2 respectively.

All publicly observable elements of XXX1 and XXX2 are included in ZZZ1 and ZZZ2.

5.− Both players have perfect knowledge of the stochastic properties (probability

distributions) of εεε, XXX and ZZZ described below.

6.− Players’ actions constitute a Bayesian Nash Equilibrium (BNE).

We will let YYY ≡ (Y1, Y2)
′ and ZZZ ≡ ZZZ1 ∪ ZZZ2. Denote the dimension of ZZZ as L, so ZZZ ∈

R
L, with L ≤ L1 + L2. Assumptions (I.1)-(I.3) describe players’ knowledge about their

mutual payoffs. Instead of confining the source of incomplete information to the idiosyncratic

components, these assumptions allow some of the variables available to the researcher to be

privately observed at the time the game is played. Independence between the privately

observed components of XXX1 and XXX2 is assumed merely to simplify the characterization of

the equilibrium conditions. It permits both players to construct their equilibrium beliefs

conditional on the same set of variables (namely, ZZZ). This assumption can be easily dropped

from the model but will be maintained throughout.

Assumption (I.4) borrows from the Principal-Agent literature. The possibility of using

publicly observable variables to learn more about privately observed individual characteristics
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has been extensively used in the field of contract theory5. Extensions of the basic principal-

agent problem assume the existence of a verifiable signal available to the principal (i.e,

a publicly observed variable) which is informative about the agent’s privately observed

characteristics6. Assumptions (I5) and (I6) assure that the equilibrium expected probabilities

(beliefs) are equal to the actual probabilities. As we will see below, econometric estimation

of θθθ will rely on this result to “recover” (estimate) these unobservable beliefs using a well-

defined sample analog of the population BNE conditions.

We next describe the stochastic assumptions to be used in this section. We will use these

assumptions to study the BNE properties of the game. They will be strengthened in Section

4.2, which deals with the estimation of the model.

3.2 Stochastic assumptions

Throughout this paper we will use S(v) to denote the support of a random variable v. We

will use the following stochastic assumptions in this section (they will be strengthened in

Section 4.2).

Stochastic properties of ε1ε1ε1, ε2ε2ε2

(S̃1): 1.− ε1 and ε2 are continuously distributed random variables, independent of each

other, independent of (XXX,ZZZ) and independent of any other publicly observable

variable.

2.− We denote the cdf’s of ε1 and ε2 as G1(ε1) and G2(ε2) respectively. We will denote

their corresponding density functions by g1(ε1) and g2(ε2), which are assumed to

5If both XXX1 and XXX2 were publicly observed, then we would have ZZZ1 = XXX1 and ZZZ2 = XXX2: players’ only

use of informational signals ZZZ is to learn about the privately observed components of XXX.
6Following the pioneering work by Spence (1973), Holmstrom (1979) showed that the principal should

incorporate available signals in his optimal decision (contract design for the agent) as long as the signal is

statistically related to the unobserved characteristics of the agent.
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be bounded and strictly positive everywhere in R (i.e, S(ε1) = S(ε2) = R). Neither

G1(·) nor G2(·) depend on θθθ.

Stochastic properties of XXX, ZZZ

(S̃2): 1.− Denote the conditional pdf’s of XXX1 and XXX2 given ZZZ as fXXX1|ZZZ(·) and fXXX1|ZZZ(·)

respectively. We will assume that both conditional pdf’s are independent of θθθ.

Assumption (S̃1.1) is crucial for the model to be ultimately estimable: it assures that players’

optimal beliefs are constructed conditional on variables observed by the econometrician7.

Continuity of G1(·) and G2(·) (in assumption (S̃1.2)) is necessary to show existence of

equilibrium. The condition S(ε1) = S(ε2) = R is not crucial. As we shall see, the results

presented in this section hold even if these supports are bounded as long as a weaker condition

is satisfied (see for example Lemma 3.1 and footnote 12 below). Assumption (S̃2) simplifies

the characterization of the BNE conditions. We will also use it to provide sufficient conditions

for uniqueness of equilibrium.

Throughout the paper we will assume that after the game has been played, the

econometrician observes YYY , XXX and ZZZ, but doesn’t observe εεε. We will make precise

assumptions concerning the econometrician’s knowledge of the distribution functions in

Section 4.2. The next section describes the characteristics of the BNE given our set of

assumptions.

3.3 Equilibrium

In simultaneous (as opposed to sequential) games of incomplete information, players have no

possibility to update their prior beliefs about their opponent’s privately observed payoff-

7Manski (1991) showed that a discrete choice model with uncertainty is estimable only if expectations

are fulfilled and are conditioned only on variables observed by the researcher.
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relevant characteristics which determine players’ actual choices. 8 Each player must

construct beliefs about their opponent’s expected action using all relevant, observable

information. Given our assumptions, this implies that players’ beliefs are constructed

conditional on ZZZ. Specifically, let π(2)
1 (ZZZ) = Player 2’s expected probability that Y1 = 1

given ZZZ and π
(1)
2 (ZZZ) = Player 1’s expected probability that Y2 = 1 given ZZZ.

In a Bayesian Nash equilibrium (BNE) players maximize their expected utility conditional

on their beliefs, which yields9

Y1 = 1l
{
XXX ′

1βββ1 + α1π
(1)
2 (ZZZ) − ε1 ≥ 0

}
and Y2 = 1l

{
XXX ′

2βββ2 + α2π
(2)
1 (ZZZ) − ε2 ≥ 0

}

In a BNE, players’ beliefs are equal to the actual probabilities. We will denote these

equilibrium probabilities simply as π∗
1(ZZZ) and π∗2(ZZZ). Take ZZZ ∈ S(ZZZ). Take ZZZ ∈ S(ZZZ) and

define

ϕ1(π2 | ZZZ,θθθ1) ≡ E
[
G1(XXX

′
1βββ1 + α1π2) | ZZZ

]
and ϕ2(π1 | ZZZ,θθθ2) ≡ E

[
G2(XXX

′
2βββ2 + α2π1) | ZZZ

]

Then, equilibrium probabilities π∗1(ZZZ) and π∗2(ZZZ) solve (for π1 and π2) the equilibrium

equations

π1 − ϕ1(π2 | ZZZ,θθθ1) = 0

π2 − ϕ2(π1 | ZZZ,θθθ2) = 0. (1)

Clearly, equilibrium probabilities also depend on θθθ. From now on we will denote them as

π∗1(ZZZ,θθθ) and π∗2(ZZZ,θθθ) . Therefore in a BNE, players’ optimal actions are described by the

pair of threshold-crossing equations:

Y1 = 1l
{
XXX ′

1βββ1 + α1π
∗
2(ZZZ,θθθ) − ε1 ≥ 0

}
and Y2 = 1l

{
XXX ′

2βββ2 + α2π
∗
1(ZZZ,θθθ) − ε2 ≥ 0

}
. (2)

8These privately observed payoff-relevant characteristics are usually called “types”.
9The presence of incomplete information makes it impossible for players to randomize their actions to

make their opponent exactly indifferent between Y = 1 and Y = 0. This is why optimal choice rules are

described by these threshold equations. This contrasts with the complete information version of the game,

where mixed-strategy Nash equilibria do exist.
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The following section analyzes conditions for existence of a well-behaved likelihood function

for the four observable outcomes of the game. As we shall see, these conditions are directly

related to the existence and uniqueness properties of the solution to (1).

3.4 Conditions for existence of a likelihood function

In this section we examine conditions for existence of a well-defined conditional likelihood

for the four observable outcomes of the game assuming that players choose equilibrium

strategies. These conditions depend directly on the equilibrium properties (existence and

uniqueness) of the game. We will also compare the results for the complete and the

incomplete information versions of the game. As we shall see, conditions for existence of

a well defined likelihood function are generically more stringent when players have perfect

knowledge of their opponent’s payoff realization. We begin by examining the complete

information case.

3.4.1 Existence of likelihood function when players have complete information

Suppose XXX and εεε are publicly observed by both players before choosing their actions. This

corresponds to the complete information version of the game, which was analyzed previously

by Bresnahan and Reiss (1990, 1991) and Tamer (2003). These authors outlined conditions

for existence of a well-defined likelihood function F(YYY |XXX,θθθ) assuming the observed actions

correspond to a pure-strategy Nash Equilibrium10, ruling out mixed-strategies. If this is the

case (only pure strategies are allowed) then the players’ optimal actions can be expressed as

a simultaneous discrete response system described by the pair of equations11

Y1 = 1l
{
XXX ′

1βββ1 + α1Y2 ≥ 0
}

and Y2 = 1l
{
XXX ′

2βββ2 + α2Y1 ≥ 0
}
.

10If players have perfect knowledge about their opponent’s payoffs, there is no use for signals ZZZ and the

relevant conditional likelihood is simply F(YYY |XXX,θθθ).
11These behavior equations replace (2), which describe players’ optimal actions with incomplete

information.
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Heckman (1978) provided conditions for existence of a well-defined likelihood function of

this model which he referred to as “principal conditions”. Bresnahan and Reiss referred to

them as conditions for existence of a “well-defined reduced form”. Tamer later referred to

these as “coherency conditions” . Aradillas-Lopez (2004) extended the results of Bresnahan

and Reiss as well as Tamer to the case in which mixed-strategy Nash Equilibria are allowed.

In this case, optimal strategies are no longer exactly described by a simultaneous discrete

response system. The next Lemma summarizes the results in Aradillas-Lopez.

Lemma 3.1 Suppose XXX and εεε are publicly observed by both players and S(ε1) = S(ε2) = R.

Let F(YYY |XXX,θθθ) denote the conditional likelihood of YYY given XXX. If the game is in equilibrium

then

(A) If mixed-strategies are allowed, a well defined F(YYY | XXX,θθθ) exists for the four outcomes

of the game if and only if α1α2 ≤ 0.

(B) If only pure-strategies are allowed, a well defined F(YYY |XXX,θθθ) exists for the four possible

outcomes of the game if and only if α1α2 = 0.

See Aradillas-Lopez for details of the proof, which relies entirely on the Nash Equilibrium

properties of the game. Tamer called α1 × α2 = 0 the “coherency condition”, which

is necessary and sufficient for existence of a well-defined likelihood function for the four

outcomes if we assume the game is in equilibrium and only pure-strategies are allowed.

Once mixed-strategies are allowed, this condition can be relaxed to α1 × α2 ≤ 0 . Using our

early terminology we can summarize the result as “if players can choose mixed-strategies

and the game is in equilibrium, a well defined likelihood function exists for the four possible

outcomes if and only if the game is either asymmetric or not jointly strategic”. The reason

behind this result is simple: if α1 × α2 ≤ 0 then uniqueness of equilibrium is a generic

property of the game.
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If the game is symmetric (i.e, if α1 × α2 > 0 ) and the support of εεε is rich enough12,

then a well-defined F(YYY | XXX,θθθ) for the four outcomes does not exist even if we allow for

mixed-strategies. The reason behind this result is once again a simple one: if α1 × α2 > 0

then multiple equilibria is a generic property of the game. We should point out however,

that if α1 × α2 > 0 and mixed-strategies are ruled out, then F(YYY |XXX,θθθ) exists for a subset

of the four outcomes of the game. This was first noted by Bresnahan and Reiss (1990,1991)

and enabled them to treat multiple outcomes as one event, effectively transforming the

model into one that predicts the joint equilibria. For example, if α1 > 0, α2 > 0 then a

well-defined F(YYY | XXX,θθθ) exists for YYY = (1, 0) and YYY = (0, 1) whereas if α1 < 0, α2 < 0

then a well-defined F(YYY | XXX,θθθ) exists for YYY = (0, 0) and YYY = (1, 1) . Instead of using joint

outcomes, Tamer proposed a semiparametric estimator based on the probability bounds for

the multiple-equilibria outcomes implied by the model. Both alternatives avoid using an

equilibrium selection theory at the cost of reducing the resolution of the game. Neither

methodology is capable of making predictions (i.e, expected conditional probabilities) for

the four observable outcomes of the game.

We now examine the incomplete information version of the game. We will show that

a well-defined likelihood function exists under conditions generically weaker than in the

complete information case.

3.4.2 Existence of likelihood function under incomplete information

As we mentioned above, after the game has been played the econometrician is assumed

to observe YYY , XXX and ZZZ, but doesn’t observe εεε. Denote the conditional likelihood of YYY

given (XXX,ZZZ) as F(YYY | XXX,ZZZ,θθθ). Existence of this likelihood function will depend on the

12Let M(XXX,θθθ) =
{
(ε1, ε2) : Min{XXX ′

1βββ1,XXX
′
1βββ1 + α1} ≤ ε1 ≤ Max{XXX ′

1βββ1,XXX
′
1βββ1 + α1} and

Min{XXX ′
2βββ2,XXX

′
2βββ2 + α2} ≤ ε2 ≤ Max{XXX ′

2βββ2,XXX
′
2βββ2 + α2}

}

Then the results of Lemma 3.1 hold if Pr
{
(ε1, ε2) ∈ M(XXX,θθθ)

}
> 0, which may be true even if S(ε1) 6= R or

S(ε1) 6= R . See Aradillas-Lopez (2004).
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equilibrium properties of the game: Take zzz ∈ S(ZZZ). Then F(YYY |XXX,zzz,θθθ) will exist if and only

if the solution to (1) when ZZZ = zzz exists and is unique. We next examine the equilibrium

properties (existence and uniqueness) of the game and the resulting conditions for existence

of a well-behaved likelihood function F(YYY |XXX,ZZZ,θθθ).
If assumptions (S̃1) and (S̃2) are satisfied, then ϕ1(· | ZZZ,θθθ1) and ϕ2(· | ZZZ,θθθ2) are

monotonic, continuous and strictly bounded in (0, 1) for all π1 and π2 ∈ R. They also

satisfy:

dϕ1(π2 | ZZZ,θθθ1)

dπ2
= α1E

[
g1(XXX

′
1βββ1 + α1π2) | ZZZ

]
and

dϕ2(π1 | ZZZ,θθθ2)

dπ1
= α2E

[
g2(XXX

′
2βββ2 + α2π1) | ZZZ

]
.

Figures 1 and 2 illustrate examples of ϕ1(· | ZZZ,θθθ1) and ϕ2(· | ZZZ,θθθ2) that satisfy these

properties for symmetric and asymmetric games respectively. As we can infer from Figures
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Figure 1: Examples of ϕ1(· | ZZZ,θθθ1) and ϕ2(· | ZZZ,θθθ2) that satisfy assumptions (S̃1) and (S̃2) for

symmetric games.

1 and 2, continuity and boundedness of G1(·) and G2(·) are enough to guarantee existence

of equilibrium. Because S(ε1) and S(ε2) are assumed to be unbounded, the equilibrium is

always strictly inside the unit-square [0, 1]2. Lemma 3.2 formalizes this existence result.
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The proof uses a fixed-point argument and can be found in the accompanying Mathematical

Appendix.

Lemma 3.2 (Existence of equilibrum) Suppose assumptions (S̃1) and (S̃2) are satisfied.

Then a solution to (1) exists for each ZZZ ∈ S(ZZZ) and each θθθ ∈ Rk+2.
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Figure 2: Examples of ϕ1(· | ZZZ,θθθ1) and ϕ2(· | ZZZ,θθθ2) that satisfy assumptions (S̃1)-(S̃2) for

asymmetric games.

Having established existence of
(
π∗1(ZZZ,θθθ), π

∗
2(ZZZ,θθθ)

)
everywhere in S(ZZZ), we now turn to the

topic of uniqueness.

Looking at figures 3 and 4, we can see that if the game is symmetric we can easily find

examples of ϕ1(· | ZZZ,θθθ1) and ϕ2(· | ZZZ,θθθ2) that satisfy our assumptions and also yield multiple

solutions to (1). Figure 4 presents cases with an infinite number of equilibria, all of which

occur at points of tangency between the two curves. Borrowing from general equilibrium

literature, we will refer to equilibria that occur at points of tangency as “critical”. All other

equilibria will be called “regular”. From Figure 2 we can infer that examples of functions

ϕ1(· | ZZZ,θθθ1) and ϕ2(· | ZZZ,θθθ2) that satisfy our assumptions and also yield multiple equilibria
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can’t be found if the game is asymmetric or not jointly strategic, which would imply that

each ZZZ ∈ S(ZZZ) has a unique equilibrium if α1 × α2 ≤ 0 .
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Figure 3: Examples of ϕ1(· | ZZZ,θθθ1) and ϕ2(· | ZZZ,θθθ2) that satisfy assumptions (S̃1)-(S̃2) but yield

multiple equilibria if the game is symmetric.

The following lemma formalizes these arguments by describing a sufficient condition

for uniqueness of equilibrium; such condition is satisfied by all asymmetric and not-jointly

strategic games but it is also satisfied by a subset of symmetric games. The proof can be

found in the accompanying Mathematical Appendix.

Lemma 3.3 (Uniqueness of equilibrium) Take ZZZ ∈ S(ZZZ) and suppose assumptions (S̃1) and

(S̃2) are satisfied. In addition, suppose θθθ ∈ Rk+2 is such that

α1α2E
[
g1(XXX

′
1βββ1 + α1π2) | ZZZ

]
E
[
g2(XXX

′
2βββ2 + α2π1) | ZZZ

]
< 1 ∀(π1, π2) ∈ [0, 1]2,

then the equilibrium
(
π∗1(ZZZ,θθθ), π

∗
2(ZZZ,θθθ)

)
is unique and a well-defined conditional likelihood

F(YYY |XXX,ZZZ,θθθ) exists.

We can provide some intuition behind the condition in Lemma 3.3. Take ZZZ ∈ S(ZZZ), then

it is easy to show that if |α1| ·E
[
g1(XXX

′
1βββ1 +α1π2) | ZZZ

]
< 1 and |α2| ·E

[
g2(XXX

′
2βββ2 +α2π1) | ZZZ

]
< 1
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then
(
ϕ1(π2 | ZZZ,θθθ1), ϕ2(π1 | ZZZ,θθθ2)

)
is a contraction mapping and consequently it has a unique

fixed point. This last condition however is more restrictive than what we need. For example,

α1 ×α2 ≤ 0 then the fixed point is unique regardless of whether or not the right hand side of

(1) is a contraction. There is also a geometric interpretation. If the condition of Lemma 3.3

is satisfied, then the slopes of the curves ϕ2(π1 | ZZZ,θθθ2) and ϕ−1
1 (π1 | ZZZ,θθθ1) are different from

each other for all π1 ∈ [0, 1]. This puts a limit on the variability of the curves in figures 3 and

4 and restricts the “wiggliness” that gives rise to multiple crossing points (equilibria) and

constitutes a sufficient condition for the two curves π1 = ϕ1(π2 | ZZZ,θθθ1) and π2 = ϕ2(π1 | ZZZ,θθθ2)

to cross only once.
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Figure 4: Examples of ϕ1(· | ZZZ,θθθ1) and ϕ2(· | ZZZ,θθθ2) that satisfy assumptions (S̃1)-(S̃2) but yield

an infinite number of critical equilibria if the game is symmetric.

Lemma 3.3 provides sufficient conditions for uniqueness of equilibrium for a given

realization of ZZZ. The next corollary builds upon the lemma and provides simple, sufficient

conditions involving only (α1, α2) such that the conclusions of Lemma 3.3 hold everywhere

in S(ZZZ).
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Corollary 1 (Uniqueness of equilibrium in S(ZZZ)) Suppose assumptions (S̃1) and (S̃2) are

satisfied. Then the following holds:

1.- If the game is asymmetric or not jointly strategic, then there is a unique equilibrium

(
π∗1(ZZZ,θθθ), π

∗
2(ZZZ,θθθ)

)
for each ZZZ ∈ S(ZZZ) and F(y1, y2 | XXX,ZZZ,θθθ) exists for all ZZZ ∈ S(ZZZ) and

all XXX.

2.- More generally, let gε1
= Max

ε1∈R

g1(ε1) and g2 = Max
ε2∈R

gε2(ε2) and suppose that θθθ is

such that α1 × α2 < 1/(g1g2). Then there is a unique equilibrium
(
π∗1(ZZZ,θθθ), π

∗
2(ZZZ,θθθ)

)

for each ZZZ ∈ S(ZZZ). Consequently, F(y1, y2 |XXX,ZZZ,θθθ) exists for all ZZZ ∈ S(ZZZ) and all XXX.

If assumption (S̃1) is satisfied, then E
[
g1(XXX

′
1βββ1 +α1π2) | ZZZ

]
∈ [0, g1] and E

[
g2(XXX

′
2βββ2 +α2π1) |

ZZZ
]
∈ [0, g2] for all (ZZZ,θθθ,πππ) ∈ S(ZZZ)×R

k+2×R
2. Consequently, α1×α2 < 1/(g1g2) is a sufficient

(but not necessary) condition for the assumption of Lemma 3.3 to hold everywhere in S(ZZZ) .

Thus, from Corollary 1 and Lemma 3.1 we conclude that if a well-defined likelihood function

exists in both the complete and incomplete information cases if α1 × α2 ≤ 0 . However, if

the game is symmetric then the likelihood function exists only if players have incomplete

information.

The conditions in Lemma 3.3 and Corollary 1 are sufficient, but not necessary for

uniqueness of the BNE in symmetric games. In general, the discussion in the preceding

paragraphs shows that if the game is symmetric, the BNE will be unique if the strategic-

interaction parameters α1 and α2 are small relative to the conditional supports S
(
XXX ′

1βββ1 | ZZZ
)

and S
(
XXX ′

2βββ2 | ZZZ
)

respectively. More precisely, we need them to be small enough so

as to avoid the variability (wiggliness) of ϕ1(π2 | ZZZ,θθθ1) and ϕ2(π1 | ZZZ,θθθ2) in the interval

(π1, π2) ∈ [0, 1]2 that is needed for multiple equilibria to prevail -see Figures 3 and 4-. The

next part of the paper deals with the problem of estimating the structural parameter θθθ when
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the game is played under incomplete information.

4 Estimation of the game with incomplete information

In this section we will present a methodology for estimating the structural parameter θθθ

under the assumption that players have incomplete information. First, we will see how to

estimate the unobserved equilibrium probabilities (beliefs) using the BNE conditions. Then,

we will show how to use these estimated equilibrium probabilities to estimate the structural

parameter θθθ. The methodology exploits all information available to the econometrician.

Due to the equilibrium characteristics of the game with incomplete information, we will be

able to carry out the estimation without losing resolution in the model. The presence of

incomplete information will enable us to make predictions for the four observable outcomes

of the game.

Before proceeding, let us introduce some new notation. We will use ‘−p’ to denote player

p ’s opponent. Trivially, we have: “−p = 2 if p = 1” and “−p = 1 if p = 2”. As before, we

will denote YYY ≡ (Y1, Y2)
′ ∈ R

2 , XXX ≡ (XXX ′
1,XXX

′
2)

′ ∈ R
k and ZZZ ≡ ZZZ1 ∪ZZZ2 , with ZZZ ∈ R

L. We

will use θθθ0 and ΘΘΘ to denote the true parameter value and the parameter space respectively.

Except when noted otherwise, we will follow the existing convention and use upper and lower

cases to distinguish between random variables and their realizations. Finally, we will define

M ≡ L+1, where L is the number of signals ZZZ used by the players to construct their beliefs.

We next describe the set of assumptions that will be used through the rest of the paper.

4.1 Information assumptions

We will maintain assumption (I) exactly as described in Section 3.1.
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Next, we strengthen the stochastic assumptions used in Section 3.1. Basically, we will impose

smoothness assumptions as well as additional conditions that guarantee the existence of a

well-behaved likelihood function. Some of the smoothness conditions we employ are similar

or equivalent to those used by Ahn and Manski.

4.2 Stochastic assumptions

Stochastic properties of ε1ε1ε1, ε2ε2ε2

We will strengthen assumption (S̃1) from Section by imposing additional “smoothness”

conditions for G1(·) and G2(·). We will assume that:

(S1) 1.− ε1 and ε2 are continuously distributed random variables, independent of each

other, independent of (XXX,ZZZ) and independent of any other publicly observable

variable.

2.− We denote the cdf’s of ε1 and ε2 as G1(ε1) and G2(ε2) respectively. We will denote

their corresponding density functions by g1(ε1) and g2(ε2) respectively, which are

strictly positive everywhere in R (i.e, S(ε1) = S(ε2) = R). Neither G1(·) nor G2(·)

depend on θθθ.

3.− G1(ε1) and G2(ε2) are M + 2 times differentiable functions, with bounded M + 2

derivatives everywhere in S(ε1) = S(ε2) = R. Both distribution functions are

assumed to be known up to a finite dimensional parameter.

The only difference with respect to (S̃1) has to do with the smoothness assumptions about

G1(·) and G2(·). These conditions facilitate the approximations used to find the asymptotic

distribution of our proposed estimator. Next, we describe the refinements to (S̃2). We will

now assume that ZZZ is a continuously distributed random vector and impose smoothness

assumptions for fXXX1,ZZZ(xxx1, zzz) and fXXX2,ZZZ(xxx2, zzz). We will also assume that S(XXX) is compact.
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Stochastic properties of XXX, ZZZ

Assumption (S̃2) will also be strengthened by assuming that the vector of signals ZZZ is

continuously distributed and by introducing smoothness assumptions for fXXX1,ZZZ(xxx1, zzz) and

fXXX2,ZZZ(xxx2, zzz). A compactness condition for S(XXX) will also be introduced. We will now assume

that:

(S2) 1.− ZZZ is a continuously distributed vector with density function denoted by fZZZ(zzz).

We will allow XXX1 and XXX2 to include continuous and/or discrete random variables

and denote the joint pdfs with ZZZ as fXXX1,ZZZ(xxx1, zzz) and fXXX2,ZZZ(xxx2, zzz) respectively. None

of these functions depends on θθθ. All these density functions are unknown to the

econometrician.

2.− fXXX1,ZZZ(· , ·) , fXXX2,ZZZ(· , ·) and fZZZ(·) are bounded, M times differentiable functions of

ZZZ, with bounded M derivatives everywhere in R
k1 × R

k2 × R
L.

3.− The supports S(XXX1) ⊂ R
k1 and S(XXX2) ⊂ R

k2 are compact sets.

Smoothness conditions (S2.2) are common in semi or non-parametric estimation problems.

These conditions facilitate the approximations used to find the asymptotic distribution of

our proposed estimator. Compactness of S(XXX) only needs to hold for the components

that are privately observed. This boundedness condition is necessary to prove the uniform

convergence results in Lemmas 4.2 and 4.3 which use Lemma 3 in Collomb and Hardle (1986).

Indications are that compactness of S(XXX) can be relaxed in this setting13. However, we will

maintain this assumption throughout the remaining sections.

According to our assumptions, after the game has been played the researcher observes

the realizations of YYY , XXX and ZZZ but does not observe the realization of εεε. He also knows

G1(·) and G2(·) -possibly up to a finite dimensional vector- but does not know fXXX1,ZZZ(xxx1, zzz) ,

fXXX2,ZZZ(xxx2, zzz) nor fZZZ(zzz), except for the smoothness assumptions outlined in (S2).

13See the proof of Corollary 4 in the accompanying Mathematical Appendix
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Take zzz ∈ S(ZZZ), θθθ ∈ R
k+2 and (π1, π2) ∈ R

2. We will follow the notation used in Section 3.3

and denote

ϕ1(π2 | zzz,θθθ1) =E
[
G1(XXX

′
1βββ1 + α1π2) | ZZZ = zzz

]
; ϕ2(π1 | zzz,θθθ2) =E

[
G2(XXX

′
2βββ2 + α2π1) | ZZZ = zzz

]

In addition, we will define

δ1(π2 | zzz,θθθ1) =E
[
g1(XXX

′
1βββ1 + α1π2) | ZZZ = zzz

]
; δ2(π1 | zzz,θθθ2) =E

[
g2(XXX

′
2βββ2 + α2π1) | ZZZ = zzz

]
.

The following assumption involves the parameter space. The first part assumes that ΘΘΘ is

compact. The second part assumes that the necessary condition for uniqueness of equilibrium

stated in Lemma 3.3 holds at least inside a compact set in the interior of S(ZZZ):

(S3) 1.− The parameter space ΘΘΘ is compact.

2.− There exists a compact set ZZZ in the interior of S(ZZZ) with inf
zzz∈ZZZ

fZZZ(zzz) > 0 such that

α1α2δ1(π2 | zzz,θθθ1)δ2(π1 | zzz,θθθ2) < 1 ∀ zzz ∈ ZZZ, ∀ θθθ ∈ ΘΘΘ and ∀ (π1, π2) ∈ [0, 1]2.

where the functions δ1 and δ2 are as defined above.

Assumption (S3.1) is common in econometric estimation models. (S3.2) follows from Lemma

3.3 and -combined with (I), (S1) and (S2)- assures uniqueness of equilibrium and existence

of a well-defined likelihood function everywhere inside the compact set ZZZ 14. The results of

Corollary 1 apply here: If α1α2 < 1/(g1g2) then the BNE is unique for each ZZZ ∈ S(ZZZ) and

(S3.2) holds with ZZZ = S(ZZZ).

From here on, we will denote πππ ≡ (π1, π2) ∈ R
2 and let:

ϕϕϕ(πππ | zzz,θθθ)
2×1

=
(
ϕ1(πππ2 | zzz,θθθ1), ϕ2(πππ1 | zzz,θθθ2)

)′

J
(
πππ | zzz,θθθ

)
2×2

= ∇θθθ

(
πππ −ϕϕϕ(πππ | zzz,θθθ)

)

14From (S3.2) we have Pr{ZZZ ∈ ZZZ} > 0. Consequently, boundary
(
ZZZ) = ZZZ ∩ cl

(
ZZZc) has Lebesgue

measure zero in RL. Since ZZZ is continuously distributed (ZZZ is absolutely continuous with respect to Lebesgue

measure), we have Pr{ZZZ ∈ boundary
(
ZZZ)} = 0.

23



The following lemma uses assumptions (S1), (S2.1-2) and (S3.2) to generalize the result of

Lemma 3.3 in ΘΘΘ ×ZZZ.

Lemma 4.1 Let ZZZ be as defined in (S3.2) and suppose assumptions (S1), (S2) and (S3)

are satisfied. For (θθθ,zzz) ∈ ΘΘΘ ×ZZZ let
(
π∗1(zzz,θθθ), π

∗
2(zzz,θθθ)

)′ ≡ πππ∗(zzz,θθθ) denote the solution (for π1

and π2) to the system

πππ −ϕϕϕ(πππ | zzz,θθθ) = 000.

Then:

(A) Each (θθθ,zzz) ∈ ΘΘΘ ×ZZZ has a unique solution πππ∗(θθθ,zzz) ∈ (0, 1)2.

(B) πππ∗ is an M times differentiable function πππ∗(θθθ,ZZZ) with bounded M derivatives every-

where in ΘΘΘ ×ZZZ . It also satisfies πππ∗(θθθ,ZZZ) ∈ (0, 1)2 -strictly inside the unit square- for

all (θθθ,ZZZ) ∈ ΘΘΘ ×ZZZ.

Part (A) of this lemma is a direct consequence of Lemma 3.3, while part (B) is a consequence

of the smoothness assumptions in (S1) − (S2) and the Implicit Function Theorem (IFT),

which holds everywhere in ΘΘΘ ×ZZZ since the Jacobian ∇πππ

(
πππ − ϕϕϕ(πππ | zzz,θθθ)

)
is invertible for all

(θθθ,zzz) ∈ ΘΘΘ × ZZZ and all πππ ∈ [0, 1]2 by (S3.2). Another important property of πππ∗(θθθ,ZZZ) stated

in part (B) of the lemma is that it is strictly inside (0, 1)2 for all (θθθ,ZZZ) ∈ ΘΘΘ ×ZZZ. This is a

consequence of the compactness of ΘΘΘ× S(XXX)×ZZZ and the fact that S(ε1) = S(ε2) = R , which

implies that G1(v) and G1(v) are strictly inside (0, 1) for all v ∈ R. Lastly, note that for all

ZZZ ∈ ZZZ
E
[
YYY | ZZZ,θθθ] = πππ∗(θθθ,ZZZ)

E
[
YYY |XXX,ZZZ,θθθ] =

(
G1(XXX

′
1βββ1 + α1π

∗
2(θθθ,ZZZ)

)
, G2(XXX

′
2βββ2 + α2π

∗
1(θθθ,ZZZ)

))′ (3)

and therefore the conditional likelihood F(YYY | XXX,ZZZ,θθθ) exists and is well defined for all

ZZZ ∈ ZZZ , all XXX ∈ S(XXX) and all θθθ ∈ ΘΘΘ.

The next section deals with the estimation of the unobserved equilibrium probabilities

πππ∗(θθθ,ZZZ). We propose two alternative estimators, both of which exploit the information
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contained in the BNE conditions. The first one forces the data to satisfy a semiparametric

condition analog to the BNE. The second one is a two-step estimator, based on a

semiparametric linearization of the BNE.

4.3 Proposed estimators for equilibrium probabilities

We are interested in studying the properties of estimators that exploit the information about

θθθ0 contained in the equilibrium conditions (1). These conditions can be compactly expressed

as

πππ∗(θθθ0, zzz) − ϕ
(
πππ∗(θθθ0, zzz) | θθθ0, zzz

)
= 000

Before proceeding, we present an alternative interpretation of πππ∗(θθθ,ZZZ) as an extremum

estimator.

4.3.1 Alternative interpretation of equilibrium conditions

Let QQQ(πππ | zzz,θθθ) ≡ −
(
πππ − ϕϕϕ(πππ | zzz,θθθ)

)′(
πππ − ϕϕϕ(πππ | zzz,θθθ)

)
∈ R- and note that by definition,

QQQ(πππ∗(zzz,θθθ) | zzz,θθθ) = 0 for all (zzz,θθθ) ∈ ZZZ × ΘΘΘ . Naturally, for each (θθθ,zzz) ∈ ΘΘΘ × ZZZ we have

πππ∗ ∈ Argmax
πππ∈R2

QQQ(πππ | zzz,θθθ) if πππ∗ − ϕϕϕ(πππ∗ | zzz,θθθ) = 000 . As we mentioned above, assumption

(S3.2) implies that the Jacobian ∇πππ

(
πππ −ϕϕϕ(πππ | zzz,θθθ)

)
is invertible for all (θθθ,zzz) ∈ ΘΘΘ ×ZZZ and all

πππ ∈ [0, 1]2. From Lemma 4.1, we have πππ∗(θθθ,zzz) ∈ (0, 1)2. Therefore, for each (θθθ,zzz) ∈ ΘΘΘ ×ZZZ we

also have: πππ∗ ∈ Argmax
πππ∈[0,1]2

QQQ(πππ | zzz,θθθ) only if πππ∗ −ϕϕϕ(πππ∗ | zzz,θθθ) = 000 . Combining both results, we

can reinterpret the equilibrium conditions (1) as

“For all (θθθ,zzz) ∈ ΘΘΘ ×ZZZ : πππ∗ −ϕϕϕ(πππ∗ | zzz,θθθ) = 000 if and only if πππ∗ = Argmax
πππ∈[0,1]2

QQQ(πππ | zzz,θθθ).”

Invertibility of the Jacobian of the conditional moment restrictions (1) allows us to approach

the estimation of the equilibrium probabilities as a (semiparametric) extremum estimation

problem. We now present our first proposal to estimate πππ∗(θθθ,ZZZ).
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4.3.2 Semiparametric analog estimator

The first proposed estimator is one that solves a kernel-based sample analog of the BNE (1).

Suppose we have a sample {YYY n,XXXn,ZZZn}N
n=1 of size N . Let hN be a bandwidth sequence that

depends on N ∈ N and let K(·) : R
L → R be a Kernel function. Denote KhN

(ψψψ) ≡ K
(
ψψψ/hN

)
.

We will assume that hN and K(·) satisfy the following conditions:

(S4) 1.− K(·) : RL → R is everywhere continuous, bounded, symmetric around zero and

satisfies

(i) Lipschitz condition: ∃γ > 0, ck <∞ : | K(uuu)−K(vvv) |≤ ck
∥∥uuu−vvv

∥∥γ ∀ uuu,vvv ∈ R
L

(ii)
∥∥ΨΨΨ
∥∥ · |K(ΨΨΨ)| → 0 as

∥∥ΨΨΨ
∥∥→ ∞.

(iii)
∫
K
(
ΨΨΨ
)
dΨΨΨ = 1.

(iv)
∫ ∥∥ΨΨΨ

∥∥M
K
(
ΨΨΨ
)
dΨΨΨ <∞. (M th moment of K(·) is bounded).

(v) For all 0 < q1+ · · ·+qL < M :
∫

Ψq1
1 · · · ΨqL

L K(ΨΨΨ)dΨΨΨ = 0. (First M−1 moments

of K(·) are zero).

2.− Let M ≡ L+ 1. Then, as the sample size N → ∞, the bandwidth hN satisfies

(i) hN → 0 and there exists ε > 0 such that N 1−2εh2L
N → ∞.

(ii) Nh2M
N → 0.

3.− We have an iid sample {YYY n,XXXn,ZZZn}N
n=1.

Assumption (S4.1) is common in kernel-based semiparametric estimation problems. They

are also sufficient to satisfy the corresponding conditions in Collomb and Hardle. (S4.2)

was also employed by Ahn and Manski and it facilitates the uniform convergence results in

Lemmas 4.2 and 4.3 (below). All these assumptions could be potentially relaxed, but they
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will be maintained throughout the remainder of the paper. For p ∈ {1, 2} define

f̂ZZZN
(zzz) =

1

NhL
N

N∑

n=1

Kh(ZZZn − zzz)

ϕ̂pN
(π−p | zzz,θθθp) =

1

NhL
N

N∑

n=1

Gp

(
XXX ′

pn
βββp + αpπ−p

)
Kh(ZZZn − zzz)

f̂ZZZN
(zzz)

,

and denote

ϕ̂ϕϕN(πππ | zzz,θθθ) ≡
(
ϕ̂1N

(πππ2 | zzz,θθθ1), ϕ̂2N
(πππ1 | zzz,θθθ2)

)′ ∈ R
2

Q̂QQN(πππ | zzz,θθθ) ≡ −
(
πππ − ϕ̂ϕϕN (πππ | zzz,θθθ)

)′(
πππ − ϕ̂ϕϕN(πππ | zzz,θθθ)

)
∈ R

These are kernel-smoothed sample analogs for ϕ(πππ | zzz,θθθ) and QQQ(πππ | zzz,θθθ) respectively. As we

showed above, assumption (S3.2) implies that

∀ (θθθ,zzz) ∈ ΘΘΘ ×ZZZ : πππ∗ −ϕϕϕ(πππ∗ | zzz,θθθ) = 000 if and only if πππ∗ = argmax
πππ∈[0,1]2

QQQ(πππ | zzz,θθθ)

Take (θθθ,zzz) ∈ ΘΘΘ ×ZZZ and let π̂ππ∗
N(θθθ,zzz)

2×1

be defined as

π̂ππ∗
N (θθθ,zzz) = argmax

πππ∈[0,1]2
Q̂QQN(πππ | zzz,θθθ)

We refer to π̂ππ∗N (θθθ,zzz) as the semiparametric analog estimator of πππ∗(θθθ,zzz). We want to trim

π̂ππ∗N (θθθ,zzz) in the set [0, 1]2 because assumption (S3.2) −which yields not only uniqueness of

equilibrium and existence of a well-defined likelihood function in ΘΘΘ × ZZZ but also uniform

boundedness of
∥∥∥J(πππ | zzz,θθθ)−1

∥∥∥ in [0, 1]2 × ΘΘΘ × ZZZ− holds precisely in that set. From the

results of Lemma 4.1, we get that π̂ππ∗N (θθθ,zzz) ∈ (0, 1)2 (is strictly inside the unit square) with

probability approaching one uniformly in ΘΘΘ ×ZZZ. The details of this result are included in

the accompanying Mathematical Appendix. The next lemma summarizes the asymptotic

properties of π̂ππ∗N (θθθ,zzz), ∇θθθπ̂ππ
∗
N (θθθ,zzz)

2×(k+2)

and ∇θθ′θθ′θθ′π̂ππ
∗
N (θθθ,zzz)

2(k+2)×(k+2)

. We focus on these three objects since

-as we shall see below- the asymptotic properties of our proposed estimators for θθθ depend

on them to a first order of approximation.

27



Lemma 4.2 Let ZZZ be as defined in (S3.2) and suppose assumptions (S1.3), (S2), (S3) and

(S4) are satisfied. Take (θθθ,zzz) ∈ ΘΘΘ ×ZZZ and let π̂ππ∗
N(θθθ,zzz) = argmax

πππ∈[0,1]2
Q̂QQN (πππ | zzz,θθθ) .Then

(A) sup
zzz∈ZZZ
θθθ∈ΘΘΘ

∥∥∥π̂ππ∗
N(θθθ,zzz) − πππ∗(θθθ,zzz)

∥∥∥ = op(N
−1/4),

(B) sup
zzz∈ZZZ
θθθ∈ΘΘΘ

∥∥∥∇θθθπ̂ππ∗
N (θθθ,zzz) −∇θθθπππ

∗(θθθ,zzz)
∥∥∥ = op(N

−1/4),

sup
zzz∈ZZZ
θθθ∈ΘΘΘ

∥∥∥∇θθθθθθ′π̂ππ∗
N (θθθ,zzz) −∇θθθθθθ′πππ

∗(θθθ,zzz)
∥∥∥ = op(N

−1/4),

where for each (θθθ,zzz) ∈ ΘΘΘ ×ZZZ, πππ∗(θθθ,zzz) is the solution (for πππ) to πππ − ϕ(πππ | θθθ,zzz) = 000 , which

by (S3.2) is also the unique solution (for πππ) to Max
πππ∈[0,1]2

QQQ(πππ | zzz,θθθ).

The proof can be found in the Mathematical Appendix. Assumption (S3.2) and the result of

Lemma 4.1 are equally important for the proof in the particular context of our model, since

they assure that the norm of the inverse Jacobian matrix
∥∥∥J
(
πππ∗(θθθ,ZZZ) | ZZZ,θθθ

)−1
∥∥∥ is uniformly

bounded in ZZZ × ΘΘΘ. The smoothness conditions in (S1.3), (S4) and (S2.2) as well as the

compactness of S(XXX)×ZZZ ×ΘΘΘ also play an important role. These results together allow us to

use Lemma 3 of Collomb and Hardle, which establishes uniform rates of convergence of kernel

estimators over compact sets. The details of the proof are a bit lengthy, as they require us to

establish the uniform rate of convergence of a variety of kernel-smoothed objects. The results

of Collomb and Hardle have been used previously to determine uniform rates of convergence

over compact sets by Stoker (1991) and Ahn and Manski.

In the next section we present an alternative estimator that also uses the information

contained in the equilibrium conditions (1). Instead of forcing the sample to satisfy the

analog BNE conditions, it satisfies them asymptotically.
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4.3.3 Linearized, two-step semiparametric estimator

As we did before, let J(πππ | zzz,θθθ) denote the Jacobian ∇πππ

(
πππ−ϕϕϕ(πππ | zzz,θθθ)

)
. Therefore, we have:

J(πππ | zzz,θθθ) =




1 −α1δ1(π2 | zzz,θθθ1)

−α2δ2(π1 | zzz,θθθ2) 1


 .

From assumption (S3.2), J(πππ | zzz,θθθ) is invertible for all (zzz,θθθ) ∈ ZZZ ×ΘΘΘ and all πππ ∈ [0, 1]2. From

(S3.2) and (S1.3) we get that
∥∥∥J
(
πππ | zzz,θθθ

)−1
∥∥∥ is uniformly bounded in (πππ,θθθ,zzz) ∈ [0, 1]2×ΘΘΘ×ZZZ.

Therefore, because πππ∗(θθθ,zzz) ∈ [0, 1]2 for all (zzz,θθθ) ∈ ZZZ × ΘΘΘ, we have that J(πππ∗(θθθ,zzz) | zzz,θθθ) is

invertible and
∥∥∥J(πππ∗(θθθ,zzz) | zzz,θθθ)−1

∥∥∥ is uniformly bounded everywhere in ZZZ × ΘΘΘ . Now let

ĴN (πππ | zzz,θθθ) and J(πππ | zzz,θθθ) denote the Jacobian ∇πππ

(
πππ− ϕ̂N (πππ | zzz,θθθ)

)
. Then ĴN (πππ | zzz,θθθ) is given

by:

ĴN(πππ | zzz,θθθ) =




1 −α1δ̂1N
(π2 | zzz,θθθ1)

−α2δ̂2N
(π1 | zzz,θθθ2) 1




where

δ̂pN
(π−p | zzz,θθθp) =

1

NhL
N

N∑

n=1

gp

(
XXX ′

pn
βββp + αpπ−p

)
Kh(ZZZn − zzz)

f̂ZZZN
(zzz)

for p ∈ {1, 2}

which is in turn a kernel-smoothed sample analog of δp(π−p | zzz,θθθp) for p ∈ {1, 2}. Now let

π̃pN
(zzz) =

1

NhL
N

N∑

n=1

YpnKh(ZZZn − zzz)

f̂ZZZN
(zzz)

for p ∈ {1, 2}

and note that π̃pN (zzz) is the usual nonparametric kernel estimator for E[Yp | ZZZ = zzz] for

p ∈ {1, 2}. This estimator does not incorporate the information about θθθ0 contained in

the equilibrium conditions. However, we show in the Mathematical Appendix that it is

uniformly consistent in ZZZ. This suggests that we can use it as a first-step estimator in a

linearized version of the analog estimator presented above. This linearized estimator would

be computationally attractive relative to π̂ππN (θθθ,zzz) . Before proceeding, we define πpN (zzz) =

Max
{
0,Min

{
π̃pN (zzz), 1

}}
for p ∈ {1, 2} and let πππN (zzz) ≡

(
π1N (zzz), π2N (zzz)

)′
. Take (θθθ,zzz) ∈

ΘΘΘ ×ZZZ, the proposed linearized estimator π̃ππ∗N (θθθ,zzz) is given by

π̃ππ∗
N (θθθ,zzz) = πππN(zzz) + ĴN

(
πππN (zzz) | zzz,θθθ

)−1[
ϕ̂N

(
πππN(zzz) | zzz,θθθ

)
− πππN(zzz)

]
.
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We trim πππN (zzz) in the set [0, 1]2 for the same reasons outlined for π̂ππ∗N (θθθ,zzz) in the paragraph

previous to Lemma 4.2. Before proceeding, let

ρ(θθθ,zzz) = πππ∗(θθθ0, zzz) + J
(
πππ∗(θθθ0, zzz) | zzz,θθθ

)−1[
ϕ
(
πππ∗(θθθ0, zzz) | zzz,θθθ

)
− πππ∗(θθθ0, zzz)

]
,

and note that by the equilibrium conditions ρ(θθθ0, zzz) = πππ∗(θθθ0, zzz) for all zzz ∈ ZZZ. The next

lemma summarizes the asymptotic properties of π̃ππ∗N (θθθ,zzz) , ∇θθθπ̃ππ
∗
N (θθθ,zzz) and ∇θθ′θθ′θθ′π̃ππ

∗
N (θθθ,zzz) .

Lemma 4.3 Let ZZZ be as defined in (S3.2) and suppose assumptions (S1.3), (S2), (S3) and

(S4) are satisfied. Take (θθθ,zzz) ∈ ΘΘΘ × ZZZ and let π̃ππ∗N (θθθ,zzz) and ρ(θθθ,zzz) be as described above.

Then

(A) sup
zzz∈ZZZ
θθθ∈ΘΘΘ

∥∥∥π̃ππ∗
N(θθθ,zzz) − ρρρ(θθθ,zzz)

∥∥∥ = op(N
−1/4),

(B) sup
zzz∈ZZZ
θθθ∈ΘΘΘ

∥∥∥∇θθθπ̃ππ∗
N(θθθ,zzz) −∇θθθρρρ(θθθ,zzz)

∥∥∥ = op(N
−1/4),

sup
zzz∈ZZZ
θθθ∈ΘΘΘ

∥∥∥∇θθθθθθ′π̃ππ∗
N (θθθ,zzz) −∇θθθθθθ′ρρρ(θθθ,zzz)

∥∥∥ = op(N
−1/4).

In particular

(C) sup
zzz∈ZZZ

∥∥∥π̃ππ∗
N(θθθ0, zzz) − πππ∗(θθθ0, zzz)

∥∥∥ = op(N
−1/4) , sup

zzz∈ZZZ

∥∥∥∇θθθπ̃ππ∗
N(θθθ0, zzz) −∇θθθπππ

∗(θθθ0, zzz)
∥∥∥ = op(N

−1/4).

Where for each zzz ∈ ZZZ, πππ∗(θθθ0, zzz) are the equilibrium probabilities which solve (for πππ) the

system πππ − ϕ(πππ | θθθ0, zzz) = 000 . By (S3.2), they are also the unique solution (for πππ) to the

problem Max
πππ∈[0,1]2

QQQ(πππ | zzz,θθθ0).

The proof is included in the accompanying Mathematical Appendix. It relies on the same

technical conditions as those of the proof of Lemma 4.2. It is built upon some of the results

of the proof of Lemma 4.3 and the uniform rate of convergence of πππ(zzz) in ZZZ. Once again,

the result in Collomb and Hardle is crucial. By the result of Lemma 4.1 and assumption

(S3.2), we have that
∥∥ρ(θθθ,zzz)

∥∥,
∥∥∇θθθρ(θθθ,zzz)

∥∥ and
∥∥∇θθ′θθ′θθ′ρ(θθθ,zzz)

∥∥ are uniformly bounded in ΘΘΘ×ZZZ.

Regarding part (C) of the lemma, we should point out that ∇θθθθθθ′π̃ππ
∗
N (θθθ,zzz) does not converge to
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∇θθ′θθ′θθ′πππ
∗(θθθ0, zzz). This is a consequence of the fact that π̃ππ∗N (θθθ,zzz) is based on a linear (as opposed

to second-order) approximation of the equilibrium conditions. As we will see below, this will

not affect the asymptotic properties of the proposed estimator of θθθ.

4.4 Estimation of θθθ

In this section we present a proposal for estimating θθθ based on a trimmed quasi maximum

likelihood estimation, where the semiparametric estimators for πππ∗(θθθ,ZZZ) described previously

are plugged in for the unknown πππ∗(θθθ,ZZZ). The trimming set is ZZZ , where the likelihood

function is well-behaved. Let us start by discussing some issues regarding identification.

4.4.1 Identification

Players’ optimal actions are described by the system of threshold-crossing equations (2).

Generically, identification in these types of models requires some normalization condition

concerning the variance of εεε1 and εεε2 -see for example McFadden (1981)-. Given this

normalization, the following condition will prove to be sufficient for identification of θθθ

everywhere in ΘΘΘ:

(S5) Conditional on ZZZ ∈ ZZZ , if θθθ 6= θθθ0 with θθθ,θθθ0 ∈ ΘΘΘ then

Pr
{
βββ′

1XXX1 + α1π
∗
2(θθθ,ZZZ) 6= βββ′

10
XXX1 + α10π

∗
2(θθθ0,ZZZ)

}
> 0

Pr
{
βββ′

2XXX2 + α2π
∗
1(θθθ,ZZZ) 6= βββ′

20
XXX2 + α20π

∗
1(θθθ0,ZZZ)

}
> 0.

As we will show below, if the previous assumptions are satisfied, then (S5) is sufficient for

identification of θθθ. Define WWW ≡ (YYY ′,XXX ′,ZZZ ′)′ . We will make a slight change in notation.

Instead of using F(YYY | XXX,ZZZ,θθθ) as we did previously, we will now let F(WWW,θθθ) denote the

conditional probability function of YYY given (XXX,ZZZ) .

Using the results from Lemma 4.1, we know that F(WWW,θθθ) exists and is well-defined for

the four observable outcomes YYY everywhere in S(XXX) ×ZZZ ×ΘΘΘ and is given by
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F(WWW,θθθ) = G1

(
XXX ′

1βββ1 + α1π
∗
2(θθθ,ZZZ)

)Y1
[
1 −G1

(
XXX ′

1βββ1 + α1π
∗
2(θθθ,ZZZ)

)]1−Y1

×G2

(
XXX ′

2βββ2 + α2π
∗
1(θθθ,ZZZ)

)Y2
[
1 −G2

(
XXX ′

2βββ2 + α2π
∗
1(θθθ,ZZZ)

)]1−Y2 .

By assumption (S1.3), we have that (S5) implies θθθ 6= θθθ0 ⇒ F(WWW,θθθ) 6= F(WWW,θθθ0) and by (S2.1),

the structure of the model evaluated at θθθ0 is not observationally equivalent to that evaluated

at θθθ ∈ ΘΘΘ if θθθ 6= θθθ0. Consequently, θθθ is globally identified in ΘΘΘ 15. We can reinterpret

assumption (S5) in terms of full-column rank condition of the matrices
(
XXX1, π

∗
1(θθθ,ZZZ)

)
and

(
XXX2, π

∗
2(θθθ,ZZZ)

)
. From assumption (I.3) we allow some elements of XXX1 or XXX2 to be included

in ZZZ. In this case, assumption (S5) seems to rely on the nonlinearity of πππ∗(θθθ,ZZZ). We next

examine a linear version of the model and show that even in the “worst case” scenario where

πππ(θθθ,ZZZ) is a linear function of XXX1 and XXX2, the parameter vector θθθ can still be identified

(condition (S5) is satisfied) by imposing a simple exclusion restriction. Lack of identification

in a linear interactions-based model is known as the “reflection problem” and was first studied

in Manski (1993). As we shall see next, a linear version of our game does not suffer from the

reflection problem and therefore condition (S5) does not rely on the nonlinear nature of the

equilibrium beliefs πππ∗(θθθ,ZZZ).

Identification and nonlinearity of πππ∗(θθθ,ZZZ)

Suppose now that we momentarily drop assumptions (S1.2-3) and assume instead that

ε1 ∼ U [−1, 1] and ε2 ∼ U [−1, 1]. We also modify assumption (S2.3) and assume now

that16

XXX ′
1βββ1 + α1π2 ∈ (−1, 1) ∀ θθθ1 ∈ ΘΘΘ, ∀ π2 ∈ [0, 1], ∀ XXX1 ∈ S(XXX1)

XXX ′
2βββ2 + α2π1 ∈ (−1, 1) ∀ θθθ2 ∈ ΘΘΘ, ∀ π1 ∈ [0, 1], ∀ XXX2 ∈ S(XXX2).

Assumption (S3.2) now becomes simply 1 − (α1α2)/4 > 0 ∀ θθθ ∈ ΘΘΘ which can be trivially

15See Definition 2.1 in Hsiao (1983).
16We will go back to our set of stochastic assumptions (S1)-(S3) immediately after this brief discussion.
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re-expressed as 4 − α1α2 > 0 ∀ θθθ ∈ ΘΘΘ. Take θθθ ∈ ΘΘΘ and zzz ∈ S(ZZZ), then the equilibrium

probabilities π∗(θθθ,zzz) are the solution (for π1 and π2) to the pair of equations

π1 =
E[XXX1 | ZZZ = zzz]′βββ1 + α1π2 + 1

2
and π2 =

E[XXX2 | ZZZ = zzz]′βββ2 + α2π1 + 1

2
,

which yields

π∗1(θθθ,zzz) =
2
[
E[XXX1 | ZZZ = zzz]′βββ1 + 1

]
+ α1

[
E[XXX2 | ZZZ = zzz]′βββ2 + 1

]

4 − α1α2

π∗2(θθθ,zzz) =
2
[
E[XXX2 | ZZZ = zzz]′βββ2 + 1

]
+ α2

[
E[XXX1 | ZZZ = zzz]′βββ1 + 1

]

4 − α1α2
.

Therefore, we have

XXX ′
1βββ1 + α1π

∗
2(θθθ,ZZZ) = δ1 +XXX ′

1βββ1 + E[XXX1 | ZZZ]′γγγ1,1 +E[XXX2 | ZZZ]′γγγ1,2

XXX ′
2βββ2 + α2π

∗
1(θθθ,ZZZ) = δ2 +XXX ′

2βββ2 + E[XXX1 | ZZZ]′γγγ2,1 +E[XXX2 | ZZZ]′γγγ2,2,

where δp is a function δp(α1, α2), γγγp,1 is a function γγγp,1(βββ1, α1, α2) and γγγp,2 is a function

γγγp,2(βββ2, α1, α2) for p ∈ {1, 2}. Note that the reduced forms given above are expressed in

terms of 2(k + 2) variables but we only have k + 2 unknown parameters. We show in the

Mathematical Appendix that a necessary and sufficient condition for identification of θθθ is

the existence of a pair of elements X1,`1 ∈ XXX1 and X2,`2 ∈ XXX2 such that X1,`1 6= X2,`2 and

β1,`1 6= 0, β2,`2 6= 0. This simple exclusion restriction yields identification of all parameters

-including constant terms in XXX1 and/or XXX2- even if E[XXX2 | ZZZ] = XXX2 and E[XXX1 | ZZZ] = XXX1.

This shows that even in the “worst-case scenario” for identification in which equilibrium

probabilities are linear functions of XXX, we can still identify the parameter vector using

a simple exclusion restriction. The nonlinear nature of the equilibrium probabilities that

results from assumptions (S1) is not the source of identification in our model.

We now go back to our set of assumptions (S1)-(S4). Next, we describe the trimmed

quasi maximum likelihood procedure to estimate the structural parameter θθθ.
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4.4.2 Trimmed quasi maximum likelihood estimation

We estimate θθθ in two steps. First, we estimate the unknown equilibrium probabilities (beliefs)

πππ∗(θθθ,ZZZ) incorporating the information about θθθ contained in the equilibrium conditions (1).

We then plug-in these estimators into a trimmed log-likelihood function and maximize it with

respect to θθθ. Specifically, we study the properties of the estimators that result from plugging

in either π̂ππ∗N (θθθ,zzz) or π̃ππ∗N (θθθ,zzz), both of which exploit all the information available about θθθ from

the equilibrium conditions (1). The trimmed set is ZZZ, which -from assumption (S3.2)- yields

uniqueness of equilibrium and also limits the influence of points in the boundary of S(ZZZ). In

a Section 4.6 we show how to modify the trimming if there is a unique equilibrium for each

ZZZ ∈ S(ZZZ) -i.e, if ZZZ = S(ZZZ)-.

This methodology is similar to that of Ahn and Manski, who studied a discrete choice

model with uncertainty but without any element of strategic interaction. In their model there

was no relationship to exploit between the unknown expectations and the parameter vector

θθθ. Expectations were not derived from any equilibrium conditions. In our case, we plug-in

semiparametric estimators that use the information contained in the BNE conditions of the

game. As we did in Section 4.4.1, let F(WWW,θθθ) denote the conditional probability function

of YYY given (XXX,ZZZ) and a particular value of θθθ. Define the trimmed conditional probability

(likelihood) function FZZZ(WWW,θθθ) = F(WWW,θθθ)1l{ZZZ∈ZZZ}. The next result shows that if (S5) holds

-in addition to our previous assumptions-, then FZZZ(WWW,θθθ) satisfies the following information

inequality result.

Lemma 4.4 Suppose assumptions (I), (S1.1-2), (S2.1-2), (S3.2) and (S5) are satisfied, then

E
[
logFZZZ(WWW,θθθ)] < E

[
logFZZZ(WWW,θθθ0)] ∀ θθθ 6= θθθ0, θθθ ∈ ΘΘΘ.

The proof can be found in the Mathematical Appendix. This result will prove to be useful to

show consistency of our proposed estimator. Sharing a generic property of MLE problems,

identification conditions will lead to consistency.
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Let

`ZZZ
(
WWW,θθθ,πππ

)
=1l
{
ZZZ ∈ ZZZ

}[
Y1log G1(XXX

′
1βββ1 + α1π2) + (1 − Y1)log

{
1 −G1(XXX

′
1βββ1 + α1π2)

}

+ Y2log G2(XXX
′
2βββ2 + α2π1) + (1 − Y2)log

{
1 −G2(XXX

′
2βββ2 + α2π1)

}]
.

Note that `ZZZ
(
WWW,θθθ,πππ∗(θθθ,ZZZ)

)
= log FZZZ(WWW,θθθ) (the trimmed log-likelihood). The trimming

index 1l
{
ZZZ ∈ ZZZ

}
doesn’t depend on θθθ. This was used to prove Lemma 4.4, and is also

used (along with assumption (S2.1)) to show that the information identity applies to

`ZZZ
(
WWW,θθθ,πππ∗(θθθ,ZZZ)

)
and we have

E

[
∂2`ZZZ

(
WWW,θθθ,πππ∗(θθθ,ZZZ)

)

∂θθθ∂θθθ′

]
= −E

[
∂`ZZZ

(
WWW,θθθ,πππ∗(θθθ,ZZZ)

)

∂θθθ
× ∂`ZZZ

(
WWW,θθθ,πππ∗(θθθ,ZZZ)

)

∂θθθ

′]
.

Details are shown in the appendix. Before proceeding, we will add the following assumption,

which is standard in M-estimation problems:

(S6) 1.− The true parameter value θθθ0 is in the interior of ΘΘΘ.

2.− The trimmed information matrix at θθθ0,

=ZZZ = −E
[
∂2`ZZZ

(
WWW,θθθ0,πππ

∗(θθθ0,ZZZ)
)

∂θθθ∂θθθ′

]
is invertible.

We are ready to present the first proposed estimator. It uses the analog semiparametric

estimator π̂ππ∗N (θθθ,zzz) as a plug-in. The corresponding estimator θ̂θθ is the solution to

Max
θθθ∈ΘΘΘ

1

N

N∑

n=1

`ZZZ
(
wwwn, θθθ, π̂ππ∗

N(θθθ,zzzn)
)
.

Before outlining the asymptotic properties of θ̂θθ, let ∇θθθ`ZZZ(www,θθθ,πππ) be the partial derivative of

`ZZZ with respect to θθθ, with πππ constant. Let ∇πππ`ZZZ(www,θθθ,πππ) be the partial derivative of `ZZZ with

respect to πππ, with θθθ constant. Then, the score of our trimmed-log likelihood is given by

∂`ZZZ
(
www,θθθ,πππ∗(θθθ,zzz)

)

∂θθθ
= ∇θθθ`ZZZ

(
www,θθθ,πππ∗(θθθ,zzz)

)
+ ∇θθθπππ

∗(θθθ,zzz)′∇πππ`ZZZ
(
www,θθθ,πππ∗(θθθ,zzz)

)
.

Now, let ∂2`ZZZ
(
WWW,θθθ,πππ

)
/∂θθθ∂πππ′ denote the partial derivative of the score with respect to πππ. Let

DZZZ(ZZZ) be the expectation, conditional on ZZZ of this cross-partial derivative evaluated at θθθ0.
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The exact expression for DZZZ(ZZZ) can be found in the appendix. As we have done throughout,

let J(πππ | ZZZ,θθθ) = ∇πππ

(
πππ − ϕ(πππ | ZZZ,θθθ)

)
denote the Jacobian of the equilibrium conditions. We

will define J0(ZZZ) = J
(
πππ∗(θθθ0,ZZZ) | ZZZ,θθθ0

)
and BZZZ(ZZZ) = DZZZ(ZZZ)J0(ZZZ)−1 . The next theorem

provides the asymptotic properties of θ̂θθ.

Theorem 1 Suppose assumptions (I), (S1)-(S5) are satisfied and let θ̂θθ solve

Max
θθθ∈ΘΘΘ

1

N

N∑

n=1

`ZZZ
(
wwwn, θθθ, π̂ππ∗

N(θθθ,zzzn)
)
,

where π̂ππ∗N (θθθ,zzz) = argmax
πππ∈[0,1]2

Q̂QQN (πππ | zzz,θθθ). Then

(A) θ̂θθ
p−→ θθθ0.

(B) If assumption (S6) is also satisfied, then:
√
N
(
θ̂θθ − θθθ0

) d−→ N
(
000,=−1

ZZZ + =−1
ZZZ Ω=−1

ZZZ

)
,

where

Ω = E

[
BZZZ(ZZZ)E

[(
E
[
YYY |XXX,ZZZ] − E

[
YYY | ZZZ

])(
E
[
YYY |XXX,ZZZ] − E

[
YYY | ZZZ

])′∣∣∣∣ZZZ
]
BZZZ(ZZZ)′

]

= E

[
BZZZ(ZZZ)Var

[
E[YYY |XXX,ZZZ]

∣∣∣ZZZ
]
BZZZ(ZZZ)′

]
.

The use of nonparametric methods to estimate the unknown equilibrium probabilities πππ∗(·)

increases the asymptotic variance by the term =−1
ZZZ Ω=−1

ZZZ . If we knew exactly fXXX,ZZZ(·), fZZZ(·)

then we could solve (numerically) the equilibrium conditions (1), obtain the exact expression

for πππ∗(·) and the asymptotic variance would simply be =ZZZ . The term D(ZZZ) is a measure of

interdependency between the problems of estimating the structural parameters θθθ and the

equilibrium probabilities (beliefs) πππ∗(·). The assumption that the game is in equilibrium

automatically relates both problems through the equilibrium conditions unless α1 = α2 = 0

in which case there is no strategic interaction between the players and DZZZ(ZZZ) = 0 w.p.1.

Consequently, if α1 = α2 = 0 then BZZZ(ZZZ) = 0, the asymptotic variance is simply =ZZZ and

the estimation of θθθ is adaptive (see Pagan and Ullah (1999), section 5.4 or Bickel (1982)).

The term J0(ZZZ)−1
(
E[YYY | X,ZX,ZX,Z] − E[YYY | ZZZ]

)
is a linearization of the equilibrium conditions
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and is present because our semiparametric equilibrium probabilities estimators have an

asymptotically linear representation.

The proof uses the results from Lemma 4.2. We go further by showing that if our

assumptions are satisfied, then the objects described in such lemma have a uniform linear

representation up to a term of order op(N
−1/2). We combine this result with the first order

conditions satisfied by θ̂θθ and rely on the properties of the Central Limit Theorem for U-

Statistics (see Powell, Stock and Stoker (1989) or Pagan and Ullah, Appendix A.2). Details

are a bit lengthy but are detailed in the accompanying Mathematical Appendix.

Efficiency:

The asymptotic variance of θ̂θθ satisfies the efficiency bound for the vector of moment

conditions17

E

[
∂`ZZZ

(
WWW,θθθ,πππ∗(θθθ,ZZZ)

)

∂θθθ

]
= 000

E
[
πππ∗(θθθ,ZZZ) − E[YYY |XXX,ZZZ,θθθ]

∣∣∣ ZZZ
]

= 000,

which is a combination of unconditional and conditional moment restrictions. These moment

conditions summarize all relevant information about θθθ contained in the model. Following the

approach of Newey (1990), efficiency bounds for models with conditional moment restrictions

can be found in Ai and Chen (2003). We apply their formulas in the Mathematical Appendix

to find the efficiency bound for our model. This efficiency result should not come as a

surprise, as the methodology is asymptotically equivalent to a constrained trimmed maximum

likelihood estimation, where the constraint comes in the form of a conditional moment

restriction. It is very important to note that the efficiency of θ̂θθ depends on the trimming set

ZZZ. In section 4.6 we will show how to make the asymptotic variance of θ̂θθ independent of any

trimming set if the BNE is unique for each ZZZ ∈ S(ZZZ).

17Recall that by definition, ϕϕϕ
(
πππ∗(θθθ,ZZZ) | ZZZ,θθθ

)
= E

[
E
[
YYY |XXX,ZZZ,θθθ

] ∣∣∣ ZZZ
]
. See Equation 3.
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Testing for uniqueness of equilibrium:

Our estimation procedure allows us to test sufficient conditions for uniqueness of equilibrium.

First we show how to test if the BNE is unique for a given realization ZZZ = zzz. Using the

results from Lemma 4.2 and Theorem 1, it is not hard to show that if zzz ∈ ZZZ then

(NhL
N)1/2

(
δ̂1N

(
π̂ππ∗2N

(θ̂θθ,zzz) | zzz, θ̂θθ1

)
δ̂2N

(
π̂ππ∗1N

(θ̂θθ,zzz) | zzz, θ̂θθ2

)
− δ1

(
πππ∗2(θθθ0, zzz) | zzz,θθθ10)δ2

(
πππ∗1(θθθ0, zzz) | zzz,θθθ20)

)

d−→ N
(
000,V(zzz)

)
,

where V(zzz) is a variance that depends on zzz. Using this result we can construct a pivotal

statistic to test the hypothesis H0 : δ1
(
πππ∗2(θθθ0, zzz) | zzz,θθθ10)δ2

(
πππ∗1(θθθ0, zzz) | zzz,θθθ20) = κ against the

one-sided alternative H1 : δ1
(
πππ∗2(θθθ0, zzz) | zzz,θθθ10)δ2

(
πππ∗1(θθθ0, zzz) | zzz,θθθ20) > κ . Failing to reject H0

for some κ < 1 would be tantamount to failing to reject the hypothesis that equilibrium is

unique when ZZZ = zzz, or that zzz ∈ ZZZ. Note that our pivotal statistic suffers from the so-called

curse of dimensionality.

Using the results from Corollary 1, we can test for uniqueness of equilibrium everywhere

in S(ZZZ) by testing the hypothesis H0 : α1α2 = 1/(g1g2) against the one-sided alternative

H1 : α1α2 < 1/(g1g2) . In this case, rejecting the null hypothesis would be evidence that

the game has a unique equilibrium for each ZZZ ∈ S(ZZZ) . However, failure to reject H0 is

not automatically indicative that the game has multiple equilibria for some realization of

ZZZ since the condition of Corollary 1 is sufficient, but not necessary for uniqueness to hold

everywhere in S(ZZZ) . Due to the results from Theorem 1, the pivotal statistic used to test

this hypothesis does not suffer from the curse of dimensionality since
√
N
(
α̂1α̂2 − α1α2

)
is

asymptotically normal with mean zero.

Next, we examine the properties of the trimmed quasi maximum likelihood estimator

that uses the two-step linearized estimator π̃ππ∗N (θθθ,ZZZ) as the plug-in. First, define

F̃(WWW,θθθ) = G1

(
XXX ′

1βββ1 + α1ρ2(θθθ,ZZZ)
)Y1
[
1 −G1

(
XXX ′

1βββ1 + α1ρ2(θθθ,ZZZ)
)]1−Y1

×G2

(
XXX ′

2βββ2 + α2ρ1(θθθ,ZZZ)
)Y2
[
1 −G2

(
XXX ′

2βββ2 + α2ρ1(θθθ,ZZZ)
)]1−Y2 .
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Note that since ρ(θθθ0, zzz) = πππ∗(θθθ0, zzz), we have F̃(WWW,θθθ0) = F(WWW,θθθ0) (the true conditional

likelihood function). We will let F̃ZZZ(WWW,θθθ) = F̃(WWW,θθθ)1l{ZZZ∈ZZZ}. If (S1.1-2) and (S2.1-2) are

satisfied, then assumption (S3.2) precludes the situation ρρρ(θθθ,zzz) = πππ∗(θθθ0, zzz) for all θθθ ∈ ΘΘΘ

and all zzz ∈ ZZZ. Therefore, if (S5) is also satisfied we have that conditional on ZZZ ∈ ZZZ,

if θθθ 6= θθθ0 with (θθθ,θθθ0) ∈ ΘΘΘ then Pr
{
βββ′1XXX1 + α1ρ2(θθθ,ZZZ) 6= βββ′10

XXX1 + α10π
∗
2(θθθ0,ZZZ)

}
> 0 and

Pr
{
βββ′

2XXX2 + α2ρ1(θθθ,ZZZ) 6= βββ′20
XXX2 + α20π

∗
1(θθθ0,ZZZ)

}
> 0. The next result is parallel to Lemma 4.4

and shows that F̃ZZZ(WWW,θθθ) also satisfies an information-inequality result.

Lemma 4.5 Suppose assumptions (I), (S1.1-2), (S2.1-2), (S3.2) and (S5) are satisfied, then

E
[
logF̃ZZZ(WWW,θθθ)] < E

[
logF̃ZZZ(WWW,θθθ0)] ∀ θθθ 6= θθθ0, θθθ ∈ ΘΘΘ.

The proof is included in the Mathematical Appendix. It relies on the nonzero probabilities

described above and the fact that F̃(WWW,θθθ0) = F(WWW,θθθ0) everywhere in ZZZ. We now study the

properties of the estimator that uses the linearized semiparametric estimator π̃ππ∗N (θθθ,zzz) as a

plug-in. We denote this estimator θ̃θθ, which is the solution to

Max
θθθ∈ΘΘΘ

1

N

N∑

n=1

`ZZZ
(
wwwn, θθθ, π̃ππ∗

N(θθθ,zzzn)
)
.

The next theorem presents the main result for θ̃θθ.

Theorem 2 Suppose assumptions (I), (S1)-(S5) are satisfied. Let π̃ππ∗
N(θθθ,zzz) be as defined in

Section 4.3.3, let θ̂θθ be as defined in Theorem 1 and let θ̃θθ solve

Max
θθθ∈ΘΘΘ

1

N

N∑

n=1

`ZZZ
(
wwwn, θθθ, π̃ππ∗

N(θθθ,zzzn)
)
.

Then,

(A) θ̃θθ
p−→ θθθ0.

(B) If assumption (S6) is also satisfied, then
√
N
(
θ̃θθ−θ̂θθ

) p−→ 000 and consequently
√
N
(
θ̃θθ−θθθ0

)

has the asymptotic distribution given in Theorem 1 (B).
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This result shows that under the same set of assumptions, using the π̂ππ∗N (·) or π̃ππ∗N (·) as

plug-ins yields an estimator for θθθ with the same asymptotic properties (to a first order

of approximation). This extends to the discussions about efficiency and tests for uniqueness

of equilibrium. Our analog semiparametric estimator π̂ππ(θθθ,zzz) replicates asymptotically all the

characteristics of πππ∗(θθθ,zzz) as a function of θθθ. As the proofs of Theorems 1 and 2 show, if

our assumptions are satisfied then it is sufficient to achieve those properties asymptotically

only to a first order of approximation. The computational advantage of π̃ππ∗N (·) makes it more

attractive than its analog semiparametric counterpart π̂ππ∗N (·). The proof relies on the results

of Lemma 4.3 and follows linearization steps parallel to those used for the proof of Theorem

1. All details can be found in the Mathematical Appendix.

Until now, we have assumed that beliefs are constructed conditional on a vector of

continuously distributed signals ZZZ. In a number of economic situations, ZZZ may include

variables with finite support (e.g, categorical variables). The next section states conditions

under which the results from Theorems 1 and 2 can be extended to the case in which ZZZ

includes discrete random variables. These conditions simply require that assumptions (S2)

and (S4) be appropriately modified.

4.5 Discrete conditioning signals ZZZ

Suppose we drop assumption (S2.1-2) and assume now that ZZZ has finite support. Then, the

following results hold:

Corollary 2 Suppose ZZZ has a finite support and we drop assumptions (S2) and (S4) and

modify (S3.2) correspondingly to assume now that ZZZ is a subset of elements in S(ZZZ) all of

which have strictly positive probability. Then the conclusions of Theorems 1 and 2 hold if

for all zzz we replace Kh(zzzn − zzz) with the indicator function 1l
{
zzzn = zzz

}
.

40



Corollary 3 Suppose ZZZ can now be partitioned as ZZZ =
(
ZZZd′ ,ZZZc′

)′
, where ZZZd ∈ R

Ld
has

finite support and ZZZc ∈ R
Lc

is continuously distributed. Suppose we replace LLL with LcLcLc in

all our assumptions and modify (S3.2) to assume now that ZZZ is a subset of S(ZZZ) such that

fZZZc(zzzc) > 0 and Pr
(
ZZZd = zzzd | ZZZc = zzzc

)
> 0 for all zzz =

(
zzzd′ , zzzc′

)′ ∈ ZZZ. Then the conclusions of

Theorems 1 and 2 hold if for all zzz we replace Kh

(
zzzn − zzz

)
with Kh

(
zzzc

n − zzzc
)
1l
{
zzzd

n = zzzd
}
.

The proofs can be found in the Mathematical Appendix. Both of them rely on

straightforward variations of the arguments used to prove Theorems 1 and 2. These results

show that -if appropriately adapted- the methodology presented here is flexible enough to

handle situations in which ZZZ includes a mixture between continuous and discrete random

variables. Note that we preserve the trimming index 1l
{
zzz ∈ ZZZ

}
even if ZZZ includes only

discrete random variables because it is the set in which the likelihood function is well defined.

If equilibrium were unique everywhere in S(ZZZ) (e.g, if α1 × α2 < 1/(g1g2)), then trimming

would not be necessary if ZZZ included only discrete random variables. In this case, the

asymptotic distribution of θ̂θθ and θ̃θθ would not depend on any trimming set. The case in which

ZZZ includes continuous and discrete random variables and equilibrium is unique everywhere

in S(ZZZ) is covered in the discussion of Section 4.6 (below).

4.6 Trimming when equilibrium is unique for each ZZZ ∈ S(ZZZ)

The expression for the asymptotic variance in Theorems 1 and 2 depends on the trimming

set ZZZ. As a consequence of the positive definiteness of =ZZZ and the positive semi-definiteness

of BZZZ(ZZZ)Var
[
E[YYY |XXX,ZZZ]

∣∣∣ZZZ
]
BZZZ(ZZZ)′, we get that =−1

ZZZ decreases -in the positive definite sense-

and Ω increases as the set ZZZ increases. The overall effect on the asymptotic variance of

our estimator(s) for θθθ cannot be readily characterized. As we mentioned above, based on

assumption (S3.2), we use the trimming set ZZZ to achieve two things: First, it allows us to

remain in the subset of S(ZZZ) where equilibrium is unique, the conditional likelihood is well

defined and the results from Lemma 4.1 hold. Second, it also helps us limit the influence
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of points zzz in the boundary of S(ZZZ). If equilibrium is unique for each ZZZ ∈ S(ZZZ) , we would

like to modify the trimming in such a way that it still limits the influence of points in the

boundary of S(ZZZ), but ZZZ → S(ZZZ), so that the distribution of θ̂θθ and θ̃θθ do not depend on

any trimming set. In other words, we would like to use all the information on S(ZZZ), while

avoiding the influence of points in its boundary. The proposal is to use the trimming index

1l
{
f̂ZZZN

(zzzn) > bN
}

for an appropriately chosen sequence bN . The following corollary extends

the results of Theorems 1 and 2 to the caseZZZ = S(ZZZ) and makes the asymptotic distributions

of θ̂θθ and θ̃θθ independent from a trimming set.

Corollary 4 Suppose assumption (S3.2) holds everywhere in S(ZZZ) (i.e, ZZZ = S(ZZZ)) and

the other assumptions hold as stated. Let ε be as defined in assumption (S4.2) and let

bN be a sequence that satisfies b2N
(
N1−2εh2L

N

)1/4 → ∞. Take the set ZZZbN
=
{
zzz ∈ R

L :

fZZZ(zzz) ≥ bN
}

and define zzz∗bN
= sup

zzz∈ZZZbN

∥∥zzz
∥∥ . Suppose that log (zzz∗bN

) = op(N
ε). Suppose

the trimmed quasi maximum likelihood optimization is performed using the trimming index

1l
{
f̂ZZZN

(zzzn) > bN
}
. Then, the results of Theorems 1 and 2 hold with ZZZ = S(ZZZ).

This result includes the case in which b is a fixed, but also shows that if b → 0

slowly enough, the asymptotic variance of our quasi-maximum likelihood estimators does

not depend on any trimming set ZZZ. If b→ 0 at a sufficiently slow rate, the limiting trimming

set is ZZZ = S(ZZZ). This is a very convenient result, since -as we outlined in Corollary 1-,

very simple, straightforward conditions for α1 and α2 guarantee uniqueness of equilibrium

in S(ZZZ) (e.g α1 × α2 < 1/(g1g2)). The assumption log (zzz∗bN
) = op(N

ε) is related to the

behavior of tails of fZZZ(zzz) . Given the condition b2N
(
N1−2εh2L

N

)1/4 → ∞, a sufficient condition

for log (zzz∗bN
) = op(N

ε) to hold is that the tails of fZZZ(·) go to zero geometrically or even

polynomially with ‖zzz‖. It will also be satisfied if E
(
‖ZZZ‖dε−1e

)
is finite, where d·e denotes the
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ceiling function. However, this existence-of-moments requirement is not necessary18. The

proof first shows that the steps that lead to the proofs of Theorems 1 and 2 can be extended

to the set ZZZN × ΘΘΘ, then we use a result recently shown by Ichimura (2004) to show that

Pr
(
sup

n

∣∣∣1l
{
f̂N (zzzn > bN )

}
−1l
{
f(zzzn > bN )

}∣∣∣ 6= 0
)
→ 0. Lastly, note that if (S3.2) is not satisfied

everywhere in S(ZZZ) then letting b→ 0 would eventually lead to regions of S(ZZZ) with multiple

equilibria, where the conditional likelihood function is not well defined.

We have completed the discussion about the estimation of the game. We next present

an example that applies this methodology to a simple investment game under uncertainty.

5 Example: A simple investment game under uncer-

tainty

5.1 Short-term investment decisions as a simultaneous game

The arguments presented here are based on the Real Options approach to capital investment.

This approach is a refinement to the traditional Net Present Value criteria of investment

decisions. It was first proposed by Dixit and Pindyck (1994). We now summarize the basic

premises of this theory. At any point in time there exist a finite number of investment

opportunities for firms in a given industry. Having an investment opportunity is much like

holding a financial “call” option: it gives the firm the right but not the obligation to “buy an

asset”, such asset in this case is the entitlement to the stream of profits from the investment

opportunity in question. Exercising an option (capturing an investment opportunity) is an

irreversible action. Thus, analyzing firms’ investment decisions is equivalent to studying how

firms exercise their options optimally. The driving force behind firms’ investment decisions

18Take for example the univariate Cauchy density function f(zzz) = {π(1 + zzz)2}−1 which has no finite

moments. Then f(zzz) = bN if zzz = −1 ±
√

(bNπ)−1. We have N−εlog
(∣∣−1 ±

√
(bNπ)−1

∣∣
)

→ 0 since

bNN
ε → ∞. This in turn implies that log (zzz∗bN

) = op(N
ε).
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is uncertainty about their future environment. A firm’s expectation about the future

market and/or technological conditions in its industry influence its decision about whether

to delay or exercise the available investment option (capture the investment opportunity).

Equally important is the firm’s expectation about its rivals’ actions: when a firm triggers

an investment, future opportunities may be reduced or even lost for competing firms. This

reduces the ability of firms to delay investment.

Strategic considerations can make it imperative for a firm to try and capture an

investment opportunity and preempt investment by existing or potential competitors. At any

point in time, this generates an incentive for firms to conceal their investment decisions from

their competitors in an effort to prevent them from knowing which opportunities they are

trying to exploit. In addition, each firm must act before having perfect knowledge about its

opponents’ investment plans, to prevent the investment opportunity from being taken away

by a rival firm. In the long run of course, the investment opportunities captured by each firm

become publicly observed. However, at any point in time short term investment decisions can

be analyzed as a simultaneous game in which firms decide in advance which opportunities

they will try to capture, before their rivals’ investment projects become publicly observed.

Thus, the principles of the Real Options approach to capital investment are consistent with

the notion that short-term investment decisions can be modelled as a simultaneous game.

5.2 Timing of financial disclosure as a source of incomplete

information

Aside from the simultaneous-game feature, an application to the methodology presented

here requires the presence of an element of incomplete information. Publicly traded firms are

required by law to disclose their financial statements periodically. However, such information

is always made public long after the fact. This information lag has significant real-world

implications, which were addressed by the Chairman of the U.S Securities and Exchange
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Commission, Mr. Harvey Pitt in an “Op-Ed” for the Wall Street Journal on December 11,

2001:

“Our current reporting and financial disclosure system has needed improvement and

modernization for quite some time. Disclosures to investors are now required only quarterly

or annually, and even then are issued long after the quarter or year has ended. This creates

the potential for a financial ‘perfect storm’. Information investors receive can be stale on

arrival and mandated financial statements are often arcane and impenetrable.”

A result of the existing regulations is that publicly traded firms compete against each other

in an incomplete information environment. At any point in time a firm knows more about

itself than the public does. By the same token, firms must anticipate their competitors’

actions using incomplete -lagged- information about them. We are now ready to present the

details of our proposed example.

5.3 Description of proposed example: Population, actions, timing

and variables involved

In this section we provide a description of the game including the population who plays it,

the actions to choose, the payoff variables XXX, the conditioning signals ZZZ as well as which

elements of XXX are privately observed.

5.3.1 Population of players

The game is played in manufacturing industries that have only two publicly traded firms. All

results should be interpreted as being conditional on that population of industries. Player

1 will be the firm with the largest market share and Player 2 will be the other firm. For

a given industry, we could think of Player 1 as “leader” and Player 2 as “follower”. In

concordance with the game described in the previous sections, we assume that all leaders
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have the same payoff functions, as do all the followers. As we will see below, we will include

a vector of industry-specific variables to control for structural differences among industries

that influence firms’ investment decisions.

5.3.2 Actions, timing, variables and information

At the end of a given year t, players (firms) are assumed to plan for year t+ 1. Specifically,

we will assume that at the end of year t firms pre-commit to being “aggressive” or “passive”

in their investment decision for year t + 1. For firm p ∈ {1, 2} we will let Kp(t) denote its

total real stock of capital (physical and human) at the end of year t. At the end of Section

5.3.3 we explain how Kp(t) was constructed. Let ∆%Kp(t) =
(
Kp(t) −Kp(t − 1)

)
/Kp(t − 1).

We will say that firm p ∈ {1, 2} decides to be aggressive in t + 1 if both ∆%Kp(t + 1) > 0

and ∆%Kp(t+ 1) > ∆%Kp(t). We will let Yp(t+ 1) = 1 if firm p ∈ {1, 2} is aggressive in year

t+ 1 and let Yp(t+ 1) = 0 otherwise. We will assume the game can be parameterized as the

one analyzed in the previous sections of this paper. Next, we describe the payoff variablesXXX.

Payoff variables XXX They contain two kinds of variables: firm-specific and industry-specific

characteristics. Firm-specific characteristics are publicly disclosed well after the end of the

fourth quarter of year t, but are assumed to be privately known when firms make their

choices: firms take advantage of financial disclosure regulations to devise their strategies

before issuing its financial statements for the fourth quarter of the year. Let Qp(t) be firm

p’s Tobin’s Q at the end of tear t and denote ∆Qp(t) = Qp(t)−Qp(t−1). Tobin’s Q compares

the capitalized value of the marginal investment to its replacement cost. As such, it is

effectively a measure of the firm’s cost of capital. Investment theory asserts that increases

in Q are accompanied by positive changes in investment. Tobin’s Q’ model of investment

is formally equivalent to a theory of investment with marginal adjustment costs. We will
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include ∆Qp(t) among the firm-specific payoff variables. At the end of Section 5.3.3 we

explain how Qp(t) was constructed.

As we mentioned above, firms’ strategies also have a long-term component since large-

scale investment projects may take a long time to complete. To capture long-term strategies,

we will include two firm-specific variables. We will include Yp(t) to indicate whether or not

firm p was aggressive during year t. Adding in this variable also allows for the possibility

of “state-dependent” strategies. We will also include ∆%Kp(t) to capture the effect of the

relative magnitude of changes in real capital on the firm’s propensity to act aggressively.

Including this variable also allows us to control for long-term investment strategies that

involve large scale changes in capital. Let t3 denote the end of the third quarter of year

t. All the firm-specific variables presented here can be computed with financial data that

is made public quarterly. We will assume that due to financial disclosure regulations, at

the time choices are made ∆Qp(t), Yp(t) and ∆%Kp(t) are privately observed by firm p, but

∆Qp(t3), Yp(t3) and ∆%Kp(t3) are publicly observable, where ∆Qp(t3) = Qp

(
t3
)
−Qp

(
(t− 1)3

)

and so on. Details of the construction of all firm-specific variables can be found in the

appendix.

We will let I denote the industry to which firms 1 and 2 belong. In fact, I indexes

a particular pair of players (firms). Following real-options investment theory, we want

to include variables that reflect industry uncertainty 19. We will include two measures

of uncertainty:. First an indicator of market (demand) uncertainty known to both firms,

which we will denote by MKTI(t). We use total real industry sales to construct a simple

categorical variable that reflects two possible states: MKTI(t) = 1 if the proportional annual

growth of the industry’s total real sales in the last year is greater than the average of the five

previous years. MKTI(t) = 0 otherwise. We also include a simple indicator of technological

uncertainty which we denote by TECHI(t). We use data on patents and construct once

19Oriani, O. and M. Sobrero (2003) include measures of industry uncertainty in a model of firms’

technological knowledge.
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again a categorical variable for two possible states: TECHI(t) = 1 if the change in the

number of patents (per employee) where industry I is considered either “industry of use” or

“industry of manufacture” in the last year is greater than the average of the five previous

years. TECHI(t) = 0 otherwise. Both measures of industry uncertainty are known to firms

1 and 2. Details of the construction of all firm-specific variables can be found in the appendix.

Conditioning signals ZZZ As we have mentioned throughout, delay in financial information

disclosure is the source for incomplete information in this model. All the firm-specific

variables included here are affected by this information lag. On the other hand, the

industry-specific uncertainty measures are assumed to be observed equally well by both

firms. Therefore, the vector of conditioning signals ZZZ is given by

ZZZ =
(
∆Q1(t3),∆Q2(t3),∆%K1(t3),∆%K2(t3), Y1(t3), Y2(t3),MKTI(t),TECHI(t)

)
.

Consequently, the game can be summarized as

Yp(t+ 1) = 1l
{
XXX(t)′βββp − αpπ

∗
−p(θθθ,ZZZ) − εp(t) > 0

}
for p ∈ {1, 2}

where XXX(t)′βββp = βp,1∆Qp(t) + βp,2∆%Kp(t) + βp,3Yp(t) + βp,4MKTI(t) + βp,5TECHI(t) and

ZZZ is as described above.

5.3.3 Data source

Firm data

The source of all firm-specific variables is Standard & Poor’s North America COMPUSTAT.

These data files include information on publicly traded firms. These data covered

approximately ninety percent of the employment in the manufacturing sector in 1995 but

only about 1 percent of the total number of firms. To preserve the iid data assumption (S4.3),

we pool together samples that are five years apart. The universe we use correspond to the

years 1990 and 1995. For each year, COMPUSTAT included information for manufacturing

firms in 458 industries at NAICS 6-digit level. Out of this universe, a total of 134 industries
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in 1990 and 1995 had only two publicly traded firms (roughly 14% of all industries in both

years). This is the sample of firms we use. COMPUSTAT includes correspondences between

NAICS 6-digit and 1987 4 digit SIC classifications for each firm.

Industry data

We used the following sources of industry data:

• NBER-CES Manufacturing Industry Database. This data set contains annual industry-

level data on output, employment, payroll and other input costs, investment, capital

stocks, TFP, and various industry-specific price indexes. The database covers all 4-

digit manufacturing industries from 1958-1996. Detailed documentation is presented

in Bartelsman and Gray (1996). This database was used to construct a price index for

physical and R&D capital. The latter also used information from the National Science

Foundation, as described below.

• National Science Foundation Industrial Research and Development Information System

(IRIS). The National Science Foundation’s (NSF) Industrial Research and Develop-

ment Information System (IRIS) links an online interface to a historical database with

more than 2,500 statistical tables containing all industrial research and development

(R&D) data published by NSF since 1953. These tables are drawn from the results

of NSF’s annual Survey of Industrial Research and Development, the primary source

for national-level data on U.S. industrial R&D. We used historical information on

the composition of R&D costs, classified as “Wages”, “Materials and Supplies” and

“Other Costs”. This information, combined with the price indexes in the NBER-

CES Manufacturing Industry Database was used to construct a price index for R&D

expenditures. The information exists at 2 and 4-digit SIC.
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• US Historical Patent Set. This data set was put together by Daniel K.N. Johnson, it

includes historical information on patents, classified by industry of use and industry

of manufacture. It is based on the Wellesley Technology Concordance which uses

information from over 1,500,000 patents granted in the US between 1975 and 1995

to build a concordance between the US Patent Classification system (USPC) and the

International Patent Classification system IPC , with the probability that any given

patent in a particular USPC will fall into a particular IPC. This data set contains

information at 2-digit level SIC.

Next we present a brief description of how Tobin’s Q and total capital stock were constructed

for each firm.

Construction of Tobin’s Q. We define market value as a firm’s total market capitalization

(the total market value of firm’s outstanding securities). Following (Blundell et al., 1992,

1999) previous analysis on UK data , we calculate the market value of the firm adding the

value of outstanding debt to market capitalization, therefore market value is the sum of

a firm’s common equity, preferred stock and outstanding debt. We follow Hall (1987) by

defining the value of a firm’s physical assets (a firm’s book value) as the sum of net capital

stock (net value of a firm’s plant, property and equipment), inventories and other assets.

Construction of total capital stock. We construct a series of total real capital (R&D +

Physical) by the end of year t for each firm. We deflated the net value of “property, plant

and equipment” (COMPUSTAT) to measure the stock of physical capital of each firm. The

stock of R&D capital -which we also call “human capital”- was computed as a perpetual

inventory of the past real R&D expenditures (COMPUSTAT) with a constant depreciation

rate, as described in detail by Mairesse and Griliches (1984) and Hall (1990). We used the

R&D depreciation rates of Nadiri and Prucha (1993). R&D as well as physical capital price
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indices were constructed for each industry, at a 2-digit SIC level for the former and 4-digit

SIC level for the latter. The composition of R&D costs in each industry was obtained from

IRIS, while the composition for physical costs was obtained from NBER-CES.

5.3.4 Estimation results

The conditioning signals assumed to have a continuous distribution are: ∆Q1(t3), ∆Q2(t3)

,∆%K1(t3) and ∆%K2(t3), so L = 4. The remaining signals Y1(t3), Y2(t3) ,MKTI(t) and

TECHI(t) are categorical variables and thus clearly discrete. We estimate the model using

the quasi maximum likelihood algorithm described above, with the modification outlined

in Corollary 3 and using the linearized two-step semiparametric estimator as plug-in. In

addition to the payoff variables XXX described above, a time dummy variable was included for

t = 1995. Finally, we assumed that ε1 and ε2 were both normally distributed. We used a

fifth-order multiplicative kernel of the form K(Ψ) = k(ψ1) × . . .× k(ψL), where

k(ψ) =
35

32

(5

2
− 15ψ2 +

33

2
ψ4
)
φ(ψ) with φ(ψ) =

3

4
(1 − ψ2)1l

{
| ψ |≤ 1

}
.

In addition to satisfying assumption (S4.2), following an idea by Fukunaga, we choose

the bandwidth hN in a way to keep the ratio (zzzn − zzzm)/hN “scale-free”, we selected

hN =
∣∣S2(ZZZ)

∣∣1/2
Nσ, where

∣∣S2(ZZZ)
∣∣ is the determinant of the sample variance-covariance

matrix S2(ZZZ). We chose σ = −1/12, which satisfies assumption (S4.2) for any ε ∈ (0, 1/6) with

L = 4, M ≡ L + 1 = 5. We assumed a priori that condition (S3.2) is satisfied everywhere

in S(ZZZ). In concordance with this assumption and following the discussion in Section 4.6,

the trimming index used was 1l
{
f̂ZZZ(zzzn) ≥ 1/ log(N)

}
where N = 134 is the sample size, see

Section 5.3.3 above. We next describe how standard errors were obtained.

Estimation of standard errors

The correction matrix Ω was estimated as follows. First let

V̂ar
(
E
[
Y |XXX,ZZZ]

∣∣∣ZZZ = zzzn

)
=

1

N

N∑

m=1

[(
Ê
[
YYY | xxxm, zzzn] − Ê

[
YYY | zzzn

])(
Ê
[
YYY | xxxm, zzzn] − Ê

[
YYY | zzzn

])′]
.
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We used Ω̂ = 1
N

∑N
n=1 B̂ZZZ(zzzn)V̂ar

(
E
[
Y |XXX,ZZZ]

∣∣∣ZZZ = zzzn

)
B̂ZZZ(zzzn)′, where our estimate for θθθ was

used to compute B̂(zzzn). The information matrix =ZZZ was estimated as the numerical Hessian

of 1
N

∑N
n=1 `ZZZ

(
wwwn, θ̃θθ, π̃ππ∗N (θ̃θθ,zzzn)

)
. Table 1 summarizes the estimation results.

Table 1.

Estimation Results

Player 1 Player 2

∆Q 0.8124∗ 0.7456∗

(0.1007) (0.1220)

4%K −1.3721∗ −1.4106∗

(0.5781) (0.2823)

Y 0.1526 0.1411

(0.1277) (0.2044)

MKT 1.6147∗ 0.9725∗

(0.2292) (0.3260)

TECH 0.9022∗ 0.4121

(0.2158) (0.3575)

α −1.1446 −2.1598∗

(0.7996) (0.5330)

Standard errors are shown in parenthesis. A superscript (∗) denotes statistical significance at

a 95% level. The estimate for the time dummy variable for 1995 was −0.3427, with a standard

error of 0.5781 and was not significant at a 95% level. We have g1 = g2 = 1/
√

2π . We tested

the hypothesis H0 : α1α2 = 2π against the one-sided alternative H1 : α1α2 < 2π. We were

able to reject H0 at a 99% significance level. This is statistically significant evidence that
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the game has a unique equilibrium everywhere in S(ZZZ). We now discuss how the standard

errors were obtained.

Overall, the estimation results seem to provide evidence that the large firm’s investment

decisions are driven mainly by its privately known characteristics ∆Q and ∆%K, as well as the

industry-uncertainty measures MKT and TECH. Neither firm’s decision to be aggressive

seems to be significantly influenced by their aggressive/passive behavior the previous year.

As for the strategic component of the game, results are consistent with the idea that the game

is symmetric and is one in which both firms are affected when they are mutually aggressive.

Most importantly, these results suggest that strategic considerations play a major role in the

small firm’s actions. The null hypothesis H0 : α1 = α2 is rejected at a 95% confidence level

against the alternative H1 : α2 > α1. In fact, results show that α̂1 is not significant at a 95%

level.

To summarize, these results are consistent with an investment game in which the large

firm bases its actions on his privately observed characteristics as well as the state of industry

uncertainty. Meanwhile, the small firm has a greater incentive to anticipate the actions of

the large one, acting therefore as as a “follower”. We must conclude by stressing that this

example is meant to be an approximation of firms’ actual behavior. We chose this particular

approximation because it fits arguably well the description of a simultaneous game, where

actions constitute precommitments. It would be interesting to see if the general results

obtained here hold true if we estimate a game in which both firms choose their investment

levels simultaneously. However, it would be problematic to represent it as a simultaneous

game, as investment levels do not necessarily constitute irreversible pre-commitments.

The next section presents some concluding remarks for the paper.
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6 Concluding remarks

This paper analyzed a 2 × 2 simultaneous game with incomplete information. We showed

that a well-defined likelihood function exists for all possible variations of the game only

if players have incomplete information. We assumed a general incomplete information

structure and characterized the resulting Bayesian Nash equilibrium (BNE) conditions of

the game. Players construct their equilibrium beliefs conditional on a vector of signals

ZZZ, whose exact distribution is unknown to the researcher. BNE conditions take the form

of conditional moment restrictions. We focused on estimation methods that exploit the

information contained in the BNE. We presented two alternative semiparametric estimation

procedures that achieved this goal. Both methods took the form of a two-step estimation

procedure. The first step in both cases was to estimate the unknown equilibrium beliefs. The

first method forced the sample to satisfy a semiparametric analog to the BNE conditions.

The second one relied on a linearization of them.

The second step in both procedures used these semiparametric estimates as plug-ins

for the unknown equilibrium beliefs in a trimmed maximum likelihood estimation. The

trimming set is an interior subset of the support of ZZZ where the BNE conditions have a

unique solution. We found that the asymptotic distribution of the resulting estimators for

the structural parameter vector θθθ are the same for the two alternative procedures. We

also found that they both exploit efficiently all available information to the researcher. The

estimation is equivalent to a constrained MLE, where the constraint takes the form of a

conditional moment restriction. We showed how to adapt the methodology for the cases in

which ZZZ includes continuous and/or discrete random variables. We also examined the case in

which the BNE conditions have a unique solution everywhere in the support of ZZZ and showed

how to modify the methodology accordingly. Tests for uniqueness of equilibrium either for

a given value of ZZZ or for its entire support are also presented. A game of investment under

uncertainty is estimated as an example. Results are consistent with a model in which the
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smaller firm has a comparatively greater incentive to predict the the actions of the larger

one, which bases its decisions mainly on private information and indicators of industry

uncertainty, giving relatively less weight to the expected actions of the smaller firm.

The presence of incomplete information in this game allows the researcher to estimate θθθ

efficiently and make predictions for the four observable outcomes in all possible variations

of the game. If players have complete information, then a loss of resolution in the set

of outcomes that can be predicted is inevitable in some variations of the game unless

some equilibrium selection rule is imposed. The main lesson for applied work in general

interactions-based models would be to carry out a careful inspection of the information

conditions that prevailed when agents made their choices. The estimation procedure should

be based -at least partially- on the information structure in an effort to exploit all available

information in the game and achieve the greatest possible resolution for predictions. This

paper can be extended in several ways. The first line of research would be to adapt the

methodology to simultaneous games with more actions and/or players, or to sequential

games. In all cases, we would first require to characterize the corresponding equilibrium

and find conditions for uniqueness. These conditions must be testable and they should be

as weak as possible, ideally weaker than contraction-mapping conditions. The estimation

procedure would then exploit the information contained in the equilibrium conditions of the

game. A second line of research is the design of tests aimed at selecting between alternative

information structures of the game. This includes testing whether or not a particular game

was played with complete or incomplete information, but should also include the design of

tests that help us choose between alternative incomplete information structures.
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