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A Mathematical Proofs

A.1 Lemmas 3.2, 3.3

Proof of Lemma 3.2: This is a direct consequence of Brouwer’s Fixed Point Theorem:?

Take any Z € S(Z) and any 8 ¢ RF2. If (ﬁ)—(@) are satisfied, then for all (71, 7) € R? we
get that ¢1(mo | Z,01) and p1(ms | Z,67) are continuous and strictly bounded inside [0,1]?,
which is a compact, convex, nonempty subset of R2. Therefore, if we restrict the domain to
(w1, m2) € [0,1]% then all the conditions of Brouwer’s Fixed Point Theorem are satisfied and
the system must have a fixed point in [0,1] x [0,1]. In addition, because both ¢ (w2 | Z,01)
and oy(m1 | Z,02) are strictly inside [0,1] for all Z € S(Z), 8 € R¥*2 and (71, 72) € R? then all

fixed points must be strictly inside [0, 1]? for all Z € S(Z). O

Proof of Lemma 3.3: Fix § € R**2 and Z € S(Z). Then, for any (7, m) € R? define:

e1(m2 | Z,01) =E[G1(X1B1 +oum2) | Z];  ¢a(m1 | Z,02) =E[Ga(X5B2 + aom1) | Z]
61(m2 | Z,01) =E[g1(X 181 + cuma) | Z]; S2(m1 | Z,02) =E[g2(X5B2 + agmi) | Z]

We will now analyze the cases a; x as = 0 and a; x ag # 0 separately.

Case 1: ay X as =0

Suppose a; = 0 and define 7} = E[G1(X81) | Z]. Then we trivially have ¢i(ms | Z,0;) = =}
for all 7 € R. Now let 75 = @o(n} | Z,02). Then (nf,7;) is the unique solution to the
equilibrium system (1). If as = 0 but a; # 0 then the unique equilibrium (7}, 7%) would be
given by: 73 = E[G2(X%B2) | Z] and 77 = p1(n | Z,0:). These two cases together show that

if a; x ag = 0, then the solution to (1) is unique.

Case 2: oy X as #0

If assumptions (Svl)—(:gé) are satisfied and a1 x ag # 0, then (ms | Z,61) and @o(m; | Z,62)

20See Theorem M.I.1 in Mas-Collel, Whinston and Green (1995).



are continuous, monotonic, one-to-one functions of w5 and m; respectively. Now define the

inverse function ¢;* that satisfies:
o7 (m1 | Z,0,) =7 ifand only if (2 | Z,01) = m

Then ;! is well defined and continuous for all 71 € (0,1). In addition, 7} is a solution
(for m1) to the equilibrium system (1) if and only if po(7f | Z,02) = o7 (7 | Z,8:). To show
uniqueness of equilibrium, all we need to do is show that =} is unique: In equilibrium, 73
must satisfy 75 = pa(7] | Z,02); since 5 is a one-to-one function, then 7§ implies uniqueness

of m5. Therefore, we will focus on 7} and define:
D(m | Z,60) = ¢a(m1 | Z,8) — o1 ' (1| Z,61)

then 77 is a solution (for m1) to the equilibrium system (1) if and only if I'(n} | Z,0) = 0.

Using the properties of inverse functions, we have:

dl(m, | Z.,0 1
M - a252(7T1 | Z’GQ) o 05151(801_1(71-1 ’ Z701> ’ Z701)

d7T1

We will divide the case a; x as # 0 into two cases: a; X as < 0 and a3 X as > 0 and analyze

each one separately.

Case 2.1: a1y X s <0
Before proceeding, note that if assumptions (:S'vl)—(g*é) are satisfied, then 0 < §;(ms | Z,0;) <

g1 and 0 < 0a(71 | Z,02) < Gy for all (w1, m2) € R2, all Z € S(Z) and all § € RE*2. Therefore,

we have: I 78
If aq > 0, as < 0 then: %<O forall m e R
Us!
dr’ Z.0
If oy < 0, ap > 0 then: %w for all m € R
Us!

Therefore, if a; x as < 0 then:

Sign (dF(m | Z.6)

p ) is constant and different from zero for all 7 € R
1
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Thus, if oy x as < 0 then I'(m; | Z,0) is a monotonic function of m; for all 7 € R, which
means that there is at most one 7§ such that I'(m | Z,0) = 0. From the proof of Lemma 3.2
we know that there must exist at least one such 77. This shows that if a; x as < 0 then there

is a unique 7} for which I'(n} | Z,6) = 0.

Case 2.2: a3 X ay >0
Define: 7\¥ = (0 Z,6;) and " = (1| Z,61) . Then, since both ¢;(ms | Z,6;) and
@o(m | Z,0,) are strictly inside [0, 1] for all (71, m9) € R?, we have that 7750) € (0,1), 7r§1) € (0,1)

and:
po(m” | Z,8,) > o7 (x\” | Z,0)) =0 and  po(nl” | Z,0,) < oi (n\V | Z,0,) =1

and therefore F(w%o) | Z,0) > 0 and F(w%l) | Z,0) < 0. Now, note that all equilibrium solutions

77 must be strictly between 7r§0) and 77%1): If a1 > 0 then 7750) < wgl

and if a; < 0 then ﬂo) > 7r§1) and 7} € (7r§1),7r§0))

) and ] € (Wio),wg)),

. To see why, note that if a; > 0 then
o7 (m1 | Z,81) < 0 for all m € (0,7")) and ;' (w1 | Z,61) > 1 for all m € (7", 1), whereas if
a1 < 0 then o7 (m1 | Z,61) < 0 for all 1 € (x{”),1) and o7 (71 | Z,01) > 1 for all my € (0, 7).
All these cases are incompatible with an equilibrium since in all of them we have either
I'(m | Z,0) > 0 or I'(m; | Z,0) < 0. Therefore, to prove uniqueness of equilibrium, it is
(

sufficient to show that I'(m | Z,0) is a monotonic function of m; everywhere between 7710) and

w%l). Suppose that:

041042(51(71'2 ’ Z,01)52(7T1 ‘ Z,02) <1 for all (7T1,7T2) S [0, 1]2 (*)

Then, since p;*(m | Z,81) € (0,1) for all 71 between 7r§°) and ﬂ”, we get that (x) implies

that:

by (o7 (1| Z,61) | Z,01)65(m1 | Z,62) <1 for all mp between 7T§0) and 7r§1)



and therefore:

dr Z,0
If a1 > 0, ag > 0 then: % <0 forallm € (W%O),ﬂl))
Us!
dr Z,0
If oy <0, ag <0 then: % >0 forallm € (ﬂl)?ﬂo))
™

Then, if a1 x ay > 0, (S1)-(52) and () hold, then:

Sign(M (

) is constant and different from zero for all m; between 7r10) and 751)

dmy
and therefore I'(m; | Z, ) is monotonic everywhere between ﬂo) and ng). Since all equilibria
must lie strictly inside this interval, this means that there is at most one = such that
I'(m | Z,0) = 0. From the proof of Lemma 3.2 we know that there must exist at least one

such 77. This shows that if ay x as > 0 and (51)-(52) along with () hold, then there is a

unique n} for which I'(z} | Z,8) = 0.

To complete the proof, we only have to put together cases 1 and 2: Note that if a3 x ag <0
then (%) holds trivially. In fact, in this case we showed uniqueness of equilibrium without
having to use (*). To show uniqueness we only needed to impose (*) for the case ay x ag > 0.
Therefore, we can conveniently summarize these results as: “Take Z € S(Z) and suppose

assumptions (ﬁ) and (SAé) are satisfied. In addition, suppose:
alagE[gl(Xllﬂl + aym) | Z]E[gz(X/Qﬂg + agm) | Z} < 1V(my,m) €[0,1)2

then the equilibrium (7}(Z,0), 75(Z,0)) is unique.” This proves the first part of the statement
in Lemma 3.3. Uniqueness of equilibrium yields existence of F(y1,y2 | X, Z,8). To show that
the latter is a continuous function of the parameters around a neighborhood of this Z and for
all X we just have to show that (77, 73) is a continuous function of 8 inside a neighborhood of
Z. We use (*) along with the Implicit Function Theorem (IFT) to show this: To show that
the equilibrium (}(Z,0),73(Z,0)) is a C' function, note that the Jacobian of the equilibrium

system (1) with respect to m; and 9 is given by:

1 —01151(71'2 | Z,01)
J:

—04252(7'('1 | Z,02) 1
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which has full-rank if and only if 1 — ajaedi(me | Z,01)02(m | Z,02) # 0. Therefore, if
the assumption of Lemma 3.3 (i.e (%)) is satisfied, then J has full-rank. Now, because
all solutions to (1) lie inside the unit square, this full-rank condition in such set is both
necessary and sufficient to apply the Implicit Function Theorem to all 77,75 that solve
(1). Therefore (n}(Z,0),73(Z.6)) is a C* function of @ around a neighborhood of Z -in
fact, by the IFT it inherits all smooth properties of G;(-) and Gy(-)-. In this case, the
likelihood F(y1,y2 | X,Z,0) is a C' function of @ around a neighborhood of Z and for all
X € R¥*2 because both X' 81 +a175(Z,0) and X' 81 + a175(Z,0) are C! functions of § around

a neighborhood of Z and for all X € RF+2,

Proof of Corollary to Lemma 3.3: If ajay < 1/(g,9,). Then (x) is satisfied for
all Z € S(Z). Consequently, all the results of Lemma 3.3 hold everywhere in S(Z):
(71(Z,0),73(Z,0)) are unique for each Z € S(Z) and F(y1,y2 | X, Z,0) exists for each Z € S(Z)
and each X € R*. The implicit function theorem holds everywhere in S(Z) and therefore

Flyr,y2 | X,Z,0) is a C! function of @ for all X € R* and everywhere in S(Z).

A.2 Proof of Lemma 4.1

Assumptions (S1) and (S2) are sufficient to satisfy (51) and (5/5) respectively. From

assumption (S3.2), the additional condition of Lemma 3.3:
ozlong[gl(X/lﬂl +aym) | Z = z]E[gg(X/Z,BQ +aom) | Z = z] < 1V(m,m) €[0,1]?

is satisfied everywhere in © x Z. Therefore, each (2,6) € © x Z has a unique solution

pmbr*(0, z) to the equilibrium conditions (1). From Lemma 3.2, we know that pmbr*(0,2) €

[0,1]? for all (2,0). From assumption (S1.3), (¢1,e2) have infinite support. Therefore,

compactness of S(X)x©x0,1]? implies that there exists 7 € (0, 1) such that G (X B1+a17m2) €

(1,1 — 1) and Ga2(X4B2 + agm) € (1,1 — 1) with probability one for all (71, m2) € [0,1]2

Consequently, n*(0,2) € (1,1 —7) C (0,1)? for all (f,2z) € © x Z. Now, notice that the
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determinant of the Jacobian of the equilibrium system (1): Vx(m — ¢(r | 2,0)) is given by
1—oaaE[g1(X B +aim) | Z = 2| E[g2(X5B2 + aom) | Z = 2|, which by assumption (S3.2) is
nonzero (strictly positive) everywhere in ® x Z. Consequently, the Implicit Function Theorem
(IFT) holds for each (8,2z) € Z and therefore 7*(8,2) is a well-defined function of 8 and z
everywhere in © x Z and it inherits all the smoothness properties of p(x | z,68). Therefore,
using assumptions (S1.3) and (S2.3) we have that 7*(0, Z) is M times differentiable functions
of (8, Z) with bounded M derivatives everywhere in © x Z. In particular, let Vom*(6, 2) and
Veom*(0,2) be the matrices of first and second derivatives with respect to . Then, using

the IFT we have:

Vor*(0,2) = J(7°(0,2) | 2,0) ' Vap(n*(8,2) | 2,0)
2% (k+2)

Voo (0,2) = Vgvec (J(ﬂ'*(ﬂ,z) \ z,0)_1V9g0(7r*(0,z) | 2,0))
2(k+2) x (k+2)

where Voo (n*(0,2) | 2,0) is the partial derivative of ¢(m | 2,60) with respect to 8 (with 7
fixed) evaluated at w*(@,z). On the other hand, nge(:(J(w*(O,z) ] z,O)_IVQCp(W*(a,Z) | z,0))

includes Vom*(0,2). U

A.3 Identification in the linear model

Recall that the equilibrium probabilities in the linear version of the model presented in
section 4.4.1 are given by:

2[EX1|Z=2B1+ 1]+ [E[X2 | Z =2)B2+1]

71(0,2) = yy———
. 2[EXy | Z =282+ 1] + 2[E[X1 | Z =2)B1 +1]
7‘—2(0’ Z) = 4~ g

where 4 — ajag > 0 by assumption (S3.2). Consequently, we can express:

X1+ om5(0,Z) =6, + X181+ EX1 | Z]'yi1+ E[X2 | Z]'y12

X582 + aomi(0,Z) = 62 + X582 + E[X1 | Z]'y21 + E[X2 | Z]'y29



Let d =4 — a9 . Suppose we allow for X; and X5 to include a constant term and denote
the coefficients for these constants (i.e intercepts) by 1. and B2 . respectively. Then:

_ 200 + oo + 4ﬂ176 + 2ﬂ276a1 5y = 2000 + arag + 4062 + 2ﬂ176a2
N d ’ B d

Broaioe :2ﬂ2a1 :2,31042 and :,32041042
d 71,2 d V72,1 d 72,2 d

01

7,1 =
where 8, and B2 exclude the intercepts (1 . and (2., which are included in d; and d5. As these
functions show, we would be able to identify all the parameters (including 3; . and f3s) if we
could recover a;; and . Suppose (X1, X>) have full-column rank and there exist X;,, € X,
and Xp 4, € X9 such that B14 #0, fog, #0, E[X1y, | Z] # X1, and E[Xoy, | Z] # Xay,.

We next show how to recover oy and «:
- Ify21, #0and v12, # 0 then a; = 71,222/(2727%) and ap = 72,121/(271,1“)
- If V2,1, # 0 and V1,2, =0 then oy =0 and a9 = 2727151/51741
- If y91,, =0 and 712, # 0 then oy = 271,262/&7(2 and oy =0

< If Vo1, = 0 and V1,20, = 0 then a; =0 and ay =0.

we use o and o to recover the intercepts ;. and (s as follows:

201 — 041(1 + (52)
2

209 — a2(1 + (51)

/81,0 - 2

and 52,0 =

now suppose there exists X, € X; such that E[X1,, | Z] = X1,,. Then we would
have X1, B, + E[X1s, | ZIm,, = X1, 01, (1 + a1a2/d) = 4X3, B, /d, which clearly shows
we can recover i, by excluding E[Xi,, | Z] and including only Xj,, in the equation
O+ X181+ EX:1 | Z)vi1+EXy | Z]'y12. Let Blm denote the corresponding coefficient, then
we have gy, = (d/4)p, - We would follow parallel steps to recover the coefficient 3y, for
any Xo,, € Xy such that E[Xy ., | Z] = X,

Now suppose E[X; | Z] = X; and E[X, | Z] = X5. Then we get:

4 2 ~ ~
Xif1 + anmi6.2) = 0y + X3 (1) 4 25 (2200) =61 4 X1B + X

4 2 ~ ~
X3 + axmi6.2) = 02 + X5 ) + X3 (P42 ) = 0 4 XiB + X

7



where d; and dy are as defined above. Now suppose there exist X;,, € X; and Xsy, € X
such that 8, # 0 and fa4, # 0. Then it is easy to see that a; = 2%,%/32,@2 and
Qg = 2%7161 / 51761. The intercepts 1. and §2 . would be recovered in the same way as it was
described above and we would trivially recover the slope parameters by 81 = (d/4) = 8, and
B2 = (d/4)*B,. If no such X1, € X1 and Xy, € X exist, then it is not possible to identify
the intercepts (1. and (2. along with the strategic parameters oy, ay. In this case, if we

normalize ;. = 0 and (2. = 0 then we would have a; = (21)/(1+02) and ay = (2d2)/(1+61).

A.4 Lemmas 4.4, 4.5

Proof of Lemma 4.4:
We have

FZ(W70) _ PI‘(Y|X,Z70)
Fz(W.0y) | Pr(Y |X,Z,6)

where Y € {(1,1),(1,0),(0,1),(0,0)} and Pr(Y | X,Z,0) is the conditional probability of

fZeZ and 1 otherwise}

Y given (X,Z) when the parameter vector equals 8. If assumption (S5) is satisfied, then

g(%vfo)) is not constant whenever @ # 6,. Note also that by definition this ratio is always

positive for every @ and 8,. Therefore, by Jensen’s inequality we have:

Fz(W,0) Fz(W,0)
—log {E 4}_3(“/’00)] } < E|-log {—fZ(W,OO)}

If assumptions (I), (S1.1-2), (S2.1-2) and (S3.2) are satisfied then if Z € Z, we have:

. { Fz(W.6) _ Pi(y|X.Z.6)

FzW.0,)  Priy] X,Z,Go)} =Pr(Y =y | X,Z,6)

for each y € {(1,1),(1,0),(0,1),(0,0)}. Therefore:

. fzwol / / { y ¥~y | X, Z,0) r<Y=y|X,Z,0o)}fx,z<X,Z>dXdZ
ZeZ JXeS(X

Fz(W, 0 Pr(Y =y| X,Z,60)
+/ / 1- fxz(X,2)dXdZ
ZeS(Z)/Z JXeS(X)
:/ / {ZPr(Y:y!X,Z,O)}fx,z(X,Z)dXdz+(1—Pr(z€z»
ZcZ JXeS(X

=Pr(ZecZ)+(1-Pr(Z € 2)) =
8



where the last equality uses the fact that > Pr(Y =y |X,Z,6) = 1 for all (6,X,2).

Therefore we get that whenever 6 # ,:

log { Fz(W,0) }

O0< F
FZ(W>00>

— Ellog Fz(W,0,)] — Ellog Fz(W,0)]

or equivalently: E[logFz(W,0)] < E|[logFz(W,0,)] V6 # 6y, 8 € © , which proves the

claim. O

Proof of Lemma 4.5:

First, recall that:

F(W,0) = G1(X\B1 + 1p2(0,2)) " [1 — G1 (X B1 + cupe(8,2)) ]

X G (XhBs + azpr(8,2)) 1 — Go (X582 + anp1 (8, 2))]
with p(6,z) = 7*(69,2) + J (7*(00, 2) | z,0)71 [o(7*(60,2) | 2,0) —7*(Bo,2)]. The proof follows
basically the same steps as that of Lemma 4.4. If (S1.1-2) and (S2.1-2) are satisfied, then
assumption (S3.2) precludes the situation p(#,z) = w*(6y,2) for all # € © and all z € Z.
Therefore, if (S5) is also satisfied we have that conditional on Z € Z, if 8 # 6, with
0.0, € © then:
Pr{BX 1 + 1pa(6,2) # Bl X1 + a1,75(80,Z) | >0
Pr{BLX> + a201(0,2) # B3, X + 42,7 (80, Z) } >0

Therefore Fz(W,0)/Fz(W,0) is not constant in Z. It is also everywhere positive and

therefore the same Jensen’s inequality argument used in the proof of Lemma 4.4 applies:

—log {E MI} < F|—log {M}]
) Fz(W,0)

fZ(W700
Now recall that f(W,eo) = F(W,6y) and fz(W,OO) = Fz(W,0y) (the true likelihood and

trimmed likelihood respectively) everywhere in Z. Therefore, if assumptions (I), (S1.1-2),

(52.1-2) and (S3.2) are satisfied then if Z € Z, we have:

ﬁz( 70) F(vaazao)
prd 72W.0) _ =Pr(Y =y |X,Z,0
{fz(W,Go) Pr(y | X, Z.60) =yl 2

9




for each y € {(1,1),(1,0),(0,1),(0,0)}.

Therefore:

E -PrY=y|X,Z,0 X,Z)dXdZ
[]:Z W, 0) ] Zez JXes(X) Z Pr Y | X Z.0,) Y=y 0) ¢ fxz(X,Z)

+/ / 1- fx z(X,Z)dXdZ
Zes(2)/2 JXes(X)

:/ZEZ /XeS(X){;f(y,X,Z,e)}fx,z(X,Z)dXdZ+ (1-Pr(Z € 2))

=Pr(ZecZ)+(1-Pr(Zc 2)) =

where the last equality uses the fact that 3°, F(y,X,Z,0) =1 for all (§,X,Z). Therefore we

get that whenever 6 # 6:

{ Fz(W,0) }
—log § =—————
F2(W.6,)

or equivalently: E[log]?z(W,G)] < E[log]?z(W,Go)] V0 #0y 6 €O, which proves the

0<E = E[log Fz(W,8,)] — Ellog Fz(W,0)]

claim. O

A.5 Theorems 1, 2

We first need to establish the uniform rate of convergence of the proposed estimators for
7m*(2,0). The next lemma is an application of Lemma 3 in Collomb and Hardle (1986).
Variants of the latter result have been used previously by Stoker (1991) and Ahn and Manski
(1993).

Lemma A.1 Let {(X,,Z,)}_, be an #d sequence in RE x RE, with X,, bounded with
probability one. Suppose we have a kernel K : RY — R that is symmetric, bounded and
satisfies the conditions: ||u||-|[K(u)] — 0 as ||u|| — oo, [K(u)du = 1 and the Lipschitz
condition: Fy > 0, ¢ < oo such that | K(u) — K(v) |< cillu — v||Y Yu,v € RE. Suppose
the sequence {hy;N € N} is such that as N — oco: hy — 0 and Nh/log N — oo. Let
n:RE xR x RP — R be a continuously differentiable function that satisfies: |n(X,z,t)| <

10



M < oo,

Bn(ﬁaft,zvt) H <, < oo and HWH < Cy < oo for all (X,z,t). Now let:

R Z, —z
Ry(z,t) = NAL Zn(Xn,z,t)K .
n=1

Then, for any compact sets C € RY and G € RY and any ¢ > 0 we have:

(N'enk)'? sup |Ry(2,t) — ERy(2,t)] = 0,(1) w.p.1
FAS
teG

Proof: If the assumptions outlined above are satisfied, then using Lemma 3 in Collomb and

Hardle, we have that for every compact sets C € R and G € R”:

(Nh% flog N)*sup | Ry(2,t) — ERy(2,t) |= O,(1) wp.1
zeC
teG

Therefore:

1 N 1/2
N1 sup | Ry(2,t) — ERx(2,8) |= [ =2 0,(1) = 0,(1) foralle >0 wp.l
N cC Ne p p

teG

which shows the result. O

Lemma A.1 is sufficient to show the results that follow, which rely on a weaker version
of it. Before proceeding, let us present the following notation: We will let p € {1,2} and

define —p as: —p =2if p=1and —p = 1 if p = 2. Now take # € RX*? and z € S(Z).

Following conventional notation, let g,(,m)(-) represent the m'™ derivative of g,(+). Then, for

p € {1,2} and 7_, € R define:

[GolX By + ) | Z = 2]

(KB, + apr_y) | Z = 2]

[0 (X 3By + apm ) | Z = 2] withm >1

(X, o™ (X,By + apm_p) | Z =2] withm >0
[(XpX;)gém)(X;ﬂp +opr_p) | Z =2] withm >0

the following result is a consequence of Lemma A.1 and assumptions (51.3), (S2) and (S4).

11



Lemma A.2 Suppose assumptions (S1.3), (S2) and (S4) are satisfied. Let:

fzy(2) = . ZKh

NAHL
Nhy —~

and for p € {1,2} define:

- 2)

1 ng (X!, By + apr_p) Kn(Zn — 2)

Dpn (T—p | 2,0;)

Nhll\/fn 1 fZN( )
~ 9p (X}, By + apm_p) Ki(Z,, — 2)
Opn (T—p | 2,0,)
pN . h%\fnz:l fZN( )
~ + apm_p) Kin(Z), —
Sy 1 2,0,) = L3S KBy b T N En =)
PN h% n=1 fZ ()

N

X’ Bp + apm_p) Ki(Z,, — 2)

m pngp
Z\I(JN)(W*ID | z’0 NhL Z

an fZN()

&) (r | 2.6,) Z (X, X" )b (m (X By + apm_p)Kn(Z,, — 2)
e Nhvanl Fan(2)

with m > 0

with m > 0

Let C be any compact set in the interior of S(Z) such that inf,cc fz(z) >b>0. Then

(A) sup | (2) -

zeC

Now take any compact sets A € R and B € Rk»+1,

f2(2)| = o)(N /")

(B) SZIC)' ‘QEPN(W*P | 2,0p) — @p(m—p | z,0p)‘ = 0p(N _1/4)

0,€B
mp €A

(C) Sfélé ‘gpz\r(”—p | 2,0p) — dp(m—p | z,0p)‘ = op(N 1)

0,€B
Tp €A

(D) sup (80 (x| 2,8,) = 0" (m—p | 2,6,
zeC

6,cB

Ty EA

(E) sup, S (rp | 2,0,) — ™ (7 | 2,0)
ze
0,cB
Ty €A

(F) sup £ (n_y | 2,8,) — M (n_y | 2,6,)
8,cB
Ty €A

12

Then, for p € {1,2} we have:

M+

M+

M1



Proof:

To show (A), we first prove that there exists D; < oo such that

sup | Efz,(2) = f2(2)| < Dy - bl
zeC

Define:
;= NE . = d I(z) =
Qi={(q1,...,q1) € ¢+ +qr =i} an (2) Za
then by (52.2) the following Taylor series approximation is valid:
EfZN /K fZ z+ hN\I’)d\If fz /K d\If + Z J'V Fi(z) Z / \Il(fl ... \II%LK(\If)d\I’

(1) M,/; (W' Wy (2 + by U)K (0)dT

where kY is between hy and zero. By (S2.2) there exists a Cy < oo such that |T;(v)|< Cy

for all v € RF and all 4 € {1,..., M}. This, along with (S4.1) implies that

sup | Efz, (2) — fa(2)| < DibYl where __cl|QM\/prH a
zeC

where |Qa| denotes the number of elements in the set Q). Take e described in (S4.2(i))
and let n(-,-,-) = 1, then by (52.2), (S4.1(i)-(iii)), (S4.2(i)), (S4.3) and the compactness of

C, all the assumptions of lemma A.1 are satisfied?! and we get:

(N'h)'"* sup | Pz, (2) = Bz (2)| = Op()
z€

I

Using the inequality sup ‘J?ZN (z) — fz(z)‘ < sup ’fZN (z) — EfZN( + sup ‘fz E]?ZN (2)
zeC zeC zeC

we then have:

—1/4

N sup |z, (2) = f2(2)| < (N203F) 10, (1) + NYRA Dy = 0,(1)

zeC

where the last equality follows from (S4.2(i-ii)). Equivalently: sup ‘fZN(z) — fz(z)‘ =
zeC
0p(N ~V/4) which establishes (A).

2INote that N'72¢h3F — 0o = N'7¢hk — co = Nh% /log N — oc.
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To prove results (B)-(E), note first that we can express

. S, (r_ z,0 ~ Son (T_p | 2,0
(PPN(W—P ’ zaep) = pN(A = ’ p), 5pN(7T—p | zaep) = pN(A P ’ p)
fzy(2) fzy(2)
~ fs\(m) T_, | 2,0 ~ Tim) m_,| 2,0
51!()N)(7T_p|z0)7 PN (A p’ ) p)’ Cé?)(ﬂ—plz,ep): PN (A ID’ ) p)
fzy(2) fzy(2)
oAm)
m toy (T_p | 2,60
EI(JN)(W—ZJ ’ z,ap) _ PN (fz p(’z) P)
N
where
§pN(7T—p ’Z 0 h%\/ ZG /nﬂp‘i‘apﬂ—p)Kh(Zn_z)
n=1
Spn (M—p [ 2,0)p) hk ng /nﬂp + O‘pﬂ—p)Kh(Zn —2z)
n=1
3 (r_y | 2,0,) Z g™ (X1, By + apr_y) Kn(Z, — 2)

L
han

ngzl)(ﬂ—p | 2,0p) = h% ZXpn gp (X/ Bp + ap”—p)Kh(Z z)
n=1

) (n_y | 2,0,) = —+ Z (X, X1 ) ai™ (XL, By + ) Kn(Z, — 2)
NhN —

We begin by examining §pN (m—p | 2,0,). We will proceed in a similar fashion as in part (A),

and show that there exists Dy < 0o such that
SUIC)’ ESpy(m—p | 2,0p) — fz(2)pp(m—p | 2,0,)| < ﬁQ : hAN/[
ze

0,eB
mp €A

Take Q; to be the set defined above and let:
Za fX Z $p>
920

then by (S2.2) the following Taylor series approximation is valid:

M-1

fx,zWw,z+hy¥) = fx, z( Z )¢ NI‘p )Z o g
=1 i
o ¢ (4)
FD)MIE ST (2 + B D)
" Qum

14



therefore we have:

ES,\(7_, | 2,0,) //G (W'By + apm_p) K(¥) fx, z(u,z + hy¥)d¥du =

/G uﬁp+ap7r—p){fx zuz/K d\IJ+Z ZNFpuzZ/\Ilql- UK (U)d¥

M
MhN

+(=1) i

/Z(xy;ﬂ S WITE (u, 2+ h}‘V\II)K(\II)d\II}du
Qum

where h%, is between hy and zero. Now, because C' is a compact set in the interior of S(Z)

and inf,ecfz(z) > b > 0 , which means that:

/Gp<ulﬂp + opmp) fx,z (W, 2)du = fz(z)pp(m—p | 2,0,) V (2,0, 7)) €CxBxA

By (S2.2) there exists a Cy < oo such that |[I¥(u,v)|< Cs for all (u,v) € R x R and all
i€{l,...,M}. We also have G,(v) € (0,1) V v € R. These results, along with (54.1) and the

approximation described above implies that for all (z,6,,7_,) € C x B x A we have:

Sy (7-p | 2,05) = f2(2)pp(m-y | 2,60,)] =

M
T [ [ GatwBy + apm )W W, 4 ) K (B0
’ Qum
<Dy-h¥ V(20,7 ,)eCxBxA

with Dy = +Co|Quel [ H\IIHMd\I! where, as before, |Qy| represents the number of elements
of the set Q.

Now define ¢t = (,,7_p) and let n(X,,-,t) = Gp(X}B8, + apm_p). Take e as described in
(S4.2(i)). Recall that G,(v) € (0,1) for all v € R. This, along with (52.2-3), (S4.1(i)-(iii)),
(S4.2(1)), (S4.3) and the compactness of C,B and A implies that all the assumptions of

Lemma A.1 are satisfied. Therefore:

_ 1/2 e 4
(N1 sup |8 (mp | 2,0,) — ESp(mp | 2,05)| = 0p(1)
z

0,cB
Tp €A

15



Using the inequality

sup  [Sy(mp | 2,8) = f2(@)ep(mp | 2,0,)| < sup |Sp(7-p | 2,6,) = Sy (7 | 2,6,)]

zeC zeC
0,cB 0,cB
TpEA mp €A

+ sug ‘ESPN(F—IJ | 2,0,) — fz(2)pp(m—p | 2,91,)’
A4S
0,cB
Ty €A

we then have:

. 3 14 ~
N/ Sléfc)’ ‘szv(”—p | 2,0,) — fz(2)ep(m—p | Zaep)‘ = (Nl th?\fL) / Op(1) + NY*h} Dy
z
0,eB
Tp EA

and by (54.2(i-ii)) we get:

N sup (S (my | 2.0y)  fz(e)en(ny | 28 =op1) (1)
z

0,cB

Tp EA

_ Spy(mplz 6y

We have ¢, (1—, | 2,0)) @) ) Therefore by a first-order Taylor approximation we
N

get:

Ppn (T—p | 2,0p) = @p(m—p | 2,0p) + #@) [gpzv(ﬂ'—p | 2,0,) — fz(2)pp(m—p | 2,0)p)
S’VPN (F*p | zvap) N
T [sz (2) — fz(z)]

with sz(z) between fZN (z) and fz(z) and S, (7_, | 2,0,) between §pN (r—p | 2,0,) and
fz(2)ep(m—p | 2,0,). By (A) and the fact that inf,cofz(2) > b > 0, we have:
1

fZN (Z)

1

fZN (Z)

= 0,(1) and therefore sup
zeC

= Op(l)

sup
zeC

By (1x) and the fact that ¢,(7—, | 2,0,) € (0,1) V (2,0,,7—_p) € S(Z) x RF+1 xR, we also have

sup ‘gpw (m—p | z,0p)‘ =0p(1) and  sup ‘:S'VPN(W*P | z,0p)‘ = Op(1)

zeC zeC
0,cB 0,€B
Tp €A Tp €A

16



Therefore:

N/ Sug Pon (Tp | 2,0p) — op(m—p | 2,0,)| < Op(1) LNV Sug ‘Spw(ﬂ—p | 2,0p) — f2(2)op(T—p | 2,0p)
z€ z€
0,B 0,eB
mp €A mp €A

FOp(1) N swp |z, (2) ~ f2(2)|
ze
6,€B
Tp EA
= o0p(1)
with the last equality following from (A) and (1%). This proves part (B) of the lemma.
Now take 5, (7—p | 2,0,). Using (4) and the same arguments as above, we can show that for

all (2,0,,7_,) € C x B x A we have:

ESpy(mp | 2,0p) = f2(2)0,(7p | 2,6))

hM
ﬁN' / / > gp(WBy + apm_y) (U - WY (u, 2 + by W) K () d¥ du
' Qum

Now let g, = Max,ergp(v). By (S1.3) we have g, < co and therefore:
p p p

’Eé\p[\,(ﬂ,p 12,0,) — f2(2)0,(7_, | 2,6,)| < Dsh™ ¥ (2,6,,7_,) € C x B x A

with D3 = ﬁég‘QMlgpr\I’HMd\I’ where Cy and |Q | are as defined above.
As before, define t = (8, 7_,) and now let n(X,,-,t) = g,(X},8, +apm_p). Take € as described
in (S4.2(i)). Recall that g,(v) € (0,g,] for all v € R. This, along with (52.2-3), (S4.1(i)-(iii)),
(S4.2(i)), (S4.3) and the compactness of C,B and A implies that all the assumptions of
Lemma A.1 are satisfied. Therefore:

(V1K) 72 sup (S (mp | 20)) = By (- | 2,6,)| = Op(1)

6,cB
T-p € A

once again, using these results along with the triangle inequality we get:

~ _ —1/4 ~
NV sup (R (o | 2,6,) = f2(2)5p(mp | 2.8)| < (N'2R3F) 710p(1) + N1/ Dy
ze
6,cB
mp €A

17



and using (S4.2(i-ii)) we have:

N sup [y (mp | .6) ~ Ja (0 (np | 269 =0p(1) (20
0,cB
7T_p€A

We have gpN (r—p | 2,0p) = %ﬁ;’m. Therefore by a first-order Taylor approximation we
ZN

get:
- 1
Opn (T—p | 2,0p) = 0p(T—p | 2,0,) + =—— {Spw(ﬂ'—p | 2,0p) — fz(2)0p(T—p | 2,6))
fZN (z)

SpNiz;p(’;o )[sz( ) — fz(z)}

with fZN (z) between sz (2) and fz(2) and s, (7—, | 2,0,) between s, (77—, | 2,0,) and

fz(2)0p(m—p | 2,0,). We established above that by (A) and the fact that inf,cofz(2) > b > 0,

we have:
1
sup = 0,(1)
zeC fZN( )
By (2«) and the fact that 6,(7—, | 2,0,) € (0,5,] V (2,0,,7—p) € S(Z) x R*T! xR, we also have
sup ’spN (m—p | 2,0, ‘ = and  sup ’spN (m—p | 2,0, ‘ =
zeC zeC
6,cB 6,cB
mp €A mp €A
Therefore:
N sup (6, (m—p | 2,8,) = (7 | z,0p)‘ < Op(1) - N'/* sup ’gpz\r(”—p | 2,0p) — f2(2)0p(7—p | 2,6,)
zeC zeC
0,cB 0,cB
mp €A mp €A
+0,(1) - NV sup | (2) - f(2)]
zeC
0,cB
Tp €A
= 0p(1)

with the last equality following from (A) and (2x). This proves part (C) of the lemma.
The analysis of éf,";)(w_p | z,0),) is virtually identical to that of 5, (7—, | 2,6,): we know that
assumption (S1.3) implies that for p € {1,2}, there exists g, such that g,(v) < g, for all

v € R. It also implies that for p € {1,2}, there also exists g, < co such that |lgp(v) ™| < 78
18



for all v € R and all m = 1,..., M + 1 ?2. Therefore, following the same steps as above we
can show that:

‘E (mp | 2,0,) = f2(2)00(x_, | 2,0,)| < Dahdl ¥ (2,0,,7_,) €C x B x A

Vm=1,...,M+1

with Dy = ﬁ@g\@M@, fH\IIHMd‘II where Cy and |Qy| are as defined above. As before, define
t = (8, m_,) and now let n(X,,-t) = gi" (X’,Bp + apm_p). Take e as described in (S4.2(i)).
Recall that |g,(v)(™|< g, for all v € R and all m = 1,..., M + 1. This, along with (S2.2-
3), (S4.1(i)-(iii)), (S4.2(i)), (S4.3) and the compactness of C, B and A implies that all the
assumptions of Lemma A.1 are satisfied for m = 1,..., M + 1. Therefore:

(N'==hk)"? sup S (7w | 2,0,) — ESUM (n_,, | 2,0,)| = Op(1) Ym=1,...,M +1

0,€B
T-p € A

as before, using these results along with the triangle inequality we get:
N4 sup 50 (7 | 2,8,) — f2(2)0™ (w—, | 2,0 )( < (N'=2125) 70, (1) + NY*hM Dy
ze

6,cB
T-p € A

Vm=1,...,M +1 and using (S4.2(i-ii)) we have:

N4 sup S () | 2,0,) — f2(2)0™ (7 | 2,6, ’—op(l) Vm=1,...,M+1 (3%)
z
0,cB
7r_p€A

To analyze ﬁgzﬁ”) (7—p | 2,6p), let X, be the j™ element of X, with j € {1,...,kp}. Similarly,

let:
C,(JT)(W—p | 2,0,) = E[X, p, gp (X’,Bp +a,m_p) | Z = 2]

N
Ti(m 1 /
T;N)(w_p | 2,0,) = NhL ;Xp n gp (X ﬁp+ozp7r_p)Kh(Z —2)

and note that by definition, we have C,(,T) (m—p | 2,0,) = ( (m) (m—p | 2,0,),..., C,(,:;) (1_p | 2,6,))

and T30 (r_p | 2,6,) = (Ton (7—p | z,op),...,fggnk)p (t_p | 2,0,)). Take any j € {1,...,k,},

22These results hold for m = 0,...,M + 1, but we will focus here on m > 1 since the case m = 0

corresponds to S, (7_, | 2,0,), which was analyzed in the previous paragraphs.
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then once again using (4) and the same arguments used in the previous cases, we can show

that for all (2,0,,7_,) € C x B x A we have:

ET)(ny | 2,6,) — fz( )¢5 (1 | 2,6,)| =

/Z ujgz(ym) (W' By + cpmp) (W -+ - W (u, 2 + Ay O) K (W) dWdu
Qm

By (S2.3), we have that S(X,) is a compact set, which means that 3 X < oo such that
| Xp, I< X wp.lforall je{l,... k}. Forpe {1,2} define %, = Max {g,,7,}. Then, we
have 23
BT (np | 2,85) = [2(2)G, (m—p | 2,05)| < DshA ¥ (2,8, 7)) € Cx Bx A, ¥ j € {1, kp}
Vm=0,...M +1
with Ds = ﬁUﬂQM‘EprH\IIHMd\II where C; and |Qy| are as defined above. As we have
done in the previous cases, define t = (8,,7_,) and now let n(X,,-,t) = , gp (X’ By +
apm_p). Take e as described in (S4.2(i)). Recall that |g,(v)™| < &, for all v € R and all
m = 0,...,M + 1. This, along with (S4.3), 24, (S2.2-3), (S4.1(i)-(iii)), (S4.2(i)) and the
compactness of C, B and A implies that all the assumptions of Lemma A.1 are satisfied for
m=20,...,M + 1. Therefore for all m =0,..., M + 1:

(Nl_ahL 1/2 Sup ‘ 7Lp|z,0) ET(m (m—p | 2,0, ‘— (HVjie{l,....k}

opeB
TpEA

once again, using these results along with the triangle inequality we get that for all
m=20,...,M+1:

N sup [T ey | 28,) — f2()C (np | 2.6
0,cB
T-p € A

< (N'2R3F) 710, (1) + NN Ds

23See footnote 22.

24Note that the cases analyzed previously -Sy. (1_p | 2,0,), Spn (7—p | 2.0,) and 552 (7_, | 2,8,,)- were
functions of X, only through G,(-), gp(-) and gz(,m)(~) respectively, which are bounded functions everywhere
in R.
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and using (S4.2(i-ii)) we have that for all m =0,...,M + 1 :

N4 sup T (7o | 2.8,) = S22 (mp | 2,85)| = 0p(1) Vi€ {1k} (4%)
z
0,cB
7r_p€A
) Ty (x—pl2.6p)
For j € {1,...,k,} let mj(w_p | 2,0,) = W Therefore, note that we have
Sm(r_, | 2,6,) = (Z};Z’Vll)(w_p | z,ep),...,g?,%zp(w_p | 2,0,))". By a first-order Taylor

approximation we get:

Gy | 2,85) = Gy | 2.8) + = [T 7y | 28,) — F2(2)Gf" (my | 2,8))
j fzy(2)t
T (7 | 2,6,)
e [fn (@)~ £2(0)]
(

with fz,(z) between fz, (z) and fz(z) and féffj)(w_p | 2,0,) between fpffj)(w_p | 2,0,) and

fz(z)g(,;n)(ﬁ,p | 2,0,). We know from above that by (A) and the fact that inf,ccfz(2) > b > 0,

we have:

1
fZN(z)
By (4%) and the fact that |\ (7_, | 2,0,)| < XFp V (2,0,,7—p) € S(Z) x BT x R, all

= Op(l)

sup
zeC

je{l,....k,} and all m =0,..., M + 1, we also have that for all m =0,...,M + 1

sup ‘ N7y | z,ﬂp)‘ =0p(1) and sup ‘T (m—p | 2,0,)| = Op(1) forall j € {1,...,kp}
0 EB 0 GB
mp €A mp €A

Therefore for all m =0,..., M + 1:

N sup |G (ry | 2,8,) = () (7 | 2,0,)
zeC J
0,cB
mp €A

< 0,(1)- N/ sup T (7 | 2,8)) = f2(2)65 (7 | 2,0,)
z€ J

0,cB
Tp€EA

+0,(1) - N4 sup, ‘sz(z) — fz(2)
0B
Tp €A

=o0p(1) forall je{1,...,k,} (1)
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with the last equality following from (A) and (4%). Now recall that by definition we have

A;(JT]\);L) (W—p ’ zaep) = (Eg\);? (7T_p | zaep)a e /C\;(;T]\?gp (W—p ’ zaop))/
Cpm)(ﬂ-—p ’ zvep) = (C]()Zn)(ﬂ-—p | zaep)v R C[():;)(W—p | Z’GP)),

Therefore (1) immediately implies that:

N1/4 sup ngggg)(w,p | 2,60,) — ™ (7 | z,op)H —o0)(1) VYm=0,...,M+1
z
0,€B
Tp €A

which proves part (E) of the lemma.
Now let f;,rﬁ[)jye] (m—p | 2,0,) and 51(’@81 (7_p | 2,0,) be the [j, ]*" elements of #,, (7, | 2,0,) and
&(m—p | 2,0)) respectively, where 5,0 € {1,...,k,}. Then we have:

N

1 !/
f  (mp | 2.6,) = ML > X, Xy 00X, By + ) Kin(Z, — 2)

n=1
&m (m_p | 2,0,) = B[X,, X, 0™ (X8, + ap_y) | Z = 2]
Take any j,¢ € {1,...,k,}, then once again using (4) and the same arguments used in the

previous cases, we can show that for all (2,0,,7_,) € C x B x A we have:

L2 <7r_p |2,8,) = f2(2)57) (7, | 2.6,)| =

W [ S el @B, + aym )0 2 4 150 K ()
Qm

Recall that by (S1.3), we have [\ (v)| < %, for all v € R and all m = 0,..., M + 1, where
7y is defined above. Also recall that by (S2.3) there exists X such that |X,, X,,| < X~ for all

gl €{1,...ky} w.p.1. Therefore, for all m = 0,..., M + 1 we have:
‘E@(,ZL[)M (mp | 2,0p) — fz(2 )fp[ ) (m—p | Zvep)‘ < Dehyf ¥ (2,0p,mp) €CxBxA
Vi led{l,....ky}

with Dg = ﬁ52‘QM|EpY2 fH\I!HMd‘II where Cy and |Qa| are as defined above. As we have
done before, define t = (8, 7_,) and now let n(X,, -, t) = X, X, " (X’ By+aym_y). Take e as

described in (S4.2(i)). Recall that | X, X,,| < X~ for all j,£ € {1,...k,} w.p.1. This, along
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with (S2.2-3), (S4.1(i)-(iii)), (S4.2(i)), (S4.3) and the compactness of C,B and A implies
that all the assumptions of Lemma A.1 are satisfied for m =0, ..., M + 1. Therefore for all
m=20,...,M + 1 we have:

e 1/2 m m .
(N'==nk)Y sup fm) (n_p\z,ep)—EZgNgm(w_p|z,ep)‘zop(l) Vi lefl,... k)
z s

pN[ 7

6,cB
T-p € A

once again, using these results along with the triangle inequality we get:

NV sup B (7, | 2.6,) = 2 () (7 | 2.6,)
zeC 7.4l

0,eB
mp €A

< (N'2030)"10,(1) + NN Ds

and using (S4.2(i-ii)) we have that for all m =0,..., M + 1 we have:

N1 sup ‘A( 7T—p | 2,6 ) fz(z )gp[ Z](77—17 | Zvep)‘ = Op(l) Vi le {1v-~’kp} (5%)

0 EB
mp €A

’\(m) (

pN[j,Z] —plz,0p)

oAm) .
W. NOte that pN[j,Z] (7T_p | z70p) 1S

the [j, €] element of & (7r_p | 2,0,). By a first-order Taylor approximation we get:

For j,0 € {1,....k} let &) (rp | 2,0,) =

gI(JTJ\rrL[)j,L,] (mp | 2,0p) = 51(7?2] (m—p | 2,6,) + J’;ZN ) {Ag;[l e]( —p | 2,0,) — fz(z )gp[ ) (m—p | z,ep)]
o) (7 | 2.0,)
Ny TP TR
- |2 (2) = f2(2)]

with fz, (2) between fz, (z) and fz(z) and tp";[)j 2T | 2,6p) between fg’jé o (T | 2,0,) and

fz(2)elm (m_p | 2,0,). We know from above that by (A) and the fact that inf,cc fz(2) > b > 0,

Plj,0]

we have:
1

fZN( )
By (5%) and the fact that |65 (7_, | 2.8,)| < XK, ¥ (2.8,,7_) € S(Z) x Rb+! x R, all

sup
zeC

= Op(l)

m=0,....,M+1and all j,¢€{1,...,k,}, we also have

sup [t ](n_p|z,ep)‘:0p(1) and  sup [ (7_,]|2,0,)| =0,(1) forallj,le{l,... ky}

pN[ pN[ Y|

zeC zeC
0,€B 0,cB
mp €A mp €A
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Therefore for all m =0,..., M + 1:

1/4 S(m) _ ¢glm)
N sup 6 (o | 2,0,) — €7 (7 | 2,6,)] <

0,cB
T-p € A
Op(1) - N sup [(™) (n_, | 2,8,) — fz(2)E™) (7 | 2, op)] +0,(1) - NY* sup |fz,(2) — fz(2)
zec | TNG4 -4l zeC
0,cB 0,cB
TpEA Tp €A
=op(1) forall j,0e{l,... . ky} (1)

with the last equality following from (A) and (5%).
Now recall that by definition, é}f;[)j o (7p | 2,6,) and 51(][2] (m_p | 2,0,) are the [j, /] elements

of ™ (n_, | 2,0,) and &™ (r_, | 2,6,) respectively. Therefore (1) immediately implies that:

N/ sup Hé;;?;)(w_pyz,ap)—g;m>(ﬂ_p|z,op)H —o0,(1) VYm=0,...,M+1
z

0,cB
TpEA

which proves part (E) of the lemma and completes its proof. O

Take z € S(Z), 6 € R**2 and (71, m2) € R2. From here on, we will denote:
= (m,m) €R?
p(m | 2,0) = (o1(m2 | 2,01), ga(m1 | 2,65)) € R?
Q(m|2,0)=—(r—p(r|20) (r—p|20)cR

Pn(m | 2,0) = (B1y (M | 2,61), Poy (w1 | 2,6)) € R?

Qu(m | 2,0)= —(x— py(r | 2.0)) (7 — Pyl | 2,0)) € R
For (2,0) € © x Z let (w}(2,0),75(2,0))' = 7*(2,0) denote the solution (for m; and ) to the
system
m—p(r|2,60) =0
Then, by (S3.2) and Theorem 4.1 we know that for each (,2) € © x Z there exists a unique

such 7*(2,0). By (S3.2), we also have that:

V(@,2) cO X Z: " —p(n"|2,0) =0 ifandonlyif 7" = argmax Q(r | z,0)

TeR2
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By (S1.3) and (S2.3) (see Theorem 4.1) we also know that «*(8,z2) is strictly inside [0, 1]
for all z € S(Z) and all # € R¥*2. In particular, since © is compact and Z is a compact set

in the interior of S(Z), there exists a0 < 7 < 1 such that #*(0,2) € [r,1-7]% for all (8,2) € OxZ

The next result establishes uniform consistency of the proposed estimator ﬁ(z, ) inOxZ.

Lemma A.3 Let Z be as defined in (S3.2) and suppose assumptions (S1.3), (S2), (S3) and

(S4) are satisfied. Take (8,z) € © x £ and let (75 _(2,0), 75 (2.0)) = mi(2.0) satisfy:

i (2,0) = argmaz Q(m | 2,6)

w€(0,1]2
Then
sup||m (2,8) 7r*(z,0)H = 0,(1)
2€EZ
0cO
Proof:

Take 6 > 0 and for each (6,2) € © x Z let My, = {r : ||x —7*(0,2)||< 6} and let My, be
the complement of My, in R%. Now define the set Ny, = Mg, N [0,1]%. Then Ny, € [0,1]* is

compact for all (0,2) € © x Z, and by continuity we get that max Q(w | 8,2) exists for all

WENg,z
(0,2) € ©® x Z. Now define ¢ = oiné [Q(m*(8,2) | 0,2) — max Q(m | 0,2)]. Then e > 0, since
€ wENY 2

2€Z

for each (8,z) € © x Z we have that n*(0,z) is the unique solution to max Q(m | 60,2) (see
USS]

Theorem 4.1). Now let Ay be the event:
~ €
sup QN(,”|0>Z)_Q(7T|07'Z) <3
z2€Z 2
0ce

©e(0,1]2

we know 7*(9,2) € [0,1)% for all (8,2) € © x Z. By definition of 7?}‘\\,(25,0), we also have
%j\v(z,a) € [0,1]? for all (8,2) € © x Z. Therefore, we have the following implications:

Ay = Q(my(6,2) |6,2) > Qn (74 (6,2) | 6, 2) —g V(0,2)cOxZ

Ay = Qn(7°(8,2) |0,2) > Q(n*(0,2) | 0,2) — g V(0,2)c0x 2
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By definition of 7% (2,8) we also have Qy (ﬁ(a,z) 10,2) > Qn(n(0,2) |8,2) ¥ (8,2) €cOx 2.

Combining this with the two implications outlined above, we get:
Ay = Q(13(0,2) |8,2) > Q(n*(8,2) |0,2) —c ¥V (8,2)cOx Z

By definition of e, we can conclude that Ay = ||75(8,2) — 7*(8,2)|| < & for all (8,2) €© x Z

or equivalently: Ay = supHEV(G,z) — 7(0,2)|| < 6. As a consequence, we then have
2€Z

90
that Pr {supr}‘\V(a,z) —*(0,2)| < 5} > Pr(Ay). Now, by Lemma A.2(B) we know that
zeZ
0ce

Pr(Ay) — 1. Therefore Pr {supH;}k\V(G,z) —m*(0,2)|| < 6} — 1. Since § is an arbitrary
zeZ

6O

positive number, this implies that sup Hﬁv(e,z) - 7r*(0,z)” =op(1), as claimed. [
zeZ
0ce

Let Jy(m | z,0) and J(x | 2,0) denote the Jacobian with respect to © of @ — @n(m | 2,0)

and 7 — o(m | z,0) respectively. Then Jy(m | z,0) is given by:

~ 1 —aZS\Nﬂ 2,0
T(m | 2,6) = e 2:6)

—i30s,, (71 | 2,0) 1

while J(m | z,0) is given by:

—a101(mo | 2,60
J(m | 2,0) = 101(m2 | 2,6)
—06252(7T1 ‘ Z>0) 1

We will let dy(r | 2,0) and d(r | z,8) denote the determinants of Jy(m | 2,8) and J(r | 2,0)
respectively. Therefore, we have L/i\N(ﬂ' |2,0)=1— alo@glN(m | z,01)32N (m1 | 2,02) and

d(m | 2,0) = 1—aia961(m2 | 2,01)02(m1 | 2,02). The next lemma establishes uniform convergence
in probability of Jy (m | 2,6)~! in © x Z. Assumption (S3.2) -which also guarantees uniqueness

of equilibrium- plays a crucial role for this result.
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Lemma A.4 Let Z be as defined in (S3.2) and suppose assumptions (S1.3), (52), (S3) and
(S4) are satisfied. Then

sup. || Ttm | 2,00 = Iw | 2,0)7 | = o)
zeZ
0co
w € [0,1)2
Proof: We begin by showing that sup ‘C/i\N(’lT | z,e)‘_ = Op(1). To see this, note first
Z
o6
me€[0,1)?

that by (S3.2), there exists 0 < d < oo such that ajadi(ma | 2,01)d2(m | 2,02) < 1 — d for all

(0,2) € © x Z and consequently d(r | z,0) > d for all (8,z) € © x Z. Now, by Lemma A.2(C),

we have
Sug ‘8\1]\,(71'2 | 2,01>8\2N(7T1 | 2,02) — 51(71'2 | 2701>(52(7T1 | 2,92)‘ = Op(N _1/4) (Al)
ze
0coe
w € [0,1)2

and therefore Pr{ sup alag&N(m | 2,01)8\21\,(71'1 | 2,02) < 1— gl} — 1, whence we obtain:
2€EZ
6coe
€ [0,1]2

zZeZ zeZ
0co 0co
m € [0,1]2 € [0,1]?

~ -1 ~
Pr{ sup ’dN(ﬂ | z,O)‘ > c_i_l} =Prq sup ’dN(ﬂ | z,O)‘ < c_i}

=Pr sup 041052:5\1N(7T2 | 2,01)8\21\,(71'1 ‘ Z,02) >1-— d} — 0

zeZ
0co
€ [0,1]2
and consequently:  sup ’ dy(m | 2,0) ‘_ = 0p(1) .
2€EZ
0668
m € [0,1]?
From (A1) we have  sup \JN(w | 2,60) — d( | z,o)\ = 0,(N ~1/4). Using (S3.2), this yields:
2EZ
bco
m € [0,1]2
sup ‘JN(w 12,0)"L —d(r | 2,0)"] = 0,(N ) (A2)
2€Z
6co
m € [0,1]2
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Combining (A2) with Lemma A.2 (C) we also have:

sup |dy(m [ 2,0) 70, (7, | 2,8,)—d(m | 2,0)7'5,(1, | 2,0,)

zeZ

= 0,(N V") for p € {1,2}

0co
€ [0,1)2

which combined with (A2) implies that  sup H Ty | 2,0 = J(x | 2,0)"! H = 0,(N ") as
Z
bco
m € [0,1]?

claimed. [J
We next use the previous lemmas to establish a precise rate of uniform convergence of
73(0,2) in © x Z.

Lemma A.5 (Lemma 4.2(A)) Let Z be as defined in (S3.2) and suppose assumptions (S1.3),
(S2), (S3) and (S4) are satisfied. Take (,z) € © x Z and let 7%,(8,2)be as defined in Lemma

A.3. Then
sup |78, 2) —1r*(0,z)H — 0, (N 1)
z2€Z
926

Proof: The steps resemble those of the proof of Theorem 3.1 in Newey and McFadden

(1994). First, take (0,2) € ® x Z and define the indicator variables:
Tv(0,2) = n{ﬁ(o,z) e (0, 1)2}
Ty(8,2) = n{ﬁ(o,z) € (0,1 and dy(ry(8,2) | 2,6) o}

Notice that because by definition we have 1?}?\,(0,2) € [0,1]2, then 1x(0,2) = 0 if and only if

7r/;§;(0,z) equals zero or one for some p € {1,2}. If Tx(8,2) = 1, then 7% (6, 2) satisfies the

first order conditions
Tn(m3(0,2) | 2,0) |73(6,2) — P (73, (8.2) | 2,0)| =0

Now, if Ty(6,2) = 1 then Jy (1%(8,2) | 2,0) is invertible and 77 (8, z) satisfies the first order

conditions if and only if 73 (,2) — Gn (7% (8, 2) | 2,0) = 0. Therefore, % (9, 2) is defined by
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the first-order conditions:

Ty(8,2) |73 (8,2) — G (75(0.2) | 2,8)| =0 (10)
By a mean-value expansion theorem, we have:
T(w3,(8,2),0) T (m3,(0.2) | 2,6) [73,(8,2)~7"(8,2)| = T(w3(0,2),0) | S (x"(8.2) | 2,6) ~7"(6, 2)]

where 7%, (8, 2) is equal to the mean value (between 7% (0,2) and 7%5(8,2)) if 1(-) = 1 and is

equal to 7*(0, z) otherwise. Now define one more indicator variable:

Ty(0,2) = n{ﬁv(o,z) €(0,1)?, dy(my(6,2)|26) A0 and dy(ry(0,2) | 2,0) # o}
Then, the mean-value approximation becomes:

Tn(0,2)|75(0,2) — 7 (0,2)] =Tn(0,2)Tn(73,(8.2) | 2.0) |G (n"(8.2) | 2,6) — 7°(6,2)]

and we get:

NYA Iy (0,2) —7*(0,2)] = Tn(0,2)In (75 (8, 2) | 2,0) " NV Gy (n%(0,2) | 2,0) — (8, 2)]

+ NYA1 —15(8,2)] [13(8,2) — 78, 2)]

By definition,

In(8,2) — 1’ can only equal zero or one. In fact, sup ﬁN(O,z) - 1‘ =1 only if
€z
;ee

any of the following holds:

sup (ﬁ(@,z)) >1 or sup (—ﬁ(ﬂ,z}) >0 for some p € {1,2}
z€Z P 2€2 P
) 0ce

or SUIZ) CYlCtgélN(ﬂ'g ‘ 2,01)(52N(7T1 ’ 2,02) 2 1
ze
0co
m € [0,1]?
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where the last condition follows from the fact that 7?}*\\,(9,2) € [0,1)? and 1;}7\,(0,2) € [0,1)? for

all (8,z) € ® x Z. This implies that:

Pr{sup ‘11\7 0,z) — 1‘ = 1} < Pr{sup ( (0,2)) > } —i—Pr{sup (- /\(G,z)) > O}

2€Z zeZ zeZ
6cO 6cO 6O
—l—Pr{sup (T3,(0,2)) > } —l—Pr{sup (—73,(0,2)) > 0}
z2€Z zeZ
) 6co
+ Pr{ Sup 1 Qedyy (7 | 2,601)day (7 | 2,82) > 1}
z
oco
€10,1]2

By (S1.3) and (S2.3) (see Lemma 4.1) we know that since © is compact and Z is a compact
set in the interior of S(Z), there exists a 0 < 7 < 1 such that «*(6,2) € [r,1 — 7]? for all

(0,z) € © x Z. This implies that sup (7*(8,2)) =1 —7 <1 and sup (—7*(#,2)) = —7 < 0. By

zeZ 2€Z
EC) 9ce
Lemma A.3 we know that sup H7?}<\V(Z,9) —7r*(z,0)H = 0p(1), these results together imply that:
zeZ
028
[Pr{sup (7%,(0,2)) > } —|—Pr{sup (—7x, (0,2)) > } —|—Pr{sup (T3,(0,2)) > }
zeZ z2eZ z2eZ
0cO 0ce 0ce
+ Pr{sup (—77}*\,\2(0,2:)) > O}] — 0
z2eZ
0§6

Also, using the proof of Lemma A.4, we have: 2°

zeZ
6cO
€ [0,1)?

Pr{ sup 0410628\1]\,(71'2 |z,01)5\21\,(7r1 | 2,05) > 1} —0

and therefore

Pr{sup |TN(0,z) — 1’ = 1} —0
22
0cO

25There we showed that Pr{ sup alagglN(ﬂ'g | z,01)2§2N(ﬂ'1 | 2,02) < 1-— d} — 1, where 0 <d < oo
z2€Z

6ce

€[0,1]?
is such that ayagdi(me | 2,01)02(m | 2,02) < 1 —d for all (0,2) € © x Z. The existence of such d is
guaranteed by (S3.2).
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Now let By = N'/4 sup

Tn(6,2) — 1( and denote py = Pr{ sup [Ty(
z2€EZ z2eZ
6cOe 6O
have:

N'*  with probability py
By =

0 with probability 1 — py
Now take any M > 0. Then:

0 if N <M
Pr[By > M] =

PN lfNZM4

0,2) — 1‘ = 1}. Then we

therefore, since py — 0 we have By = O,(1) %. By Lemma A .4 and the fact that =%, (8, z)

[0,1]2 for all (8,2) € © x Z, we also have sup HJN(;;; ©0,2) | z,0)_1H = 0,(1). Using these
z2€Z

0cO
results, we have:
NY4sup 7rN(0 z) —m"(0,2) H<O (1) NY4sup ngN “(0,2) |
z2eZ zeZ
0ce

0cO

2,6) — (8, z)H

+0,(1) sup Hy?fv(o,z) —1r*(0,z)H

2eZ
0ce
now, we have:
NY* sup HgoN “0,2) ] 2,0) —7(0,2) H N'Y* sup
zeZ 2€Z
6ce 6co

Hw “(0,2) | 2,6) — (*(G,z)\z,G)H

+ N sup o(n(0,2) | 2,6) — 7°0,2)|

z2eEZ
0coe

=0y(1) +0

where the last equality comes from Lemma A.2(B) and the fact that «*(0,z2)

€ [0,1]? (a

compact set) for all (8,2) € © x Z and also from the fact that ¢(7%(8,2) | 2,0) —7*(6,2) =0

for all (8,z) € © x Z by the game’s equilibrium conditions. Now, by Lemma A.3, we have

26Tn fact, the argument shows the stronger result that By = 0,(1)
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supHEV(G,z) - 7r*(0,z)H = 0p(1). These results together imply that:

zeZ
0ce
N sup |[m3,(0,2) — (8, 2)|| < 0,(1)
zeZ
beo
and therefore sup 1;}*\\,(0,2*) — ﬂ*(e,z)H = 0p(N ~'/*) as claimed. U
z2€Z
<o

Lemma A.6 Let Z be as defined in (S3.2) and suppose assumptions (51.3), (52), (S3) and

(S4) are satisfied. Take (8,2) € © x Z and let 1?7\\,(0,,2) be as defined in Lemma A.3. Then:

(4) T(0,2) ~ 7°(0,2) = T (n°(0,2) | 2,6) " [Bx (7°(8,2) | 2,6) —7*(8,2)] + 0, (N ~7%)
for all (8,z) € © x Z.

(B) As in the proof of Lemma A.2(B), define:

N
~ 1
Son (7 | 2.0p) = 1 > Gp(X}, By + ) Kn(Zn —z) forpe{1,2}
N n=1

and let Sy (| 2,0) = ( Siy(m2 | 2,01) , Soy(m1 | 2,85) ). Then:

T (0.2)-7"(0,2) = J ("(6.) | z,a)-lf%@) (S5 (r*(8.2) | 2.6) — Fa (1" (0. )| o, (¥ )

for all (6,z) €© x Z.

Proof: We will use the same notation as in Lemma A.2. First define:

0 00 a20my|20)

1n

yr|z0)=|
030 (m | 2.60) 0 0 0

From (1o) we have 1y(8, 2) [Ev(o,z) — G (1 (6,2) | z,e)} — 0. A second-order approximation
yields -after rearranging-:
Tn(8,2)Tn (7*(8,2) | 2,0) [13(8,2) —7*(8,2)] = In (8, 2) [@V (7*(8,2) | 2,0) — (8, 2)

b5 Ay 0.2) | 2,.0){ [T3(0,2) ~ 70, 2)] © [13(0.2) ~7°(6.2)]}
where 7%,(8, z) is between 7% (8, z) and 7*(0, 2) if Ty (-) = 1 and is equal to 7*(8, z) otherwise.

By assumption (S2.3), Lemma A.2(E) and the fact that 7% (6, z) € [0,1]2 (a compact set) for
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all (8,z) € © x Z, we have sup HI?N(EV(O,z) ] z,G)H = 0p(1). Using Theorem A.5 we also

oo
have sup H [77%,(8,2) — 7*(8,2)] ® [77(8,2) — 7*(8, 2)] H = 0,(N ~V/2) and therefore:
2eZ
0cO

sup [y (75(0,2) | 2.0){ [73(6.2) — x°(0.2)] & [m3,(6.2) —7°(0.2)] } | = oy )
0co

Consequently, we get:
TN (8, 2)Jn (17(8,2) | 2,0) [17%(8,2) —7*(8,2)] = Tn(8,2)[Pn (7*(8,2) | 2,0) —7*(8, 2)] +0,(N ~/?)

for all (8,2) € © x Z. Adding and subtracting 1n(8,2)J (7*(0,2) | z,0) [1;}‘\\,(0,;:) —7*(0,2)],

we get:
In(0,2)] (n%(0,2) | 2,0) [E}?V(ﬂ,z) —7"(0,2)] =1In0,2)[on (7" (0,2) | 2,0) —7*(0,2)]
+1n(0,2)[J(7*(8,2) | 2,0) — Tn (7*(8,2) | 2,0)] [75 (8, 2) — 7*(8,2)] + 0p(N ~/2)

From Lemma A.2 (C) and Theorem A.5 we have

sup HTN(G,Z) [J(7*(0,2) | 2,8) — Jn (7%(8, 2) | 2,6)] [ (8,2) — 7 (6, 2)] H = 0,(N "1/2)
6cO

and therefore:
J(x"(0.2) | 2,0) [}y (60.2) —7°(6.2)] = [Pn(n°(0,2)|2,6) —7°(0,2)]

+ [In(8.2) = 1] [Bn (17(8,2) | 2,60) —7"(6.2)]+[1 — Ty (0,2)] [Ty (6.2) — 7" (6,2)] + 0p(N ~/*)
for all (8,2) € © x Z.

Let Cy = NY* sup ‘TN(G,z) - 1‘. By the same arguments as those of the proof of Theorem
zeZ
PEC)

A5, we have Cy = 0,(1). We also showed there (using Lemma A.2 and the equilibrium

conditions) that N/ sup H@N (7*(0,2) | 2,0) —7r*(0,z)H = 0,(1). Using these facts along with
z2eZ

0cO
the main result of Theorem A.5, we have:

sup {‘TN(Q,z) _ 1( H@N(ﬂ*(e,z) | 2,6) —7r*(0,z)”} = 0,(N ~1/2)

z2eZ

0cO
sup {‘1 - TN(0,z)‘ (ﬁ(a,z) —7r*(0,z)H} = 0,(N 112
o
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which yields:
J(7°(8,2) | 2,0) [1%(0,2) —7%(8,2)] = [Pn(7°(8,2) | 2,0) —7(8,2)] + 0,(N "2

for all (0,2) € © x Z. By (53.2), we have that J(m | ,2,0)_1 exists and satisfies the condition
HJ(ﬂ‘ | z,0)71H < D for some D < oo for all (7,0,z) € [0,1]2 x © x Z. Since 7*(0,z) € [0,1]?

for all (8,2)0 x Z, we then have sup HJ(#*(O,z) | 2,0) H < D. Consequently, we have:
zeZ
0ce

T3(0,2) —7*(0,2) = J(7*(8,2) | z,¢9)_1 [@N(ﬂ*(&z) | 2,0) — 7r*(0,z)] + 0,(N 1/2)

for all (0,2) € © x Z, which proves part (A) of the result.

To prove part (B) note first that, by definition: @, (7_, | 2,0,) = §Np(ﬂ_p | 2,6,)/fz, (2)
for p € {1,2}.

Performing second-order approximation of §Np (72,(0,2) | 2,0,)/ fz v (2) around

S, (756, 2) | 2,8,) = f2(2)¢p(n5,(0.2) | 2.6,) and [z, (2) = fz(2)

yields:

PN, (15(0,2) | 2,0p) = @p(n,(6,2) | 2,6,)

Sy, (7%,(8,2) | 2,8,) — fz2(2)pp(1%,(8,2) | 2,0,)

TR <1 —pp(77,(0, 2) z’9p)> X ~
fz(2) fzy(2) — fz(2)

!/

+ o, (10:2) |z,f’p) 2B (6.2 2.6, Ty (7(8,2) | 2,0,)
fzx(2) — fz(2)
S, (158, 2) | 2.8,) — f2(2)0p(n%,(8,2) | 2,6,)

fzy(2) = f2(2)

—fzy(2)72

where ﬁp(ﬂfp(ﬂ,z) | 2,0,) = B N B
_fZN(z)_2 2SNp(7T:kp(95z) |Z,0p)fZN(Z)_3
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with Sy, (7%,(8,2) | 2,6,) between Sy, (7%,(8,2) | 2,8,) and fz(2)pp(7%(8,2) | 2,8,) and fz,(2)
between fz . (z) and fz(z). From the proof of Lemma A.2 (B) and the fact that 7*,(0,2) € [0,1]
(a compact set) for all (8,2) € © x Z, we know that

oup [[$3,(5(0.2) 1 2.8) ~ @)en(30.2) | 2.0, = o5 )
0cO

from Lemma A.2 (A) also know that sup|fz,(2) — fz(2)| = 0,(N ~/*). Using the fact that
zeZ

there exists b > 0 such that inf,cz fz(z) > b, these two results imply that

sup Hﬁp(wfp(e,z) | z,a,,)H = 0,(1)
6ce

and consequently
PN, (7550, 2) | 2,0p) — p(n7,(0,2) | 2,6,) =

1 S, (3,(8.2) | 2.6,) — fz(2)p(m5,(6,2) | 2,6,) 1
—f @) <1 —<pp(7r_"‘p(0,z) \z,ep)> X p Ap P\ Tp p + 0, (N ~1/2)
z fzy(2) = f2(2)

for all (0,2) € © x Z.
From the equilibrium conditions we have: ¢,(7%,(8,2) | 2,0,) = 7,(0,2) for all (§,2) € © x Z.

Therefore, for p € {1,2} the second-order approximation yields:

o, (17,(8,2) | 2,0,) — 73(0,2) = le(z) (S, (150, 2) | 2,8,) — fz, (2)75(8.2)] + 0,(N ~V/?)

which immediately implies that:

1
fz(2)

since by definition we have: on(*(8,2) | 2,0) = (PN, (75(0,2) | 2,01), PN, (776, 2) | z,92))/,
7(0,2) = (77(6,2),73(6,2)) , Sn(m(0,2) | 2.0) = (8w, (n3(6,2) | 2,01), 5w, (71(6,2) | 2,0))
and using the result from part (A) -above- we finally get:

on(m*(0,2) | 2,0) — " (0,2) =

(S (n%(8,2) | 2,0) — fz, (2)n"(6,2)] + 0p(N ~/?)

-1 1
fz(2)

for all (0,2) € © x Z. This proves part (B) and completes the proof. O

my(0,2) — 7 (0,2) = J(x*(0,2) | 2,6) [§N(7r | 2,0) — fz, (2)7*(0,2)] + 0, (N /)

The following result is a consequence of Lemmas A.2(B-F) and Theorem A.5.
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Lemma A.7 Let Z be as defined in (S3.2) and suppose assumptions (S1.3), (52), (S3) and
(S4) are satisfied. Take (8,z) € © x Z and let 7y (2,0) = (WATN(z,G),%N (2,0)) be as defined
in Lemma A.3. Then for p € {1,2} we have:

(A) sup ‘gopN (7 (2,0) | 2.0,) — 0, (m,(2.6) yz,op)‘ — (N

oco
(B)sup \&N (7 (2,0) | 2.0,) — 6,(n"(2.0) yz,op)] — 0, (N 1)
0cO

(C)sup |31 (7%, (2.6) | 2.6,) — 8™ (, (zo)\zo)( —op(NVY) m=1,....M
zeZ
6cO

(D) sup [0 (% (2.0) | 2.6,) = (™) (w5,(2.0) | 2,8,) | = op(N ) m =0, M
ze
6cO

() sup \%ﬂ ™, (2,0)]2.6,) — £ (fp(z,0)|z,op)H —0p(N"YY) m=0,....M
6co

Proof: A mean-value approximation yields:

Bow (75, (2,0) 1 2.0,) = By (75,(2,0) | 2.0,) + @ by (77, (2.6) | 2,0,)[7, (2,0) — 77,(2,0)]

where 7*, (z,0) is between 7%
N N

(2,0) and 7%,(2,0) . We have ﬂN(z,e) € 10,1] (a compact

set) for all (0,z) € ® x Z. Therefore, using Lemma A.2 (C) we have:

sup \5PN(N>;D (2,0) | 2,6,)| = Op(1) for p € {1,2}
zeZ
6cO

Combining this with Theorem A.5 we get
sup {Ja Gy (7, (2:8) | .0, |75, (2:6) = = (2.0 }= 0,(N ) forp€ (1,2)

6O

and therefore:

z2€Z
6cOe 6cO

b (B (5, (2:0) 1 2,0,) — 0 (7,(2.0) | 2,6,) | <sup |Gy (5(2,0) | 2.0)) — (3 (2,0) | 2.6,)|

+ 0p,(N "M% for p € {1,2}
We have 77%,(2,0) € [0,1] (a compact set) for all (§,2) € © x Z. Therefore, using Lemma

A.2 (B) we have sup ‘@DN (m(2,0) | 2,0,) — p(7,(2,0) | z,0p)‘ = op(N ~/1) for p € {1,2}
z2eZ
P
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(2,0) | 2,0,) — 0, (7%,(2,6) | z,op)‘ = 0,(N /) for p € {1,2},

and consequently, sup ‘@N (ﬁ
zeZ N

0cO
which proves part (A).

To show part (B) we proceed similarly. A mean-value approximation yields:

gpN (ﬁN(zvo) ‘ 27017) - 5P(7r—*p(z70) ‘ Z,op) = gPN (7r_*p(z,0) ‘ z70p) - 5P(7Tjkp(z70) | z’oil’)

-p
+ a0 (7% (2,0)]2,6,) [@N(z,o) —%(2,0)]

PN P

with ﬁN(z,G) between @N

(2,0) and 77%(2,0). As above, we have ﬁN(z,O) € [0,1] (a

compact set) for all (8,z) € © x Z. Therefore, using Lemma A.2(D):

ilé% @)}V) (ﬁN(z,O) | z,Op)’ =0p,(1) forpe {1,2}

0cO

which combined with Theorem A.5 yields:

Sug (%, (2.0)]2.6,) [, (2.8) ',z 0)]\ 0p(N ~1/)
FAS
6cO

using the fact that 7*,(2,0) € [0,1] (a compact set) for all (9,2) € © x Z we have

sup (% *(2,0) | 2,0,) — 6,(,(2,0) |z,9,,)( — o, (N 1Y)
6cO

combining these results we get: sup ‘61,1\, /i (2,0) | 2,0,) — 6,(7%(2,0) | z,ap)‘ = 0p(N ~1/1),
oo
which shows part (B).

The proof of parts (C)-(E) is done following the same steps: starting from a mean-value
approximation, and using Theorem A.5 along with Lemma A.2 (D)-(F), which -as was the
case in the paragraphs above- are applicable because the mean values are always in the set

0, 1], which is compact. O

Lemma A.8 (Proof of Lemma 4.2(B)) Let Z be as defined in (S3.2) and suppose assump-

tions (S1.3), (S2), (83) and (S4) are satisfied. Take (0,z) € ©xZ and let (7TA>1“N (z,0),7/r§N(z,0))
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be as defined in Lemma A.3. Then we have:

(A)  sup Hvoﬁ(o,z) —Vgﬂ‘*(e,z)H — 0, (N 1Y)
z2€Z
6cO

(B) sup Hveo,ﬁ(a,z) —v,,m*(o,z)H — 0, (N 1Y)
z2€EZ
6cO

Proof: As in the proof of Theorem A.5, define the indicator function
Ty(0,2) = ]1{7?}‘\\,(0,2:) €(0,1) and dy(ry(6,2) ]| 20) £ o}

If Ty(8,2z) = 1, then m%(0,2) satisfies ﬁ(e,z) - @N(E}*\V(&z) | 2,0) = 0 (see lo above).
dy (ﬂ(e,z) | 2,0) # 0 implies that the assumptions of the Implicit Function Theorem are

satisfied and we have:
Vo (0,2) = Jn(73(8,2) | 2,0) ' Vopn (134(6,2) | 2,6)

where V@ (1y(0,2) | 2,0) = (vel@v(ﬁv(o,z) 12,0) , Vo, B (5 (6, 2) |z,e)), with:
2% (k+2) 2% (k1+1) 2% (k2 +1)

—_ ! —_ o~ —
OV (n5,8.2) | 2.01) . 75, (8,2) biy(75, (8,2) | 2.61)

— 1N
Volt/ﬁ]\/(ﬂ'?v(o,z) |z70) = 1xkq 1x1
0/
1xk 1x1
0/
leQ 1x1

Vo, on (13(8,2) | 2,0) = . , o
G (n7 8.2) | 2,02) . 7, (8,2) bay (77, (8,2) | 2.62)

1x ko 1x1

In the proof of Theorem A.5 we also showed that sup |Inx(6,2) — 1| = 0,(1) ¥, which is a
zeZ
6cO

consequence of Lemma A.3. This implies that

Pr{TN(G,z) #1 for some (0,2) € © x Z} < Pr{sug 1n(0,2) # 1} —0
ze
9co

In fact, we showed that sup NY/4[In(8,2) — 1| = 0,(1) (see footnote 26). Using the same arguments,

zcZ
9co B
we can extend this result and show that sup f(N)|In(6,2) — 1| = 0,(1) for any increasing function f(-).
zcZ
0cO
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therefore, with probability approaching one uniformly in © x Z, we have
Vo (8.2) = Jn(w3,(6.2) | 2.6) ' Vol (T3 (6.2) | 2.6)
therefore, using Theorem A.5 and Lemmas A.7(B-C), we have:

sup || Vodn (m3,(6.2) | 2.6) — Vog(n"(6.2) | 2.0) | = o, (x )
zE
0co

following the notation used above (see Lemma A.4) denote
dy (13 (6,2) | 2,0) =1 — ajas0,, (73 (8,2) | 2,61)0a, (75, (8, 2) | 2,65)

then, a mean-value approximation along with assumption (S3.2) and Lemma A.7 (B) yields:

i ‘(/j\N (7??\\[(0’2) | Z’e)il - d(ﬂ-*<07z) | 270)71 = OP(N _1/4)
zeZ
bco
note that
~ o~ ~ 1 _ 8\ T 0’ ’0
In (T3 (8, 2) |2749)71 =dn (7 (0,2) |z,49)71 o 101y (WNQ( z) | z,01)
—a2d2y (75, (0, 2) | 2,02) 1

and therefore, using the above result with Lemma A.7 (B) we get

sup HJN(ﬁ(a,z) 12,6)" — J(n*(6,2) | z,ﬂ)_lH = 0,(N ~1/%)
2€Z

oo

and consequently,

Sug HjN(ﬁ(eaz) ‘ 270)_1V095N(7F7\V(07Z) ‘ z,0)—J(1r*(0,z) ‘ Z,o)_IVGQO(ﬂ‘*(o,z) ’ z,0) H = OP(N 71/4)
ze

0cO

From the equilibrium conditions and assumption (S3.2), the Implicit Function Theorem
holds for the equilibrium conditions 7*(8,2) — ¢(7*(0,2) | 2,0) for all (8,2) € © x Z and
consequently 2%: Vor*(8,2) = J(7*(0,2) | 2,0) Vep(n*(8,2) | 2,0) for all 8,2) € © x Z

and therefore we have sup HVM;}‘\V(G,z) — ngr*(e,z)H = 0p(N ~*/*), which proves part (A) of
zeZ
0ce

28Gee Lemma 4.1.
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the Lemma. To show part (B), note first that in the proof of Lemma 4.1 we showed that:

Veoom*(0,2) = Vo (vec {J(w*(0,z) | z,0)_1V9<,0(1r*(0,z) \ z,0)}> for all (6,2z) € ©® x Z. By the
2(k+2) x (k+2)
argument outlined above, with probability approaching one uniformly in © x Z we have:

Yooy (0,2) = Vg (Vec {fN(ﬁ(e,z) 2,0) Vo (13 (6, 2) | z,o)})

2(k+2) x (k+2)

which depends on the terms:

dy(17,(0,2) | 2,0) ", Opn (75, (2,0) | 2,0,), 7, (2,0)( (7, (2,0) | 2,6,)

PN

EN(T, (2.0)|2.6,). GV (2.0)]26,), ©, (2000 (2.6)]z6,)

PN P PN Py

w5, (2,0)°00)(75, (2,0)2,0,), Vor, (2,00, (7,

Py v

(2,0) | z,0p)

o
for p = 1,2. Therefore, using Lemma A.7 (C)-(E) and Theorem A.5 along with part (A) of

the present Lemma -shown above- we get sup HVOG/E}“\V(G,z) — Vggm'*(o,z)H =op,(N V4. [
zeZ
0coO

Lemma A.9 Let Z be as defined in (S3.2) and suppose assumptions (51.3), (52), (S3) and

(S4) are satisfied. Then there exist matrices Wy (7(0,2) | 2,0) and T'(*(0,2) | 2,0) such

2% (k+2) 2x (k+2)
that
sup HWN “(0,2) | 2,6) — fz(2)T (x*(6,2) |z,0)H = 0,(N 1)
z2€Z
9669
and

Vory(0,2) — Vor* (0, 2) =

le(z) [WN (7*(0,2) | 2,0) — J?ZN (2)T ("8, 2) | z,e)} 4o ()

for all (0,2) € © x Z.

Proof:

Let Vopo(m | 2,0) = V,,vec(Vggo('n' | z,o)) and Vo @n(m | 2,0) = v,rvec(vo@v(qr | z,a))
(2(k+2)x2) (2(k+2)x2)
from Lemma A.2 and the fact that 7*(0,2) € [0,1]? (a compact set) for all (8,z) € © x Z, we

have sup HVG,,/@N(ﬂ*(G,z) | 2,0) — Veno(n*(8,2) | z,o)H = 0,(N /). Using Lemma A.2 and
z2eZ
6cO
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Theorem A.5 and A.7 we can also show that 2 sup Hvo,,/@N(ﬁ(o,z) | 2,0) — V(6. 2) |
zeZ
9669

z,0)H = 0p(N /%) Let I ;o denote an (k+2) x (k+2) identity matrix. Therefore, a second-order

approximation, along with Lemmas A.2, A.7 and A.5 yields:

Vopn (T} (8,2) | 2,6) — Vop(n*(8,2) | 2,0) = Vo@ (n"(6,2) | 2,0) ~ Vow(m*(0,2) | 2,6)
+ Voro(m | 2,0) {Lz @ [73,(6,2) — 7°(8,2)] } + 0p(N %)

for all (6,z) € ©® x Z. Let

A\N@)(W_p | 2,0,) = (fzg?v) (7 | 2,0,), 7Tp Spp (7 | Z,0p)>

(1 (kyp+1)) (1xky) (D
IZN(U(WQ | 2,01), 0
N (1x(k2+41))
Ay(r |z =| O
((k+2)x (k+2)) 0 AN, (m1 | 2,02)
(1x(k1+1)) (1 (ka+1))

Then, using a second-order approximation we get:

Voon(n"(0,2) | 2,0) — Vop(n™(0,2) | 2,0) =

le(z) An(T*(8,2) | 2,0) — fz,(2)Vop(m*(8,2) | 2,8)| + 0,(N ~'/2)

for all (8,z) € © x Z. Therefore, using Lemma A.6(B) we obtain:

VoRn(Ty(0.2) | 2.0) = Voole'(0.2) | 2.0) = = [An(r'(0.2) | 2.0) = a, (2)Vou(x'(0.2) | .0)

b V(' (0,7) | z,0)’{1k+2 ® (J('lr*(0,z) | z,o)‘leL(Z) S (17 (8.2) | 2.0) — fz (z)w*(e,z)}> }

+0p(N ) (% 1)

for all (0,2) € © x Z.

Let V,T(J(ﬂ' | z,0)*1) - Vﬂvec(J(ﬂ' | z,0)*1) and V,r<fN(7r | z,0)*1) - V,wec(JN(ﬂ' |
(4x2) (4x2)
z,0)_1) Using Lemma A.2 and the fact that 7*(8, 2) € [0,1]? ( a compact set) for all (,z) €

© x Z along with assumption (S3.2), we can use a mean-value approximation to show that

29As in all previous mean-value approximations, the fact that 7*(8,2) € [0,1]2 and 7% (8, 2) € [0,1]2 for
all for all (8,2) € © x Z implies that all mean values 7% (8, 2) are also in [0,1]2 (a compact set) for all

(0,z) € © x Z, which allows us to use Lemma A.2.
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Su% HV"<‘7N(7r*(0’z) | z,0)*1> ~ Vnr (J(7r*(0,z) | Zao)fl) H = 0,(N ~/*). By Theorem A.5 and
ze
0cO

Lemma A.7 we have: 3 sup HV“<JN(7TN(0 z) | 2,0)” ) - V,,( (m*(0,2) | z,0)" )H = 0,(N ~1/4).
zeZ
0cO

Using this result along with Lemmas A.6(B) and A.7 and doing a second-order approximation

we get:

TN (0,2) | 2,0)" — J(n*(0,2) | 2,0)"' = In(n*(0,2) | 2,0)"" — J(x*(0,2) | 2,0) "

+ Va (J(ﬂ'*(ﬂ,z) | z,0)_1>/{12 ® (J(ﬂ'*(e,z) 12,0)"" le(z) [Sy (x(68,2) | 2,6) — fz, (z)w*(e,z)}> }

+ op(N 71/2)

for all (0,2) € © x Z.

Now define:
1 041052(52(71'1 ‘ 2,0) Ozla251(ﬂ'2 ’ z,0) 1 041042(5%(71'2 ‘ 2,0)
R(m | 2,0) = Tm 1202
(2x4) (7!‘ | 2 ) 04104255(7T1 | 2,0) 1 061062(52(7('1 ’ Z,O) 04104251(7T2 ‘ z,0)

Then, using (S3.2) and Lemma A.2 along with the fact that w(6,2) € [0,1]?, we have that a
second order approximation for the term Jy(7*(8,2) | z,0)~! — J(x*(0,z) | z,0)" yields:

j\N(ﬂ-*(evz) | zve)_l - J(’IT*(G,Z) | zve)_l =

1 —~
R(n*(6,) | zﬁ){lz 0 o [V 0.2) | 2.0) — o, (2)o(n" (8.2) | .6)] } +op(N )

for all (0,2) € © x Z.
Therefore, we finally get:
In(my(8.2) | 2,0)" — J(x"(6,2) | z,0) " =

R(m*(6,2) | z, 0){12 © ——— [n(7"(8,2) | 2,0) — fz,(2)d(n" (0, 2) Iz,0)]}

fz(2)
+V,r( (m*(0,2) | 2,0)~ ) { ( *0,2) | 2,0) le(z) [Sn(7*(8,2) | 2,6) —sz(z)ﬂ*(e,z)D}
Fop(N ) *2)
€ [0,1)?

30By the same argument as the one used in footnote 29, all the mean values satisfy: 1?"1:,(0,2)

for all (6,2) € © x Z which not only allows us to apply Lemma A.2, but also assumption (S3.2) which is

satisfied in [0, 1]2.
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for all (8,2) € © x 2.

We have
Vory(0,2) = Jn (1(0,2) | 2,0) ' Vo@n (y(0,2) | 2,6)
Vor*(0,2) = J(7°(0,2) | 2,0) ' Vop(n*(8,2) | 2,0)
therefore

Vomy(0,2) = Vor*(6,2) = T (n°(8,2) | 2,0) ' |Vo@n (5 (0,2) | 2,0) — Vou(w"(6,2) | 2,) |
[ Tn(750.2)12,0) "~ T(x*(8,2) | 2,0) ' | Vo (n*(8,2) | 2.6)
[T (75 0,2) 1 2,0) " = T(x*(8,2) | 2,0) | [Vodn (75(6,2) | 2.0) — Vouo(n°(6.2) | 2,6)

Using (&% 1 —2) along with Lemma A.2 and assumption (S3.2) we have:

sup H [fN({}":,(G,z) | ,2,0)71 —J(7*(0,2) | z,0)71]
2EZ
6cO

< [Vol (73(6.2) | 2.0) ~ Va(n"(6.2) | 2.0)] H} — 0N )
therefore, using (& 1 — 2) we get:
Vory (0,2) — Vor*(6,2) =

J(x0.2) z,o)‘l{# [An(n*(8.2) | 2.6) ~ Fz, (&) Vaolm*(8.2) | 2.6)

fz(2)
+ Vomp(n(8,2) | 2,0) {Im ® (J(ﬂ*(é’,z) | z,o)‘leL(z) [Sy (778, 2) | 2,6) — fz,, (z)ﬂ'*(e,z)]ﬂ }
+ {R(vr*(G,z) | 2,0) [12 ® f%@ [Sn(m(8,2) | 2,0) — [z, (2)d(n*(6,2) | 2,0)]}
Ve (J(w*(e,z) | z,a)—l)' [12 ® <J(7r*(0,z) | z,o)‘leL(z) (S (n*(6,2) | 2,0) — fz, (z)w*(a,z)]ﬂ }
X Vop(n*(8,2) | 2,6) + 0,(N ~/2) (% 3)
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for all (8,2) € © x 2.

Now let:
WN(w*(G,z) | z,0) = J(7r*(0,z) | z,0)_1fTN(7r*(0,z) | z,0)

+ Vorp(n*(8, 2) | 2,0 [IM ® (J(ﬂ*(ﬂ,z) 12,0) 'Sy (%6, 2) | z,0)>]

+ {R(ﬂ*(o,z) | 2,0) [12 @Sy (n7(8,2) | z,o)] (% 4)

+ Ve (J(n*0,2) | z,o)*l)' {12 ® (J(ﬂ'*(a,z) 1 2,0) 'Sy (x*(6,2) | z,0)>] }Vg(p(ﬂ'*(a,z) | 2,6)
and

T(n*(0,2) | 2,0) = J(7*(8,2) | 2,0) ' Vop(n*(8,2) | 2,0)

+ Vorp(n*(0,2) | 2,0) |:Ik+2 ® (J(7r*(0,z) | z,0)17r*(0,z)>]
+ {R(w*(a,z) | 2,0) [Ig ®6(7*(0,2) | z,e)] (% 5)
+ Ve (J(r*0,2) | z,o)*l)' [12 ® (J(ﬂ*(o,z) | z,o)‘lw*(o,z)ﬂ }vw(ﬂ*(o,z) | 2,6)

Then (& 3) becomes:

Vo (8,2) — Vor* (0, 2) = (W (m°(8,2) | 2,0) = oy (2)T (x°(6,2) | 2,0) | +0p(5 %)

1
fz(2)
for all (0,z) € © x Z.

Lastly, note that by definition of these objects (see the proof of Lemma A.2), Lemma A.2

and Theorem A.5 and assumption (S3.2) we have

aup HWN(ﬂ*(G,z) 2,6) — fz(2)(x°(6,2) | z,0)H = 0,(N 11)
0co

which completes the proof. [

We are now ready to prove Theorem 1.

44



Proof of Theorem 1

Recall throughout that W = (Y, X', Z")’ . Now let us clarify the following notation:

Volz(w, 0, ) = Partial derivative of £z with respect to 6 , with 7 constant.

Lz (w,0,m) = Partial derivative of £z with respect to 7 , with € constant.

Second partial derivative of £z with respect to @ , with 7 constant.

Varlz (w,0, 1) = Second partial derivative of £z with respect to @ , with € constant.

(w,6,7) =
(w,6,7)
Voorlz (w,0,7)
(w.6.7)
(w,6,7) =

Vorlz(w,0, 7 Cross partial derivative of £z with respect to 6 (holding w constant)

and 7 (holding @ constant).

From Lemma 4.1, we know that 7n*(8,Z) is an M times differentiable function of # and
Z everywhere in © x Z. Let 9lg(w,0,7%(0,2))/00 and 0%(z(w,0,7*(0,2))/0000" denote
the total first and second partial derivatives of /z (w,e,ﬂ*(a,z)) with respect to 6. Note
that 90z (w,0,7*(9,2))/06 is the score and Sz = —E[0%(z(W,00,7*(00,2))/0000'] is the
information matrix of the trimmed log-likelihood ¢z . We have:

Mz (w,0,77(0,2))
06

(k+2)x1
Oz (w,0,7(0,2))
0000’

(k+2) x (k+2)

+ Voom(0,2) [Valz (w,0,7°(0,2)) @I 12| + Vor* (8, z)’{V,,olfz (w,8,7°(0,2))

= Volz(w,0,7%(0,2)) + Vor™(0,2)' Valz(w,0,7*(0,2))

= Voo lz (w,0,7%(0,2)) + Vorlz(w,0,7°(0,2)) Vorr* (8, 2)

+ Varlz (w,G,ﬂ*(O,z))Vgﬂ*(G,z)}

where I 9 is a (k+2) x (k +2) identity matrix.
It is easy to see that E[Valz(W,080,7*(00,Z)) | X,Z] = 0 and therefore the trimmed
information matrix Sz is given by:

8262(W,00,7T*(90,Z))

Cx — =
vz = E{ 9006’

— E[Voo'fz (W,00,7(00,2)) + Vorlz(W,00,7 (00, Z))Ver* (00, Z)

+ VQW*(G(), Z)/VQIIEZ (W,00,7r*(00, Z))/ + VQW*(OQ, Z)’V,r,,fﬁz (W,00,W*(00,Z))VO7F*(00,Z)]
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It is also easy to show that:

E[Voglz(W,00,7(80,2)) | X,Z] = —E[Velz(W,0,7*(00,Z))Velz(W,00,7*(00,2)) | X, Z]
E[Vanlz(W,00,7*(00,2)) | X,Z] = —E[Valz(W,00,7*(00,Z))Vrlz (W,00,7(80,2)) | X, Z]
E[vew/£Z(W70077r*(007Z)) ’ X’ Z] =—-F [Vegz (Wvo(]:ﬂ‘*(o(bZ))V’IT£Z(W70077I-*(007Z))/ | X7 Z]

therefore the expression given above for Sz can be simplified to:

Sz =—-F _{Voﬁz(W,oo,W*(aoaz)) + Vor*(00,Z)'Valz (W,00,7%(00,2))}

X {Vggz (W,oo,ﬂ'*(OO,Z)) + Voﬂ'*(OO,Z)lvﬂfz (W,OO,ﬂ'*(oo, Z)) }/}

(905 (W ,00,7%(60,Z))  0lz(W,00,7(80,2))
0 . BT

=-F

which implies that the trimmed log-likelihood ¢z satisfies an information identity result.
Now let 0%(z(w,0,7*(0,2))/000n’ denote the partial derivative of the score vector with

respect to w. Then, using iterated expectations once again it is easy to show that:

_ E{a%z (W 60,7 (60, Z)) ‘ z}

00on’
E[Vortz (W, 80,7 (00, 2)) + Vor* (00, 2) Vrs Lz (W 00,780, 2)) |2]

o~

We are now ready to show consistency of 8:

Proof of Theorem 1(A):

From Lemma 4.1 and assumption (S3.2), 7#*(8, Z) is continuous in © x Z. Combining this with
the continuity of the linear function X’8+ ar and assumption (S1.3), then (z(W,0,7*(6,Z))
is continuous in S(X) x Z x ©. By assumptions (52.3) and (S3), the set S(X) x Z x © is
compact and therefore the continuity of ¢z(W,8,7*(6,Z)) is uniform in S(X) x Z x 6. In

addition, from Lemma 4.1 we know that there exists b € (0,1) such that inf (w*(e,z)) >b

zeZ
90
and 1 — sup («*(a,z)) > b.Now, take any w € {0,1} x S(X) x Z and any § € © with the
zeZ
0ce

corresponding w*(@,z). Then, by uniform continuity we have that for all M > 0 there exists

§ > 0 such that = € [0,1]? and ‘

7r*(0,z)—7r” < § imply Héz(w,B,'ir*(&z)) —Ez(w,O,'ir)H < M.
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Now let § = min {5 : b}. Then we have § > 0 and using Lemma 4.2(A) we have that for all

e > 0, there exists Ny such that N > N5 implies:

Pr{sup Hﬁv(e,z) —7r*(9,z)H > 5} <e
zeZ
0coe

Therefore, N > Ny implies

0z (w,0,7%(6,2)) — zz(w,o,ﬁ(o,z))u > M} <e

Pr sup
we{0,1} xS(X)x2Z
0cO

and consequently:

sup
6O

N N

1 — 1

Ng eZ(wnaaaﬂ’}(V(ovzn))_NE BZ(wnaovﬂ'*(oazn))‘ s 0
n=1 n=1

From assumption (S4.3), the sample is iid. As we mentioned above, Lemma 4.1 and the
continuity of the linear function 8'X + am, imply that ¢z(W,0,7*(0,Z)) is a continuous
function at each @ € © with probability one. By (S3.1), © is compact. We also know
that 7*(6,Z) € [0,1]? (a compact set) for all § € © and all Z € Z. Compactness of {0,1} x
S(X) x Z x [0,1] implies that there exists ¢ such that ‘EZ (W,0,7*(6, Z))‘ < ¢ with probability
one. These properties are sufficient to satisfy the assumptions of Lemma 2.4 in Newey and

McFadden (1994) (dominated uniform convergence theorem) and imply that:

sup
6O

N

1

2 w0, 6.5,)) ~ E[tz(W.0.5°6.2))] | = 0,(1)
n=1

These results together imply that:

sup
[JSS)

N
2 2w, 0,76, 5,)) ~ E[tz(W.0.5°6.2))] | = 0,(1)
1

n—

From Lemma 4.4 we know that E[(z(W,0,7*(9,Z))] is uniquely maximized at 8. By Lemma
4.1, we know that E[(z(W,0,7*(09,Z))] is continuous. The result immediately above
showed that & S°N 0z (w,,0,77(8,2,)) converges in probability to E[(z(W,0,7*(0,2))]
uniformly in ©. Since 6 maximizes LStz (w,,0,77(8,2,)) in O, all the conditions of

Theorem 2.1 in Newey and McFadden are met and therefore [N 0y. We next prove part

(B).
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Proof of Theorem 1(B):

Before proceeding, note that the trimming index 1{Z € Z} does not depend on . Then, using
assumption (S1.3), compactness of © and Lemma 4.1, we have that (z(W,0,7*(0,Z)) is an
M times differentiable function of @ with bounded M derivatives. We also argued previously
-see the discussion following assumption (S3)- that boundary(Z) = Z N cl(2) has Lebesgue
measure zero in R, Since Z is continuously distributed (Z is absolutely continuous with
respect to Lebesgue measure), we have Pr{Z € boundary(Z)} = 0. Therefore, using once again
assumption (S1.3), compactness of © and Lemma 4.1, we have that with probability one,
lz(W,0,7%(0,2)) is also an M times differentiable function of Z with bounded M derivatives.
We now proceed to the proof: As we did in the proof of Lemma A.5, take (0,2) € © x Z and

define the indicator variable:
Ty(8,2) = n{ﬁ(a,z) € (0,1 and dy(ry(6,2) | 2,6) o}

we showed previously that Pr {sup Tn@B,2) — 1| = 1} — 0. As we outlined above,

zeZ

P
1n(0,2) = 1 implies that w%(0,2) is an M times differentiable function of 6 and z.
Now, note that for each z, € {z,}0_,: 1{z, € Z}sup |[In(0,2,) — 1| = 1 only if

0co

sup ‘TN(H,Z) — 1‘ = 1. Consequently, we have: Pr {]l{zn € Z}sup [In(0,2,) — 1| =
2€Z 9ce
0co

1 for at least some z,, € {zn},ﬂvl} — 0. Therefore, with probability approaching one the

estimator 5 € O satisfies the first order conditions:

N
%Z{V@gz w,, 0, 7rN(0 z,)) + Vofj‘\v(b\,zn)/Vwﬁz(wn,g,E}‘\V(E,zn))} =0
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and 7%(6,2) is an M times differentiable function of @ for all § € © and for all 2, (since

z, € Z for all z,,). A first order Taylor series approximation for 6 around 0, yields:

1 L% 5 wn,e 7rN(0 z0)) =
N =1 0000’ (0 — o) =

(5)
{voez (wn, 00,75 (B0, 20)) + Vo (B0, 20) Valz (wa, B0, 73 (60, 20)) }

||M2

with @ between 8 and 0, and:

N .
Oz (wy,0,m3(0,2,)) B
N Z 0000’ -

i

+ Voot (0. 2) [Vl z (w3, 0,738, 20)) @ Lt + Vom0, 20) { Vaorlz (w0, 8,73 (6,20)

Voo Lz (Wi, 0,7 (8. 20)) + Vor Lz (Wi, 0,7 (8, 2,)) Vorry (8, 2,)

+ v7r'/r’€Z (wm 57 7;7\\[(57 zn)) VG'E}T\[(Ea zn) }

where I 9) is a (k+2) x (k+2) identity matrix.
We have:

1 al 8262(10”,5,7?7\\[(5, zn)) B a2€Z(W700aﬂ-*(007Z))
N ; 0606’ - 9600’

9?0z (wy, 6, 7?}‘\\,(5, zn)) Oz (wy, 6,7 (6, zn))

< _
= SUP 9000’ 9000’

n

N I
82€z(wn,0,7r*(0,zn)) 82€z(W,00,7r*(00,Z))
v ; 2600 —E [ 9600

Lemma 4.1(A), assumption (S1.3) and the compactness of S(X) x Z x © imply that the func-
tions Vg@z (W, 0, 71'*(0, Z)), V09/€z (W, 9, 71'*(0, Z)) > Voﬂ.lfz (W, 9, T (9, Z)) and Vﬂ.ﬂ.lfz (W, 9, 71'*(0, Z))
are all uniformly continuous in S(X)xZx@©. Since 6 € O then using Lemma 4.2(A) and taking

the same steps as above we get: SHPHVMZ(me,;}"\V@ zn)) — Velz (wn,g,ﬂ*(g, zn))H = o0,(1),

(w,,,0,7%(8,2,)) — VGglez(wn,g,ﬂ*(g,Zn))“ = o,(1), supHV(,,,lﬁz(wn,g,ﬁv@,zn)) -
Veorlz (wn,g, 7r*(5, zn))H = 0p(1), and supHV,m,Ez (wn,g,;}‘\v(g, 2n))—Vanlz (wn,g,ﬂ'*(g, zn))H —

op(1). The results in Lemma 4.2(B) and the trimming index 1{z, € Z} imply that
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050(0, 2,) — Vor* (0, 2,) || = 0,(1) 0%(0, 2) — Vg™ (8, 2,)|| = 0,(1) . These

results together imply:

62€z(wn,§,ﬁ(5,zn)) 82€z(wn,5,7r*(5,zn)) o1
9000’ 9000’ =op(1)

sup
n

6 is intermediate between 8 and 0y. Therefore 6 -2 0y. By the same argument used above

and the fact that 7*(0,z,) € [0,1]2 for all z,, we get that H@zﬁz (wn,0,7%(0,2,))/0000'|| is

bounded with probability one for all w,,, all z, € Z and all @ € ©. By Lemma 4.1, it is
also a continuous function everywhere in ©. Consequently, E [826 z(W,00,7*(00,2))/ 8060’]

is continuous and bounded. Once again using Lemma 2.4 in Newey and McFadden, we get:

ii a2£Z(wn7577r*(§a zn)) _E 82EZ(W700a7r*(007Z)) i} 0
N &~ 0006’ 0006
and consequently:
Z 82£z wn,ﬂ 7I'N(0 zn)) P E 82£3(W,00,7l‘*(00,2)) S 6
9006/ 9006’ -2 (6)

Next we examine the terms in the right hand side of (5). A second order Taylor

approximation for the first term yields:

1
N

Mz

\Y EZ(wnaaoyﬂ-N(eoazn - ZVOEZ wnaeoa (00,Zn))

n 1

I
—

==
M=

+ Vorlz (wn,00,7* (00, 20)) (7% (00, 21) — 7 (80, 21) )
n=1
1 N — / —
v 2 [{I (k42) © (T 00, 20) =7 (00, 20) ) } Vivee { Vouslz (wn, 80,73 0, 20) }

1

3
I

with each 73 (8o,2,) between 7% (80,2,) and w*(8g,2,) . We have 7% (80,2,) € [0,1]2 (a
compact set) for all z, € Z. By assumptions (5S2.3) and (S3), S(X) x £ is a compact
set. By assumption (S1.3), G1(-) and Gy(-) are CM*? functions, with bounded M + 2
derivatives. These facts imply that sup HV,,vec {Vg,rlﬂz (wn,eo,ﬁ(%,zn))}” is bounded
with probability one. Combining this with Lemma 4.2(A) and the fact that z, € Z for all

20



n, we get:

sup
n

% i |:{I(k+2) ® (7%\\,(00,2,1) - ﬂ*(oo,zn)) }’V,rvec {Vg,rlﬁz (wn,00,7?f\,(00,zn))}
n=1

(R Borz) (00,22 | H = 0,(N )

and consequently:

N N
1 — 1 i}
N;Vafz(’wmaoaﬂ'}‘v(eopzn)) = N;VGEz(’wn,eo,ﬂ‘ (Go,zn))
. o i (7)
5 2 Vorrlz (wn, 00,7 (80, 20)) (T (B0, 20) — 7 (80, 2)) + 0p(N ~/?)

n=1

We now turn to the second term on the right hand side of (5). First, note that a second-order

Taylor approximation yields:

Vailz (wn,eo,;}k\v(eo,zn)) =

VWEZ (wna 00; 7T* (007 zn)) + VWW’EZ (wna 00; 7T* (007 zn)) (7;}?\7(007 Zn) - ﬂ-* (00a Zn))

+ % [{I(km) ® (ﬁv(ao,zn) - w*(eo,zn)> }/V,rvec{v,m/ﬁz (wn=0077?}k/v(0072n))}

x (7380, 20) —w*(eo,zn)>]
where I, is a 2 x 2 identity matrix and each 7;}7\,(00,;:”) between 7?}*\\,(00,;:”) and
7*(00,2,) .  We have m%(8p,2,) € [0,1]2 (a compact set) for all 2z, € Z. By
assumptions (S2.3) and (S3), S(X) x Z is a compact set. By assumption (S1.3), G1(-)
and Gy(-) are CM*2 functions, with bounded M + 2 derivatives. These facts imply that
sup HV,,vec {VM/EZ (wn,é’o,ﬁv(ﬂo,zn)) } H is bounded with probability one. Combining this

with Lemma 4.2(A) and the fact that z, € Z for all n, we get:
sup H{I(m) ® (T3 (00, 20) 7" (00, 2)) }'v,rvec{v,,,,,ez (0,00, 75 (00, 20) }
 (TalB0,20) 700,22 | = oyt 7
and therefore:

Valz (Wn, 00,700, 2,)) = Valz (wn, 00,7 (80, 2,))

+ Vanlz (wn, 00,7 (00, 2,)) (;}?V(ﬂo,zn) —7*(00,25)) +0p(N 71/?) forall n
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Using this result, adding and subtracting Vgn*(0y,2,) we can express the second term in

the right hand side of (5) as:

N N
1 — —~ 1
¥ Z Vory (00, 2n) Valz (wn, 00,75 (00, 2,)) = ¥ ; [er*(eo,zn)fv,,éz (w,, 00,7 (80, 21))

n=1
+ Vom* (80, 20) Vawr Lz (w0, 00,7 (00, 20)) (T (B0, 20) = 7* (00, 20) )

+ (Vomi(B0,2n) - Vg'ir*(Go,zn)>/V,,€z (wn. B0, 7" (B0, 2n))

+ (V(;;}"\V(Oo,zn) - vow*(ao,zn))’vﬂ,eg (wn, B0, 7 (80, 2n)) (ﬁv(ao,zn) - ﬂ*(ﬂo,zn))} +0,(N 712)
We have w*(0p,z,) € [0,1]> (a compact set) for all 2, € Z. By assumptions

(S52.3) and (S3), S(X) x £ is a compact set. By assumption (S1.3), Gi(-) and

Gy(-) are CM*2 functions, with bounded M + 2 derivatives. These facts imply that

sup HV,,vec {V,mffz (wn,é’o,ﬁv(ﬂo,zn)) } H is bounded with probability one. Combining this

with Lemma 4.2(A)-(B) and the fact that z,, € Z for all n, we get:

sup
n

N
1 — / —
N Z (Ve"ri]k\/'(e()? zn) - VOW*(G(% zn)) VWW’ZZ (wn7 007 7r* (007 zn)) <7r*N(007 Zn) - 7r* (007 zn)) '|

n=1

= 0p(N 71/2)

and therefore:

N N
1 — —~ 1
N ; Vom0, 2n) Valz (wn, 80,75 (00, 2,)) = N ; {Voﬂ*(ao, 2n) Valg (wy, 00,7 (00, 2,))

+ Vom (80, 20) Ve Lz (i, 00,7 (00, 20)) (7 (B0, 20) — 7 (80, 20) )

—~ /
+ (er}"v(ﬂo,zn) — V97r*(00,zn)> Vailz (wn,ﬂo,w*(Oo,zn))} +0p(N 7/?)
(8)
Define

Dz (wn, 00,7 (00, 2,)) = [Voﬂ/fz(wn,aoﬂf*(eo,zn)) + Vor*(00,2n)' Vyplz (wn70077r*(9072n))}
(k+2)x2
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Then, using Equations (7) and (8) we get:

N

1 _ _ _

N E [Vogz(wmeoﬂf}‘v(aoazn)) +Voﬂ}(ao,zn)/VMz(wn,eo,W}‘v(ao,Zn))} =
n=1

MHZ

[Voﬁz (wy, 00,7 (00, 2,)) + Vo™ (00, 21) Vrlz (wy,, 00,7 (0o, Zn))]

) " (9)
+ % Z [Dz (wn,00,7r*(00,zn)) (ﬁ(%,zn) — 7r*(00,zn)>

n=1

!/
<V07TN 00,Zn Veﬂ*wo, zn)) V,rfz (wn,ao,ﬂ'*(oo,zn))] + OP(N _1/2)
Using Lemma A.6 and the fact that 2z, € Z for all n, we have:
4 (80,2) — 7" (80, 2) =

J(7* (80, ) | zn,eo)f1

f2(zn) [gN(”*wwzn) | zn,00) — sz(zn)ﬂ*(Go,zn)] +0,(N2) forall n

/
We have: E[Y | X,Z] = (Gl(X’lﬂlo + 0n,75(00, Z)) , Go(X)Ba, + agow;(oo,Z))) . By
definition, we also have E[Y | Z] =x*(6o,Z) . Therefore, by definition (see Lemma A.6) we

can express:

1
Nh% Zl Y ’xmazn]Kh( n)

and using the result of Lemma A.6 cited above, we get:

1
fZ(zn

Sy (7 (00, 2n) | 2n,00) =

) [Sn (1" 00, 20) | 20,00) — Fax (20)7" B0, 20)| =

hL Z( Y |z, 2] —E[Y|zn})Kh(zm—zn)

Define Bz (wy,00,7*(00,25)) = Dz (wn,00,7 (680, 25))J (7*(60, 27) | zn,ao)_l. Then using the

result immediately above, we get:

N

1 —

~ > Dz (w007 80, 24) (mwo,zn) — 7 (80,20)) =
n=1

N N
1
N2hk ZBz(wn,ao,ﬂ-*(@o,zn Z( ElY |Zp, 2, — E[Y | anKh(Zm —z)
n m=1
1
B n707 0771 EY man_EY nK m - *n
Ngh%\f;w%;l zw 0 (OZ))fZ(zn)<[ | 1,y 2] [ |z]> n(z Zn)
K(0) . 1
+ NhkﬁnZle(’wmeo,ﬂ’ (60:20)) 7,5 (B[ 20,20~ EY | 2])
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We have w*(09,2,) € [0,1]> for all z, € Z . Consequently, using assumption (S3.2),
HJ *(0o,2n) | zn,GO)_lH is uniformly bounded for all z, € Z. By (S3.2), there exists a
b > 0 such that ‘fz(zn)_l‘ < b for all 2z, € Z. By an argument parallel to the one
used in the paragraph previous to Equation (8), assumption (S1.3) implies that G1(-) and
Gs(+) are CM*2 functions, with bounded M + 2 derivatives. This, along with the fact that
7*(00,2,) €[0,1]2 ( a compact set) for all z,, € Z implies that sup HDz(wn,é’o,w*(eo,zn))H
is bounded with probability one. By definition of our trimmed log-likelihood function, we
have: Dg(wp, 80,7 (80, 25))J (7% (80, 2y) | zn,eo)_l% =0 whenever z, ¢ Z (since z, ¢ Z

fz(zn)
implies Dz (wy,80,7* (0, 2,)) =0). Therefore, there exists C > 0 such that:

Bz(’wn,e(],ﬂ'*(eo,zn)) SC W.p.l (10)

sup
n

1
fz(2n)
From now on, to simplify the notation we will denote Bz (wn,60,7*(00,2,)) = Bz (wn) ,
Dz (wn, 00,7 (09, 2,)) = Dz (w,) -recall that wy, = (y,,,2,,2,) - and J(7*(00,2s) | 2n,00) =
Jo(zn) . Then:

N
% 3" Bz(w,) fz(lzn) (BY 20,20~ B[Y | 2]
n=1

2 B[BW) s (B | X,2)- EIY | 2])]

which exists and is finite by (10). Now, by assumption (S4.2.i) we have N/2/(Nh%) — 0.

y (S4.1), we know that K(0) is finite and therefore:

N

K(0) 1 1 B s
Nh%NT;BZ(wn) 7 <E[Y | T, 2n) — E[Y | zn]> = 0,(N 71/%)
Consequently:
N
Z <7rN (00, 2n) — 7r*(00,zn)> —
Ngh% Z > Bz( ’wn )<E[Y | 2, 20] — E[Y !zn]>Kh(zm — 2,) 4 0p(N 71/2)
n=1m#n Zn

Before proceeding, let us write the basic Central Limit Theorem of the so-called U-statistics.

This is a well-known result widely used in semiparametric and nonparametric estimation
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problems. We follow the results of Powell, Stock and Stoker (1989), see also Appendix A.2
in Pagan and Ullah (1999).

Central Limit Theorem for U-statistics: Consider a general second-order U-statistic of

the form

UN:<];]>_1 > Tn(wg,wy)

1<n<m<N

where w,, n=1,...,N is an i.i.d random vector and 7,, satisfies T (wy,w,,) = Tn (W, w,).

Now define ty(w,,) = E[Tn(wy,w,,) | w,] and
R N
Uy = E tN ’wn Z{tN wy,) tN('wn)]}

Uy is called the “projection” of the statistic U,,.
Then VN(Uy — Un) = 0p(1) if E[|| T (Wm,w,)||*] = o(N) O

Let
BZ (wn)

hku(zn)
Bz(wn)
h%\[fZ(zm)

and let Uy = (];7)_1 Y i<nemen IN(wn,wy,) . By symmetry of K(-) (assumption (S4.1)) we

Tn (W, wy,) = (E[Y | T, 2n] — E[Y | zn})Kh(zm —zp)

(E[Y | T, 2m) — E[Y | szKh(zn —Zm)

have Kp,(z, — zm) = Kp(2m — z5,) for all 2z, 2,. Then, we can re-express:

% niv:lDz (wy,) (7;7\\/(00,zn) — ﬂ*(oo,zn)) = (%) Uy + 0p(N ~1/2)

we will now determine ty(wy,) = E[Tn(wn, wn) | wy,|. We begin with the first term on the

right hand side of T (w,,w.,). By the iid nature of the sample (assumption (54.3)), we

y
BZ(w")) /(E Y |u,2,] - E[Y | zn})% /K(v ;Nzn>fx,z(uyv)dvd“

fz(
Bzé’wn) /(E[Ym,zn] _BlY ’an/K(\I:)fx,z(u,zn+hN\Il)d\Ildu

have:

E[BZ(W”) (E[Y | Zm, 2n) — E]Y | zn])Kh(zm —zp)

fZ Zn
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with ¥ = (v — 2,,)/hy. Define:

0
Qi={(q,....q1) N1 g1+ +q, =i} and Ty(u,z) ZM

Oz -+ 027"
then by (S2.2) the following Taylor series approximation is valid:

/K(\I’)fx,z(u,zn + hy®)d¥ =

fx.z(u,z,) /K d\I!+Z i(u, 2y, Z/\If‘”- VUK ()d®
hM
+ (- /Z TP Iy (u, 2, + ) K (0)dP

where Y, is between hy and zero. By (S2.2) there exists a Cy < oo such that ||T;(u, 2)||< C;
for all (u,z) € R¥L and all i € {1,..., M}. This, along with (S4.1) implies that the first term
on the right hand side is fx, z(u,z2,), the second term is zero and the third term is bounded

for all z,,. By (S4.2.ii) we have hi = o(N ~/?) and therefore [ K(¥)fx, z(u,z, + hy¥)d¥ =

.

- ij((:’n"))/(E[Y!u,zn]—E[Y|zn])fx,z(u,zn)du+op(N—1/2) (11)

=0p(N %)

fz(u,2z,) + 0p(N ~'/2) for each z,, which yields:

Bg(wn)
E[ fj(zn) (E[Y | T, 2n) — E[Y | anKh(zm —2y)

where the last equality follows from the fact that

/E[Y ]u,zn]%du = E[E[Y | X, 2] | zn} = FE[Y | z,| and /fx,z(u,zn)du = fz(2zn)

. . 1
which together imply that o) /(E Y |u,2,] — E[Y | zn])fx,z(u,zn)du =0

Before turning to the second term on the right hand side of Tn(w,,w,,), let us define
Dz(Z) = E[Dz (W,0,7*(00,2)) | Z}. Then, by definition (see the line immediately after

Equation (8)) we have:
53(2) = E[VGWIKZ(W,GO, 00, )‘Z} + Vo™ (OO,Z) {VMIZZ(W,GO, 00, )‘Z:|

then, using assumptions (S1.3), (S2), (S3.2) and Lemma 4.1, we have that w.p.1, Dz(Z)

is an M times differentiable function of Z with bounded M derivatives. Finally, define
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Bz(Z) = Dz(Z)Jo(Z )_1. Using the result immediately cited above, along with Lemma 4.1
and (S3.2), we get that Bz(Z) is also an M times differentiable function of Z with bounded

M derivatives. Using iterated expectations and the iid nature of the data, we have:
wn}
Bz(v) <v — zn>
- E[Y | z,,v] — BE[Y |v])K d
/hgfz(v)( ¥ | 2n.0] - E[Y |0]) ) 2@
_ [ Bz(v) v—
_/ 2 (E[Y | 20,0 - B[Y | 0] ) K hN v

_ /Ez(zn + ) (BIY | 20,20+ hw¥] — B[V | 2, + h¥] ) K ()00

Bz (wm)
E[ fj(zm) (E[Y | T, 2m] — E[Y | szKh(zm —zp)

Now denote Az(X,Z) = Bz(Z) <E[Y | X,Z) - E|Y | Z]) As we did above, let:
Qi = {( JENY g+ .-+ q, =14} and now define A Z Az(@ 2)
i =141, ---,4L S 41 qrL = 62 8Z%L

Once again, using Lemma 4.1 and assumption (S1.3), along with the result concerning B z(Z)
mentioned immediately above, we have that Az(X,Z) is also an M times differentiable
function of Z with bounded M derivatives w.p.1. Using this result along with assumption

(52.2), the following Taylor series approximation is valid:

/ Az (@, 2 + hy U)K (W)dW —

z2(xn, 2n /K )dW¥ + Z i@, 2n Z/\pql. WP K (W) d¥
M
+ (-1 Mh /Z (U O Ap (20, 20 + AyY) K (¥)dE

where h%, is between hy and zero. Now, because Az(X,Z) is an M times differentiable
function of Z with bounded M derivatives w.p.1, there exists a Cy < oo such that ||A;(z, z)||<
Cy w.p.1 for all (z,2) € R¥FL and all i € {1,...,M}. This, along with (S4.1) implies that
the first term on the right hand side is Az(z,,z,), the second term is zero and the third

term is bounded for all n. By (S4.2.ii) we have hd = o(N ~/?) and therefore [ Az(z,,z, +
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hn¥O)K(U)d¥ = Az (2, 2,) + 0p(N ~'/?) for each n, which yields:

Bz(wn)
b |: fZ(zm)

(E[Y | T, 2m) — E[Y | zm])Kh(zm —2y)

.

— Bz(z) (E Y | @0, 20] — E[Y | zn]> + 0,(N "12)

=Dz(20)Jo(20) " (E Y | 20, 20] — E]Y | zn]) + 0p(N ~1/2)

= Az(@p, 2n) +0p(N71/%) (12)

combining Equations (11-12) we get:

tn(wy) = E[Ty(wn, wy,) | wy]
= Dz(zn)Jo(20) (E Y | 20, 20] — E]Y | an + 0p(N 71/2)
Note that E[ty(w,) | 2,] = 0, which implies (by iterated expectations) that E[ty(w,)] =0 .
Using Equation (10) along with Lemma 4.1 and assumption (S4.1) -boundedness of K(-)-

we can show that:

Bz (w,)
E‘ W(E[Y | T, 2n] — E[Y | zn})Kh(zm —2)
Bz (wm) 2 1
m@[ylmvzd ~ E[Y | zm])Kh(zn—zm) @0(1)
or equivalently:
BTt )| = 00 = o)

where the last equality follows from assumption (S4.2.i), which implies Nh% — oo.
Therefore, the condition of the CLT for U-statistics is satisfied and combining Equations
(11-12) we have:

N
UN = %ZEZ(Zn)JO (Zn)_1<E[Y | xn,zn] — E[Y | Zn]) + Op(N —1/2)

n=1

therefore:

N
%Z (wn, 80,7 (B0, 20) (T (B0, 20) — 7° (80, 22))

— (5 o oy ) (13)
N
%ZE (z0)To(zn) " (E[Y 120,20 — E[Y | 20]) + 0N )
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We now turn to the final term on the right hand side of Equation (9):

1
N

ANE

— /
(V(ﬂr}k\,(Oo,zn) - Vg'lr*(0o,zn)) Valz (wn, 00,7 (00, 2,))

As we shall see, we will take advantage of the result from Lemma A.9 as well as the fact

that E[Vﬂﬁz (W,00,7*(00,Z))|Z] = 0. From Lemma A.9, we have:

Vo (00, 2n) — Vor* (00, 20) =
1
fZ(zn)

where Wy (7*(8,2) | 2,0) and T'(x*(8,2,,) | 2,0) are defined in equations (& 4) and (& 5) in

(WN (80, 20) | 2n,00) — Fz,, (20)T (" (B0, 2n) | zn,00)> + 0, (N "2 for all 2, € Z

the proof of Lemma A.9. Since Vxlz(wy,00,7*(00,2,)) =0 for all z,, ¢ Z , we get:

— !/
(Vomi 90, 20) = Vor* (60, 21) ) Valz (wn, 60,7 (B0, 20)) =
1
fZ(zn)

+ 0,(N ~/?) for all z,

— ~ /
(Wi (7 (80,20) | 20, 60) = Fz (20)T (7" 00, 20) | 20,00) ) Vinlz (w3, B0, 7" (B0, 1))

From the definitions of WN(w*(e,z) | 2,0) and I'(7*(0,2,) | 2,0) , there exists M(X,Z,0)

such that we can express:

1
Nh]LV g M(zp,2,0)Kp(2, —2) forallZ € Z and 0 € ©
n=1

W (7%(0,2) | 2,0) =
with E[M(X,Z,0) | Z] =T(x*(6,Z) | Z,0) for all Z € Z and 0 € ©. Using assumptions
(S1.3), (S2.2), (S2.3) and (S3.2) along with Lemma 4.1 we have that M(X,Z,0) and
E[M(X,Z,0) | Z] are bounded, M times differentiable functions of Z with bounded M

derivatives everywhere in S(X) x Z x© and Z x © respectively. Therefore, we can re-express:

— /
(Veﬂli]k\/'(e()?zn) - VOW*(GOVzn)) v‘IrEZ (wn70077r*(007zn)) -

fZ ( N Z( (@ 20,80) = E[M (X, 2,.,60) |zn])Kh<zm—zn>) Valz (wn, 00,7 (60, 20)

+ 0,(N 7V?) for all 2,
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and consequently:

N

1 — /

N E (veﬂl?\[(o()vzn) - VOW*(OO;an ngz (wn70077r*(007zn)) -
n=1

'Valz (wy, 00,7 (00, 2))

LN
N2pL > <<M(mm,zn,9o) — E[M(X,zn,00) | z"]>Kh(zm _zN)>

N n=1 m#n fZ(zn)
K(0) 1 & "Valz (wn, 00,7 (00, 2,) s
NhjLVN ;(M(mmzmgo) ~ B[MX, 20,00 | Z"O & fZE]Zn) = +o(N )

By the definition of our trimmed log-likelihood function /z (w,0,7r), we know that we
/
have <M(mm,zn,00) — E[M(X,zy,00) | zn]> Valz (wn,00,7%(00,2,))/fz(2,) = 0 whenever

z, ¢ Z. We have shown above that sup

Vﬂﬁz(wn,eo,w*(eo,zn))H is finite w.p.1. Therefore,

Valz (wn,00,7%(00,25))/ f2(2n)

also finite w.p.1. Combining this with the preceding discussion about M(X,Z,0) and

assumption (S3.2) and our trimming imply that sup is

E[M(X,Z,0)| Z] we know that there exists C' > 0 such that:

/ngz (wm 007 T (007 Zn))
fZ(zn)

sup <C wup.l (14)

n

(M(:L‘n,zn,oo) - E[M(X7zn700) ’ z”])

which is sufficient for the expectation of this object to exist and be finite. To simplify

notation, from now on we will denote M(X,Z,0y) = M(X,Z). Then we have:
/ergz (wTL7 007 " (007 zn))
fZ (zn)

/vﬂéz (Waooaﬂ-*(e(b Z))
f2(Z)

N
%Z<M(mmzn) — E[M(X,Zn) | zn])
n=1

L. B

=0

(M(X,Z) ~E[M(X,Z)| Z])

where the last equality follows from the fact that E [VMZ (W,00,7*(60,2)) | X, Z} =0. Now,
K (0) is finite by assumption (S4.1), which combined with (S4.2.1) implies that K(0)/(Nh%) =

0p(N 7*/?) and therefore:

N
1 — /
N Z(Voﬂ}(007zn) - VGW*wO?Zn)) vﬂ'gz (wn70077r*(007zn)) -

n=1
. N "Valz (wn, 00,7 (00, 2n))
NQ—]I%V ;%((M(mmpzn) - E[M(szn) | Zn]>Kh(Zm - Zn)> fz(zn)
+ Op(N _1/2)
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We will now proceed to use a U-statistic representation. Let

TN (Wa, W) = % ((M(:I:m,zn) — E[M(X,2,) | zn]>Kh(zm _ zn)> Varlz (wn}:&:)*(%,zn))
1

+ A ((M(xn,zm) — E[M(X,zp) | Zm])Kh(Zn _ Zm)> Valz (Wi, 00,7 (00, 2m))

fZ(zm)
-1
and ﬁN:<JZ> Z TN('wnawm)

1<n<m<N

then, because K (-) is symmetric, we can re-express:

||M2

! N -1
(Vgﬂ'N 00,zn Vgﬂ'*(O(),zn)> V,,Kz(wn,eo,w*(eo,zn)) = ( N )UN +o ( 1/2)

we will now determine E[TVN(wn,wm) | wn] starting with the first term on the right hand
1 /VWEZ (wna 007 " (007 Zn))
7T M myen - EM X’ n n K, m — “n n| =
oz (20— B 20) | 22) i~ 20)) 2 w

</ (Mw2) = EM(X,20) | ) / K(¥) fx.z(, 20 + hN‘I’)d\I’d’u)/vwEZ (. Bo. 7" (B0, 20)

Iz (Zn)
where ¥ = (v — z,)/hy. We have shown previously that if assumptions (S2.2) and (S4) are
satisfied, then

side of Ty (wy,,w,,). Using the iid nature of the data, we have

E

/K(\I’) fX7z<’U,,2n + hN\If)d\If = fX’Z(’U,,Zn) + OP(N 71/2) for each Zn

therefore:
1 /Vrfz (me 00,71'*(00, zn))
Bl ((M(:z:m,zn) — B[M(X,20) | 2a] ) Kn (2 - zn)> ) wy,
! ‘I'I'E n70 9 * 0 ’&n
(f (0.20) = B 20) 1 20]) el ) 20001 C0.20) | iy
fZ(zn)
= 0p(N 71/2)
(15)
where the last equality follows from the fact that:

/(M(u,zn) — E[M(X,z,) ]zﬂ)%du:E[M(X,zn) | 2p) — E[M(X,2,) | 2] =0
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we now turn to the second term on the right hand side of TN(wn,wm). Using iterated

expectations and the iid nature of the data we have:

B % ((M(zmzm) — E[M(X,2m) | zm]>Kh(zn - zm)>’v,r€z (ww}jza((::;(%,zm)) wn] =
E % ((M(zn,zm) — E[M(X,2zm) | Zm]>Kh(Zn - zm)>/E[V7r€Z (wmﬁ;;;f)o,zm)) \xm,zm} wn]
_ % ((M(a:n,zm) ~ B[M(X,2n) | 2m] ) Ki (2 — zm))/O wn] —0

(16)
where the last two equalities follow from the fact that F [V,,E 2 (Wi, 00,7 (00, 2m)) ‘zm, zm} =0
for all m. Combining equations (15-16) we have E [Ty (wn, wnm)] = 0,(N ~/?). Using equation

(14) along with assumption (S4.1) -boundedness of K(-)-, we can show that:

'Valz (wn, 00,7 (00, 21))

1
1 /v‘lreZ(wm’aOvﬂ'*(oOazm)) 2 1
+ @ ((M(.’I:mzm) — E[M(X,zy) | zm]>Kh(zn — zm)> T2 H = @O(l)
or equivalently
BT (wa, wa)* = 5-0(1) = o(N)
N

where the last equality follows from assumption (S4.2.i), which implies NhY — oo.
Therefore, the condition for the CLT of U-statistics is satisfied and we have Uy = 0, (N ~1/2).
Combining equations (15-16) with this result, we get:

|

— /
N Z(VGW*N(GOazn) - VOW*(O(];zn)) v?I‘gZ(wnaaoaﬂ'*(ooazn)) - <

n=1

N -1
2N
= 0p(N 71/2)

o souts ) 1,

We can finally go back to equation (5): combining equations (13) and (17), equation (9)

becomes:

N
1 — — —
N Z [Vogz(wn,eo,ﬂ}‘v(aoazn)) + Voﬂ}‘v(am2n)/Vw€z(wn,90,W}‘v(90,2n))] =

n=1
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and equation (5) becomes:

Oz ( w,,0, 7% (0, Zn)) =
-5 Z 000 ® - o)

= N Z |:v0€Z (’wm 007 " (00, Zn)) + er*(ﬂo, Zn)/vﬂ-fz (’wn, 00, T* (00, zn))
n=1

+Ez(zn)J0(zn)71 (E Y |z, 2,) — E[Y | zn])} + 0,(N 7/?)

((% n,e 3 0 y&“n - — 1/2
_ _Z[ 2 (wn, 00,7 (0, 2 ))—i—Dz(zn)JO(zn) 1<E[Y]xn,zn]—E[Y]zn]>]+op(N—/)
By assumption (S6.1), @y is in the interior of ©. Therefore, Lemma 4.4 implies that

satisfies the first order conditions:

E afz(W,G(),’lT*(eo, Z))
00

— E|Volz(W,60,7" (60, 2))+Vor* (60, Z) Vulz (W .00, 7" (09, 2)) | =0

using iterated expectations we also have:
E[EZ(Z)JO(Z)_1<E[Y | X,Z) - E[Y | z])}
_ E[EZ(Z)JO(Z)_lE[E[Y | X,Z] - E[Y | Z] ‘ZH —0

where the last equality follows from the fact that E [E Y| X ,Z]‘Z} = E[Y | Z]. We also

have:
<agZW00, (60, )))(EZ(Z)JO(Z)_1<E[Y|X,Z]—E[Y|Z]>>/
- | (e[ 222 0By 7)) (Do) (el 1 x.2)- £1Y 1 2)))
—0

where the last equality follows from the fact that E [863 (W.00,7%(00,2)) /00| X, Z] =0. We

also showed previously that ¢z satisfies the information-identity result

E[(@Eg(W,Gggﬂ*(Og,Z))) <8€z(W,0(go7r*(00,Z))>’ _ _E[ﬁ%z(Wsﬂég;*(Oo,Z))}

Combining results shown previously, we know that

E |

00z (W,00,7(60,2)) — ?

50 +Dz(Z)Jo(Z)—1(E[Y|X,Z] —E[sz])
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exists and is finite. Therefore a Central Limit Theorem applies and we have:

\/N% EN: [8€z(wn,00,7r*(00,zn)) +EZ(zn)JO(zn)_l (E [Y | :z:n,zn]—E[Y | Zn])} 4, /\/(0, %z—FQ)

Z o9
where
0=
E|Dz(2)J(2)'E [(E V| X,2) - E[Y | z]) <E[Y | X,Z) - E[Y | z])' Z} Jo(2) "' Dz(2)
- E[EZ(Z)JO (2)'Var [E[Y | X,Z]‘Z} Jo (Z)‘l'EZ(Z)']
Recall that Dz(Z) = F [82@2 (Wa,?)a,;rl* ©0.2)) ‘ Z]. Therefore
N =
020z (W, 00,7 (0, Z . L [8%z(W,80,7(80,2))| ]’
E E{ fz( o (Bo. ))‘ Z}JO(Z) 1Var[E[Y\X,Z]]Z]JO(z) ! E{ fz( e (Bo. ))‘ z}

From equation (6) we have

g ( wy, 0, 7rN(0 Z)) p o
N Z 9000' e

by (S6.2), Sz is invertible. These results together imply that:
VN - 80) 5 (0,95 (52 + 2)95") = N(0,95" + 951093 (18)

which completes the proof of Theorem 1. [

Efficiency. Keeping the notation defined previously, let
D, = E[vao,ez(w,ao,w*(oo,Z)) + Vor* (00, Z) Vg Lz (W, 00,7 (00,2))]
Do(Z) = E [vg,,,ez (W, 80,7 (80, Z)) + Vor* (80, Z)' Vg Lz (W, 80, 7" (80, Z)) ‘ z]
D3(Z) = —Vep(n*(00,2) | Z,0))
Dy(Z) = Jo(n*(00,2Z) | Z,60)
Note that the first object is an unconditional moment, while the remaining three are

conditional ones. Define the matrices

D, Dy (2) Sz 0
D(Z) = . 2(Z) =
Dy(Z) Du(2) 0 Var[E[Y\X,z] ]z}



Equation (22) in Ai and Chen (2003) follows the approach of Newey (1990) and shows the
efficiency bound for models with conditional moment restrictions. Adapting their results,
the efficiency bound for the model based on the moment conditions

0tz (W,6,7(0, Z))
B

E =0

E[ﬂ'*(G,Z) _ B[V | X,Z,0]‘ z} —0,

(a combination of unconditional and conditional moment restrictions) is given by the upper-
left portion of E[D(Z)~'2(Z)D(Z)~"]. From the proof of Lemma 4.1 we have Vor*(8o,Z) =
~D4(Z)"'D5(Z) . Using iterated expectations and the definition of the trimmed information
matrix, we have — Sz = E[D; — D2(Z)D4(Z) ' D3(Z)]. Using these results and the formulas
for the inverse of a partitioned matrix we get
-3z’ 9%'Bz(2)

As(Z) Ay(Z)

D(Z) ' =

where A3(Z) and A4(Z) depend on Dy, Dy(Z), D3(Z) and D4(Z). Consequently, the upper-left

portion of E[D(Z)™'%(Z)D(Z)~'] is given by
S5 + %;E[BZ(Z)VM [E Y| X, 2] ‘ z} BZ(Z)’} 35!,

which is precisely the asymptotic variance of 0.

Proof of Theorem 2

We proceed first by proving Lemma 4.3.

Proof of Lemma 4.3:

We have:
N
~ 1 Y, Kh(Zn —Z)
Tpn (2) = E L for p € {1,2}
’ Ny £ fzu(2)

since Y, € {0,1} for p = 1,2 then the conditions of Lemma A.1 are trivially met. Using

A.2(A) and repeating steps parallel to those of parts (B)-(F) of such lemma we get that if
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assumptions (52.1-2) and (S4) are satisfied then, since E|Y, | Z = 2] = 7,(6p,2) for all z € Z
we get:

sup [Ty (2) — W;(Ho,z)‘ = 0,(N V%) forp € {1,2}
zeZ

We have 7, (2) = Max {0,Min {7, (2),1}} and 7n(z) = (F1y(2), T2y (2)) . By Lemma
4.1, there exists 0 < b < 1 such that for each p € {1,2}: b <7%(fp,2) <1—bforallze Z. In

other words, for each p € {1,2}: in£ (7%(80,2)) > b and 1 —sup m(fo, 2) > b. Consequently:
z€ 2€Z

sup |[Tv(2) =7 (80, 2)]| = op(¥ ) (19)

where T (2) = (1 (2),T2y (2))". By definition, Ty (2) € [0,1]? for all z. Therefore, it shares
two very important properties with 7y (6,2): they both converge uniformly in probability at
the sate rate, and all the intermediate values between 7y (z) and 7*(0o,2) are in [0,1]2. This
allows us to take advantage of assumption (S3.2) -which holds for = € [0,1]%- which yields
uniqueness of equilibrium and establishes a uniform bound for HJ (7*(0,2) | 2,0) - H nOxZzZ.

Take (0,2) € ® x Z. A mean-value approximation yields:

~

Tn(@n(2) | 2,6) " = Jy(n*(00.2) | 2,0) " + (I @ (7n(2) - 7r*(00,z))>/<v,er(7:rN(z) 2,0)7")

where Ty (z) is between Ty (2) and 7*(0y, z), the matrix I is a 2 x 2 identity matrix and -
following the rules of matrix differentiation- AV N (11' ] z,ﬂ)_l = Vpvec (fN (7r | 2,0)_1). Using
Lemma A.2 along with assumption (S3.2) and the fact that Ty (z) € [0,1)2 for all z € Z, we

can show that sup HV,,jN (Tn(z) | z,0)_1H = O,(1) . Combining this with equation (19), we
zeZ

et 9co
sup (Iz ® (Tn(2) - 1r*(00,z))),<vﬁfN(%N(z) | z,e)‘l) ’ = 0,(N ~1/4)
66

using Lemma A.4 and the fact that 7*(0,2) € [0,1)2 for all z € Z | we have

sup HjN(ﬂ*(Oo,z) |2,0)"" — J(7*(80,2) | 2,0) "
zeZ
o6

= 0p(N 71/4)

Then, using the mean-value approximation we get:

sup HjN(TrN(z) | 2,0) " — J(7*(80,2) | 2,8) || = 0p(N /%) (20)

0cO
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we next examine the term @y (Tn(2) | 2,0) — Tn(2). A mean-value approximation yields:

[Bn (Fn(2) | 2,0)—Tn (2)] = [Bn (77 (B0, 2) | 2,0)—7* (80, 2)] — T (T (2) | 2,0) (TrN(z)—ﬂ*(Bo,z))

where (once again) Ty (z) is between 7y (z) and 7*(fy,z). We have 7*(8y,2) € [0,1]> and

7n(z) € [0,1)? for all z € Z. Since [0,1]? is a compact set, Lemma A.2 yields:

sup HjN(%N(z) ]z,O)H =0p(1) and sup
2eZ

z2EZ
6cO 6cO

Combining these results with (19), we get:

[ (5700, 2) 1 .0) (" (00.2) | .0) | = oy 7

sup
z2€Z
6cO

|28 (7 (2)2,0) — T (2)| — |7 (80,2) | 2.0) — 7" (0,2)] H = op(N VY (21)

Combining (20) and (21) we have:

~

sup ||Jv (®x(2) | 2,0) " [on (7w (2) | 2,6) — 7n(2)]
bco
— J(n*(80,2) | 2,0) " [¢(w*(oo,z) | 2,0) — ﬂ*(oo,z)} H = 0p(N /%)
(22)
We defined:

T (0,2) = Tn(2) + Iy (Fn(2) | 2,60) " [@N (Tn(2) | 2,0) — TrN(z)]

p(8.2) =" (B0,2) + J (1 (80,2) | 2,6) "' [o(x"(60,2) | 2,6) — 7" (80, 2)]
Therefore, (19) and (22) yield:

sup [0, 2) — (0, 2)]| = 0,5 )
0ce

which proves part (A) of Lemma 4.3. To prove part (B) of the lemma, we first show that if

assumptions (S1.3), (S2), (S3) and (S4) are satisfied, then all the results of Lemma A.7 hold
replacing 7?}*\\,(2,0) with Tn(z) and 7*(z,0) with #*(2,0p). That is:

z2€Z

(A)sup (G (o, (2) ] 2,0,) = oy (w5 (2.00) | 2,0,)| = 0, (N /)
6cOe

(B)sup (S (7py, (2) | 2,8,) = 6,(7(2,00) | 2,8,) | = 0,(N /)

z2€Z
6cOe
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(C) sup oM (7, (2) | 2,60,) — 6™ (7%, (2,60) | z,ep)( —0,(N"Y) m=1,....M
r4
6cO

(D)sup \@g@ (T (2)  2,8,) — (5™ (7%, (2,80) | 2,0,,) H —0)(N"YY) m=0,...,.M
6cO

(B)sup &0 (7, (2) | 2.6,) = 66 (x5,(2.00) | 2.8,) | = 0p(N =) m=0,....0M
6cO

where each of these objects was defined in Lemma A.2 and the paragraph immediately
preceding it. The details of the proof are completely parallel to those used in the proof of
Lemma A.7. We proceed by taking mean-value approximations and take advantage of two
key results: the uniform rate of convergence in (19) as well as the fact that wx(z) € [0, 1]? for
all z, which in turn implies that all the mean-values are also in [0, 1]2. Just like in the proof of
Lemma A.7, compactness of [0,1]? x Z x S(X) allows us to use Lemma A.2 and obtain results
(A)-(E). Now, following our notation, let dn (Tn(2) | 2,0) be the determinant of Tn (TN (2) |

2,6). Then by equation (23 (B)) we have sup \JN (@x(2) | 2,0)—d(m*(z,80) | z,G)’ = 0,(N ~1/4).
z2€Z

0cO
Next, we proceed as in the proof of Lemma A.8 by noting that if assumption (S3.2) is satisfied,

then sup ‘EN(W | z,B)_l‘ = 0,(1) , sup 'JN(fN(z) | 2,0) " — d(n*(2,60) |z,0)_1‘ — 0, (N /%)
zeZ 2€Z

0ce 0ce

for all = € [0,1]%. Since T (2) € [0,1]? for all z, we get sup ’c@v (TN (2) | z,G)fll = Op(1) and
2€Z
P

sup |dy (Tn(2) | 2,8) " — d(n*(2,00) | 2,0) | = 0,(N ~/4). Next, notice that

zeZ

0cO

vgi(&)z) = (Lo [pn (Tw(2) | 2,6) - 7_rN(z)D/Vg (vee {In(mn(z) | 2,6)™'})

+ In(@n(2) | 2,0) " Vodn (Tn(2) | 2,6)

—~ / ~ _
Vogmy(0,2) = (12 ® Vo@n (T (2) | 2,0)) Ve (vec {JN(TrN(z) | 2,0) 1})
2(k+2) x (k+2)

N <I2(k+2) ® [@N(Tw(z) | 2,6) —7—rN(z)DIV9vec {Ve (Vec {fN(TrN(z) \z,o)‘1}>}

+ Vvec (jN (T (2) | 2,0) " Vo@n (T (2) | z,e))
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and

Vop(0,2) = (12 ® [gp('ir*(z,ao) | 2,6) —n*(z,ao)D/VG (vec {J(’n‘*(z,eo) | z,0)_1}>

2% (k+2)

+ J(n*(2,80) | 2,0) ' Vop(n*(2,600) | 2,0)

/
Vogrp(0,2) = (12 ® Vou (" (2,00) | z,o)) Vo (vec {J(’n‘*(z,Go) | 2,0)_1})
2(k+2) % (k+2)

/ —
+ <I2(k+2) ® [@(W*(z,eo) ] z,0) —ﬂ*(z,eo)]) Vgvec {Vg (vec {J(ﬂ'*(z,eo) ] z,0) 1})}
+ Vgvec (J(ﬂ'*(z,Oo) | z,0)71Vg<p(1r*(z,00) | z,G))
From assumptions (S1.3) - G1(+), G2(+) bounded functions with bounded M + 2 derivatives-

, (52.3) - supports S(X;) and S(X3) being compact sets- and (S3.2) - sup
2eZ
e

‘Jﬂ\zO)

being finite for all w € [0, 1]%-, we have:

sup ‘Vgp(ﬂ,z)H <C; and sup ‘Voofp(ﬂ,z)H <Cy wpl
zeZ zeZ
) )

for some constants 51 >0, 52 > 0.

Now, we have that Vgﬁv(ﬂ,z) and Veol%}kvv(é’,z) depend exclusively on the terms:

dn(Tx(2) | 2,0) 7", Gpy (T (2) | 2.65), T ()G (T, (2) | 2,6)
&V (T, (2) | 2.65), QY (Tpy (2) ] 2.85), Ty (D) (Fopy (2) | 2,6)
Ty (2)200) (T (2) | 2,6,)
for p € {1,2}.
While Vgp(8,2) and Vg p(8,2) depend on the exact same way on the terms:
d(m*(2,00) | 2,0) ", 0,(n*,(2,00) | 2,0,), 7 ,(2,00)¢ 0 (1%, (2,00) | 2,6,)
D (1, (2,00) | 2.0,), V(77 ,(2.00) | 2,6,), T ,(2,00)¢S) (77 ,(2,60) | 2.6,)

T (2,00)%6() (17 ,(2,00) | 2,0,)

p
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for p € {1,2}. Therefore, using (19), (23) and part (A) of Lemma 4.3 -shown above- we

get:

sup |[Vomsy(6,2) — Vop(0,2) | = 0,(N %)
oco

sup || Voo (0, 2) ~ Voop(6,2) | = 0p(N 1)
zE

0co
which establishes part (B) of the lemma. To show part (C), note that by definition of the

equilibrium conditions:
[gp(ﬂ'*(zﬁo) | 2,00) — 7r*(z,00)] =0 forallze Z

and consequently:

p(6o,2) =1 (0g,2) forallze Z

Vop(6o,2) = J(m*(2,6)) | z,00)71V9<p(7r*(z,00) | 2,00) = Vor*(6p,2) forallzeZ

This completes the proof of Lemma 4.3.
Note that:
Voorp(00,2) = Vggr*(00,2) + (Ig ® Vep(m*(2,00) | z,eo))/Vg (vec {J(ﬂ'*(z,Oo) | z,eg)fl})
since Vogm*(60,2) = Vgvec (J(w*(z,eo) | 2,00) ' Voo(r*(2,60) | z,00)>. As we will see
below, the fact that Vggp(0o,2) # Vegn*(60,2) will not affect our asymptotic results since

sup HVW p(0, z)H < Cy w.p.1 for some Cy >0 implies that the only term in which Veolﬁv(&z)
€Z

ozee

shows up in the proof of Theorem 2 goes to zero in probability at the appropriate rate.

The next step is to show that wx (0, 2) satisfies the result of Lemma A.6 when 6 = 6,:

Lemma A.10 Let Z be as defined in (S3.2) and suppose assumptions (S1.3), (S2), (S3)
and (S4) are satisfied. Take (0,z) € © x Z and let

Ty (6, 2) = argmax Qy(m | 2,6)
we(0,1]2

T (0,2) = T (2) + Ty (Fn(2) | 2,0) " [y (7 (2) | 2,0) — T (2)]
Then sup Hﬂ(%,z) —7?’;;(00,2)” = 0p(N ~/?) and it follows from Lemma A.6 that:

z2€Z
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(A) 7% (80,2) — 7*(80,2) = J (7% (80, 2) | z,eo)f1 [@N(ﬂ*(eo,z) | 2,00) —ﬂ*(eo,z)} + 0p(N ~1/2)

forallz e Z.
(B) As in the proof of Lemma A.2(B), define:

N
~ 1
Son (T | 2,6p) = -7 > Gp(X}, By + ) Kn(Zn —2) forpe{1,2}
N n=1

and let Sy(w|2,0) = ( Siy(m2|2,61) , Soy(m1|2,85) ). Then:

1
fz(2)

T (80, 2)—7*(80,2) = J (7*(80,2) | 2,0) " [§N (7%(B0, 2) | 2,00) — fzx (2)7* (80, 2) | +o,(N /2

forallz € Z.

Proof: A second-order approximation yields:3!
PN (TN (2) | 2,00) —Tn(2) = Gn (17(00,2) | 2,60) — 7" (00,2) — J (7" (B0, 2) | 2,600) [fN(Z) - “*(0072)}
1 ' ~
-3 (12 ® [rrN(z) _ ﬂ*(oo,z)D Vavec [J(rrN(z) | z,oo)] (TTN(z) _ 7r*(90,,2))

with 7y (2) between Ty (z) and 7*(0p, z). As we argued previously, (S1.3), (S2.3) and (S3.2)

‘ = 0,(1) for all m € [0,1]2. Therefore, since we have

imply that sup ||Vxvec [J(ﬂ | z,eo)}
z2€Z

0co
Varvec [J(%N(z) |z,90)} H = 0,(1). Combining

7 (2) € [0,1)2 for all z € Z this implies: sup ’
2€Z

this with eq. (19), the second order approximation yields:
PN (TN (2) | 2,00) —Tn(2) =Pn (7% (00, 2) | 2,00) —7* (B0, 2) — J (1 (B0, 2) | 2,00) [fN(Z) —”*(90,3)}
+ op(N 71/2)

for all z € Z. Using this result and the fact that sup HJAN (Tn(2) | z,oo)*H = 0,(1) (from eq.
2€Z

(20)) we have:
In (®x(2) | 2,60) " [@N(m(z) | 2,6) _fN(z)} -
<J(7r*(00,z) | 2,60) " + [fN (Tn(2) | 2,00) " — J(x*(80,2) | z,oo)lD

X <s5N (7*(80,2) | 2,00) — 7" (60,2) — J (7" (0o, 2) | 2,6) [ﬁN(z) — ﬂ*(oo,z)D +0p(N 1/2)

31Recall that by definition, J (7 | 2,00) = Vi (7r —o(m | 2,00)).
71



We have m*(8p,z) € [0,1)? -a compact set- for all z € Z. Therefore, using Lemma A.2 and

the equilibrium conditions ( @ (7*(8,2) | 2,60) for all z € Z ) we have:

up || (x* (60,2) | 2,60) (B0, 2) | = op(N )

-we had already shown this result holds uniformly in © x Z in the proof of Lemma A.6-.

Combining this with eq. (20) we get:

sup H (jN (Tn(2) | 2,00) " —J(x*(80,2) | z,00)_1> (@N (7*(80,2) | 2,80) —7r*(00,z)> H = 0p(N 1%

Using equations (19)-(20) and the fact that sup HJ(vr*(Oo,z) | z,00) H = 0,(1), we also have:
zeZ

sup H (jN (T (2) | 2,00) " —J (1% (80, 2) | 2,00)_1> (J(ﬂ'*wo,z) | 2,00) [TrN(z)—ﬂ‘*(ao,z)])H = 0p(N %)

Therefore:

In(7n(2) | 2,60) " {@N(TTN(z) | 2,80) —fN(Z)} = J(n*(80,2) | 2,60) " [@N(W*wo’z) | 2,00) — W*(eo,z)}
— [Fx(2) = 7 (80,2)| + 0p(N )

for all z € Z. Therefore:

T (0,2) = 7(80,2) = T (2) = 7 (00,2) + T (Fn(2) | 2,0) " [P (Fw(2) | 2,0) — T (2)|

Tn(2) — 1 (00,2) + J (7" (60, 2) | 2,00) [@N (n* (B0, 2) | 2,60) —w*(oo,z)}
~ [Fn(z) — 7 (60,2)] + 0, (N )
for all z € Z. Simplifying the last expression yields:
7% (8,2) — 7 (60, 2) = J (1*(80,2) | z,ao)_l [@N(ﬂ*(ao,z) | 2,00) — w*(eo,z)} + 0,(N ~1/2)
for all z € Z. From the proof of Lemma A.6 we have:
ﬁ(e,z) —7*(00,2) = J (7" (00, 2) | z,t90)71 [@N (7*(60,2) | 2,00) — ﬂ*(eo,z)} + 0p(N ~1/2)
for all z € Z. This proves part (A) of the lemma. Part (B) follows immediately from the

proof of Lemma A.6. [

Before proceeding, we next show that Vg‘l;\];V(OQ,z) satisfies a result analogous to that of

Lemma A.9:
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Lemma A.11 Let Z be as defined in (S3.2) and suppose assumptions (S1.3), (S2), (S3)

and (S4) are satisfied. Then there exist matrices Vi (n*(80,2) | 2,00) and ®(*(80,z) | 2,00)

2x (k+2) 2x (k+2)

such that

sup [P @0,2) 1 2.00) — Fa2)0 (00 2) | 2,00)| = oo )

zZE
and

N 1 -~ R

Ve, (00,2)—Ver* (8o, 2) = 20 [VN(w*(GO,z) | 2,00)—fz, (2)®(7* (89, 2) | z,00)}+0p(N*1/2)
forallz e 2.
Proof:

Recall that
Vorx(0,2) =(I @ (B (T (2) | 2,0) ~7x(2)]) Vo (vee {Tw(mn(2) | 2,6) 7' })
+ In(Tn(2) | 2,0) Vopn (Tn(2) | 2,6)
Using Lemma A.2, equation (19), assumptions (S1.3), (S2.3), (S3.2) and the fact that
7(z) € [0,1]? for all z and 7*(0,2) € [0,1]? for all z € Z, we can take the same steps as those

of the proof of Lemma A.9 to show that:
In (@ (2) | 2,00) " Ve@n (Tn(2) | 2,00) = J(n*(80,2) | 2.80) " Vo (n*(80.2) | 2,80)

+ fZL(Z) [WN (7r*(00,Z) | z,00) — fZN (Z)F(W*(Oo,z) | Z,Oo)} oy (N )

for all z € Z , with Wy (x | 2,8) and I'(r | 2,8) exactly as defined in the proof of Lemma
A9.
Once again, using Lemma A.2, equation (19), assumptions (S1.3), (52.3), (S3.2) and the fact

that m(z) € [0,1)? for all z and ©*(0, 2) € [0,1]? for all z € Z, we can show that:

Slelg Hvo<vec {jN(TrN(z) |z,00)—1}) _ V0<vec {J(vr*(eo,z) z’ao)_l})H _ (N )

which combined with equation (21) and the equilibrium condition [cp(ﬂ*(eo,z) | 2,00) —
ﬂ*(eo,z)} =0 for all z € Z, we get:
/ ~ _
(12 ® [@N(m(z) | 2,60) —fN(z)D Ve (vec {Tv(mn(2) | 2,60) ' })

_ (I2®[¢N(w*(00,z) | 2,6) —7r*(00,z)D/V9(V€c {J(ﬂ*(eo,z) | z,oo)*l}) +o,(N 71/2)
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for all z € Z. From the second-to-last equation in the proof of Lemma A.6 we have:

1

2@ [§N(7T*(9o,z) | 2,60) — sz (2)7* (80, 2)] + op(N ~V/?)

on(m*(00,2) | 2,00) — " (00, 2) =

forall z € Z.

Combining these results, we have:

vGﬁv(eovz) = J(W*(OO,Z) ‘ Z,oo)AV()(P(W*(OO,Z) | 2,00)

+ f%@ [WN(W*(QO,Z) | 2,00) — fz, (=)L (x" (80, 2) ‘2’00)}
. <12 o [f%(z) [S\N(ﬂ*(gmz) | 2700) _ ]?ZN (Z)W*(oo,z)]D/Vg (VeC {J(ﬂ‘*(o[),z) | 2700)_1}) + OP(N —1/2)

The proof is complete by noting that J(x* (8o, 2) | z,00)_1V94p(1r*(00,z) | 2,60) = Vom* (o, 2)

and letting:
Vi (*(60,2) | 2.60) = Wi (n*(60,2) | 2,600)
+ (I ® Sx (" (60,2) | z,90)>/V0 (vec {7(x(60,2) | 2,60) ' })
®(7*(80,2) | 2,00) = T (" (60, 2) | 2,60)

n <12 ®7r*(00’z)),vo (Vec {J(ﬂ*(aod) | 2,00)71})

We are now ready to prove Theorem 2.

Proof of Theorem 2:

From Lemma 4.1 and assumption (S3.2), p(8, Z) is continuous in © x Z. Combining this with
the continuity of the linear function X’'8+ ar and assumption (S1.3), then /z (W,0, p(0, Z)) is
continuous in S(X) x Z x ©. By assumptions (52.3) and (S3), the set S(X) x Z x © is compact
and therefore the continuity of £z (W8, p(6, Z)) is uniform in S(X) x £ x©. In addition, using
once again Lemma 4.1 and assumption (S3.2), the compactness of Z x © implies that there

exists a C > 0 such that sup Hp(a,z)H <Cw.p.l. Let C = {v € R? : |jv]| < C}. Now, take any
z2eZ
9co

w € {0,1} x S(X) x Z and any 6 € © with the corresponding p(@,2) € C. Then, by uniform

continuity we have that for all M > 0 there exists § > 0 such that p € C and Hp(ﬂ, z)—p” <4
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imply Héz(w,0,p(0,z)) — Ez(w,e,p)H < M. Now let § = min {5 , C — sup Hp(ﬂ,z)”}. Then
zeZ

N bco

6 > 0 and using Lemma 4.3(A) we have that for all € > 0, there exists N3 such that N > N;

implies:

T (6,2) —p(0,z)H > S} <e

Pr< sup
zeZ
0cO

Therefore, N > N5 implies

lz(w,0,p(0,2)) — ez(w,o,ﬁv(e,z))H > M} <e

Pr sup
we{0,1} xS(X)x2Z

0co
and consequently:
1 Y — 1 )
zlelg Ngﬁz(wn,ﬂ,ﬂ}*v(&zn)) -5 ;Bz (wn,O,p(O,zn))' ——0

From assumption (S4.3), the sample is iid. As we mentioned above, Lemma 4.1, assumption
(S3.2) and the continuity of the linear function #’X + am, imply that (z(W,0,p(0,2)) is a
continuous function at each § € © with probability one. By (S3.1), © is compact. We
also know that p(8,Z) € C (a compact set) for all § € © and all Z € Z. Compactness
of {0,1} x S(X) x Z x C implies that there exists ¢ such that ‘EZ(W,B,p(G,Z))‘ < ¢ with
probability one. These properties are sufficient to satisfy the assumptions of Lemma 2.4 in
Newey and McFadden (1994) (dominated uniform convergence theorem) and imply that:

sup

N
0ce %Zgz(w"’o’p(o’z”)) a E[ﬂz(W,e,p(o,Z))]‘ = op(1)

n=1

These results together imply that:

sup

N
sup |3 b2 (1, 0.7(0.,)) ~ E[£2(W.0.9(0.2)]| = 0,01

n=1

From Lemma 4.5 we know that E[(z(W,0,p(6,Z))] is uniquely maximized at 6. By
Lemma 4.1 and assumption (S3.2), we know that E[(z (W00, p(60,Z))] is continuous. The
result immediately above showed that % Zﬁle lz (wn, 0,7 (8, zy,)) converges in probability to
E[tz(W.0,p(0,2))] uniformly in ©. Since 6 maximizes + SN (wn,0,7(8,2,)) in O, all

the conditions of Theorem 2.1 in Newey and McFadden are met and therefore 6 - 0.
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Proof of Theorem 2(B):

With probability approaching one uniformly in © x Z, the estimator 6 satisfies the first order

conditions:

1 ~ o~ — o~ ~ — o~
= > {Votz(wn,0,75(8,2,)) + Vors (8. 20) Valz (.0, 75,6, 24)) } =0
n=1

and (using Lemma 4.1, along with assumption (S3.2)), 7% (8, 2) is an M times differentiable
function of @ for all @ € © and for all z,, (since z,, € Z for all z,,). A first order Taylor series

approximation for 6 around 0, yields:

N o~
826 n?aa j 07 n 4
—% 2w aoa?( 2)) G 6,) -
n=1

(24)
N

1 — , —

= Z{voez (wn, 073,60, 20)) + Vo (B0, 20) Vil z (0,00, 73 (00, 20)) |

with @ between 8 and 0, and:

N 920, (wn,a,ﬁv(ﬁ, zn))
0006’

2|~

n=1

==
M=

Vl99’€Z (me 57 ﬁ(a, zn)) + VOWIEZ (wm 5, ;fv(ga Zn))vo;}:v (ga zn)

Il
—

+ Voo (0, 2,) [Valz (wn, 0,758, 2,)) ® Tipio)] + Ve (8, 2n)/{V1ro'€z (w,,8,7% (8, 2,))

=+ v1r1r/€2‘,' (wm 5, Ev(gv zn)) V(ﬂ?}{/@, zn) }

where I(;49) is a (k+2) x (k+2) identity matrix.
We have:

N 2« 0600’ 600’

62€z(wn,5,ﬁv(§,zn)) 82£z(wn,0 p(0,2,))
0000’ 0000’

1 ia%(wn,éﬁv@,zn))_ [azez(w 00,060, Z H

< sup

n

020z (w,,0,p(8,2,)) Oz (W,00,p(00,2))
N Z 0000’ B 0000’
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Lemma 4.1(A), assumptions (S1.3), (S3.2) and the compactness of S(X) x Z x ©
imply that the functions Velg (W.0,p(0,2)), Veglz(W,0,p(0,2)), Veulz(W,0,p(0,2)) and
Vanlz(W.,0,p(6,Z)) are all uniformly continuous in S(X) x Z x ©. Since 8 € © then using

Lemma 4.2(A) and taking the same steps as above we get: sup Vgéz(wn,g,ﬁv(a, zn)) —

Volz (.00, 2)) | = 0,(1), sup| Vaglz (0,7 8. 20)) — Vaglz(0,8,00,2))|| = o(1),

sup||Voplz (wn,g,;}‘/\,(@, 2n))— Vo lz (wn, 6, p(8, zn))H = o0p(1), and supHVM:Ez (wn,g,;}‘/\,(g, Zn))—
Vnlz (wn,0,p(8, 2,)) H = 0,(1).

The results in Lemma 4.3(B) and the trimming index 1{z,, € Z} imply that SUPHVN;}TV 0,2,)—

Vop(8,2,) = o0p(1) . These results together

= 0p(1) and Slq}LPHVoo'Ev(gv zn) — Vogrp(8,2,)

imply:
012w, 0130 5) Pz o050
9000’ - 9000’ = op(1)

sup
n

6 is intermediate between @ and 6,. Therefore & - 6,. As we argued in the proof of
part (A) of the theorem (a few paragraphs above), from Lemma 4.1 and assumption (S3.2)

we know that sup Hp(&z)” < C for some C > 0. Combining this with assumptions (S1.3),
zeZ
0ce

(52.3) we know that H82£z (w,,0,p(0,2,))/0008'|| is bounded with probability one for all w,,,

all z, € Z and all @ € ©. By Lemma 4.1 and assumption (S3.2) it is also a continuous
function everywhere in ©. Consequently, E[82€z (W,00,p(00,Z ))/8060’] is continuous and

bounded. Once again using Lemma 2.4 in Newey and McFadden, we get:

N -
1 aQKZ(wnaoap(oazn)) 8263 (W;OO,P(oan)) p
v 2 0006’ —E [ 0606’ ] 0

n=1

and consequently:

N 92 N x (D 2
1 Oz (wy,0,m5(0,2,)) Oz (W,00,p(00,2))
N 2 7| |

5000 (25)
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We have:

8262 (’I.U, ovp(av Z))

9000’ =k

VOO’EZ (Wa ovp(av Z)) + VGW’KZ (Wa 6a p(ea Z))Vgp(e, Z)

+ Voefpw, Z)I [Vﬂ-fz (W, 0, p(0, Z)) ® I(k+2)] + Vop(e, Z)/{V,ﬂc)/ﬁz (W, 0,p(0, Z))

+ Vanlz(W.0,0(0,2))Vop(6.Z) |

Now recall that
p(07z) = 7r*(007z) + J(ﬂ'*<0072) ‘ z70)_1 [80(7"*(0073) | 270) —7!'*(0072)]

From the equilibrium conditions, we have: ¢(7*(6o,2) | z,0) — 7*(8o,2) =0 for all z € Z. As

we pointed out in the proof of Lemma 4.3, this yields:

p(6o,2) =1 (0g,2) forallze Z
Vop(6o,2) = J(m*(2,6)) | z,00)71V9<p(7r*(z,00) | 2,00) = Vor*(0p,2) forallzeZ

We do not have Vg p(0o,2) = Vggm* (00, 2) for all z € Z, for:

/ —
Voo p(60,2) = Vogn*(00,2) + (Ig ® Vop(m*(2,00) | z,00)) Vo (vec {J(ﬂ*(z,Oo) | 2,00) 1})
since Vggm*(6p,z) = Vgvec (J(ﬂ*(z,Oo) | z,oo)*lv,,(p(w*(z,oo) | z,ao)). However, from

Lemma 4.2 and assumptions (S1.3), (S2.3) and (S3.2) we have: sup HVGolp(o,Z)H < D for
2€Z
0cO

some D > 0. This is sufficient for E[Vgg/p(eo,Z)’[V,EZ(W,HO,p(é’O,Z)) ® I(k+2)ﬂ to exist.

Using iterated expectations we have:

E[Voop(80,2) [Valz(W.00, p(80, 2)) @ I512)]| =

E[Voofp(amz)/ [E [waz (W.00,p(00,2)) ® I(k+2)] | X,ZH
E{Vggfp(ﬂo,Z)' [E [v,rez (W, 80,7 (60, 2)) ®I(k+2)] | X,ZH —0

where the second-to-last equality uses the fact (mentioned above) that p(8y, Z) = 7*(8y, Z)

everywhere in Z and the last equality uses the fact that £ [V,,E =z (W, 0o, (00, Z )) | X, Z} =0
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for all (X,Z) € S(X) x Z. Therefore, we get:

8205 (W, 80,7 (80, Z
E[vo,,,p(eo,z)'[v,,ez(w,oo, p(60,2)) ®I(k+2)ﬂ - E{ z( 8‘90(%’/ (6o ))]

- E[Voofgz (W,00,7(60,2)) + Vorlz(W,00,7" (00, Z))Ver* (00, Z)
+ Vo™ (6o, Z)/VQ,,,-/EZ (W, 0o, 7 (0o, Z)), + Vo™ (6o, Z)/er/fz (W, 0o, 7 (0o, Z))Vgﬂ'*(eo, Z)]
and Eq. (25) becomes:

N
(9262 wnva ﬂN(a Zn)) p Cx
g 5050 — —Cz (26)

Using Lemmas A.10 and A.11, we can take the exact same steps as those used in the proof

of Theorem 1(B) to show that equation (24) becomes:

9?0z (w0, 7% (0, 2 n))

N Z 0606' 6-00)
= % Z |:a£Z wn,eg;r*(eo,zn)) + EZ(Zn)JO (Zn)_l (E [Y ’ mngzn] - E[Y ’ zn]>:| + Op(N 71/2)
n=1

and using (26) we have:

N *
\/_(0 90) — 1\/1_ Z[aEZ('U)?me(gaﬂ- (00,2n)) +EZ(ZTL)JO(ZTL)_1 (E[Y ’ xn,zn] _ E[Y ’ Zn]>:|
n=1

+ 0p(1)
= VN (8 —80) +0,(1)
where the last equality comes from the asymptotic linear representation of (5 —6y) found

in the proof of Theorem 1(B). This completes the proof. [

Proof of Corollary 2:

If the conditioning signals Z are discrete and the conditions of the corollary are satisfied,
proving Theorems 1 and 2 becomes significantly easier. In particular, we do not need to
rely on Lemma A.1. The objects described in Lemmas 4.2 and 4.3 now converge uniformly
in probability at speed o,(N ~/?). Instead of relying on a result like Lemma A.1, these

uniform convergence results can be proved employing standard dominance arguments (given
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the assumptions of the corollary). Employing the usual Taylor series expansions we can

jump directly to a result equivalent to Lemma A.6 to show that:

(60, 2) — 7 (60, 2) = J(m *figz [2,60) %Z[ Y | ,,2] E[Y!z]}]l{znzz}+op(N ~1/2)

for all z € Z . Similarly, a result equivalent to Lemma A.9 allows to show that:

1 1

Vom (00, ) = Vo (60.2) = 5o D1 |C@n2) ~ BlC(en ) | A 1{zn =2} 0N )

n=1

for some function ((z,z) and for all z € Z. Using these results, the proofs of Theorems 1
2x (k+2)

and 2 proceed in a similar (but simpler) fashion as we did above. Namely, the proof relies

once again on an application of the Central Limit Theorem for U-Statistics, without the need

to employ Taylor series approximations for the expectations of the resulting U-statistics.

Proof of Corollary 3:

The proof would follow basically the exact same steps as the proof presented in the previous
sections, starting with Lemma A.1 all the way through A.11. If the assumptions of the
corollary are satisfied, Collomb and Hardle’s result (the basis for Lemma A.1) are satisfied.

The proof involves no important new considerations and can be safely omitted.

Before proceeding with the proof of Corollary 4 we begin by proving the following result,

which is an extension of Lemma A.1.

Lemma A.12 Let {(X,,Z,)}Y_; be an #id sequence in RX x RE with X, bounded with
probability one. Suppose we have a kernel K : RY — R that is symmetric, bounded and
satisfies the conditions: ||u||-|[K(u)] — 0 as ||ul| — oo, [K(u)du = 1 and the Lipschitz
condition: Iy > 0, ¢ < oo such that |K(u) — K(v)| < cllu — v||7 Yu,v € RE. Suppose the
sequence {hy;N € N} is such that as N — oo: hy — 0 and N'*™%h3l — oo for some

e > 0. Let n: RE x RE X RP — R be a continuously differentiable function that satisfies:
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(X, 2,t)| < 7 < o, HMH < T, < oo and HMH < Ty < 00 w.p.1 for all (X,z,1).

Now let:

Z,—z

Take the set: 2,, = {z € R : fz(z > bN} and define z; = sup ||z|| . We allow
ZEZbN

by — 0. Suppose that by and fz(-) are such that log (z;,) = 0,(N®). Now take any
compact set G € RY. Then we have:
(N'hk)'? sup  |Ru(z,t) — ERn(2,8)| = Op(1) wp.1

ZEZbN
teG

Proof: We now have Z,, = {z € R : fz(2) > by} . Note that Z,, is compact for all
by > 0 (otherwise fz(-) would not be a well-behaved density). Now define zj = sup 2|
262y,

and t* = sup Ht” , both of which are finite by compactness of Z;,, and G. Note that we
teG

have 2, C [~2z; .,z | and G C [—#*,¢*]” . Consider the following two collections of

points in R:
{20,21,...,20y}, where 2z, =—z; + % and Qy=2-2; N
{to.t1,... sy}, where t,=—t"+ % and Sy =2-t'N
note that zo = —2zj, 2qy = 23, to = —t* and ts, =t . Define the following partitions

in RY and R? respectively:

Ay :i207z1a"'7zQN} x {2021, 20y} X X {zo’zl""’zQN},C R*
L‘;irrnes

On :ito,tl,...,tsN} X {to,tl,...,tsN} X - X {to,th...,tsN} C RY

VvV
P times

then, the partitions Ay and Gy satisfy:
VL VP
For all z € Z,: max Hz—vH SW . N

For all t € G: max ||t —rH <
veEA

regn
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The sets Ay and Gy have My = (szNN )L and Ty = (Qt*N )P elements respectively. Take

any (z,t) € Z,,, x G. From now on, we will denote:
Zj = argmin ||z — vH and %, = argmin Ht — r||
veAN rc

Take any t € G and 2z € Z;,, . Let

1

RN(Z,t) =
NI

N
> (X2, t)Kyy(Z, - 2)
n=1

The assumptions of the lemma imply that:

1 . — .
[R(2,8) = Ru(ento)] < - <K-Cl||t ol + Mepllz — 2l + K - G2 —zk||> w.p.1
N

Without loss of generality, assume v = 1 in the Lipschitz condition for the kernel function32.

Then, we get:

C
sup }RN(Z,t) - RN<Zk,tg)’ < W.p.l

— L
ZEZbN NhN
teG

where C = K - C1VP+ (Mec,+ K - Cy) VL. Now let Un(z,t) = Ry(z,t) — ERy(2,t) . The

result above implies that

2C
sup |Un(z,t)| < max |Un(zk,te)| + —F
zEZbN| } ’2:_11 ----- {;{N} ‘ Nh%
teG T N

By the assumptions of the lemma, there exist D; > 0, Dy > 0 such that:

Z,—z2

N

Var

el

n(X,z,t)K(Zh_ z)

N

)] <D VzeZ, tecG

<Dy, VX €eS(X),ZeS(Z),z€ Z,,,tcG

Now take any A > 0. Using Bernstein’s inequality we get:

— NhL A2
2D, +4AD,/3

Pr([Un(z8)] > &) §2-exp( )v;:esz,teG

32For any vy > 0 we can always design the partition Ay so that mJiAn ||z—'v||“Y < % for some finite constant
VEAN
C>0.
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which yields:

_N€A2
2D, +4AD,/3

Pr((V) 2 |Ux(z,0) > A) < z-exp( ) Viez, 1c0

consequently:
1/2 O 1/2
Pr<(N1—€h,LV) kigr’;%NwN(zk,te)H > A) < ; ; Pr((Nl—Ehg) Un (21, t0)| > A)

¢=1,..Tn

_NEAQ
S 2TNMN - exp — —
9D, +4AD,/3

Define A = A — 20/ (N1+EhJL\,)1/2. Then, these results show that:

— NeA2
Pr (Nl_‘shfv)l/2 sup }UN(z,t)‘ >A | <2TwMpy -exp| — —
2EZy 2D1 -+ 4AD2/3

teG
If log (2;,) = 0,(N¥) and Nhy — oo then log (2TyMy)/N° — 0 and A — A
Consequently <log (2T My)/N° — 32) — —A? and TwMy - exp(%) — 0.

Since A > 0 was arbitrary, this proves the result. [

Proof of Corollary 4:

The lemma assumes uniqueness of equilibrium everywhere in S(Z) (i.e, Z = S(Z)). The
proofs of Lemmas A.2-A.11 in Z,,, x © follow from assumptions (S1)-(S4), Lemma A.12 and
the assumption that b% (]\fl_%hf\,L)l/4 — 00. From assumptions (S1)-(S4) we obtain that the
biases of each of the semiparametric objects defined is still of order A} uniformly in Z;, x©.
If assumption (S4.2) is satisfied then b% (]\71_2€l112\,L)1/4 — oo implies that N4 /b2, — 0.

These facts are used to extend the results of Lemma A.2 as:

sup ‘sz (z) - fZ(z)‘ = op(N Y1), sup |Opn (m—p | 2,0p) — op(m—p | zaep)‘ = 0p(N 1)

zEZbN zesz
0,eB

mp €A

and so on, for the rest of the objects defined in Lemma A.2. The rest of the lemmas -

including Lemmas 4.2-4.3- follow from here. To complete the proof of the corollary, we have
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to show that the results of Theorems 1 and 2. Given that the results of Lemmas A.2-A.11
can be extended to the set Z;, x O, all that is left is to characterize the asymptotic behavior
of the trimming function 1{ fz, (2) > by }. To do this, note first that b (]\71_2%?\%)1/4 — 00
implies that Nh&b% /log N — oo and by/hA — oo. These results along with assumption
(52.1-S2.2) and (S4) imply that all the conditions of Lemma 25 in Ichimura (2004) are

satisfied, and we get:

Pr(]l{J?ZN(zn) > by} — 1{ fz(2n) > by} #0 for at least one zn) —0

Therefore, the asymptotic properties of N1 25:1 log F(yn | mn,zn,e)]l{sz (2,) > bN}
are the same as those of N—! ij:l log f(yn | zn,zn,ﬂ)]l{fz(zn) > bN}. Since we have:
{z e RY: fz(2) > by} C 24, then the fact that Lemmas A.2-A.11 hold in Z;,, x©, it follows
that the results of Theorems 1 and 2 hold when the trimming function is Il{fz «(Zn) > by}
Also, by — 0 implies that Z,, — S(Z) and the asymptotic distributions of 6 and 6 do not

depend on any trimming set, as was claimed. [
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