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Abstract

This paper shows that it is important to distinguish between many and weak
instrument problems in applications. We find that using Bekker (1994) standard
errors that account for many instruments fixes the problems with Angrist and
Krueger (1991). We also find that many applications are in a range where this fix
is sufficient. To widen the applicability of these standard errors we give theoretical
results for non Gaussian models with many and many weak instruments.
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1 Introduction

The accuracy of asymptotic inference for instrumental variable (IV) estimators is po-
tentially important for microeconometric practice. Weak instruments, where there is
low correlation between excluded instruments and endogenous variables, and many in-
struments, where there is a large number of overidentifying restrictions, can both cause
innacuracy of asymptotic approximations. This paper suggests that it is important to dis-
tinguish between these problems. In particular, we find that simply using Bekker (1994)
standard errors can greatly alleviate the problems in microeconometric applications, a
finding like that of Hahn and Inoue (2002).

We assert that, for simplicity’s sake, it is important to distinguish between weak in-
strument and many instrument problems. The many instruments problem has relatively
simple solutions. The number of instruments is a choice, and so one solution is just
leave some out, as considered in Donald and Newey (2001). Another solution is to use
the limited information maximum likelihood (LIML) or Fuller (1977) (FULL) estimators
with the Bekker (1994) standard error (BSE). As shown by Morimune (1983) and Bekker
(1994), under normality LIML is still approximately normal with many instruments, and
the BSE adjust for excess dispersion. In contrast, the weak instrument (WI) problem is
more difficult to solve. To obtain WI confidence intervals one has to invert the Kleiber-
gen (2002) or Moreira (2003) test statistics, which is inherently more difficult than just
correcting standard errors or dropping insruments.

In this paper we widen the applicability of the BSE by showing that the Bekker
(1994) results hold without normality. This extension is important because the normal-
ity assumption may often be violated in practice, as we show it to be in the Angrist
and Krueger (1991) returns to schooling application. We replace normality by condi-
tional first and second moment assumptions specified below. We also show that FULL
is asymptotically equivalent to LIML under Bekker (1994) asymptotics.

To find a way to relax the conditional first and second moment restrictions we also

consider asymptotic inference under the many weak instrument asymptotics of Chao and
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Swanson (2002) and Stock and Yogo (2003). We obtain the same limiting distribution
for LIML and FULL as do Stock and Yogo (2003) under a weaker condition than theirs,
that the number of instruments grows slower than the sample size. More importantly,
we show that the BSE are consistent under this asymptotics, so that Wald inference can
be conducted in the usual way. We also show that the Kleibergen (2003) test statistic is
asymptot.ically correct under many weak instruments.

As pointed out by Hahn, Hausman, and Kuersteiner (2004), FULL provides an al-
ternative to LIML that has much better MSE properties when the instruments are very
weak. For this reason we focus on the FULL estimator in this paper, although we give
LIML results for comparison purposes. We extend the previous Monte Carlo results by
considering confidence interval coverage probabilities.

As evidence that the distinction between weak and many instruments is useful in
practice, we offer a fresh analysis of the returns to schooling application of Angrist and
Krueger (1991). We find that confidence intervals based on FULL and LIML, with the
BSE, give nearly identical results to WI confidence intervals. This finding is consistent
with Angrist and Krueger (1991) suffering from a many instrument problem rather than
a weak instrument one because, as shown in Bekker and Kleibergen (2003), WI intervals
are nearly correct under many instruments, while the BSE do not fix the weak instrument
problem. We also find that using all the instruments is more informative than just using
a few. We verify these findings in a Monte Carlo study based on the empirical values of
parameters, and show that the many instrument approximation is very accurate. These
results are consistent with previous Monte Carlo results of Hahn and Inoue (2002).

The reduced form F-statistic (for the instruments excluded from the structural equa-
tion) does not distinguish between many instrument and weak instrument problems. If
there are many instruments the F-statistic can be arbitrarily small, but FULL and LIML
nearly normal, with variability accounted for by the BSE. For this reason we suggest use
of the concentration parameter, that is the F-statistic times the number of instruments,
for determining whether there is a weak instrument problem. Of course, in the common

case of exact identification, the concentration parameter coincides with the F-statistic,
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but there are a number of applications that are overidentified, including of Angrist and
Krueger (1991).

To help determine how large the concentration parameter should be in practice, we
give calculation for limits under Staiger and Stock (1997) weak instrument asymptotics,
including the BSE. The goal of these calculations is to help determine ”cutoff” values
for the concentration parameter, where f,he asymptotics works well above the ”cutoffs”.
We find that for FULL, concentration parameters in the range of 15-20 give coverage
probabilities within 10 percent of nominal, with slightly higher values required with more
overidentifying restrictions. LIML is close to median unbiased for much smaller values
of the concentration parameter, in the range of 5-10, but has less accurate coverage
probabilities anci wider confidence intervals than FULL. We also find that with many
instruments the BSE can give good results even when the F-statistic is very low, e.g. as

low as one.

2 Models and Estimators

The model we consider is given by
T€1 - T)x(GG(5>91+TE<L1’

TXZKKI;IG + TZG'
For weak and many instrument asymptotic approximations, Z and II are implicitly al-
lowed to depend on T'. Many instruments corresponds to K growing with 7" and weak
instruments to II shrinking with 7'. This model differs somewhat from Bekker (1994), in
that we assume that the reduced form is correctly specified. For notational convenience
we suppress dependence of Z and IT on 7.

To describe the estimators let P; = Z(Z'Z)~Z' where A~ denotes any symmetric
gencralized inverse of a matrix A, i.e. A is symmetric and satifies AA~A = A. We

consider estimators of the form
0 = (X'PzX — aX'X) (X' Py — 6X'y).
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for some choice of a. This class includes all of the familiar k-class estimators, for & =
k/(1+ k), except the least squares estimator. Special cases of these estimators are two-
stage least squares (2SLS), where & = 0, and LIML, where & = & and & is the smallest
eigenvalue of the matrix (X'X) ' X'P,X for X = [y, X]. FULL is also a member of this
class of estimators, where & = [@ — (1 — &)C/T]/[1 — (1 — &)C/T] for some constant
C. FULL has moments of all orders, is approximately mean unbiased for C' = 1, and is
second order admissable for C' > 4 under standard large sample, fixed IT asymptotics.

For use in inference we consider the asymptotic variance estimator of Bekker (1994).
This variance estimator is consistent under standard asymptotics, many instrument as-
ymptotics, and many weak instrument asymptotics. We give a version of this estimator
for any k-class estimator as described above and show its consistency. Let 4@ = y — X6
and 62 = @/'a/(T — G). The asymptotic variance estimator is given by

A = H'SH ' H=XPX-aX'X,

) = 62[(1—a&)J —aH), J=X'P;X —aX'0d/ X /i 0.
We will show that when normalized appropriately A is a consistent estimator of the
asymptotic variance of 6. In particular, inference carried out as if § were Gaussian with
mean &y and variance A is asymptotically correct. It can also be shown that A is identical
to the Bekker (1994) estimator of the asymptotic variance of LIMLwhen § is the LIML

estimadtor.

3 Quarter of Birth and Returns to Schooling

A much analyzed microeconometric application is Angrist and Krueger’s (1991) study
of the returns to schooling using quarter of birth as an instrument. Bound, Jaeger,
and Baker (1996) asserted that this application suffered from weak instrument prob-
lems, which helped to motivate much of the theoretical econometric work. For example,
- Staiger and Stock (1997) considered this study as their main application. Thus, it seems
appropriate to begin our discussion with this application. The data we consider is the

1930-1939 cohort, as considered in Donald and Newey (2001).
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Figures 1-5 are graphs of confidence intervals at different significance levels using
several different methods. The confidence intervals we consider are based on Two-Stage
Least Squares (25LS) with the usual (asymptotic) standard errors, LIML with usual
standard errors, LIML with the Bekker (1994) standard errors that are robust to many
instruments, and the Kleibergen (2002) confidence interval which is robust to weak in-
struments. Results for the Fuller estimator give similar answers to LIML.

Figure 1 shows that with 3 excluded instruments (two overidentifying restrictions),
2SLS and WI confidence intervals using Kleibergen (2002) are very similar. The main
difference scems to be a slight horizontal shift. Since the WI confidence intervals are cen-
tered about the LIML estimator, this shift corresponds to a slight difference in the LIML
and 25LS estimators. This difference is consistent with 2SLS having slightly higher bias
than LIML. This result is consistent with no weak instrument problem for 3 instruments,
which was asserted by Bound, Jaeger, and Baker (1996). Figure 2 shows that with 180
excluded instruments (179 overidentifying restrictions) the confidence intervals are quite
different. In particular, there is a much more pronounced shift in the 2SLS location,
as well as smaller dispersion. These results are consistent with a larger bias in 2SLS
resulting from the many instruments.

Figure 3 compares the confidence interval for LIML based on the usual standard error
formula for 180 instruments with the WI confidence interval. Here we find that the WI
interval is wider than the usual one. Figure 4 compares the WI interval with one based
on the BSE. Here we find that the WI interval is nearly identical to the BSE one. Thus,
using Bekker (1994) standard errors has the same effect as using the WI interval in this
application.

It is also interesting to compare Figures 1 and 4. Because there are on the same
scale, it is easy to see that the confidence intervals in Figure 4 are narrower than those
in Figure 1. In this sense using all 180 instruments turns out to be more informative
in this application than just using 3. This is also consistent with the results shown in
Figure 5, which gives BSE and WI confidence intervals for the 180 instrument case when

age and age squared are added as covariates. Again, the confidence intervals are almost
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identical. Also, even with age and age squared added as covariates, we find that the
data are informative about returns to schooling when 180 instruments are used, and that
many instrument confidence intervals are similar to the weak instrument ones. Cruz
and Moreria (2003) found similar W1 intervals in this application using Moreira’s (2003)
conditional likelihood ratio method.

It is interesting to note that following Donald and Newey’s (2001) approach would
also lead to the conclusion that using all of the instruments was informative, if Bekker
standard errors were used for the LIML estimator. They found that with 2SLS a mean
square error criteria chooses just 3 instruments. They also found that with LIML a mean-
suare error criteria chooses all 180 instruments. The 2SLS estimator with 3 instruments
is .1077 with standard error .0195. The LIML estimator with 180 instruments is .1089
with BSE .0166. Thus, the estimated returns to schooling are similar for 2SLS with 3
instruments and for LIML with 180 instruments, but the BSE are smaller for the 180
instruments, suggesting using all the instruments is more informative.

In summary, we find that with a few instruments the WI and usual standard errors
give very similar results, while with many instruments the WI and BSE intervals are very
similar. As shown in Bekker and Kleibergen (2003), W1 intervals based on Kleibergen
(2002) provide a bound on many instrument confidence intervals which is very tight when
there are few instruments relative to the sample size. Furthermore, there is no reason to
think that if there were weak instruments the BSE and WI intervals would be similar.
Thus, Figures 1-5 are consistent with there being a many instrument problem in this
application rather than a weak instrument problem.

More convincing evidence is provided by a Monte Carlo study of the properties of
the estimators based on the full sample. We carried out two experiments, one where
the reduced form had three excluded instrumental variables, and one where the reduced
form had 180 excluded instrumental variables. The disturbances were chosen to be
Gaussian, and the parameters of the model to correspond to the estimates obtained from
the application. Table 1 reports the results of this experiment, giving bias, mean-square

error, and coverage probability for nominal 95 percent confidence intervals based on the
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estimator and the usual standard error. We find that with 3 excluded instruments all
of the estimators perform well, including 2SLS. We also find that with 180 instruments,
the coverage of the standard 2SLS and LIML confidence intervals is quite poor, but that
with Bekker standard errors the LIML confidence intervals are jbust right. Thus, in this
Monte Carlo study we find evidence that using the Bekker (1994) standard errors takes

care of whatever inference problem might be present in this data.

Table 1
Males born 1930-1939. 1980 IPUMS

Full sample. n =329,509, 8 = .0953
3 instruments, I1'22'I1/0? = 98.60
Bias/Beta MSE*100  Size

25LS -0.0061 0.0420 0.051
LIML 0.0011 0.0440

sel 0.056
Bekker 0.052
Fuller 1 -0.0027 0.0430

Bekker 0.049
Kleibergen 0.056

180 instruments, II'z2'TI /o = 436.98

2S5LS -0.0988 0.0151 0.221
LIML 0.0012 0.0127

sel 0.155
Bekker 0.050
Fuller 1 0.0005 0.0126

Bekker 0.051
Kleibergen 0.051

In summary, we find that using Bekker (1994) standard errors fixes the inference
problem in the Angrist and Krueger (1991) application, and produces confidence intervals
that are very similar to weak instrument intervals. These results are consistent with the
usual inference methods being incorrect because of a many intstruments problem rather

than a weak instruments problem.

4 'The Concentration Parameter Versus the F-Statistic

To reconcile our results with those of the previous literature, we make the claim that

the concentration parameter provides a better measure of whether instruments are weak
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than does the F-statistic. In the case of one endogenous variable and no covariates, an
estimate of the concentration parameter is nR?/(1 — R?), where R? is the r-squared of
the reduced form. The F-statistic is this divided by the number of instruments. Under
the many instrument asymptotics of Morimune (1983) and Bekker (1994), the F-statistic
will converge to a constant, that can be arbitrarily small. Thus, even though LIML is
becoming normally distributed, the F-statistic could indicate weak instruments. In con-
trast, the concentration parameter goes to infinity under many instrument asymptotics,
and thus seems a better measure of how well the asymptotic approximation is working.

The central role of the concentration parameter in determining the accuracy of the
asymptotic approximation has been well understood since the early work in simultane-
ous equations; see Rothenberg (1984). Our purpose is to determine just how large the
concentration parameter needs fo be to obtain accurate coverage probabilities and tight
confidence intervals for the FULL and LIML estimators with the BSE. We will show that
the BSE account well for the presence of overidentifying restrictions.

For these purposes we consider the weak instrument limit of the FULL and LIML
estimators and t-ratios under the Staiger and Stock (1997) asymptotics. This limit is
obtained by letting the sample size to go infinity while holding the concentration para-
meter fixed. As shown in Staiger and Stock (1997), it provides excellent approximations
to small sample distributions. Furthermore, it seems very appropriate for microecono-
metric settings, where the sample size is often quite large relative to the concentration
parameter.

Tables 2 and 3 give results for the median, interquartile range, and coverage proba-
bility of nominal 5 percent confidence intervals based on BSE for LIML and FULL, with
C =1 for FULL, for a range of number of instruments K and concentration parameter
mu’2. The value of rho is set to .5 throughout these tables. Table 2 gives results for
several different numbers of instruments. Table 3 focus on the exactly identified case. We
find that LIML is nearly (median) unbiased for small values of the concentration parame-
ter, but that it has large dispersion. In Table 3, once the concentration parameter reaches

5 the coverage probabilities for the LIML estimator are .4 or above, but they converge
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slowly to their nominal value as the concentration parameter rises. FULL is much less
dispersed for small concentration parameters than is LIML but more biased. Its coverage
probability approaches the nominal value faster, but is further away for small values of
the concentration parameter. Overall with K=1 we see quite good results for LIML once
the concentration parameter reaches about 10, with FULL being less dispersed always
and having a more accurate coverage probability once the parameter reaches 15. Table 2
shows similar results except that the concentration parameter needs to be larger for good
results the more instruments there are. For example, with K=4 LIML is nearly unbiased
with a good coverage probability with a concentration parameter of about 8. Also, in
Table 2, letting the number of instruments grow at the same rate as the concentration
parameter leads to accurate asymptotic approximations even when the raio (i.e. the F-
statistic) is small. For example, with a ratio mu"2/K=1, the asymptotic approximaiton
is quite accurate at K=16, a remarkably small value.

As further evidence we offer the results of a few Monte Carlo studies. Tables 4, 5,
and 6 show results when the concentration parameter is 10, 20, and 35 respectively, with
a sample size of 100, for several different numbers of instruments, and for correlation
coefficient equal to .4 and .6. Results are not as good as in Tables 2 and 3, which may
be do to the very small sample size. With a concentration parvameter of 10 (in Table
4), the asymptotic approximation is not very accurate, even for the one instrument case.
In particular, we find that the bias of LIML increases substantially as the number of
instruments increase. However, for concentration parameter 35 the asymptotic approx-
imation is quite good, even for large numbers of instruments. In particular, the bias
of LIML increases very little with the number of instruments. A‘lso7 the use of Bekker
(1994) standard errors makes the coverage probabilities for LIML confidence intervals
remarkably stable across the number of instruments.

We also carried out Monte Carlo work for larger values of the concentration parameter.
For brevity, we do not report results here. They all give improvements over the results for
a concentration parameter of 35, which are quite good. These Monte Carlo results also

show how the F-statistic can give a misleading picture concerning the accuracy of the
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asymptotic approximation. With a concentration parameter of 20 and 10 instruments,
the expected value of the F-statistic would be about 2, which is in the range that would
be widely considered in the literature to give a weak instrument problem. Nevertheless,
the LIML estimator with Becker standard errors performs quite well in the case, having
a bias of less than .01 and having nominal 5% coverage probabilities of .432 for p = 4
and .571 for p = .6.

These results are also consistent with recent Monte Carlo work of Davidson and
MacKinnon (2004). From careful examination of their graphs it appears that with few
instruments the bias of LIML is very small once the concentration parameter exceeds 10,
and that the variance of LIML is quite small once the concentration parameter exceeds
20. |

Here we have focused on LIML and FULL with the BSE because, in the overidentified
case, 25LS tends to be much more poorly behaved. In particular, its bias increases very
rapidly with the number of overidentifying restrictions, as is suggested by the higher-order
asymptotics. Partly as a result, the coverage probability for 2SLS confidence intervals
also deterioate rapidly. Also, as we will discuss below, there isi theoretical reason to
expect LIML to have lower bias than 2SLS in the case of weak instruments. For these
reasons we prefer FULL LIML to 2SLS in the weak instrument setting.

Returning now to the quarter of birth, returns to schooling application, it is interesting
to note that with 3 excluded instruments the concentration parameter, that is three times
the F-statistic, is equal to 98.60. With 180 instruments the concentration parameter is
436.98. Both of these are well up in the range where we would expect good performance
of FULL and LIML with Bekker standard errors, as we found in the Monte Carlo results
reported above. In contrast, with 180 instruments, the F-statistic would be less than 3,
which is in the range that was considered weak instruments by Bound, Jaegar and Baker
(1996).

To consider wider implications for empirical practice we have examined some of the
existing empirical studies that use instrumental variables and report reduced form results.

Table 7 gives the value of the concentration parameter from empirical studies for the last
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five years of the AER, JPE, and QJE.

Empirical Results: All papers last five years, three journals.
Num Papers Median Q10 Q25 Q75 Q90

K 57 2 1 2 425 3
mu’ 2 28 236 895 127 105 588
rho 22 279 022 .0735 466  .555

several studies. Here most of the concentration parameters seem to be in a range
where the BSE would work well. From these results we draw the tentative conclusion
that for many of the studies we consider the instruments are strong enough so that the
usual asymptotic approximation for FULL and LIML, although there are a mumber of

exceptions in the lower tail of the concentration parameter distribution.

5 Improved Inference with Weak Instruments

As discussed in Staiger and Stock (1997), the weak instrument limit of the 2SLS and LIML
estimators are the finite sample distributions of the 2SLS and LIMLK estimator, where
the sample size is equal to the square root, of the concentration parameter. Consequently,
asymptotic results that have been shown for 2SLS and LIML hold under weak instruments
as the concentration parameter grows. In particular, as the concentration parameter
grows, the LIML limit will have less median bias than the 2SLS. Also, as the concentration
parameter grows at the same rate as the number of instruments, the ratio of the LIML
estimator to the BSE will converge to a standard normal.

Under weak instruments, an unbiased estimator of the concentation parameter is

given by
Y'Z(Z'Z)'Z'Y )6k — K.

This provides an alternative way to estimate the concentration parameter that should be
more accurate and may be useful knowing when to use a weak instrument, approximation.
Some Monte Carlo work on such a procedure was done. It leads to accurate results,
except when the true concentration parameter is around the cutoff value for using weak

instruments.
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One approach to improved approximation is to use the weak instrument limit, plug-
ging in estimates of the concentration parameter and rho, to obtain critical values for
confidence intervals and tests. One can show, using the usual bootstrap arguments, that
this gives an improved approximation as the concentration parameter grows (with either
fixed number of instruments or the number growing at the same rate). The rapidity with
which the asymptotic approximation works well as the concentration parameter grows
suggests this approach might be useful. We leave examination of this approach to the

next version of the paper.

6 Many Instrument Asymptotics Without Normal-
ity

One highlight of the results so far is the accuracy imparted to the confidence intervals by
the BSE. One problem for applying the results of Bekker (1994) in practice is that they
assume the disturbances are Gaussian, i.e. normally distributed. This assumption may
often be violated in practice. For example, Figure 6 gives a plot of a kernel estimator
of the structural residual density from 2SLS and a plot of a Gaussian density with the
same mean and variance as the kernel density. We find that the actual residual density
is thicker tailed and more peaked than the Gaussian.

To help widen the field of application of many instrument asymptotics, we give here
results that allow for non-Gaussian disturbances. We first consider many instrument
asymptotics, where the number of instruments K grows at the same rate as the sample
size. We will also consider many weak instrument asymptotics, where K grows slower
than 7', but K grows at the same rate as the degree of identification.

For the many instrument asymptotics we will consider Z as nonrandom. Alternatively,
one could interpret the following results as being conditional on Z. We will make use of
two assumptions, the first of which is for consistency and the second of which is added

for asymptotic normality. Let Z;, us, Vi denote the t** row of Z, u, and V respectively.

Assumption 1: (uy, Vi), ..., (up, Vy) are iid. with mean zero and finite fourth
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moments, the variance of (u, V}) is nonsingular, Z'Z is nonsingular, and as T — oo

there is a scalar a with 0 < @ < 1 and a positive definite matrix @ such that
K/T — o, TZ'Z1)T — Q.

This condition allows the number of instruments to grow at the same rate as the
sample size, but requires that II'Z’ZII/T converges. In this sense adding additional in-
struments does not add information. The restriction that Z’Z is nonsingular is essentially
a normalization. Alternatively, we could interpret K as the rank of Z'Z. For the second
assumption, let oy, = EViw), 02 = E[u?], v = oyy/o?, and V = V — uvy, having t**

row V.

Assumption 2: E[u,|V;] = 0, E[u2|V}] = 02, for some p > 2, E[|u?|V;] is bounded,
and max,<p |11Z||/v/T — 0.

The vector V, consists of residuals from the population regression of V; on u; and so
satisfies E[f/tut] = 0 by construction. Under joint normality of (u;, V;), u, and V, are
independent, so the first two conditions automatically hold. In general these two condi-
tions weaken the joint normality restriction to first and second moment independence of
uy from f/t The other two conditions are useful for the central limit theorem, with the
last one implying asymptotic normality of II'Z'u/ VT. It is interesting to note that no
other restrictions are imposed on Z.

The following is a consistency result for the class of estimators described in Section

2.
THEOREM 1: If Assumption 1 is satisfied and & -~ o then § —2 &,. Also, for LIML,
a % o

To interpret the condition & = @, note that the estimator é satisfies

X'PyX @X’X)_l (X’qu ) X’u)
T T T ANA

(o2}
ll

50+(

(6.1)
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With fixed instruments X'Pyu/T -2+ 0. With many instrument, this no longer holds.

By a standard calculation we know that for scalar X,
E[X'Pzu] = E[V'Pzu] = trE[Pyu'V] = oyutr(Pz) = oy,rank(Z). (6.2)

Then, because rank(Z) = K grows at the same rate as T, E[X'P,u/T| does not shrink

to zero as T grows. In fact, it turns out that X' Pyu/T -2, aoy,, Therefore, for & - a,

X’qu AX/U,
-
T T

» ‘
—— QOy, — oy, = 0,

leading to consistency. The LIML result is explained by the fact that & = @' Pzu/4'0.
When the numerator and denominator are each divided by 7', they will converge to ac?
and o2 repectively, so that & —— a.

The next result shows asymptotic normality of the estimators under many instrument,

asymptotics. Let Q = E[V;V/].
THEOREM 2: If Assumptions 1 and 2 are satisfied and & = & + 0,(1/V/T) then

VT(5 = 80) -5 N(0,A), TA -2 A,
QTOQ .

A = aiQ_l—FaZl “

We find that, as in Bekker (1994), under many instruments the asymptotic variance of
LIML is larger than the asymptotic variance 02! under fixed instrument asymptotics.
We also find that any of the estimators with & asymptotically close to the LIML & will
be asymptotically normal with the same asymptotic variance as LIML. In particular, for
FULL,

&—a=—[(1-a&?°C/T)/L - (1 - &)C/T] = 0,(1/VT),

so that FULL has the same asymptotic variance as LIML under many instrument as-
ymptotics.
We can also compare the asymptotic variance of the LIML estimator with another

estimator § based on an explicity bias correction with & = K /T. Note that

K

V(B ~ b0) = (X'(P — ) X/T) " X'(P, — 2 )u/VT.
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Similarly to the derivations in the Appendix,
! K p
X(PZ—?)X/T—»Q—Fon—a(Q%—Q) =(1-0a)Q.
Assume that VT (K /T — o) — 0, so that (K/T — @) X'u/T 2 0, we have

X'(Pz - {;)u/ﬁ = X'(Pz — al)u/VT + o,(1)
= (1-a)I'Z'w/VT + V'(P; — al)u/VT + 0,(1)
= (1-a)I'Z'u/VT + V'(Pz — al)u/vT

+yu (Py — al)u/VT + 0,(1).

The sum of first two terms following the last equality are identical to those that appear in
the LIML derivation, so that the variance of their sum will converge to 3. Furthermore,
the last term will be uncorrelated with each of those terms if third moments of Uu; are
zero conditional on V. Therefore, under these conditions the asymptotic variance.of
X'(Pz — K/T)u/~/T will be larger than the corresponding one for LIML, and hence the
asymptotic variance of the bias corrected estimator larger than that of LIML. For many
weak instrument asymptotics, Chao and Swanson (2004) carry out an analogous efficiency
comparison, finding that LIML is eflicient relative to a wide class other estimators when
the disturbances have an elliptically symmetric distribution.

An alternative approach to accounting for many instruments is asymptotics like that
of Chao and Swanson (2002), where the number of instruments grows slower than the
sample size but the concentration parameter grows at the same rate as the number
of instruments. This type of aproximation also seems well suited to microeconometric
applications, where often identification is not very strong and the sample size is very
large. We show asymptotic normality of k-class estimators when K /T — 0. We also
show that the BSE remains consistent under this asymptotics and that the Kleibergen
(2003) confidence intervals are asymptotically correct under this asymptotics.

For this asymptotics it is convenient to switch to the case where Zy is ii.d. along with

ug and V;. The following assumption imposes this and other conditions for consistency.
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Assumption 3: (uy, Vi, 7Z1),..., (ug, Vp, Z7) are iid. with finite fourth moments,
E(ug, Vi) Zy] = 0, Var((w, V;)| Z,) is constant and nonsingular, for a positive constant C,
Eluf|Z) < C, Bl|Vi|l*| 2] < C, E|Z.2]] is nonsingular, K/T — 0, TE [V Z,]|*] /K* —
0, E{ZI(E[2:2))"*Z,}?]/KT — 0, and there is a nonsingular matrix Q with

TWE[Z,Z)/ K — Q. (6.3)

Equation (6.3) is the critical condition leading to many weak instruments asymptotics.
An example is given by scalar Xy, E[Z,Z]] = Ix, and 11 = B(1/V/T,...,1/v/T)'. In this
case TI'E[Z,Z]|]11/K = B?. Here each reduce form coeflicient goes to zero at the same
rate as 1/ VT, that is like weak instruments, but the number of instruments grows with
the sample size.

Assumption 3 also includes rate conditions. If the elements of Z, are uniformly
bounded under the normalization E[Z,Z]] = Ik, so that ||Z,||> < CK for a constant C,
then K/T — 0 will suffice for these conditions. To see this, note that ||T1||* = O(K/T),

so that

TE[|0'z)*| /K> < CT|T|*E[TZ[)/K = CT|T||' /K = O(K/T) — 0,
E[(Z)Z)*)KT < CK*/KT =CK/T — 0.

For asymptotic normality we add another rate condition.
Assumption 4: tr(E[|Z|* Z,Z)]?)/K*T — 0.

For bounded Z;, this rate conditions will also be satisfied when K/T — 0, since

then

tr(E[||Z\* 2.2/ K*T < Ctr(1%)/T — 0.

Assumption 3 will suffice for consistency.

THEOREM 3: If Assumption 8 is satisfied and Ta/K - 1 then & -2 §,. Also, for
LIML, Ta)K -2 1.

[16]



The condition that Té/K - 1 is analogous to the condition & 2, & from Theorern

1. The estimator & satisfies

X'P;X X'X

X'Pzu X'u
TA K _1
K ( O‘/ ) T ) (

2 (16K,

6 =80+ ( (6.4)

We know by the law of large numbers that X'u/T £+ oy, and it also turns out that,
similarly to equation (6.2), X'Pzu/K — oy, so the right hand side should converge to
zero under Té/K - 1. Also, under Assumption 3, X'P;X/K — X'X/T L, Q, leading
to consistency of d.

The next result is asymptotic normality under many weak instruments.
THEOREM 4: If Assumptions 3 and 4 are satisfied and & = & + 0,(V K /T) then

VE($ - 85) -5 N(0,A), KA -2 A,
A = 2Q' +a2Q70Q

This result does not impose any restrictions on the conditional distribution of 1w, given
V,, unlike Theorem 2, and is more general in that sense.

The approximations to the variance of § from Theorems 2 and 4 are quite close to
each other when K/T is small. If we consider II'E[Z,Z))Il ~ II'Z'ZI1/T, meaning the
expressions are close, and a ~ K/T then Q ~ (T'/K)Q, so that

ANK =~ ¢2Q7YT+ (K/T)o*Q™'QQ /T,
MT =~ o2Q7 YT +[(K/T)/(1 - K/T)|o:Q7'QQ™Y/T.

Thus, the variance approximations for § for the Bekker (1994) and many weak instrument
asymptotics differ only by the factor 1/(1 — K/T) in the second term. When the number
of instruments is small relative to the sample size this factor will be very close to 1, so
the variance approximations will differ little. For example, for the Angrist and Krueger

application, where K is 180 and T is over 320,000, the differences in the approximate

variances are tiny.
The Kleibergen (2003) confidence intervals turn out to be asymptotically correct un-

der the weak instrument asymptotics. In contrast, under Bekker (1994) asymptotics the

[17]



Kleibergen confidence intervals provide only bounds, as shown by Bekker and Kleibergen
(2003). It does turn out that the bounds are nearly sharp when K/T is close to zero.
The intuition is that the Kleibergen confidence intervals are only wrong under Bekker
(1994) asymptotics because of the extra term, which ié close to one in most applications.

To state the result, let u(6) =y — X6, X(6) = X — u(6)[u(6) X/u(8)'u(d))]

and

?

S(B) = Tu(8) Pz X (8)[X(6) P, X (8)] ' X (8) Pzu(8) /u(8) u(8).
THEOREM 5: If Assumptions 3 and 4 are satisfied then S(f,) 4, x*(p).

Because of this one can form joint confidence intervals for the vector 5y by inverting
the Kleibergen (2002). However, since we have asymptotic normality and a consistent es-
timator of the asymptotic variance, it is simpler to just proceed with Wald type inference

in the usual way.

7 Appendix: Proofs of Theorems.

Throughout, let C' denote a generic positive constant that may be different in different
uses.

LeMMA Al: If (us, v, 2) are independent with Elu;|z;] = Elvz] = 0, Elul|z] < C,
E[v}z]) <C, zis K x 1, then for P, = Z(Z'Z)"Z' and Z = (21, ..., z,),

w' Pzv — E[u' Pzu|Z) = O,(VK).

Proof: Let oy = Eluwwuilz), 1wl = E[(w)|z), 12, = El(v;)|z]. By iid. data,
Eut'|Z) = diag(0u1s .., Ouwn) = L. Then

Eu' Pyv|Z] = tr(PzE[vi/|Z]) = tr(P,T).

[18]



Also, for Py = [p;]?

ii=1>
E[(v' Pzv)?| 2] (7.5)
= i Pigpre Blusvyurve| 2] = iPiE[U? vz +{ Zn: (PisDsj + P5) OuviOuns + Do L)
i k=1 =1 itj=1
= Zpu{E V) 2i] = 20uiOuns — ittt} + tr(PyT)? + ;il P (OuiGuvs + Hasil;)
< CZp“—l—CZp”sz‘rPZ Xn: .+ tr(Pgl)?
im1 ij=1 =1
We have

ol o= ZZ’ZZ ZZ’ Z)"Z,
=1

1,7=1

= tr((Z'Z)" Z’Z(Z 7)-2'2) = tr((Z'2)"2'7) < K.
Then equation (7.5) gives
B|(u'Pzv — E['Pso|2])*|Z) < C Y ply < CK,
ig=1

so the conclusion follows by the conditional Markov inequality. Q.E.D.

LEMMA A2: If Assumption 1 is satisfied then for Q = Var(u; + V/6, V), Q = F =
0@ Q)
Qb Q |’

X'X|T 5 Q+Q,X'PX)T 2 at+ Q.

Proof: First, for V = [u + Vo, V], V'V/T - Q holds by Khintchines law of large
numbers. Also, for IT = [IIéy, IT] we have IT'Z'ZII/T — Q. Also, for V; equal to the j*
column of V, E[II'Z'V;/T (ﬁ’Z’Vj/Ty] =Q,IVZ'Z1)T? — 0, we have I'Z'V /T =
0. The first conclusion then follows from

X'X)T = (ZI1+ VY (20 + V)T.

and the triangle inequality. Also, note that E[V'P,V /T] = (K/T)Q, so by Lemma
Al, applied to each element of the matrix V'PzV/T, we find that V'P,V/T — af) =

[19]



O,(VK/T) + (K/T — a)Q -2 0. The second conclusion then follows from the triangle

inequality and
X'P,X)T=V'P, V)T +zII'V/T+V'ZII)T +I'Z' Z1I)T.Q.E.D.

Proof of Theorem 1: By Lemma A2, when & £+ o we have

X'P;X XX
-

T T —al+Q —-a(2+Q)=(1-0a)Q,

which is nonsingular by Assumption 1. Also, by Lemma Al,
V' Pyu/T = E[V' Pgu/T) 4+ Op(VK|T) = (K/T)ov, + 0,(1) -2 aoy,

and X'u/T ¥ oy, also holds. The first conclusion then follows from eq. (6.1) and the
continuous mapping theorem.

To prové the second conclusion, note that for ¢ > 0 and b > 0, (aa+0)/(a+b) > a,with
equality if b = 0. By Assumption 1 Q is nonsingular, so for any vector ¢ with ||C]| = 1

we have o
(a2 + Q)¢
R(C) = 22T )5
=
with equality if and only if ¢'Q¢ = 0. Let R(¢) = ('X'P,X(/¢'X’X¢. By Lemma A2

> Q,

R(¢) £+ R(¢) and this convergence can be shown to be uniform in ¢ with [[¢]] = 1
by standard arguments. Also, for ¢* = (1,—64)/ [|(1,=64)||, we have Q(* = 0, so that,
R((*) = «. Furthermore, by standard matrix results i = minj¢|-1 R(C) is the smallest
root u of X'P;X(¢ = pX'X(. Multiplying through by (X'X)~!, i will also be the
smallest root of the equation (X'X) ' X'P;X( = p(,i.e. the smallest eigenvalue of the
matrix (X'X)‘lX’PZX, SO & = minj¢|=1 f{(é) It then follows by standard arguments
that

a—a= leCn”l:lrl1 R(¢) — ”rgﬁi:nl R(¢) 2 0.Q.E.D.

The next result is useful for proving Theorem 2.

LEMMA A3: If (Ry,w),(t = 1,2,...) are i.i.d., E[|w|"|R:] is bounded for p > 0,

Elug|Ry) = 0, var(w|Ry) > C > 0, ayr, (t =1,...,T) are random variables depending only

[20]



on (Ry, ..., Rp), with
P =) P
max |air] = 0, ;:1 aypvar(ug|Ry) — ¥ > 0,

then
T d
Z AU — N(O, \Il)

t=1
Proof: We proceed by verifying the hypotheses of Lemma 3 of Chamberlain (1986,

”Notes on Semiparametric Regression.” ), denoted L3 henceforth. Note that var(u| R;) <
C by FE[Ju|’ |R:] bounded, so that 7, a2, var(u|Ry) < CY L, a%. Therefore, with
probability approaching one, >7_, a%. > C > 0. Therefore equation 1) of L3 holds.

Equation 2) of L3 is also satisfied, since

T 2
2 2
(rap )/ i < (o) ©
with probability approaching one. Also, equation (3) of L3 holds, since for A > 0,

%>Qﬂ2
Al T A

|RJA2§EHWV|RJA%pg0A%p

E[1(lul > A)v|R) = E [1(

(=)

which goes to zero as A — oco. Also, equation 4) of L3 is satisfied by var(u;| R;) bounded

|

Utp

A

Uy

< K
- A

away from zero. Let Ir = 1 if 7 a2, > 0, Ir = 0 otherwise. Note that for o7 =
var(u| Fy)
1/2

T T 1/2 T
Lﬁhm“z@@ “Z%@
=1 t=1 t=1

T T
ZatTUt =(1-1Ip) ZCLLTUt +
=1 =1

The first term converges in probability to zero by I = 1 with probability approaching

T 2 N2 p i y - :
one. Also (thl atTat) — W% so by the Slutzky theorem and the conclusion of L3,

T
3 avru 5 WYAN(0,1) = N(0,9).Q.E.D.

t=1
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Proof of Theorem 2: We will first prove the asymptotic normality result for LIML. We
use an expansion of the first order conditions. For u(d) = y — X9, consider the function

s X'Ppu(d) | u(0) Pru(d) X'u(d)
D) =-—7 w(dYu(d) T

The first-order conditions for & are

A~

0= D(9)
Then for asymptotic normality it suffices to show that for a nonsingular matrix H, a

matrix 2, and any § 2 &,

VTD(8) % N(0,%), %((5_—) 2

It will then follow in the usual way that
VT(6 —8) % N(0O,A),A = H'SH'™"

The first thing we show is convergence in probability of 8D(8)/85. Let @ = u(3) =
y — X4. Then differentiating gives

aD(S) X' X wPpuX'X X'uu'PzX X’Pzﬂa’X+ uPgzu X'uu' X
§ B T wu T T ua wu T (wa)2 T
X'P; X wPuX'X

= —F o + (X'@/@u)DE) + DO X/u'.

It then follows in a standard way that X'a/T 2 oy, and @a/T 2 ¢2. From Lemma

A2 we also have X'P;X/T 5 aQ + Q and it follows similarly that @' Pza/T % aoc?.
Therefore, D(8) 2 0, so that

20

96

Next we consider the behavior of vVTD(). For 4 = X'u/u/'u and v = oy, /02, by

E[Vius]) = 0 and the Lindberg-Levy central limit theorem, V'u/+/T is bounded in prob-

ability. Also, IT'X'u/+/T has bounded second moment and so is bounded in probability.

S QR+a-a(Q+0)=(1-a)Q@=H

Also, by Lemma A2, v’ Pzu/u'u £ a. Therefore, by the Slutzky theorem,

. 'Pru X'u —yu'uu Pyu (ZO+V)u
VT(H —7)=2 = 7 z4
(=17 T ww Y r +0,(1).
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We then have

X'Pu  vPruXu (X —uy) Pgu

+ —_
VT w'u /T VT
(X —wy') Pzu ) u' Pyu
- - VT -
7T ==
'z V'Pgu (ZI 4 V)u
- + « +0,(1
/T \/T \/T P( )
!

W' >
= = +0,(1),W = —-(1—a)ZI1 - (Pz — al)V.

VTD(8) =

Thus, for asymptotic normality of /T D(d) it suffices (by the Slutzky theorem) that
Wu/vT %5 N(0,3), T = (1 —a)?62Q + a1l — a)o20. Also, by the Cramer-Wold device
it suffices to prove that for any vector A, XW'u/vT -5 N(0, V), or equivalently that

the conclusion holds when GG = 1. Without changing notation we will assume that X, Z11,

and V' are vectors, representing X A, ZIIA and V' respectively. Let
ayr = Wt = (1 - Oé)ZtH + V’Z(Z’Z)“th — af/t

By hypothesis, max,<r |Z,I1| /~/T — 0. Also, by the Markov inequality,

max
t<T

¥ 14 e\ P 21/413
V| VT = (max|Vi[*12) < (;1%4 /T) 0.
Also, by the Marcinkiewicz-Zygmund inequality, for wy = Z,(Z'Z)"1Z],

T T
E||V'Z(2'2)7' 2| = |3 Viwal) < CE[ Y. V2wl [P,
s=1 s=1
As shown above, Z;(Z'Z)~1Z] < 1, so that
T T
Swl =S ZJ(ZZ2) 22,2’ 2) 2, = 2,(2'Z) 1 Z] < 1.
s=1

s=1

—p/2 . .
Hence (Z’stl wft) "> 1, s0 by Jensen’s inequality,

T p/2 T T p/2 /2 T
E[ZVfwi } < B|ovai/yal | <B|s (v ) 3
s—1 s=1 s=1 s=1 s=1

T T
< Y B/ <C
s=1 s=1
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Combining the last two equations gives £ “V' AVA A I } < C. Thus, by the Markov
inequality, ST, |[V'Z(Z'Z)~'Z,|" /T is bounded in probability, and

T 1/p
/ 17y —1 / 1y —1 p /2
r%aTx‘V 2(2'2)* 2| VT < (; v'z(z'z) z| 1" >
T 1/p
(Tl—W S \vizz 2z /T> 2 0.
t=1
Then, by the triangle inequality,

p
rtngajgdatﬂ JNT 20,
Next, note that by Lemma A2 and the law of large numbers,

VI (P; —al)> V)T = (1-2a)V'PV/T+a*V'V/TS a(l—a),
WZ'(P; —a)V)T = (1-a)I'Z'u/T 5 0.

Then by the triangle inequality,

WW/T = (1-a)’WZ'Z10)T+2(1 — )T Z'(Pz — o)V )T
+V'(Py —al VT 5 /02,

2

U

Since var(u,|V) = 02, we have

T
S~ aipvar(w|Vi) /T = W' W/T 5 5.
t=1

It then follows by the conclusion of Lemma A3 that

' T
W U . Zt:l QU 4

;Y N(0,%).

The asymptotic normality result for LIML now follows as described above.

For the other estimators, note that X'u/vT = O,(v/T) and X'X/T = O,(1), so that
(& — &) X'u/VT = 0,(1/VT)0,(VT) L 0, (6 — &) X' X/T & 0.

[24]



Also, note that H = X'P,X/T — 6X'X/T % H follows as in the proof of Theorem 1.
Therefore, by eq. (6.1),

VT(6 = 8) = —H Y& — &) X'u/VT +H Y (&—a)X'X/TINT(6 — 6)] 5 0.

Next, to show TA % A, note that by Theorem 1 § 2 &, so that 62 2 52 holds by
standard arguments, as does X'a/T L, oy Also @ & a by Theorem 1, so that & 5

holds by T and by hypothesis in Theorem 2. Therefore, by Lemma A2,

HTHQ+a0—a(Q+9Q) = 1-a)Q,J/TLQ+aQ)— aoyuol,/o? =Q + af),
ST 2 a2[(1 - a)(Q + af)) — (1 — ) Q)
= 0](1-)’Q +a(l - 2)Q].

The result then follows by the continuous mapping theorem. Q.E.D.

The few results are useful for proving Theorems 3 and 4. Let & = rank(Z)/K and
M= 27'Z/T.

LEMMA Ad4: If Assumption 3 is satisfied then & = 1 and there is a generalized
inverse M~ with M~ M symmetric and HM*]\AJ — MH2 JK 0.

Proof: Note that & is invariant to nonsingular transformation of Z. Let Z =
Z(E[Z,Z!))~Y/2, so now Assumption 3 is E[(Z/Z,)?]/KT — 0. Let M = BAB' where B
is an orthogonal matrix, A is a diagonal matrix of eigenvalues of M, andlet M~ = BA- B,
where A~ is the diagonal g-inverse. Then A = M~M is symmetric and idempotent so
that

G = tr(Py) /K = tr(A)/K = | N~ MH ice

By E[|M ~ Ix|] < CE(Zi2)%)/T and M,
|3 - 1| /¢ = 0, (El(z2)"/TR) 2> 0.
We also have, for A=M-M

wi—ﬂﬂf/K

Il

|A-Ant|* /& <||Aa - )|/
< (- M)A~ M)/ < || - 81| /K 2o,
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« 2
giving second conclusion. It then follows by T that HA -1 K“ /K % 0, so that by
L= Ikl /X, |

la—1] = ’HAHQ — |l?| /K < || A - IK“2 /K +2|Ix|||A-Ix| /K & 0.Q.E.D.

LEMMA AB5: If Assumption 8 is satisfied then for Q = 6%2%50 6052 } ,
| Qoo

X'X)T 2 Q, X' P X/K -2 Q+Q.

Proof: First, assume for the moment that X is a scalar, and note that
E(('Z'ZTl/K — TWE[Z,Z)[1)K)?| < (T/K*E[(II'Z,)*] — 0,

so that 12" ZTI/ K £+ Q by M and T. Also, E| ﬁ’Z’\_//KH2] = (T/K)|

0'E[Z,Z)T/ K| (2/K) —
0, so that II'Z'V/K £ 0. Applying these results element by element gives the same

conclusions for the vector X; case. By Lemma Al,
V'P,V/K —aQ = K~-YV'P,V — E[V'P,V|Z]} = 0,(1/VK) 2 0.
Then the second conclusion follows by T, Lemma A4
X'PzX =V'PV 4+ ZI'V + V' ZIL+ ' Z' Z11.
The first conclusion follows similarly. QED.

Proof of Theorem 3: By Lemma A4, when (T'/K)& = rank(Z)/K + 0,(1) we have

X'P;X L X'X XPzX X'X
— —

— A P A J— :~
Ve e % (Ta/K) T — Q+Q-10=0Q,

which is nonsingular by Assumption 1. Also, by Lemma Al,
V'Pyu/K = E[V'Pyu/K|Z] + Op(VE | K) = oy, + 0p(1) -2 oy

and X'u/T £ oy, also holds. The first conclusion then follows from eq. (6.1) and the

continuous mapping theorem.
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To prove the second conclusion, note that for a > 0 and b > 0, (a + b)/a > 1,with
equality if and only if b = 0. By Assumption 3, {2 is nonsingular, so for any vector ¢ with
|I<|l = 1 we have QD

R(g) = XN 4,&% > 1,
with equality when ¢'QC = 0. Let R(¢) = (T/K)¢'X'P;X¢/(¢'X'X(). By Lemma A5
R(C) — R(¢) -2 0, so the rest of the proof follows as in the proof of Theorem 1. Q.E.D.

The next two results are useful for proving Theorem 4.

LEMMA A6: If Assumptions 8 and 4 are satisfied then

X'Pyu  wPzuX'u H’Z’u+ \~/’.ZZ'u+ (1)
_ e (@) .
VK VK vuv VK @ TVK °

Proof: We prove the result for scalar X}, so that the vector X, result will hold by applying

the scalar result to each component. Note that for 7 = (21, Zn) s B [u’PZu \ Z] <CK
(e.g. see Newey (1997)), so that u' Pzu = O,(K). Then by X'u/u'u L ¥ = y+0,(1/VT)
for v = E[Viu;]/E[u?], we have

’ u’PZu

VK

by K/T — 0. Then using X = ZII 4+ V we have

(5 =) = On(K/VEK)O,(1/VT) = O, ( 5) 20

X'P,u w'Pyu. IUZ'u V' Puu

Nl \/Efyz \/ﬁ+ iz + 0,(1).

Next, note that for M = Z'Z/n and A = M~ — Iy,

E

(V’qu Vzz? y

VK TVK

= LXY B [Wluue| 2) ZAZ5AZ KT
1§k

= S BV Z|(ZAZ)/KT? + Y E V2| 2| E W2 | Z;] (Z/02;)* | KT*
i i#j

—F [(f/’ZAZ’u/T\/E)2 | Z]

< O ZAZZn)AZJTK < CS. ZANAZTK = Cix ((AM)2> /K
] .

i=1
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Since Py is invariant to is invariant to the choice of generalized inverse, the above in-
equalities hold for any generalized inverse. By Lemma A4 there is a generalized inverse
with AM symmetric, so that Let B be an orthogonal matrix and A a diagonal matrix of
eigenvalues with M = B’AB. Let A~ denote the diagonal matrix of inverse eigenvalues
where they are non-zero and zero otherwise. Then M~ M = B'A~AB < I is symmetric

and p.s.d. so that,

br ((AM)2> /K = |an|’/x = |a - snxr | K

IN

|1 - w1 /K =0, (E [(z2)"] /KT) 20,

where the last equality follows as in Newey (1997). The conclusion then follows by T
and CM. Q.E.D.. |

For the next result let W;,, U;, denote m x 1 random vectors, where m can depend
on n. Also, let a, denote an m x 1 vector of constants. The following Lemma is proved
in Newey (2004).

LemMA A6: If U = E[W,W!] exists, E[U,Ul] = I, E[W;] = E[Us] = 0,
na.a, — H, n?tr(¥) — A* na. Va, — 0, tr(P2)/[tr(D)])* — 0, nE []a;Umﬂ — 0,
n L E (W] Us|*] / tr(¥)% — 0, then

S d U + S WU 5 N(0, H + AY)

=1 i,5=1
Proof of Theorem 4: We proceed similarly to the proof of Theorem 2, first proving the
result for the LIML estimator, replacing ﬁ(é) there with

_ X'Pzu(f) N u(6) Pzu(6) X'u(6)

Do) = K w@yu(d) K

We will first show asymptotic normality of v K D(dy). We do this for the scalar case; the
Cramer-Wold device implies the general case. Apply Lemma A6 with i =¢, n=T, m =
K, a, = lo,/VK, Wy, = 0,Z,V,/TVK, and Uy, = Zyu,/o,. Then ¥ = I02Q/T?K,
tr(0) = 020/ T2,

nala, = c* T/ K — 02Q, n’tr(¥) = o).
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Also,
tr(U2)/ tr(0)* = {0 Qtr(I%) /T K} {T 0%} = 1/K — 0,

and by [IT'Z;| < C and boundedness of fourth conditional moments, for A = E[|| Z,||* Z1 Z!],

I

nE (| Usn"| TE | Z)|"uf] /K — 0,

nTVE || Wi, Usnl*] [ (t2())?

VAN

CTYE [(22,) Vi) /T K} /T~

IA

CE| 2.\ Zi(| 2| 2:23) 2] /T K*

i

CE |12, 2]AZ)] J/TK* = CE [tr(A |1 2:|° 2:2)] /T K*

Il

Ctr(A*) /TK? — 0.

Then by the Lemmas A5 and A6 and the Slutzky Theorem,

- X'Pu wPuXu I'ZWw V'Z.Z'
VED(s;) = \/_Z \/i iy, oy, 0p(1)
- Za Ut 32 Wil + 0p(1) ~ N(0,02Q + 0200)

7,7=1

It also follows similarly to the pfoof of Theorem 2 that for any § —— &,
oD(5)/06 £ Q.

The remainder of the proof follows similarly to the proof of Theorem 2.

For the other estimators, note that X'u/vK = O,(T/VK) and X'X/K = O,(T/K),
so that

(G—@) X'u/VEK = 0,(VK T)O,(T/VE) & 0,(4—a) X' X/K = 0,(VEK T)O,(T/K) % 0.

Also, note that H = X'P;X/K — X' X/K 5 Q follows as in the proof of Theorem 1.
Therefore, by eq. (6.1),

VE(b—8) = A6 — a)X'u/NK + H Y& —a)(X'X/K)VE(®S — 6)] &

Next, to show KA & A, note that by Theorem 3 RN 8o, so that 62 5 o2 holds
by standard arguments, as does X'i/T 5 oy,. Also Ta/K % 1 by Theorem 3 and by
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hypothesis of Theorem 3, T(& — &)/K = (T/K)o,(VK/T) = 0,(1/v/K) % 0, so that
Té&/K 2 1 holds. Therefore, it follows similarly to the proof of Theorem 3 that

H/IK2Q,J/K 5 Q+Q—oyuoy,/o2=Q+.

Also, & % 0, so that 3/K & o2[(1 = 0)(Q + Q) + 0Q] = ¢2(Q + Q). The conclusion

follows by the continuous mapping theorem. Q.E.D.
Proof of Theorem 5: As in the proof of Theorem 4 we have
X(80)' Pzu/VE - N(0,02(Q + Q).

Also, X'u/u'v £ v = ovy/0l and by Lemma Al, X' Pyu/K —aoy, - 0, ' Pyu/m -2,

ol X'P;X/m X Q + E[V;V/]. Therefore
X(80) Pz X (80)/m > Q + E[V,V/] — ovuy — oy, + 0y = Q + 2.

The conclusion then follows by the Slutzky Theorem in the usual way. Q.E.D.
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Table 2: Asymptotic Distribution of LIML and FULLER
B LIML FULLER
rho K mu*2 Median IQR p; .05 Median 1QR p; .05
0.5 1 1 0.202 1.217 0.024 0.381 0.466 0.182
0.5 1 2 0.090 0.955 0.031 0.268 0.493 0.132
0.5 1 4 0.025 0.704 0.039 0.149 0.463 0.086
0.5 1 8 0.002 0.494 0.043 0.067 0.396 0.061
0.5 1 16 0.000 0.344 0.043 0.031 0.311 0.053
0.5 1 32 0.000 0.241 0.042 0.016 0.229 0.048
0.5 1 64 0.000 0.169 0.045 0.008 0.165 0.048
0.5 1 128 0.000 0.119 0.048 0.004 0.118 0.049
05 2 1 0.238 1.305 0.036 0.361 0.599 0.094
0.5 2 2 0.124 1.032 0.040 0.260 0.571 0.084
05 2 4 0.039 0.753 0.043 0.149 0.504 0.071
05 2 8 0.005 0.518 0.045 0.068 0.415 0.061
0.5 2 16 0.001 0.353 0.044 0.032 0.319 0.054
0.5 2 32 0.000 0.244 0.042 0.016 0.232 0.048
0.5 2 64 0.000 0.171 0.045 0.008 0.167 0.048
0.5 2 128 0.000 0.120 0.047 0.004 0.119 0.049
0.5 4 1 0.284 1.395 0.055 0.362 0.746 0.092
0.5 4 2 0.168 1.135 0.054 0.267 0.683 0.085
0.5 4 4 0.064 0.828 0.053 0.157 0.572 0.075
0.5 4 8 0.012 0.563 0.050 0.072 0.452 0.064
0.5 4 16 0.001 0.370 0.045 0.032 0.334 0.055
0.5 4 32 0.000 0.250 0.043 0.016 0.238 0.049
0.5 4° 64 0.000 0.172 0.045 0.008 0.168 0.048
0.5 4 128 0.000 0.121 0.047 0.004 0.119 0.049
0.5 8 1 - 0.327 1.475 0.077 0.376 0.890 0.108
0.5 8 2 0.216 1.253 0.073 0.286 0.813 0.099
0.5 8 4 0.100 0.935 0.066 0.175 0.674 0.086
0.5 8 8 0.024 0.633 0.056 0.080 0.511 0.070
0.5 8 16 0.002 0.402 0.048 0.033 0.362 0.056
0.5 8 32 0.000 0.261 0.043 0.016 0.249 0.049
0.5 8 64 0.000 0.177 0.045 0.008 0.172 0.048
0.5 8 128 0.000 0.122 0.047 0.004 0.120 - 0.049
0.5 16 1 0.369 1.552 0.098 0.398 1.036 0.121
0.5 16 2 0.269 1.370 0.091 0.316 0.957 0.111
0.5 16 4 0.148 1.074 0.080 0.205 0.804 0.096
0.5 16 8 0.045 0.739 0.066 0.096 0.604 0.078
0.5 16 16 0.005 0.457 0.052 0.035 0.410 0.060
0.5 16 32 0.000 0.282 0.045 0.015 0.268 0.050
0.5 16 64 0.000 0.185 0.045 0.008 0.180 0.048
0.5 16 128 0.000 0.125 0.048 0.004 0.123 0.049
0.5 32 1 0.399 1.601 0.114 0.416 1.163 0.131
0.5 32 2 0.320 1.473 0.107 0.349 1.100 0.122
0.5 32 4 0.204 1.217 0.095 0.244 - 0.952 0.108
0.5 32 8 0.083 0.872 0.077 0.125 0.726 0.087
0.5 32 16 0.015 0.545 0.059 0.044 0.489 0.066
0.5 32 32 0.000 0.320 0.047 0.016 0.304 0.052
0.5 32 64 0.000 0.199 0.046 0.007 0.194 0.048
0.5 32 128 0.000 0.130 0.048 0.004 0.129 0.049

Notes: 500,000 reps., 245.07 secs.



Table 3: Asymptotic Distribution of LIML and FULLER

LIML FULLER
rho mu’2 Median IQR p; .05 Median IQR p,; .05
0.5 1 1 0.201 1.221 0.024 0.380 0.467 0.182
0.5 1 2 0.092 0.956 0.031 0.268 0.494 0.132
0.5 1 3 0.044 0.804 0.035 0.195 0.485 0.102
0.5 1 4 0.024 0.703 0.038 0.149 0.463 0.085
0.5 1 5 0.011 0.630 0.040 0.116 0.444 0.074
0.5 1 6 0.005 0.573 0.042 0.094 0.426 0.069
0.5 1 7 0.004 0.529 0.042 0.079 0.410 0.064
0.5 1 8 0.001 0.494 0.043 0.066 0.396 0.061
0.5 1 9 0.000 0.463 0.043 0.058 0.381 0.059
0.5 1 10 0.001 0.441 0.044 0.052 0.371 0.059
0.5 1 11 -0.001 0.418 0.043 0.045 0.359 0.057
0.5 1 12 0.000 0.399 0.043 0.042 0.347 0.056
0.5 1 13 0.000 0.383 0.043 0.038 0.338 0.055
0.5 1 14 0.000 0.368 0.043 0.036 0.328 0.055
0.5 1 15 0.001 0.355 0.043 0.034 0.319 0.054
0.5 1 16 0.000 0.344 0.042 0.031 0.311 0.052
05 1 17 0.000 0.332 0.042 0.030 0.302 0.053
05 1 18 0.000 0.323 0.042 0.028  0.296 0.052
0.5 1 19 0.000 0.314 0.042 0.026 0.289 0.051
05 1 20 0.000 0.306 0.042 0.024 0.283 0.051
0.5 1 21 0.000 0.298 0.042 0.024 0.276 0.050
0.5 1 22 0.000 0.292 0.043 0.023 0.272 0.051
0.5 1 23 0.000 0.286 0.042 0.021 0.267 0.050
0.5 1 24 0.000 0.279 0.042 0.021 0.261 0.050
0.5 1 25 0.000 0.274 0.042 0.020 0.257 0.050
0.5 1 26 0.000 0.268 0.042 0.019 0.252 0.049
0.5 1 27 0.000 0.263 0.042 0.019 0.248 0.049
0.5 1 28 0.000 0.257 0.041 0.018 0.243 0.048
0.5 1 29 0.000 0.253 0.042 0.017 0.240 0.049
0.5 1 30 0.001 0.249 0.042 0.017 0.236 0.049
05 1 31 -0.001 0.245 0.042 0.015 0.233 0.048
0.5 1 32 0.000 0.241 0.042 0.015 0.230 0.048
0.5 1 36 0.000 0.228 0.043 0.014 0.218 0.048
0.5 1 40 -0.001 0.215 0.043 0.012 0.207 0.048
0.5 1 44 0.000 0.205 0.043 0.011 0.197 0.048
0.5 1 48 0.000 0.196 0.043 0.010 0.190 0.048
0.5 1 52 0.000 0.188 0.044 0.009 0.182 0.048
0.5 1 56 0.000 0.181 0.044 0.009 0.176 0.048
0.5 1 60 0.000 0.175 0.045 0.008 0.171 0.048
05 1 64 0.000 0.169 0.045 0.008 0.165 0.048
0.5 1 68 0.000 0.164 0.046 0.007 0.161 0.048
0.5 1 72 0.000 0.160 0.046 0.007 0.156 0.048
0.5 1 76 0.000 0.156 0.046 0.006 0.153 0.048
0.5 1 80 0.000 0.152 0.046 0.006 0.149 0.048
0.5 1 84 0.000 0.147 0.046 0.006 0.145 0.048
05 1 88 0.000 0.144 0.046 0.006 - 0.142 0.048
0.5 1 92 0.000 0.141 0.047 0.005 0.139 0.049
0.5 1 96 0.000 0.138 0.046 0.005 0.136 0.048
0.5 1 100 0.000 0.135 0.046 0.005 0.133 0.048
05 1 104 0.000 0.133 0.047 0.005 0.131 0.049
0.5 1 108 0.000 0.130 0.047 0.005 0.129 0.049
05 1 112 0.000 0.128 0.046 0.004 0.126 0.048
0.5 1 116 0.000 0.126 0.047 0.004 0.124 0.048
0.5 1 120 0.000 0.123 0.047 0.004 0.122 0.048
05 1 124 0.000 0.121 0.047 0.004 0.120 0.049
0.5 1 128 0.000 0.119 0.047 0.004 0.118 0.048

Notes: 500,000 reps., 159.49 secs.



Med. Bias
2SLS -0.0042
LIML -0.0042
LIML-Bekker
Fuller (1) 0.0405
Fuller (1) - Bekker
Kleibergen

Kleibergen-Bound

Table Four
Simulation Results, K = 1, P'2'2P/s2 = 10

p=4
IQR

0.4375

0.4375

0.3745

Size
0.0367
0.0367
0.0367
0.0410
0.0348
0.0543
0.0531

Med. Bias
-0.0014
-0.0014

0.0621

Simulation Results, K =3, P'2’2P/s2 = 10

Med. Bias
2SLS 0.0725
LIML 0.0048
LIML-Bekker
Fuller (1) 0.0453
Fuller (1)-Bekker
Kleibergen

Kleibergen-Bound

p=.4
IQR

0.3848

0.4811

0.4128

Size
0.0591
0.0491
0.0413
0.0527
0.0396
0.0524
0.0496

Med. Bias
0.1048
-0.0047

0.0590

Simulation Results, K =5, P'2'2P/s2 = 10

Med. Bias
2SLS 0.1277
LIML 0.0109
LIML-Bekker
Fuller (1) 0.0521
Fuller (1) - Bekker
Kleibergen

Kleibergen-Bound

p=.4
IQR

0.3454

0.5233

0.4449

Size
0.0882
0.0636
0.0433
0.0692
0.0408
0.0522
0.0465

Med. Bias
0.1862
0.0104

0.0716

Simulation Results, K =10, P'2'2P/s2 = 10

Med. Bias
2SLS 0.1938
LIML 0.0110
LIML-Bekker
Fuller (1) 0.0499
Fuller (1)-Bekker
Kleibergen

Kleibergen-Bound

p=.4
IQR

0.2927

0.5987

0.5075

[33]

Size
0.1670
0.0886
0.0438
0.0959
0.0417
0.0549
0.0439

Med. Bias
0.2914
0.0171

0.0775

p=.6
IQR

0.4403

0.4403

Size
0.0524
0.0524
0.0524
0.0623
0.0555
0.0500
0.0490

0.3611

p=.0
IQR

0.3707

0.4877

Size
0.0967
0.0635
0.0534
0.0764
0.0578
0.0533
0.0488

0.3938

p=.
IQR

0.3254

0.5042

Size

0.1680
0.0844
0.0641
0.0997
0.0678
0.0524
0.0464

0.4126

p=..06
IQR

0.2674

0.5590

Size
0.3512
0.1127
0.0663
0.0.1289
0.0698
0.0564
0.0465

0.4492



Table Five
Simulation Results, K = 1,1I'2'211/0?% = 20

p=2A4
Med. Bias IQR  Size Med. Bias
2SLS -0.0006 0.3048 0.0391 0.0038
LIML -0.0006 0.3048 0.0391 0.0038
LIML-Bekker 0.0391 :
Fuller (1) 0.0198 0.2836 0.0552 0.1100
Fuller (1) - Bekker 0.0401
Kleibergen 0.0527
Kleibergen-Bound 0.0509
Simulation Results, K = 3,I1'2/211/0% = 20
p=.4
Med. Bias IQR  Size Med. Bias
2SLS 0.0391 0.2822 0.0536 0.0627
LIML 0.0012 0.3156 0.0461 0.0059
LIML-Bekker 0.0404
Fuller (1) 0.0207 0.2941 0.0489 0.0358
Fuller (1)-Bekker 0.0391
Kleibergen 0.0488
Kleibergen-Bound 0.0454
Simulation Results, K = 5,1'2'2[1/0? = 20
p=.4
Med. Bias IQR  Size Med. Bias
2SLS 0.0714 0.2646 0.0733 0.1033
LIML 0.0019 0.3361 0.0555 -0.0039
LIML-Bekker 0.0419
Fuller (1) 0.0212 0.3090 0.0580 0.0267
Fuller (1) - Bekker 0.0410
Kleibergen 0.0517
Kleibergen-Bound 0.0458
Simulation Results, K = 10,11'2'211/0? = 20
p=.4
Med. Bias IQR  Size Med. Bias
2SLS 0.1288 0.2406 0.1267 0.1886
LIML 0.0020 0.3745 0.0714 -0.0013
LIML-Bekker 0.0432
Fuller (1) 0.0208 0.3446 0.0748 0.0287
Fuller (1)-Bekker 0.0427
Kleibergen 0.0554
Kleibergen-Bound 0.0424

[34]

p=.
IQR

0.3063

0.3063

0.2248

IQR
0.2831
0.3218

0.2953

IQR
0.2585
0.3314

0.3028

p =
IQR
0.2268
0.3706

0.3357

Size
0.0505
0.0505
(.0505
0.0982
0.0770
0.0499
0.0488

Size
0.0874
0.0624
0.0561
0.0734
0.0618
0.0533
0.0487

Size
0.1161
0.0630
0.0540
0.0726
0.0585
0.0536
0.0472

Size
0.2524
0.0807
0.0573
0.0921
0.0620
0.0563
0.0457



Table Six

Simulation Results, K = 1,11'z/'2I1/0? = 35

Med. Bias
2SLS 0.0028
LIML 0.0028
LIML-Bekker
Fuller (1) 0.0147
Fuller (1) - Bekker
Kleibergen

Kleibergen-Bound

p=.4
IQR

0.2317

0.2317

Size
0.0470
0.0470
0.0470
0.0492
0.0451
0.0564
0.0554

0.2223

Med. Bias
-0.0017
-0.0017

0.0153

Simulation Results, K = 3,1I'2'2I1/0? = 35

Med. Bias
2SLS 0.0236
LIML 0.0009
LIML-Bekker
Fuller (1) 0.0123
Fuller (1)-Bekker
Kleibergen

Kleibergen-Bound

p=-4
IQR

0.2209

0.2362

Size
0.0516
0.0479
0.0433
0.0487
0.0406
0.0500
0.0467

0.2277

Med. Bias
0.0352
0.0023

0.0187

Simulation Results, K = 5,11'2'211/0% = 35

Med. Bias
2SLS 0.0406
LIML -0.0029
LIML-Bekker
Fuller (1) 0.0088
Fuller (1) - Bekker
Kleibergen

Kleibergen-Bound

p=.4

IQR Size
0.2125 0.0647
0.2426 0.0516

Med. Bias
0.0620
-0.0012

0.0160

Simulation Results, K = 10,1'2'211/0? = 35

Med. Bias
2SLS 0.0846
LIML 0.0003
LIML-Bekker
Fuller (1) 0.0122
Fuller (1)-Bekker
Kleibergen

Kleibergen-Bound

0.0434
0.2340 0.0534
0.0421
0.0558
0.0493
p=.4
IQR Size
0.1940 0.1034
0.2531 0.0628
0.0427
0.2430 0.0646
0.0415
0.0547
0.0420

[35]

Med. Bias
0.1263
(0.0024

0.0198

p=.6
IQR

0.2266

0.2266

0.2157

p=.
IQR

0.2206

0.2401

0.2274

p=.
IQR

0.2101

0.2406

0.2279

p=.6
IQR

0.1866

0.2568

0.2425

Size
0.0449
0.0449
0.0449
0.0501
0.0491
0.0517
0.0499

Size
0.0667
0.0515
0.0486
0.0573
0.0517
0.0533
0.0497

Size
0.0914
0.0522
0.0473
0.0588
0.0505 -
0.0533
0.0471

Size
0.1784
0.0643
0.0481
0.0698
0.0512
0.0536
0.0413



FIGURE 3

180 Instruments: K vs LIML
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FIGURE 1

3 Instruments

0.04 0.06 0.08 01 0.12 0.14 0.16 0.18

0.02

0.9

08|

07

06

05

04

03

02

0.1

02

FIGURE 2

180 Instruments

-0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0.02

09

08

0.7 -

06

0.5

0.4

03

0.2+

01



0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Ficuwe

P——

)

K, LIML, LIMLB confidence intervals for AK '91 with age and age?

{

o]

!
0.02

|
0.04

0.06

0.14

0.16

0.18

0.2



FIGURE §
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