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Abstract

Many instruments can result in improved inference in weakly identified models.
Estimators with low bias for many instruments and standard errors that adjust
for the presence of many instruments are useful for this purpose. This paper gives
standard errors for the continuously updated GMM estimator that adjust for the
number of overidentifying restrictions. This adjustment is based on many weak
instrument asymptotics of Chao and Swanson (2002) and Han and Phillips (2003).
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1 Introduction

Many applications of generalized method of moments (GMM, Hansen, 1982) tend to be
weakly identified. Examples include natural experiments (Angrist and Krueger, 1991),
consumption asset pricing models (Hansen and Singleton, 1982), and dynamic panel
models (Holzt-Eakin, Newey, and Rosen, 1990). In these settings the use of many in-
struments may improve accuracy. For example, Hansen, Hausman, and Newey (2004)
have recently found that using all 180 instruments in the Angrist and Krueger (1991)
application shrinks correct confidence intervals substantially. In such settings accuracy
of asymptotic approximations may depend on accounting for many instruments. Many
instruments can lead to bias in the usual two-step GMM methods (Newey and Smith,
2004). This problem can be dealt with by using alternative estimators with smaller bias,
but then it may be important to account for the effect of many instruments on standard
errors. For example, Hansen, Hausman, and Newey (2004) recently found that in the
Angrist and Krueger (1991) application, asymptotic confidence intervals based on limited
information maximum likelihood (LIML) with the usual standard errors did not have the
right size, but using Bekker (1994) standard errors corrects the size problem, and still
results in a substantial shortening of confidence intervals.

This paper proposes a solution to the inference problem with many weak moment
conditions in GMM estimation. We consider the continuous updating estimator (CUE)
of Hansen, Heaton, and Yaron (1996). Their Monte Carlo results and the theory of
Donald and Newey (2000) and Newey and Smith (2004) suggest that the CUE may have
low bias relative to other GMM estimators. Here we give standard errors for the CUE
that account for many instruments. We find that under many weak moments the CUE is
asymptotically normal with an asymptotic variance that is larger than the usual formula
due to many instruments. We give a consistent estimator of the asymptotic variance that
is straightforward to compute, so that Wald inference can be carried out in the usual way.
We argue that these standard errors provide an analog for GMM of the Bekker (1994)

standard errors for LIML. We show that the asymptotic variance reduces to the Stock
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and Yogo (2004) and Hansen, Hausman, and Newey (2004) version of Bekker (1994) in
a homoskedastic linear model.

Our results can be related to the higher-order variance of the CUE derived in Donald
and Newey (2003). The higher-order variance has two types of terms, one type corre-
sponding to variability of the Jacobian of the moment function and the other type to
estimation of the weighting matrix. As they show, in weakly identified models the Jaco-
bian variability term will dominate. The many weak moment approximation given here
can be considered as a limit of the higher order approximation as identification weakens
and the number of instruments grow, with the nice feature of having a Gaussian limit.

One could also try to adapt the Bekker (1994) asymptotics to GMM by letting the
number of instruments grow as fast as the sample size. A technical difficulty with doing
so is that the weighting matrix (which has dimension equal to the square of the number
of moments) could be unstable. We finesse this difficulty by allowing the number of
moments to grow more slowly than the sample size, but restricting the GMM asymptotic
variance to grow at the same rate as the number of moments, and hence slower than
the sample size. This kind of asymptotics seems well suited as an approximation for
applications like those mentioned above where identification is weak, there are many
instruments, and the sample size is quite large relative to the number of instruments.
However, it does ”wash out” the estimation of the weighting matrix from the asymptotic
approximation, which could lead to a poor approximation in applications that are more
strongly identified. |

The asymptotic sequence we consider here is a special case of those considered in
Chao and Swanson (2002) and Han and Phillips (2003). It is included in the Han and
Phillips (2003) cases where there is both a noise and a signal component to the limit of
the GMM objective function. Here we give a general consistent variance estimator for the
CUE under many weak moments and general conditions for the CUE that account for
estimation of the weighting matrix, neither of which was done in Han and Phillips (2003).
Our asymptotic variance approximation also differs from Chao and Swanson (2004) in

accounting for the both the usual term and the additional, Jacobian variability term in
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the asymptotic variance.

A formal derivation of the asymptotic distribution results can be obtained using re-
sults of Stock and Wright (2002). If one takes the limiting distribution of the CUE under
weak identification, and allows the identification and the number of moment conditions
to grow at the same rate, one obtains the asymptotic variance given here, as we discuss
below. This derivation corresponds to a sequential asymptotics, where one lets the num-
ber of observations go to infinity and then lets identification and the number of moments
grow. We give here simultaneous asymptotics, where identification and the number of
moments grows along with, but slower than, the sample size.

The variance adjustment that comes out of the many weak instrument asymptotics
is different than that of Windmeijer (2004). He adjusts for the variability of the weight
matrix while the many instrument asymptotics adjust for the variability of the moment
derivative. Adjusting only for variability of the moment derivative is appropriate in
weakly identified cases, as mentioned above.

In Section 2 we describe the model, the CUE estimator, the asymptotic variance es-
timator that accounts for many weak moment conditions, and discuss the asymptotic
sequence we consider. Section 3 gives the consistency results. Section 4 gives the asymp-
totic normality. Section 5 offers some conclusions and some possible directions for future

work.

2 The Model and Estimators

The model we consider is for stationary data where there is a countable number of
moment restrictions. We allow the moment generating process to depend on the sample
size to model weak identification. To describe the model, let w;, (i = 1, ..., n), be strictly
stationary observations on a data vector w. Also, let 8 be a p x 1 parameter vector
and g(w, ) = (¢™(w,B),...,g(w,5)) be an m x 1 vector of functions of the data
observation w and the parameter, where m > p. For notational convenience we suppress

an m superscript on g(w, ). The model has a true parameter 3, satisfying the moment
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condition

Elg(w, Bo)] = 0,

where E[.] denotes expectation taken with respect to the distribution of w; for sample
size n, and we suppress the dependence on n for notational convenience.

To describe the CUE estimator, we need to describe the weighting matrix. To do so

let gi(8) = g(wi, B), 9(B) = Elgi(B)], 9(8) =n~t L1, g:(8), and
6, 8) =n{E[9(6)3(B)] — 9(0)3(B)'} = Cov(v/ng(6), vng(B)).

This matrix is the covariance between /ng(é) and /ng(8) in a sample of size n. In
the i.i.d. case it will not depend on n but will with dependent observations, although
for notational convenience we do not index (48, 5) by n. Let Q(5, B) be an estimator of

Q(6, ) and Q) = Q(B, B). For iid. data we will let this estimator be a standard one,
Q(6,8) = 3 6:(6)g:(8)' /n — §(8)3(8)- (2.1)
i=1

For dependent data we will assume that Q((S, B) is a specification robust, autocorrelation
consistent variance estimator, i.e. that it estimates (6, 5) for all values of § and 3. The
specification robustness feature of €2(d, 3) is important for the consistency of the CUE

under many instrument asymptotics, as further discussed below.

The CUE is given by

f = argminQ(B),
QB) = a(BYQUB) T a(B)n/2m.

where B is the parameter set. This estimator minimizes over # in the moments and the
weighting matrix simultaneously. It is due to Hansen, Heaton and Yaron (1996), although

it differs from the estimator they consider in the choice of (f).!

Our requirement
that Q(8) be a specification robust estimator means that we cannot exclude from € (8)

autocovariances that are zero only at the truth.

Tn the ii.d. case the CUE will be the same as an estimator obtained by minimizing Q(8) =
a(BY 132 gi(B)g:(B))71a(B), as discussed in Newey and Smith (2004).
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To describe the estimator of the asymptotic variance let

D(ﬁ) = [Dl(ﬁ)vvbp(ﬁ)]a
Di(B) = \/n/m |03(8)/08; — U5, B)/95]s=sUB) " 4(B)]

An estimator of the asymptotic variance is given by
V= HD@EYQ D@ B 9°Q(5)/0508,Q < 0(B).

The ”"sandwich” form of the asymptotic variance estimator is important under this as-
ymptotics. Unlike the usual asymptotics, the middle matrix estimates a different, larger
object than the Hessian. Also, the use of the Hessian is important. Here we cannot
replace H by the more common formula G'0"'Gn/m, where G = 8§(3)/08, because
Gy iGn /m has extra random terms that are eliminated in the Hessian. A similar phe-
nomena occurs in Bekker (1994), where it is important to use the Hessian of the LIML
objective function rather than the usual instrumental variables formula.

The Hessian term on the outside of V' is familiar from other estimation environments.
The middle term b(B ) Q_lfD(B ) is an estimator of the asymptotic variance of dQ(53,)/98
that is due to Kleibergen (2004). He shows that this estimator is consistent under weak
identification with fixed m. We give conditions for consistency when m is allowed to
grow with the sample size.

[t will be shown below that, under certain conditions, there will be a matrix V such

that
V(B - Bo) = N(0,V),V 2V, (2.2)

Therefore, standard (Wald) confidence intervals and test statistics that treat 3 as if
it were normally distributed with mean Sy and variance V/m will be asymptotically
correct. We use m as the growth rate for the asymptotics because it is a convenient,
scalar quantity. We could also have used the degree of identification, but that is more

cumbersome. We will give the form of V' below.
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The many weak moment condition asymptotics has the individual components of
E[0¢:(80)/0p] shrink in magnitude and the number of moments grow with the sample
size. Specifically, we will impose the following condition, for G,, = y/n/m E[0g¢:(5y)/00]

Assumption 1: G'Q7'G, — H and H is nonsingular.
An important example is the linear model where

y = 2'ftea" =2"mu,+n,
0 = FElelz],0 = E[n|z].

Here z is an m x 1 vector of instrumental variables, where we suppress the m argument
for convenience, and we will impose the normalization E[z2'] = I,,,. Also, 7., is m X p

matrix of reduced form coefficients. The moment functions are
g(w, B) = z(y — 2'B).

Here Q) = E[z2'¢?] and G, = —/n/mE|[zx)] = —\/n/mTmn, so that Assumption 1 is

equivalent to
GG, = (n/m)nl Q. — H. (2.3)

For instance, if = is a scalar and m,,, = De/+/n, where e is an m X 1 vector of ones, and

¢ is homoskedastic, with E[e?|z] = 02, then
G.Q G, = (n/m)D?* (02I,,) e/n = D*/o* = H.

This linear model example shows how the asymptotics here is like that of Chao and
Swanson (2002) and Han and Phillips (2003). Each reduced form coefficient vanishes at
rate 1//n, that is like the weak instruments case of Stock and Staiger (1997), but the
number of instruments grows, which will lead to consistency and asymptotic normality.

Thus, the asymptotics is described as "many weak instrument” asymptotics.



3 Consistency

The usual extremum estimator analysis can be used to show consistency of the CUE under
many weak instrument asymptotics. The CUE objective function Q(B ) will converge to
a function that is minimized at the true parameter Sy. Under appropriate regularity
conditions we can interchange the limiting and minimization steps to get consistency, i.e.
the limit of the minimand will be the minimand of the limit.

Intuition about consistency of the CUE is provided by the limiting objective function.
Under conditions given below Q(8) = Q(8, 8) will be close to Q(8) = Q(8, 5) in such a
way that the limit of Q(8) will coincide with the limit of Q(8) = (n/m)3(3)UB) " §(5).
Also, Q(8) should be close to its expectation Q(3) in large samples. Let S,(8) =

g(8)QB)g(B)n/2m. Then

Q(B) = E[Q(B)] = (n/m)E[{a(8) — 5(B)YB){3(8) — 5(5)}]
+(n/m)2E[5(8)UB)'5(B)] — Su(B)
= tr(QB) " Var(vng(B))/m + Su(B) = tr(Ln)/m + Su(B) = 1 + Su(B).

Since S,(f) has a minimum (of zero) at By, (8) will be minimized at Sy, leading to
consistency of the CUE.

The fact that Q(8) is a specification robust variance matrix, i.e. that Q(8) =
Var(y/ng(B)) for all 8, is important for Q(3) to be minimized at 3y. If the middle,
weighting matrix was not the inverse of a specification robust variance matrix, then
Q() would also depend on f through the other term, and hence Q(3) need not be min-
imized at the truth. For example, if we replace Q(8)~! by a fixed weighting matrix W,

the limiting objective function would be

Q(B) = tr(WVar(v/ng(B8)))/n + Su(B).

This function need not be minimized at 3y, so that the GMM estimator may not be consis-

tent under many moment asymptotics. Han and Phillips (2003) interpret tr(WVar(y/ng(8)))/n

as a "noise” term that contaminates the ”signal” term S,(5). The CUE eliminates /3

from the noise term and so leads to consistency.
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The importance for consistency of choosing §2(8) to be a robust variance estima-
tor may have implications for practice. For instance, in dependent data there is often
structure to the autocovariances for ¢;(fy), such as autocovariances being zero. Gen-
erally g;(8) does not have this structure for 8 # fy, so that excluding autocovariances
from (3) would be misspecification that could lead to inconsistency of the CUE under
these asymptotics. For this reason it might be good to use an autocorrelation consistent,
variance matrix for the CUE, even when g¢;(f) is not autocorrelated. The theoretical
potential of using autocorrelation consistent variances to reduce bias of the CUE was
also noted by Donald and Newey (2003). It should also be noted that Heaton, and Yaron
(1996) found large bias reductions in their Monte Carlo, with the CUE based on zero
autocovariance, so it may be that the CUE has low bias in practice, even without, Q(ﬁ)
being an autocorrelation consistent variance estimator.

We will give general regularity conditions for i.i.d. data and primitive conditions for
the linear model. The first condition specifies properties of the function S, (3), including

an identifiable uniqueness condition for the minimizer gy of S, (3).

Assumption 2: There is a continuous function A(a) such that A(0) =0, A(a) > 0 for
all a # 0, and S,(8) > A(||8 — Bol))-

The next condition specifies the properties of the weighting matrix. For a matrix F
let || F'|| = trace(F'F )1/ 2 denote its Euclidean norm and for symmetric F let Amin (F') and
Amin(F') denote its smallest and largest eigenvalues, respectively. Also, define stochastic

equicontinuity of a sequence of random functions {/1” (8) }rn=1 to mean that for any A,, —

0, supz_g<a, |A(B) — A(B)] 0.

Assumption 3: The data are i.i.d., 8y € B with B compact, there is a constant C
with Amln(Q(ﬁ)) 2 Ca E[{gz(ﬁ)lgz(ﬁ)}2]/m2n — 0 for each /87 Amax(E[gz(ﬁ>gl(ﬁ),]) S Ca
spgep [QUB) — UB)| > 0, Su(B) is equicontinuous, and (n/m)a(8YB)~"4(8) is

stochastically equicontinuous.

The condition that supg. 12(8) = 2(B)]| == 0 puts restrictions on the rate at which
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m can grow with the sample size. If F[g;;(8)?] is bounded uniformly in j, m, and 3
then a sufficient condition for pointwise convergence would be that m?/n — 0. The
uniformity condition may impose further restrictions.

The following is a consistency result for the general i.i.d. case.
THEOREM 1: If Assumptions 2 and 8 are satisfied then B L. Be.

We also give more primitive regularity conditions for consistency for the linear model

example. Let X(z;) = E[(e:, 7)) (4, M) |2i)-
Assumption 4: The linear model holds, there is a constant C with E[e}|z] < C,

Eflnill*z] < C, Anin(E(2:)) Z 1/C, and ||| < C, and E|(2]2:)*]/n — 0.

The conditions puts restrictions on the rate at which m can grow with the sample size.
If z;; is bounded uniformly in j and m, then these conditions will hold if m?/n — 0, for

in that case,

lzimmnll - < Hzill [|7mnll < v/mO(y/m/n) = O(y/m?/n),
El(zz))/n < O(m®)/n=0O(m?/n).

THEOREM 2: If Assumptions 1 and / are satisfied thenB 25 B,.

4 Asymptotic Normality

To explain the asymptotic normality result it is helpful to consider the first-order condi-

tions to the CUE, given by

0

{

0Q(8)/08;,(j = 1, ..., ), (4.1)
0Q(8)/08; = {04(8)/08;%B)a(8) — §(B)' A;(BYUB) " 9(8)}n/m,
A;(B) = 86, 8)/06;15=5B) 7,

where the expression for the derivative holds by Q(6,8) = Q(8,6)" (see Donald and

Newey, 2000). As usual, a mean value expansion of the first order conditions give
Vm(B ~ o) = —H " mdQ(be) /98, H = 0Q(B) /985, (4.2)
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where 3 is an intermediate value for 3, being on the line joining 3 and (3, that actually
differs from row to row of H. Under regularity conditions given below we will have
H *> H, for H from Assumption 1. The asymptotic distribution of 3 will then be
determined by the asymptotic distribution of /mdQ(8s)/d8.

To describe this distribution, let @ = £(8,) and

A; = 008, Bo)/00;l6-,2"" = nCouv(09(Bo)/0B;, §(Bo))2",

U; = /n{04(B0)/08; — E103(B0)/0Bi] — A;9(Bo)}, U = [T, .., TUy).

Under conditions given below the Q(8o)~" and A;(fy) terms in /mdQ(8)/85 can be
replaced by Q7! and A; respectively such a way that

VoG (Bo) [08; = {09(50)/08.G(5a) — 3(Bo) AL 1(5o) ) v/ + 0p(1)
= Jn/mEBg:(80) /08, g (Bo) + U7 /mg(Bo) /A + 0,(1).

Stacking these equations gives

VmAQ(Bo)/98 = GLOng(Bo) + U /ng(Bo) /v/m + 0p(1).

The first term following the equality is a random vector with variance G2 ', that
converges to H by Assumption 1. Thus, a central limit theorem should apply to give
asymptotic normality, with variance H, of the first term. To understand the second term’s
behavior, consider for the moment the case where m is fixed. In that case, as n — oo,
a central limit theorem will imply that U and /ng(f,) converge (jointly) to Gaussian
vectors. These Gaussian vectors will be uncorrelated, and hence independent, because U
is the matrix of residuals from the projection of the derivatives on the moment functions
(see also Donald and Newey, 2000). Because of this independence, in the limit the second
term will be asymptotically normal, conditional on the limit of U, with variance equal
to the limit of U'Q0~'U/m. As m grows this conditional variance matrix will converge in
probability to
A= lim A, A, = E[U'QU)/m,

[10]



leading to asymptotic normality. Furthermore, for fixed m the limit of the first and
second terms will be uncorrelated, so that the asymptotic variance of \/mdQ(5o)/83 will
be the sum of the variances of the two terms. This sum of variances will be H + A*, so

that
VmdQ(Bo) /08~ N(0, H + A¥).

Then by equation (4.2) /m(B8 — By) will be asymptotically normal with asymptotic

variance

“WH  HIAHY

This interpretation is given only for the purpose of providing some intuition about
the asymptotic distribution. In the actual theorems we allow m to grow with n, and
asymptotic normality is based on a using a Martingale central limit similarly to Hall
(1994).

For comparison purposes it is useful to consider a corresponding variance approxima-
tion V, for B for a sample size of size n. We can compare the variance approximation
here with the standard GMM variance approximation. Let gg = E[dg(w;, 5o)/95] and
note that H is the limit of ggﬂ‘lggn/ m. Replacing H with this object, A* by A,, and
dividing by m (the square of the convergence rate) gives the variance approximation for

sample size n of

Vi = (G527 gen/m) ™! /m + (G500 Ggn/m) T An (3527 ggn/m) T m
1 —1= M,y ~—1a \— =1 \—
= (G7s)/n+ (5927 35) " An(G5Q " gs) "/
The usual variance approximation for GMM is (§3;Q7'g3) " /n. The approximate varianc
V,, includes an additional term. In a strongly identified model with fixed m the additional
term is order 1/n? and is a higher-order variance term. Indeed, by inspection of Donald
and Newey (2003), one can see that the additional term corresponds to one of the higher

order variance terms, that is largest when identification is weak. It can be shown that

this term would dominate the higher-order variance as identification becomes weak and
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the number of moments grows. The present result also suggests that the higher-order
distributional approximation would be approximately normal.

The variance formula V,, also suggests that the correction may be important in practice
when the model is weakly identified. Weak identification will mean that gg close to zero
relative to the variance of dg(w;, fo)/0p, which will lead to gz~ 'gs being much smaller
than A,,. In those cases, the additional term may be important even when m/n is small.

The linear model provides an example of the asymptotic variance. We have

A; = —Eluzizya)Q = —Elazns]Q7 (5 =1, ..,p),
Ul = (~zmy + Elzzy] — Ajuie:)
= —(2iz; — )Ty + ul,ul = —2iMij — Ajzig;.

p
., ut] we have |

20"

Then for u; = [u}

A= EuQ 'w)/m+ Eln,, (22 — DQ N 2:2) — DTpn]/m. .

mnj\%i%;
Under the conditions below, the second term will go to zero, so that
A = m@mE[u;Q_lui]/m.
For instance, in the homoskedastic case where E[e?|z] = o2, Elnpif|z] = =), Elen|z] = oy,
we have u; = —z;(n; — 0.€/02), so that
EQ w)/m = El(n — 0peei/02) (i — 0peeif/02) 210 2] /m

= (Zn - Unso':;a/gg)E[Zz{(UgI)-lzi]/m

= (¥, — UUEU;]E/O-?)/O-EZ = A"
Then, assuming 7,,,7pm,n/m — B for a nonsingular matrix B, the asymptotic variance
matrix for \/m(3 — By) will be

V=0B1+02B7Y%, - One0ne/02) B

This variance for the CUE is identical to the asymptotic variance of LIML under many
weak instrument asymptotics of Stock and Yogo (2003) and Hansen, Hausman, and

Newey (2004). In this sense, CUE is an extension of LIML to the heteroskedastic case.
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For asymptotic normality in the general i.i.d. case we make the following assumption:

Assumption 6: g(z, 3) is twice continuously differentiable in a neighborhood N of f,
Efllg:(Bo)[I](m/n + 1/my/n) — 0, E[[|0g:(60)/081*)(m/n + 1/ma/n) — 0, and for
all B € N we have Amax(El(8)0(8))) < C, Amux(El06:(8)/05,(89:(8)/85,Y]) < C,
Amax(E[029:(5)/08,08:{09:(8) /98,081 }']) < C for a constant C.

This condition imposes a stronger restriction on the growth rate of the number of
moment. conditions than was imposed for consistency. If g;;(8y) were uniformly bounded

a sufficient condition would be that m3/n — 0.

Assumption 7: For all § on a neighborhood N of f i) each (/n/msupscy [|G(6)|,

Vn/msupgey 103(8)/08;1, and /n/msupsey 18%9(8)/05;85: ] are bounded in proba-
bility; ii) each of E[|lg:(8)[|*]/n, E|0g:(8)/08;1%)/n, Ell16%9:(8)/08;08x||*]/n converge
to zero; iii) supgen [I(8) — QUB)| = 0, supgey [10QB)/08; — 0UB)/IB;] > 0,
supgen [|02U8)/ 08,08 — 0°QB)/9B;08:| - 0.

Let D;(8) = /n/m[03(8)/08; — A;(8)3(B)], where A;(8) = 05, 8)/;15-sB) ",
and D(B) = [D1(B), ..., D,(8)].

Assumption 8: GQQ(/B) /0BAp" is stochastically equicontinuous and D(ﬂ)’Q"lD(ﬁ) is

stochastically equicontinuous.

Under these and other regularity conditions we can show that B is asymptotically

normal and that the variance.
THEOREM 3: If Assumptions 1-3, and 6-8 are satisfied and A,, — A* then

This result specializes to the linear model under previous conditions and a slight

strengthening of the fourth moment condition for the instruments.
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THEOREM 4: If Assumptions 1 and 4 are satisfied and E[(z}2)*](m/n+1/m/n) —
0 then
V(B = Bo) =5 NO, V),V IV

This limiting distribution can also be derived by a sequential asymptotics calculation
based on Stock and Wright (2002). If one takes their limiting distribution of the CUE
under weak identification and lets the number of moment restrictions and the degree of
identification grow at the same rate then one obtains the same limiting distribution as in
Theorem 3. This asymptotic distribution is sequential in the sense that we first let the
number of observations go to infinity to obtain the Stock and Wright (2002) limit and
then take the limit as the number of moment restrictions grows. |

The Kleibergen (2004) test that is asymptotically correct under weak instriments is
also asymptotically correct with many weak moment conditions. As a test of the null

hypothesis that 3, = 8 where 3 is known, this statistic is given by

~

T(8) = mg(B)B) "' D(B)D(BYUB) " D(B)) ' D(B)QB)4(B).
The following results shows that this Kleibergen statistic (2004) has the usual chi-squared

distribution:

THEOREM 5: If Assumptions 1-8, 6-8 are satisfied, E[U'Q0'U]/m — A*, and
Bo = B then
T(B) ~ x*(p)-
Because of this one can form joint confidence intervals for the vector 8y by inverting
the Kleibergen (2004). However, since we have asymptotic normality and a consistent es-
timator of the asymptotic variance, it is simpler to just proceed with Wald type inference

in the usual way.

5 Appendix: Proofs of Theorems.

Throughout the Appendix, let C' denote a generic positive constant that may be different
in different uses. Let CS, M, and T denote the Cauchy-Schwartz, Markov, and triangle
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inequalities respectively. Also, let CM denote the conditional Markov inequality that
if E[|A,||Bn] = Oplen) then A, = Op(e,) and let w.p.a.l stand for "with probability
approaching one.”

For the next two results let ¥;, Z;, (i = 1,...,n) be i.i.d. m x 1 random vectors with
4th moments, that can depend on n, but where we suppress an n subscript for notational

convenience. Also, let

Y = Y Yi/n,Z=> Zin u, = EY] pu = E[Z],
i=1 i=1
Yy = var(Y;), X, =var(Z), 8y, = ElYiZ]] — py i,
and A be a symmetric matrix.

LEMMA Al: If Apax(A%) < C, Anax(Zyy) < C, Amax(222) < C, E[YY,Z1 Z;) /nm® —
0, npiy Ap./m < C, then
nY'AZ[m = tr (AZ;Z) Jm+ g, Ap. /m + o,(1).
Proof: By the eigenvalue conditions and ngu, Ap./m < C we have
tr (A%,) /m| < Cit ((Azng) /m < C,tr (AzyyA:zz) /m < C,
[np, A Apy/m| < C, np,ASy Ap./m| < C.

We also have
E (Y = ) A(Zi = pe)?] Jnm?® < CE[YY:Z[Z)) [nm* — 0.

For the moment suppose p, = p1, = 0. Let W,, = nY’AZ/m. Then E[W,] = tr (AZ;z) /m

and

EW? = E|> Y/AZ,Y/AZ/n*m?
1,5,k,¢

b tr(ASL,ASy,)/m? + tr ((AE’ )2> Jm?} = E[W,)? + o(1),

= B [(Y{AZ)?] fnm?® + (1 = 1/n){EW,]?

yz

so that by M,
W, = tr (A} /m + 0,(1). (5.3)

[15]



In general, when g, or u, are nonzero we have,

. !/ — — — ’
W =n (Y = py) AZ = po)/m+ np, ACZ = ) fmot (Y — ) Apae /o + gy, Ap .
Now E[W,] = tr(AX;,)/m + npy, Ay, /m. Note that

' A(Z | =y AS, Ay fm? B |{mi A(Z 0

E {nuyA(Z — uz)/m} = py AY . Ay /m” — 0, {nuy (Z — ,uz)/m} — 0,
so by M,
W= (Y = ) AZ = i) /m sy Apsz /4 0,(1).

Applying eq. (5.3) ton (17 Ly )/A(Z — p.)/m and using T gives the result. Q.E.D.

LEMMA A2: ForV = E[Z,Z]), if E|Z] = EYi] =0, EY.Y/] = I,,, EY,Z]] =0,
nd.a, — H, n*tr(¥) — A*, n’a, ¥a, — 0, tr(¥?)/ [tr(P)]* — 0, nE []anﬁ;l ] — 0
nlE UYl’Zgﬂ /tr(¥)2 — 0, and nE[|Y!Z|*] — 0, then

STalYi+ S 2 S N0, H + AY)
i=1 ij—1
Proof: Let w denote all possible data for a single observation that includes all of the
elements of ¥ and H,(w, @) = Z'Y + Z'Y. Then we have
ZaY+ZZY ZAm—}—Bm + R,

i,7=1
Ain = anY“ B ZHn(wiuwj)a Rn == ZZ:K + a:'z}/l
j<i =1

We have, by E[Z!Y;] = tr F [Y;Z!] =0,

Z ZY,)’) = nE [(ZY;)"] — 0.
Also, E [(afnYl)Q] = al.a, — 0. Therefore by M, we have R,, = 0. Next, note that
E[AL] = a EYiY]]a, = a0,
E[Ai,Bi] = E|(d.Y) (Z{Z{Yj + Z}Y;}) =0,
i §<i

= E | Y (ZY,YiZ+ 2! Zu + 2V Y, 24)

7,k<e

2
E[BL] = E (Zzgx/jJrZJ’.K)

Jj<s

= Y. E|ZEV,Y]| Z] + E|ZEYVY]] 2) = 2(i - 1)t E[Z]Z)) = 2(i — 1) tx ().

J<i

[16]



Therefore

Sno= Y E[(Am+Bi)’l=(n—LaLa, +23 (i — 1) tr(T)
=2 : =2
n—1 , n?—n\ , .
= na, a, + 5— | notr(P) — H + A”.
n n

Next, define

Go(w, @) € E [H,(wy, w)Hy(wy, D))

= B[(ZY +ZM)(ZY + ZW)| =Y'VY + Z'Z
We have, by E [H,(wy,w)?] = 2tr(¥),

E [G(wy, w2)?] /B [Ha(wr,w2)’]”
= (BE|0/WY2)’| + B (2, 2:)"] + 2B YUY, 2,21]) [Atx(¥)?
= (EWVVE VLY | Y+ EZ1E[Z,Z5) Z,] + 0) /4 tr(¥)?

= (Bx(@iY))| + E[tr(V2,2;)) /4 te(¥)? = 2tr(T?) /4 tx(T)? — 0.

It then follows as in the proof of Theorem 1 of Hall (1984) that
S (E[BL | wi 1, ywi| — B[BL]) 50
i=1

Note also that E[A}] = E[A2, | w;_1, ..., uy] and that

E[ApnBm|wi—1, ..., un] = ZE {(a;}ﬁ) (ZZY} + Z]’-Yi> | w;_1q, ...,wl] =a, (Z Zj> .

1<t J<

Therefore

" 2
(Z E[AinBin|wi—17 ERESY wl])

=2

n—1
= a,Va, Y (n—1)*<n’a Va, — 0.
i=1

Then by M, we have
ZE{AmBm ‘ Wie1y eny wl] '£> 0.
i=2

[17]



By T it then follows that

ke3

> B [(Ain + Bin)* | wit, oy wr] = B [(Ain + Bin)’]

K2

3

n

= S (B[BL | wiy,.owi| = E[BL]) + 23 E[AinBin | wict, ..., wr] B 0

wm

=2 =2

Next, note that
LB [Ho(wy, ws)"| /B[ Hy(wn, we)?? < Cn7 (| Z1Ya['] / tr(¥)? — 0.

It then follows as in the proof of Theorem 1 of Hall (1984) that -1, EF[B}] — O.
Therefore, by T,

> E|[(Ain + Bin)*| < CnElla,Yi['] + C Y E[BL] =0,
=1 1=1

so that, as in Hall (1984), for any ¢ > 0

S E (Ain + Bin)® 1 ([Ain + Bin| > £5,)] — 0.
=1
The conclusion then follows from Brown’s (1971) Martingale central limit theorem, sim-

ilarly to Hall (1984). Q.E.D.
Recall that G(8) = §(8)'8) '4(8)n/2m and Q(B) = (1 + 5.(5))/2.

LEMMA A2A: If Assumption 3 is satisfied then & 2 1 and there is a g-inverse M~
. . N
with | M — M — M|[" /K £ 0.
Proof: Note that & is invariant to nonsingular transformation of Z. Let z = z(E[z.2]]) "'/,
so now Assumption 3 is E[(z/2)?]/KT — 0. Let M = BAB' where B is an orthogonal

matrix, A is a diagonal matrix of eigenvalues of M, and let M~ = BA~B’, where A is

the diagonal g-inverse. Then A=M"Mis symmetric and idem potent so that
6 = t(P)/K = tr(A)/K = | v k.

By Newey (1997) we have
|37 - 1| 1 = 0, (BLZi2)3/TE) 2 0.
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We also have, for A= MM
|A- 8t/ = A~ An| jx <A - | /K
< (I = M)AXI - M)/K < |1 - M| /K 2o,

~ 2
giving second conclusion. It then follows by T' that HA -1 K” JK £ 0, so that by
L= |Ixl’ /K,

a-1|= H‘AHQ x| /5 < JA - L] /K 4 20Tkl | A - T /K 2 0.

LEMMA A3: If Assumptions 2 and 3 are satisfied then supgep |Q(8) — Q(8)] = 0.

Proof: Since Q(f) and Q(B) are stochastically equicontinuous by Assumption 3, it
suffices by Newey (1991, Theorem 2.1) to show that Q(3) -2 Q(B) for cach 8. Apply
Lemma Al with Y; = Z; = ¢;(8) and A = Q(08) /2. Note that AY, = AY,, = AS,, =

yz

I,,/2 and that the hypotheses of Lemma Al are satisfied by Assumption 3. Then by the

conclusion of Lemma Al

Q(B) = tr(In/2)/m + Su(B)/2 + 0,(1) = Q(B) + 05(1).

Q.ED.

Proof of Theorem 1: By T, Lemma A3, and Q(3) bounded on B uniformly in m,
we have supgp 1Q(B)| = O,(1). Let a(8) = Q(B)~"¢(8). By Assumption 2,

1a(8)|1” = §(8)'QB)~2QUB) T QUB) 2 4(B) < CQB),
so that supgc g ||a(B)]| = Op(1). We also have

Panin (28)) = Auin (UB))] < [28) - 2B)

.

so that w.p.a.1 (with probability approaching 1) Amin (Q(3)) > C, and hence Apay (Q(8) ™) <
C uniformly in 8 € B. Therefore,

Q) - QW) < lapy [




It then follows by Assumption 2 that supgep ‘Q B) — ’ = 0. Then sup ‘Q Q(B)J N
BEB

0 by T'. Therefore, for any ¢ > 0, w.p.a.1,

A

Q(B) < Q(B) + ¢ < QBo) +2¢ < Q(Bo) + 3¢

Since Q(B) = 1 + S,.(8), it follows that w.p.a.l,
A5

Since ( is anything positive, it follows that A (H ,B — 50“) -0, so the conclusion follows

1) < Su(B) < S(80) +3¢ =3¢

by Assumption 2. Q.E.D.

LEMMA A4: If Assumption 5 is satisfied then E[(y; — x.8)?|2]) > C. Also, for
Xi = (yi,2i)', BlIXi[*z] < C.

Proof: Note that for 6 = fy — 5 we have y; — 2.8 = €, + /6 + Zi7Tmnd, so that
El(y: - zi8)*|2] = El(ei +m:0)?|zi) = (1,6")5(2)(1,8") = Amin (S(2:)) (1 + 6'6) > C,

giving the first conclusion. Also, E|||z;||*] < CE[|In:l|*|z] + CE[||zmmal|t|2] < C and
Elyf] < CE|||z:||*|Boll*|z:]) + E[e}]2:] < C, giving the second conclusion. Q.E.D.

LEMMA Ab5: If Assumption 4 is satisfied then C711,,, < Q(B) < C1,,.

Proof: By Lemma A4 C~* < E[(y; — z3)*|2;) < C, so that the conclusion follows by
I, = Elzi7l] and Q(8) = E|zz/E[(y; — 2.8)?|z]]. Q.E.D.

LEMMA A6: If Assumptions 1 and 4 are satisfied then C 11, < 7l mpon/m < CI,.

Proof: By Lemma A5, n,,.Q 'm,.n/m < Crl, mpan/m and 7/ Q 'n,,n/m >

Cnl,nTmnn/m, so the conclusion follows by Assumption 1. Q.E.D.

LEMMA AT7: If Assumptions 1 and 4 are satisfied then there is M = O (1) with

'\/n/mH@? )/081l = O(1), i \/n/mHag )/08 — 39( )/aﬁH Op(1), 1) supgep \/n/mlg
O(1), 1) supgep \/n/mHg || = v)n/mlg(B)=g(B)Il < CllB—Bll, vi)y/n/mllg(5)

9(8 )|| < M3 -8l

[20]



Proof: Note first that that 0g(3)/05 = —mmn, so i) follows by Lemma A6. Also,

2
n./n| ] = trE[zznn]/n < CtrE[zz]/n = Cm/n,
-1

] < EBl(#z)"]/n — 0.

2 /n — I,

Therefore by M and T we have

109(6)/08 — 85(8)/98]| <

24/ =

izmé/n + || || = Op(1/m/n),

giving if). Then by M and T v) holds. FIX Then 1) follows by §(3)—§(8) = [0§(8)/08)(8—
B) (with M = supge /n/ml0g(8)/0B])), and i) similarly. By i), |3(8)|| = llg(8) -
3Bo)|l < Cyfm/n|B — Boll < Cyfm/n, giving iv). Also, similatly to the proof of
v), we have [|3(8s)]| = O,(y/m/n) so by i) 3(B)I| < l13(B) — 3(Bo)ll + Op(y/m/m) <
M(y/m/n)[I8 = Boll + Op(y/m/n) < O(4/m/n). QE.D.

LEMMA A8: If Assumption 5 is saﬁsﬁed, then supgcp 128)-Q(8)| - o, SUDgep 10€2(8, B)/ 06, -
OUS, B)/95ls=6 — 0, and [|9*2(0, 8)/86;05 — 8°SU8, £)/0;08¢|||s=p = 0.
Proof: Let X; = (y;, #}) and o = (1, —=f), so that y; — 2.8 = X/6. Note that

R B B p+1 . . . n
QB,B) —UB,B) = Y (Djx+ Fi)ajéu, Dy = ZziZQXinik/n = Elziz Xy X
j,k:l '
ff_‘jk = Zzl Xij/n) Zz Xie/n) — Bz, X Bz X

Then for Aj = > 2i:.Xy/n — ElzX,))

E f?ij2]

IA

CE[(zz)" EIX; X |z)l/n < CE[(22:)%] /n — 0,

El|A]7) < ElzzBIX3z]/n < Omn,
1BzX5] < (BlzzE[X}|a])"? < Cy/m.

From the last two lines, M, and T it follows that

| Ee

| < A A + Bt A + 1 EXadl A
= Op(m/n) + O(Ym)O,(\/m/n) = Op(y/m?/n) £~ 0.

[21]



The conclusion then follows by B bounded and by the fact that Q(8,3) — Q(3,5) is a
quadratic function of § and 5. Q.E.D.

LEMMA A9: If Assumption 5 is satisfied, then

|d'UBY — a'BY| < Clallliblliz - Bl

|a/092(8, B)/ 065550 — 0’096, 8)/96;15=p0] < CllallllBl[[|5 — BII-

Proof: Let 3; = E[X;X!|z], which is bounded. Then by ¢ = (1, —3) bounded on B,

’S’Sig - 5I~i , SO that

|@'QBYb ~ dQB| = |Bl(az) (V' 2) EI(X[0)* — (X]6)*| ]
< Ella'z| [V'z] 1650 - 6'50]]) < CE[(d2))) 2 B(0'2)"172)18 — Bl < Cllalllo]lll5 - 5.

We also have

|a'08, )/ 9631550 — o' 03, 8) /065155t < Ella’z] |b'z| Ell|zyi]| [z]]115 — 8]
< CllalllpllI8 - 8- Q-E.D.

Proof of Theorem 2: By Lemma A5, A\yin(2(5)) > C. Also, by Lemma A4,

E[{g:(8) 9:(8)})/n = El(#i2)*E[(y — wi8)*|z]]/n < CE[(2j2:)*]/n — 0.

Lemma A8 gives supsp [(8) — QB 2+ 0. Let a(, B) = /n/mAB)~5(3). By
Lemma A7, supg scp Ha(ﬁ, B)H < C. Then by Lemma A9,

15a(8) = (n/m)g(BYB) ' 5(B) /2| = |a(B, B [2B) — B a(8.8)/2| < C|5 - 5|

Also, by T and Lemma A7,

|(n/m)a(BYUB) 9(B)/2 — Sa(B)] < Clnfm) |3(B) — g + Clnfm) 5 |3(5) - 3(8)]
< cfg-4|.

Then by T it follows that, \Sn(ﬁ) - Sn(/j)l <C HB - ﬁ” , implying equicontinuity of S,(3),

and hence Q(f). An analogous argument with (83, ) = Q(8)~1§(8) replacing a(3, 8) im-

plies that lQ(B ) — Q( )< , with M = 0,(1), giving stochastic equicontinuity

[22]



of Q(ﬂ ). Thus, all the hypotheses of Assumption 3 are satisfied. Finally, by Lemmas A5
and A6,

Sa(B) = (n/m)g(BYUB) " 9(B) = (n/m)(8 — Bo) TyuuSU(B)~ Tonn (8 — o)
> C(B — o) [(n/m) T Tnn] (B = Po) = C(B = B) (B — Po)-

so that Assumption 2 is satisfied. Hence, all the hypotheses of Theorem 1 are satisfied,
so the conclusion to Theorem 2 follows by Theorem 1. Q.E.D.

For the next results let Q = Q(8o), B; = 008, 50)/06;15=p,, A; = B; QL.

LEMMA A10: If Assumption 6 is satisfied then

Vml|Q = Q|| 5 0, vml|4; — 4]l £ 0.
Proof: By standard arguments and Assumption 6,

Eml|Q - QIF) < CmE[llg:(Bo)]|")/n — 0,
E[m||B; - BII'] < CmE[|189:(50)/08;1*l9:(Bo) ) /n — 0,

so the first conclusion holds by M. Also, note that )\max(AjA;) < Cby A;AL < C’B‘jQ‘lB;- <
CE[0g:(B0)/08;{89:(80)/88;}"]. Then by Amax(Q~1) < C w.p.a.lwe have

Vmlld; = Al < VmlQHQ - QA + Vm|QTH(B; - By
Cvml|(©2 — Q) 4] + Cvml|B; — By
< Cym|Q— Q|+ Cyvm||B; — B;|| = 0. Q.E.D.

A

For the next result g; = g(w;, fo), U] = 89:(60)/98 — El8g:(80)/98;] — A9, and
Ui == [Uil., cery UZP]
LEMMA A11: If Assumption 5 is satisfied then

y
VIR (B0) < N(O, H 4+ A).

Proof: Let Q = Q(Bo), B; = 96, Bo)/96;15=5,, A; = B,Q7Y, § = () Stacking over j

[23]



from eq. (4.1) and evaluation at 3, gives,

V) = GO+ OO VR
U= 0,0 iv'/f
U = 04i(60)08; — E[0g:(50)08;) — A;g:(Bo)-

By Lemma A10 we have

|7t = ) g/ Vil

Vg (A5 — AN ng/vm| + Vg A Q- ) g/ vim)
Clall2m)VmlA; — Al + Cn/m)|§ A llsllv/ml Q2 — 2l

< o(1) + Cln/m)Ig*Vmli - Q| - 0.

IA

IN

Similarly we have G%Q*1ﬁ§ — G Q7Y /ng 2 0. Therefore, by T,

\/_ (50) WG U ng/vm o+ o(1). (5.4)

ap

Next, for any nonzero vector A consider \/m\0Q(5y)/88 and apply Lemma A2 with
ap = NG Q2] 0, Y = QO V2, Z = Q72U N ny/m, and H = N H\. By Assump-
tion 1 and the hypothesis of Theorem 3, for ¥ = E[Z;,Z],] we have

nal,a, = NG G\ — NHX = H,n*r(V) = E|Z], Zin] = NE[UIQT U /m —> NA™A.

Also, note that A = E[U;ANU]] < CE[UU;] < CXE_ E[{09:(80)/08;1109:(80)/08;}]
so that Apax(A) < C by Assumption 6. Therefore

30l Wa, = NG QL E[UM UGN /m < ONGLQ1Go A /m — 0.
Also, it follows similarly that ¥ < CApax(A4)/n?m, so that by tr(¥) > C/n?

tr(U?) /tr(¥)? < Cn'tr(I2) /n*m? = Ctr(1,,)/m* — 0.

24]



In addiiton, by Assumption 6 and {|G’ Q|| < C we have for gg = 9¢:(50)/00,

nEld, Yl < CE[CL g 1/n < CEllgl!)/n — 0,
n B (V2] /(@) < CEl|g0 ) nm? < CElgul BNV ) frim?
< CENg|!mva) Bllg:") + Ellgal*l/m/m) — 0,
nEIY/ 2 < CEl|g U] )/nm < (Ellgl] + Elllgal|'])/mn\ — 0.

The conclusion then follows by the conclusion of Lemma A2, eq. (5.4), T, and the
Cramer-Wold device. Q.E.D.

LEMMA A12: If Assumptions 6-8 hold then for any f -2 By, 82°Q(B)/08058 - H.

Proof: For notational convenience, drop the 8 argument and let & and ¢ denote

derivatives with respect to £ and 3., e.g. 8@(6)/0& = Qp and 82Q(ﬁ)/8ﬁk5ﬁg = Qk,ﬂ-
Then differentiating twice for §(8) = \/n/mg(8) we have

Note also that for Q@ = 1§'Q7'g, Qe = 0°Q(8)/0Br0B: has the same formula as Qre
with € = Q(3) replacing Q. By Assumption 6 ii) each of Q 2, Q2 and Q2, have largest
eigenvalie bounded above by a constant. Then by Assumption 7 i) and iii) and Lemma
A12, it follows that

sup |7, 10,07 1g — QLQ‘IQeQ”IQ\ < sup ||gx]| sup “Q_lﬂgﬁ_l — Q*IQgQAH sup |||
BEN BeN BeEN BEN

= 0,(1)0,(1)0,(1) 0.

Therefore, we can replace by € in the third for Qk,g without affecting its probability

limit. Applying a similar argument to each of the six terms in the above expression for

Qre, it follow that for @ = 15'Q'g, by T,

sup \le - Qk,é‘ 5 0.
BEN

[25]



By hypothesis, Qﬁg(ﬁ) is stochastically equicontinuous, so by j3 2, By, the previous

equation, and T,

| Qs (B) = Qoo (B0)|| < | Qs (B) — Qs (B)| + | Qi (B) = Qi (Bo)]| - 0. .

It therefore suffices to show that Qk’g £+ Hye, where we now evaluate at f3y, i.e.

Qre = 0*Q(B0)/0BkOBe. Let Yy, = Elgrigl], Yre = E {(gki — Gk) (ges —Qe)/}, Tie =
E [(grei — gre) g)- Note that

Q=T+ Th, Yo = The+ Thg+ Thp + Thp
By Assumption 7 and Lemma Al we have

GG = tr (Q_lT;d) +0p(1), 371G = 5.2 e + tx (Q‘lpﬂc)g) + 0,(1),
GO =t Q7O +0p(1), T Qe = tr (27 Q) + 0,(1),
FOrUOQTIOTG = (0TI + 0,(1).

For a symmetric matrix A we have tr(AB) = tr(B'A") = tr(A’'B’) = tr(AB’). Then by

T we have

Qre = tr(Q7'T%) + 5. Ge + tr(Q' YL ,) — tr(Q7H(Te + TR
—tr(Q7H Y, + T + tr(QH(Tk + T (L + 1))
—(1/2)tr(Q7 (Yo + Yo + T p + Thp) + 0p(1)

= g g —tr(Q T + QYL + tr(Q7H(Ty, + THQTIT,) + 0,(1)

= 3.7 g — tr(Q7IT Q7T F (I QMY
—tr(QTITLQTITY) + tr(QTT TR ) + 0,(1)

= 3.7 G — tr(TeQ7 1T Q) + tr(QTIQTI YY) + 0,(1) = Q7 G0 + 0,(1).

Thus 8°Q(5o)/0B0B" = G 'G,, + o0,1). The conclusion then follows by the triangle
inequality and eq. (?7). Q.E.D.
LEMMA A13: If Assumptions 6-8 are satisfied, ]A)(B)’Q_lf)(ﬁ) 2 H 4 A~

[26]



Proof: Let D;(5) = \/77//m [03(8)/08; = A;(8)§(B)], where A;(8) = 96, 5)/06;16=52(8) ",
and D(8) = [Di(B), ..., D,(B)]. Tt follows similarly to the proof of Lemma A10 that
A(B) — A(B) H 250, so that

A~

D(B) - ll < sup
BeB

A(B) — 5up

sup
BeN

lvars] 2o

We also have supgey HD(B)H = Op(1) so that by T and CS,

~ ~ ~ ~

DBy« D(3) - DBy D) 2 0.

Also, by Assumption 8, D(8)'2 ' D(5) — D(8,)' Q" D(6o) 2~ 0. Now apply Lemma Al

to D;(Bo)' Q7 Dy (Bo) with A = Q7L Y; = dg(w;, Bo)/8Bj—A;g:, and Z; = 8g(wi, o)/ 0Bk~
Arg;. Note that for the j* unit vector e;,

np, A /m = ;G0 Grep, tr(AS ) /m = tr(QLE[URUY)) fm = i Ane.
Therefore, it follows from the conclusion of Lemma Al that
D;(B0)' U Di(Bo) = €,GoQ Gre + € Anex + 0p(1) = Hy + 0,p(1).

The conclusion now follows by T. Q.E.D.
Proof of Theorem 3: The result follows from Lemmas All, A12, and Al13 in the
usual way. Q.E.D.

Proof of Theorem 4: We proceed by verifying all of the hypotheses of Theorem
3. First consider Assumption 6. Note that g(w, 8) = z(y — 2/8) is twice continuously

differentiable by inspection. Also, by Lemma A4 and the specified rate condition,

Elllgill"] + Ell0g(wi, 60)/08]")(m/n + 1/mv/n) < CE[(zlz)*)(m/n + 1/m~/n) — 0.
Also by Lemma A4,
Amax(E[0g:(8)/08i{99:(8)/98;}']) = Amax(Blzizia}]) < Anax(Cln) < C,

Amax(£10:(8)9:(8)]) < Amax(CElgigi] + CE[0g:(8)/08;{0g9:(8)/08;}')
< Aman(CL) +C < C.

[27]



It follows Assumption 6 is satisfied.

It follows by Lemma A7 that Assumption 7 i) is satisfled. Assumption 7 ii) holds by
E[(2i2:)%]/n — 0. Assumption 7 iii) holds by Lemma A8.

The proof of Assumption 8 follows similarly to the proof of stochastic equicontinuity
in the proof Q(B) in the proof of Theorem 2. Q.E.D..

Proof of Theorem 5: It follows from Lemma A13, replacing § with S, that
D(Bo)S2(Bo) " LD(Bo) —2+ H + A*. Also, Lemma A1l gives /mdQ(Bo) /98 ~%» N(0, H +

A*), so the conclusion follows in the usual way. Q.E.D.
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