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Abstract

In this paper we derive a new class of conditional quantile estimators, which contain

Koenker and Bassett’s (1978) nonlinear quantile regression estimator as a special case.

The latter belong to the family of quasi-maximum likelihood estimators (QMLEs) and

are based on a new family of densities which we call ‘tick-exponential’. Analogously to

the linear-exponential family, the tick-exponential assumption is a necessary condition

for a QMLE to be consistent for the parameters of a correctly specified conditional

quantile model. We show that the tick-exponential QMLEs are moreover asymptot-

ically normally distributed with an asymptotic covariance matrix that accounts for

possible conditional quantile model misspecification and which can be consistently es-

timated by using the tick-exponential quasi-likelihood scores and its hessian. The

practical problem of likelihood maximization is easily solved by using a ‘minimax’ rep-

resentation not seen in the earlier work on conditional quantile estimation.
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1 Introduction

A vast majority of the empirical work in economics and finance has traditionally focused on

models for conditional means. Over the last decade, however, applied literature has devoted

increasing attention to other aspects of conditional distributions, such as their quantiles

(see, e.g., Koenker and Hallock, 2000). This important empirical work has in turn rekindled

the interest of the academic community in the theoretical problem of conditional quantile

estimation and inference, a problem which we address in this paper.

Since the seminal work by Koenker and Bassett (1978), numerous authors have used a

quantile regression framework for conditional quantile estimation (see, e.g., Koenker and

Bassett, 1982, Powell, 1986, Portnoy, 1991, Koenker and Zhao, 1996, Kim and White, 2002)

and specification testing (see, e.g., Koenker and Bassett, 1982, Zheng, 1998, Bierens and

Ginther, 2000, Horowitz and Spokoiny, 2002, Kim and White, 2002, Koenker and Xiao,

2002). Common finding of the extant literature is that the quantile regression estimator has

nice asymptotic properties under various data dependence structures and for a wide variety

of conditional quantile models. While many efforts have been made in generalizing the exist-

ing results to new models and data structures, surprisingly little attention has been devoted

to finding alternative semi-parametric estimators for conditional quantiles. There are yet

important theoretical and practical benefits in having different conditional quantile estima-

tors available. For example, it is difficult, if not impossible, to address questions such as

finding a minimal covariance estimator or constructing a Hausman-type model specification

test, if we only have one conditional quantile estimator available.

In contrast to the prior literature, our approach to conditional quantile estimation is based

on a quasi-maximum likelihood. As already demonstrated in the context of conditional mean
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estimation, the quasi-maximum likelihood framework allows one to simply determine the

class of all consistent estimators (see, e.g., Gourieroux, Monfort and Trognon, 1984, White

1994). It is a well known result that there exist a variety of non-Gaussian quasi-maximum

likelihood estimators (QMLEs) which, under standard regularity conditions and provided

that they belong a linear-exponential family, are consistent for the parameters of a correctly

specified conditional mean model.1 In this paper, we derive an analog result valid in the

context of conditional quantile estimation. In other words, we show that there exist an entire

class of QMLEs - class that we call ‘tick-exponential’ - which is consistent for the parameters

of a correctly specified model of a given conditional quantile. In the particular case where

the tick-exponential density equals an asymmetric Laplace (or double exponential) density,

the tick-exponential QMLE reduces to the standard Koenker and Bassett (1978) quantile

regression estimator.

The QMLE generalization is not only of theoretical interest but also has a substantial

practical contribution. For example, it provides an alternative approach to the conditional

quantile covariance matrix estimation. While in the Gaussian QMLE case, it has become

a standard approach to use the scores and the hessian of the Gaussian quasi-likelihood to

construct an estimator for the asymptotic covariance matrix, there exist, to the best of our

knowledge, no similar interpretation in the quantile regression case. The key advantage of

using the tick-exponential scores and hessian to estimate the conditional quantile covariance

matrix is that it avoids estimating conditional densities. While in linear homoskedastic

models, the latter is easy to carry out by using kernel based methods (see, e.g., Kim and

White, 2002, Koenker and Xiao, 2002), its implementation is far more cumbersome in a

more general context of nonlinear heteroskedastic models (see, e.g., Zheng, 1998). The

(quasi) likelihood based approach also offers an alternative to various bootstrap schemes

used to estimate the conditional quantile covariance matrix (see, e.g., Hahn, 1995, Horowitz,

1998), which usually suffer from high computational costs (see, e.g., Fitzenberger, 1997).
1Examples of non-Guassian quasi-likelihoods used in the empirical work include: Gamma, Bernoulli,

Poisson and Student-t (see, e.g., Bollerslev, 1987).
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In practice, computation of tick-exponential QMLEs is a challenge since it involves max-

imizing objective functions which are neither convex nor differentiable. In order to allow the

practitioners to easily implement the proposed estimation method, we suggest a new ‘min-

imax’ approach to optimization. Based on a simple transformation of the tick-exponential

objective function, we are able to transform the initial maximization problem into a saddle-

point search problem, which involves only continuously differentiable functions. Even though

the new characterization does not affect the convexity of the objective function, it does re-

cover the differentiability property. The main advantages of our minimax approach to con-

ditional quantile estimation are: (1) it is applicable for both linear and nonlinear conditional

quantile models, unlike linear programming techniques; (2) its convergence properties are

well established in the literature (see, e.g., Brayton, Director, Hachtel and Vidigal, 1979);

and (3) unlike the interior-point methods (see, e.g., Koenker and Park, 1996), it is easy to

implement by using the standard gradient-based optimization techniques, such as Sequential

Quadratic Programming (SQP) methods, for example.

The remainder of the paper is organized as follows: in Section 2 we define the nota-

tion and give the basic properties of conditional quantile models considered in our setup.

Section 3 introduces the tick-exponential family of densities and shows that its role in the

conditional quantile estimation is analog to the one of the linear-exponential family in the

conditional mean estimation. In Section 4 we study the asymptotic properties of the tick-

exponential QMLEs. In particular we derive primitive conditions for consistency and show

asymptotic normality of the QMLE. The practical implementation of the tick-exponential

quasi-likelihood maximization problem is treated in Section 5, in which we introduce the

minimax representation. All technicalities regarding the proofs are relegated to the Appen-

dix.
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2 Notation and Setup

Consider a stochastic process X ≡ {Xt : Ω −→ Rn+1, n ∈ N, t = 1, . . . , T} defined on a

probability space (Ω,F , P0), where F ≡ {Ft, t = 1, . . . , T} and Ft denotes the smallest σ-

algebra that Xt is adapted to, i.e. Ft ≡ σ{X1, . . . , Xt}. Assume that the joint distribution

of (X1, . . . ,XT ) has a strictly positive continuous density pT so that conditional densities are

everywhere defined. In particular, we will be interested in the conditional distribution of the

first (scalar) component of the random vectorXt. We therefore partitionXt asXt ≡ (Yt, Z 0t)0,

where Yt ∈ R is the scalar variable of interest and Zt ∈ Rn a vector of exogenous variables.

The choice of conditioning variables depends upon the nature of applications in hand: in

a time series context, we are primarily interested in using various lags of Yt, while in a

cross section analysis the emphasis is put on the exogenous variables Zt. In order to keep

our analysis unified, we introduce the following notation: let Gt ≡ σ{X1, . . . ,Xt−1, Zt}, so

that the information set Gt contains different functions of various lags of the variable of

interest Yt and possibly contemporaneous values of Zt. We use the standard notation and

let P0(Yt ∈ A|Gt) denote the conditional distribution of Yt, with A an element of the Borel

σ-algebra on R, A ∈ B(R). Further, we let F0,t denote the true conditional distribution

function of Yt, i.e. F0,t(y) ≡ P0(Yt 6 y|Gt) for every y ∈ R and every t, 1 6 t 6 T , and

we call f0,t the corresponding conditional probability density. Of course, F0,t and f0,t are

unknown and we assume that for every t, 1 6 t 6 T , F0,t belongs to F̃ , which is the set of

all absolutely continuous distribution functions on R, and that f0,t is strictly positive on the

support of Yt. Hereafter, lower case letters (e.g., xt) will be used to denote the observations

of the corresponding random variables (e.g., Xt).

As motivated in the Introduction, the focus of this paper is on different conditional

quantiles of Yt. For a given value of probability α, α ∈ (0, 1), let then Qα(Yt|Gt) denote the

α-quantile of Yt conditional on the information set Gt, i.e.

Qα(Yt|Gt) ≡ inf
v∈R
{v : F0,t(v) > α}.

In the case where the conditional distribution of Yt is continuous, such as the one examined
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here, the above definition is equivalent to α = F0,t(Qα(Yt|Gt)) or Qα(Yt|Gt) = F−10,t (α).

The approach used to estimate the conditional α-quantile of Yt is analog to those which

are employed to estimate the conditional expectation of Yt. Let M denote a model for

the conditional α-quantile of Yt,M ≡ {qαt (Wt, θ)}, in which Wt is a Gt-measurable random

vector, Wt : Ω → Rm, θ is an unknown parameter in Θ, where Θ is a subset of Rk with

non-empty interior, Θ̊ 6= ∅, and qαt (Wt, ·) : Θ → R some real function. Note that through

Wt we allow both different lags of the variable of interest Yt and the exogenous variables Zt

to appear in qαt . In what follows we restrict our attention to conditional quantile modelsM

in which the following conditions are satisfied:

(A0) (i) the model M is identified on Θ, i.e. for any (θ1, θ2) ∈ Θ2 we have: qαt (Wt, θ1) =

qαt (Wt, θ2), a.s. − P0, for all t, 1 6 t 6 T , if only if θ1 = θ2; (ii) for every t, 1 6 t 6 T ,

the function qαt (Wt, ·) : Θ → R is twice continuously differentiable a.s. on Θ; (iii) for

every t, 1 6 t 6 T , the matrix ∇θq
α
t (Wt, θ)∇θq

α
t (Wt, θ)

0 is of full rank a.s. − P0 for all

θ ∈ Θ; (iv) the m-vector Wt is function of Zt and of some finite number τ of lags of Xt, i.e.

Wt ≡ h(Zt, Xt−1, . . . ,Xt−τ) where h is a function into Rm.

Conditions (i)-(iv) in (A0) are fairly standard and verified for a variety of conditional quantile

models. Examples of such models include: Koenker and Zhao’s (1996) conditional quantile

model, qαt (Wt, θ) ≡ β0+
Pp

i=1 βiYt−i+σtδ with σt = γ0+
Pq

j=1 γj|Yt−j−β0−
Pp

i=1 βiYt−j−i|,

p, q > 1, in whichWt ≡ (Yt−1, . . . , Yt−p−q)0 and θ ≡ (β0, . . .βp, δ, γ0, . . . , γq)0; Engle and Man-

ganelli’s (1999) CAViaR model, qαt (Wt, θ) ≡ β0+ β1q
α
t−1(Wt−1, θ) + l(β2, Yt−1, q

α
t−1(Wt−1, θ)),

in which l corresponds to some loss function and we have Wt ≡ (Yt−1, . . . , Y1)
0 and θ ≡

(β0,β1, β2)
0; Taylor’s (1999) and Chernozhukov and Umanstev’s (2000) linear VaR: qαt (Wt, θ)

≡W 0
tθ and quadratic VaR models: q

α
t (Wt, θ) ≡W 0

tβ +WtBW
0
t .

In what follows, we treat two types of situations, depending on whether or not the model

M is correctly specified. We say that M is correctly specified for the parameters of the

conditional α-quantile of Yt if and only if there exists some true parameter value θ0 such
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that F0,t(qαt (Wt, θ0)) = α, for every t, 1 6 t 6 T . More formally, under correct model

specification we assume the following:

(A1) given α ∈ (0, 1), there exists θ0 ∈ Θ̊ such that E[1(qαt (Wt, θ0)− Yt)|Gt] = α, a.s.− P0,

for every t, 1 6 t 6 T .2

In other words, for any t, 1 6 t 6 T , the difference between the indicator variable above and

α is assumed to be orthogonal to any Gt-measurable random variable. Unfortunately, and

in most practical applications, the correct specification assumption (A1) is unlikely to hold,

implying that the conditional quantile model M is misspecified. Given the importance of

the misspecified case in practice, we devote particular attention, in our theoretical results,

to cases where the assumption (A1) fails.

3 Tick-Exponential Family of Densities

We consider a class of quasi-maximum likelihood estimators (QMLEs), θ̂T , obtained by

solving

max
θ∈Θ

LT (θ) ≡ T−1
XT

t=1
ln lt(yt, q

α
t (wt, θ)), (1)

where lt is a period-t conditional quasi-likelihood. It is a well known result that different

choices of lt affect the asymptotic properties of the QMLE when the object of interest is the

conditional mean of Yt. Specifically, let {µt} denote a model for the conditional mean of Yt,

which is correctly specified, and consider θ̂T which solvesmaxθ∈Θ T−1
PT

t=1 ln lt(yt, µt(wt, θ)).

Under standard regularity conditions, θ̂T is consistent for the true parameter θ0 of {µt} only

if the quasi-likelihood lt belongs to the linear-exponential family of densities, i.e. only if we
2The function 1 : R → [0, 1] is the Heaviside function, i.e. for any x ∈ R, we have 1(x) = 0 if x < 0 and

1(x) = 1 if x > 0, so that 1(·) is right-continuous, i.e. limh→0+ 1(x+ h) = 1(x) for all x ∈ R. The Heaviside

function is the indefinite integral of the Dirac delta function δ, with 1(x) =
R x
a
dδ, where a is an arbitrary

(possibly infinite) negative constant, a 6 0.
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have lt(y, η) = ϕt(y, η) with

ϕt(y, η) = exp[at(η) + bt(y) + yct(η)], (2)

where the functions at : Mt → R and ct : Mt → R are continuous, Mt ⊂ R, the function

bt : R → R is Ft-measurable, and at, bt, ct are such that ϕt is a probability density with

mean η. In other words, the linear-exponential QMLE is consistent for the true value of a

correctly specified model for the conditional mean even if other aspects of the conditional

distribution of Yt are misspecified, i.e. the true density f0,t is not equal to ϕt(·, µt(wt, θ)).

This property was derived by White (1994), as a generalization of the result proposed by

Gourieroux, Monfort, and Trognon (1984).

In this paper we derive an analog result, which is valid in the case when the object of

interest is no longer the conditional mean of Yt but rather its conditional α-quantile. We

start by defining a family of densities whose role in the conditional quantile estimation is

analog to the one of the linear-exponential family (2) in the conditional mean estimation.

We call such family ‘tick-exponential’.

Definition 1 (tick-exponential family) A family of probability measures on R admitting

a density ϕα
t indexed by a parameter η, η ∈ Mt,Mt ⊂ R, is called tick-exponential of order

α, α ∈ (0, 1), if and only if: (i) for y ∈ R,

ϕα
t (y, η) = exp(−(1− α)[at(η)− bt(y)]1{y 6 η}+ α[at(η)− ct(y)]1{y > η}), (3)

where at : Mt → R is continuously differentiable, at ∈ C1(Mt,R), and bt : R → R and

ct : R → R are Ft-measurable;3 the functions at, bt and ct are such that for η ∈ Mt:

(ii) ϕα
t is a probability density, i.e.

R
R ϕ

α
t (y, η)dy = 1; (iii) η is the α-quantile of ϕα

t , i.e.R η

−∞ ϕα
t (y, η)dy = α.

3The function 1 : Ft → {0, 1} is a standard indicator function, i.e. for any event A ∈ Ft we have

1{A} = 1 if A is true and = 0 otherwise. Note that in the footnote 1 we use a slightly different notation for

the Heaviside function x 7→ 1(x) which is a real function, i.e. 1 : R→ [0, 1].
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In other words, for a given value of probability α, the density function ϕα
t in (3) is

exponential by parts where the two parts have different slopes, proportional to 1−α and α,

respectively. Note that by letting dt(y) ≡ (1−α)bt(y) +αct(y) and gt(y) ≡ α[(1−α)bt(y)−

αct(y)], we obtain an alternative expression for ϕα
t , given by ϕα

t (y, η) = exp(gt(y) − (1 −

α)[at(η) − dt(y)]1{y 6 η} + α[at(η) − dt(y)]1{y > η}), which has been studied separately

by Gourieroux, Monfort and Renault (1987) in a context of M-estimation.4 In the special

case when at(η) = [1/(α(1 − α))]η and bt(y) = ct(y) = [1/(α(1 − α))]y, the function lnϕα
t

is proportional to the ‘tick’ function tα(y, η) ≡ [α − 1{y 6 η}](y − η), also known in the

literature as the asymmetrical slope or check function. This is why we call ‘tick-exponential’

the family of functions defined in Definition 1.

Following are some interesting properties of the tick-exponential density of order α, ϕα
t ,

as defined in (3). For every η ∈Mt, the functions at, bt and ct in Definition 1 satisfy:

(i) a0t(η) > 0;

(ii) exp{−(1− α)[at(η)− bt(η)]} = α(1− α)a0t(η);

(iii) exp{α[at(η)− ct(η)]} = α(1− α)a0t(η);

(iv) (1− α)bt(η) + αct(η) = at(η).5

Note that the last equality (iv) in particular implies that ϕα
t (·, η) is continuous on R. In

cases when the argument η corresponds to a function of a random variable Wt and of the

k-vector of parameters θ, such as qαt (Wt, θ) for example, we further assume that for all θ

we have qαt (Wt, θ) ∈ Mt, a.s. − P0, and that the conditions of Definition 1 are satisfied for

ϕα
t (Yt, q

α
t (Wt, θ)).

As pointed out previously, the role played by the tick-exponential family of densities in

the context of conditional quantile estimation is perfectly analog to the one played by the
4The author wishes to thank Alain Monfort for pointing out this analogy, which she was unaware of prior

to the writing of this paper.
5The property (ii) is obtained by differentiating the third condition of Definition 1 with respect to η.

Similarly, by combining conditions two and three in Definition 1 and differentiating the resulting equation

with respect to η, we show that property (iii) holds as well. Finally, combining (ii) and (iii) implies that

(i) and (iv) hold.
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linear-exponential family in the context of conditional mean estimation. In other words, if we

can consistently estimate the true parameter θ0 of a correctly specified conditional quantile

modelM by maximizing a quasi-likelihood, then this quasi-likelihood necessarily belongs to

the tick-exponential family. Put differently, the tick-exponential assumption is a necessary

condition for consistency of any QMLE θ̂T and we can obtain an entire class of consistent

QMLEs by considering different functions at, bt and ct of the tick-exponential family in

Definition 1. We give a more formal statement of this result in the following theorem.

Theorem 2 (necessary condition for consistency) Consider a correctly specified con-

ditional quantile model M with true parameter θ0 which satisfies the conditional moment

restriction in (A1). Let θ̂T be the QMLE obtained by solving the maximization problem (1).

Assume: (i) Θ is compact, and {Xt} and lt are such that (ii) for every t, 1 6 t 6 T ,

E[ln lt(Yt, q
α
t (Wt, θ))] <∞ and is continuous for any θ ∈ Θ, (iii) E[LT (θ)] is uniquely max-

imized at θ∗ ∈ Θ̊, and (iv) LT (θ) converges uniformly in probability to E[LT (θ)].

Then, the QMLE θ̂T is consistent for θ0 only if, for every t, 1 6 t 6 T , y ∈ R and η ∈Mt,

we have

lt(y, η) = ϕα
t (y, η),

where ϕα
t is a tick-exponential density of order α as in Definition 1.

What Theorem 2 shows is, if we want the QMLE to be consistent for the true pa-

rameter of a correctly specified model of the conditional α-quantile of Yt, then we must

choose a member lt of the tick-exponential family. There are at least two important impli-

cations of this result: first, Theorem 2 shows that a consistent QMLE for the conditional

α-quantile is not necessarily the one obtained by a standard non-linear quantile regression:

minθ∈Θ T
−1PT

t=1[α− 1(qαt (wt, θ)− yt)][yt− qαt (wt, θ)]. Indeed, Koenker and Bassett’s (1978)

quantile regression estimator is a special case of our family of tick-exponential QMLEs which

is obtained by letting at(η) = [1/(α(1−α))]η and bt(y) = ct(y) = [1/(α(1−α))]y, so that the

function lnϕα
t in (3) is proportional to the aforementioned tick function tα. In other words,
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Figure 1: Functions η 7→ at(η) and the corresponding criteria plotted at η = 0: 1
α(1−α)η and

[α−1{y 6 η}](y−η) (solid line), 1
α(1−α) sgn(η) ln(1+|η|p) and [α−1{y 6 η}][sgn(y) ln(1+|y|p)

− sgn(η) ln(1 + |η|p)], with p = 1 (dot-dashed line), p = 2 (dotted line) and p = 5 (dashed

line).

there exist alternative estimators that one can use to consistently estimate conditional quan-

tile models and the second important implication of Theorem 2 is to show that those are

necessarily of the tick-exponential form, with functions at, bt and ct as in Definition 1.

Figure 1 provides examples of functions at that satisfy the requirements of Definition

1. For each choice of at we derive a corresponding criterion which is minimized by the

QMLE. For example, in the standard Koenker and Bassett (1978) case, we have at(η) =

[1/(α(1 − α))]η and the criterion is the tick function tα. Similarly, if we define sgn(x) ≡

1{x > 0}− 1{x 6 0} and let

at(η) =
1

α(1−α) sgn(η) ln(1 + |η|
p), p ∈ N∗, (4)

then we obtain a whole new class of conditional quantile QMLEs, θ̂T , which solve

max
θ∈Θ

T−1
PT

t=1
1
α
[sgn(yt) ln(1 + |yt|p)− sgn(qαt (wt, θ)) ln(1 + |qαt (wt, θ)|p)]1{yt 6 qαt (wt, θ)}

− 1
1−α [sgn(yt) ln(1 + |yt|

p)− sgn(qαt (wt, θ)) ln(1 + |qαt (wt, θ)|p)]1{y > qαt (wt, θ)}. (5)

11



It is straightforward to show that the function at in (4) satisfies the requirements in Def-

inition 1, which under conditions of Theorem 2, ensures that θ̂T is consistent for the true

conditional quantile parameter θ0. Conditional quantile estimators such as the QMLEs ob-

tained by maximizing (5) have not yet been seen in the literature. Also, note that the

above maximization problem is equivalent to a novel non-linear quantile regression problem:

minθ∈Θ T
−1PT

t=1[α−1(qαt (wt, θ)−yt)][sgn(yt) ln(1+|yt|p) − sgn(qαt (wt, θ)) ln(1+|qαt (wt, θ)|p)],

with p ∈ N∗.

The key intuition behind the proof of Theorem 2 is as follows: first, we assume that the

process {Xt} and the quasi-likelihood lt are such that the QMLE converges in probability

to the pseudo-true value θ∗ of the parameter θ of interest. The pseudo-true parameter θ∗ is

defined as a unique maximizer of E[LT (θ)] on Θ̊. The conditions (i) - (iv) are sufficient for

θ̂T
p→ θ∗ to hold.6 In the second step and once we know that the QMLE is consistent for θ∗,

we show that the equality θ∗ = θ0 can only hold if lt(y, η) = ϕα
t (y, η) with ϕα

t as defined in

(3). In other words, the tick-exponential assumption is a necessary condition for the QMLE

θ̂T to be consistent for the true value θ0 of a correctly specified conditional quantile model

M.

We now turn to the study of sufficient conditions for consistency of tick-exponential

QMLEs. The focus of the following section is twofold: first, we propose a set of conditions

for consistency of θ̂T which are more primitive than the ones used in Theorem 2, and ,second,

we derive the asymptotic distribution of the QMLE.

6Note that these are not exactly the primitive conditions for consistency of θ̂T . The integrability of ln lt

with respect to P0 required by (ii) involves more primitive conditions on the existence of different moments

of Yt andWt. The condition (iii) states that θ
∗ is a minimum of E[LT (θ)] and that this minimum is moreover

unique. The first requirement involves more primitive conditions on ∂ ln lt/∂η, ∂2 ln lt/∂η2 and ∇θq
α
t , which

depend on the functional form of both lt and qαt . Finally, the uniform convergence condition (iv) can be

obtained by applying an appropriate uniform law of large numbers, such as the one corresponding to the

simplest case where {Xt} is independent and identically distributed and the function ln lt is Lipshitz.
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4 Asymptotic Properties of Tick-Exponential QMLEs

Let ϕα
t be a member of the tick-exponential family of order α, as in Definition 1, and let θ̂T

be the corresponding QMLE, solution to

max
θ∈Θ

LT (θ) ≡ T−1
TX
t=1

lnϕα
t (yt, q

α
t (wt, θ)). (6)

The following theorem provides sufficient conditions for the consistency of θ̂T .

Theorem 3 (consistency) Let θ̂T be a tick-exponential QMLE obtained by solving (6) and

let θ∗ be the pseudo-true value of the parameter θ, θ∗ ≡ argmaxθ∈ΘE[LT (θ)]. Assume:

(A2) Θ is compact and θ0 and θ∗ are interior points of Θ;

(A3) there exists K > 0 such that for every t, 1 6 t 6 T , and η ∈Mt, 0 < a0t(η) 6 K;

(A4) the sequence {Xt} is strong mixing with α of size −r/(r − 2), with r > 2;

(A5) E[supθ∈Θ |∇θq
α
t (Wt, θ)|] < ∞ and for some ² > 0, E[supθ∈Θ |at(qαt (Wt, θ))|r+²] < ∞,

E[|bt(Yt)|r+²] <∞, E[|ct(Yt)|r+²] <∞, for all t, 1 6 t 6 T ;

Under assumptions (A0), (A2)-(A5), we have θ̂T
p→ θ∗. If, in addition, the conditional

quantile modelM is correctly specified (A1), then θ̂T
p→ θ0.

In other words, if lt belongs to the tick-exponential family of densities, then the QMLE

is consistent for the true value θ0 of a correctly specified model M despite distributional

misspecification, i.e. even if the true conditional density of Yt, f0,t, is not tick-exponential.

Hence, we need not know the true distribution of neither Yt nor the exogenous variables Zt

in order to obtain consistent estimates for the parameters of the conditional α-quantile of Yt.

Even though the consistency result in Theorem 3 is robust to distributional misspecification,

the convergence of θ̂T to the true θ0 is only valid if the conditional quantile model M is

correctly specified (A1), which may not hold. Under model misspecification, the QMLE

converges to the pseudo-true value θ∗ which maximizes the expected quasi log-likelihood.

The pseudo-true value of the parameter θ is of particular interest in applications such as
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forecasting, for example. If forecasting is the goal then one is interested in finding para-

meter values that minimize the expected loss of the forecast error, irrespective of whether

or not the forecasting model is correctly specified. In our case, the pseudo-true value θ∗

minimizes T−1
PT

t=1E[− lnϕα
t (Yt, q

α
t (Wt, θ))], so the quantity qαt (Wt, θ

∗) corresponds to the

best forecast of Yt under the loss − lnϕα
t . What Theorem 3 then shows is that the QMLE θ̂T

converges in probability to the optimal forecast parameter θ∗ as the sample size increases.

Assumptions used to derive the results of Theorem 3 are fairly standard and can be clas-

sified in three groups: compactness (A2), uniqueness and uniform convergence assumptions.

The purpose of uniqueness assumptions is to ensure that θ∗ (or θ0) is a unique maximizer

of the expected log-likelihood E[LT (θ)]. While this requirement is easily verified for θ
∗, it

needs to be checked for θ0, under correct specification of the conditional α-quantile of Yt (A1).

Uniform convergence assumptions are used to ensure that the function lnϕα
t is uniformly

continuous in θ and that the stochastic process {lnϕα
t } has certain dependence structure

so that a uniform law of large numbers (ULLN) can be applied. The first requirement is

achieved by considering functions that are Lipshitz, implied by (A3) and (A5). An alterna-

tive way to obtain uniform convergence out of pointwise convergence would be to use the

convexity of lnϕα
t (see, e.g., Pollard, 1991, Hjort and Pollard, 1993, Knight, 1998). Despite

its convenience (and elegance), the convexity approach only works if for every t, the quasi

log-likelihood lnϕα
t is convex in θ, which is not the case for a general choice of at in Defin-

ition 1. In the case of a standard non-linear quantile regression à la Koenker and Bassett

(1978), however, the function at is linear in η and lnϕα
t is convex in θ, so that the convexity

argument can be applied. The second requirement for the ULLN to be applicable is that the

process {lnϕα
t } obeys certain heterogeneity restrictions. More specifically, we assume that

the sequence {Xt} is strong or α-mixing (A4), which, by imposing an additional constraint

on Wt (A0), ensures that {lnϕα
t } is α-mixing of the same size. It is important to note that

we do not require {Xt} to be a stationary sequence.

Finally, note that Theorem 2 is not exactly the converse of the result given in Theorem

3. When deriving the necessary condition for consistency, we have assumed that qαt and ln lt
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were continuously differentiable with probability 1, i.e. that for all t, 1 6 t 6 T , we had

qαt (Wt, ·) and ln lt(Yt, qαt (Wt, ·)) continuously differentiable on Θ, a.s.− P0. This property is

for example satisfied when for every θ ∈ Θ, ∂ ln lt(yt, qαt (wt, θ))/∂θ exists and is continuous for

almost all (yt, w0t)
0, or when ∂ ln lt(yt, q

α
t (wt, θ))/∂θ has a finite set of discontinuities {θj(yt)}

where each dθj/dyt exists and is not zero.

Let us now turn to the asymptotic normality of the tick-exponential QMLE θ̂T , solution

to the maximization problem in (6). The classical asymptotic normality results for QMLEs

require that the log-likelihood function LT be twice continuously differentiable. The main

idea is to then use the first-order Taylor expansion of the gradient ∇θLT around the QMLE

θ̂T , which satisfies the first order condition ∇θLT (θ̂T ) = 0. This approach requires LT to be

sufficiently smooth, which is not the case with the tick-exponential family of densities due

to the presence of indicator functions in (3). Indeed, under tick-exponential assumption,

LT (θ) = T
−1
XT

t=1
−(1− α)[at(q

α
t (wt, θ))− bt(yt)]1{yt 6 qαt (wt, θ)} (7)

+α[at(q
α
t (wt, θ))− ct(yt)]1{yt > qαt (wt, θ)},

where the functions at, bt and ct are as in Definition 1. The non-differentiability problem

has prompted several authors to develop asymptotic normality results under a weaker set of

assumptions, generally requiring that∇θLT (θ) exist with probability one. Examples include:

Daniels (1961), Huber (1967), Pollard (1985), Pakes and Pollard (1989), Newey and McFad-

den (1994), Chen, Linton and van Keilegom (2003). In this paper, we focus on conditional

quantile models that are continuously differentiable on Θ (A0), so that the log-likelihood

function LT (θ) is continuously differentiable a.s. onΘ. In this case, for every θ ∈ Θ,∇θLT (θ)

exists and is continuous with probability 1, and we have ∇θLT (θ) ≡ T−1
PT

t=1 st(yt, wt, θ),

where

st(Yt,Wt, θ) ≡ a0t(qαt (Wt, θ))∇θq
α
t (Wt, θ)[α− 1(qαt (Wt, θ)− Yt)], (8)

for every t, 1 6 t 6 T . In the following theorem, we derive the asymptotic distribution of

θ̂T .
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Theorem 4 (asymptotic normality) Let the conditions (A0), (A2)-(A5) from Theorem

3 hold. In addition, assume:

(A1’) E[st(Yt,Wt, θ
∗)] = 0, for all t, 1 6 t 6 T , and {st(Yt,Wt, θ

∗)} is uncorrelated;

(A3’) at ∈ C2(Mt,R) and for every t, 1 6 t 6 T , and η ∈Mt, |a00t (η)| 6 L, with L > 0;

(A5’) for some ² > 0, E[supθ∈Θ |∇θq
α
t (Wt, θ)|2(r+²)] <∞ and E[supθ∈Θ |∆θθq

α
t (Wt, θ)|r+²] <

∞, for all t, 1 6 t 6 T ;

(A6) there exists C > 0 such that supy∈R f0,t(y) = C <∞, for every t, 1 6 t 6 T .

Then
√
T (θ̂T − θ∗)→ N (0,∆(θ∗)−1Σ(θ∗)∆(θ∗)−1), where

∆(θ∗) = −T−1
TP
t=1

E{[f0,t(qαt (Wt, θ
∗))a0t(q

α
t (Wt, θ

∗))∇θq
α
t (Wt, θ

∗)∇θq
α
t (Wt, θ

∗)0] (9)

+[F0,t(q
α
t (Wt, θ

∗))− α][a00t (q
α
t (Wt, θ

∗))∇θq
α
t (Wt, θ

∗)∇θq
α
t (Wt, θ

∗)0

+a0t(q
α
t (Wt, θ

∗))∆θθq
α
t (Wt, θ

∗)]}.

and

Σ(θ∗) = T−1
TP
t=1

E{[α2 − (2α− 1)F0,t(qαt (Wt, θ
∗))] · (10)

[a0t(q
α
t (Wt, θ

∗))]2∇θq
α
t (Wt, θ

∗)∇θq
α
t (Wt, θ

∗)0}.

Note that the assumptions imposed in Theorem 4 are stronger than the ones used for the

consistency of θ̂T in Theorem 3. We now require (A1’) that the sequence {st(Yt,Wt, θ
∗)} be

uncorrelated with E[st(Yt,Wt, θ
∗)] = 0, for all t, 1 6 t 6 T , and (A5’) that further moment

conditions hold, so that an appropriate Central Limit Theorem (CLT) applies. Note that

in the standard version of the Lindeberg-Feller CLT (for independent random variables)

the condition (A1’) is not necessary. The reason behind is that in the independent case,

the sample covariance T−1
PT

t=1 st(yt, wt, θ
∗)st(yt, wt, θ

∗)0 converges in probability to Σ(θ∗)

above. However, in a more general case in which we allow for mixing (A4), this convergence

is no longer implied by the Lindeberg condition, which is why we need to impose (A1’).

The function at is now required to be twice continuously differentiable with bounded sec-

ond derivative (A3’), which together with (A6) ensures that the gradient of the log-likelihood
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function,∇θLT , is stochastically equicontinuous. In general, primitive conditions for stochas-

tic equicontinuity can be viewed as a trade-off between restrictions on the functional form

of lnϕα
t and assumptions on the dependence of {Xt}. For example, the conditions described

by Pollard (1985) and Andrews (1994) which repose on elegant entropy results, allow for

a wide variety of non-differentiable objective functions lnϕα
t , but hold for independent or

m-independent sequences only, which excludes mixing.7 An alternative approach, proposed

by Newey and McFadden (1994), requires a stronger Lipshitz condition on lnϕα
t , but on the

other hand, places no restrictions on the dependence of {Xt}. Given its wide applicability

in the time-series context, our proof of Theorem 4 uses the latter result.

The result of Theorem 4 can easily be adapted to the case where the conditional quantile

modelM is correctly specified (A1). In the correctly specified case, {st(Yt,Wt, θ0),Gt} is a

martingale difference sequence, i.e. E[st(Yt,Wt, θ0)|Gt] = 0, 1 6 t 6 T . This is a stronger

property than the one in (A1’), which we no longer need to impose. Moreover, under (A1)

we know that for every t, 1 6 t 6 T , F0,t(qαt (Wt, θ0)) = α, a.s. − P0, which simplifies the

expressions of ∆(θ0) and Σ(θ0), as shown in the following corollary to Theorem 4.

Corollary 5 Let all the conditions from Theorem 4, except (A1’), hold. In addition, assume

that the modelM is correctly specified (A1). Then
√
T (θ̂T−θ0)→ N (0,∆(θ0)−1Σ(θ0)∆−1(θ0)),

with

∆(θ0) = −T−1
TP
t=1

E[f0,t(q
α
t (Wt, θ0))a

0
t(q

α
t (Wt, θ0))∇θq

α
t (Wt, θ0)∇θq

α
t (Wt, θ0)

0], (11)

and

Σ(θ0) = T
−1

TP
t=1

α(1− α)E[(a0t(q
α
t (Wt, θ0))

2∇θq
α
t (Wt, θ0)∇θq

α
t (Wt, θ0)

0]. (12)

Results of Theorem 4 and its Corollary 5 have important theoretical and practical impli-

cations. From a theoretical viewpoint, by varying the functions at, bt and ct in Definition 1,
7In principle, and as noted by Pollard (1985) in his proof of Lemma 4, these results could be extended to

mixing sequences whose correlations decay rapidly enough.
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we obtain an entirely new class of conditional quantile estimators which are asymptotically

normally distributed and whose asymptotic covariance matrix depends on derivatives of at.

Hence, by choosing at appropriately and according to the requirements of Theorem 4, one

can derive QMLEs with different asymptotic covariances. From the practical viewpoint, re-

sults of Theorem 4 and its Corollary 5 suggest an interesting approach to estimation of the

asymptotic covariance matrix of θ̂T . We now discuss both these issues in more details.

As an illustrative example, consider estimating the parameter θ of a linear model for

conditional quantiles, qαt (Wt, θ) = θ0Wt, with independent and identically distributed obser-

vations {Xt}. The standard approach (see, e.g., Koenker and Bassett, 1978) is to let at(η) =

[1/(α(1−α))]η and bt(y) = ct(y) = [1/(α(1−α))]y, in which case the asymptotic covariance

matrix∆(θ∗)−1Σ(θ∗)∆(θ∗)−1 in Theorem 4 is derived from∆(θ∗) = −E[f0,t(θ∗0Wt)
1

α(1−α)WtW
0
t ]

and Σ(θ∗) = E[(α2 − (2α − 1)F0,t(θ∗0Wt))
1

α2(1−α)2WtW
0
t ] (see, e.g., Kim and White, 2002).

Note that in the case where we further restrict the linear conditional quantile model to be cor-

rectly specified, θ∗ = θ0 and the asymptotic covariance matrix in Theorem 4 reduces to α(1−

α)E[f0,t(θ
0
0Wt)WtW

0
t ]
−1E[WtW

0
t ] E[f0,t(θ

0
0Wt)WtW

0
t ]
−1 (see, e.g., Powell, 1986). Moreover,if

we assume that the true conditional density of Yt is Gt-independent, i.e. that for all t, 1 6

t 6 T , f0,t = f0, the previous expression further reduces to α(1− α)[f20 (θ
0
0Wt)E(WtW

0
t)]
−1,

which is the original result by Koenker and Bassett (1978).

As pointed out in Section 3, an entirely new set of QMLEs is obtained by using the

function at in (4), for which it is straightforward to show that it satisfies all the requirements

in Definition 1 and Theorem 4. The first two derivatives of at in (4) are given by a0t(η) =

[1/(α(1−α))][p|η|p−1/(1+|η|p)] and a00t (η) = [1/(α(1−α))] sgn(η)p|η|p−2[p−1−|η|p]/[1+|η|p]2,

hence 0 < a0t(η) 6 p/[α(1 − α)] and |a00t (η)| 6 2p/[α(1 − α)], for all η ∈ Mt and p ∈ N∗.

The tick-exponential QMLE which corresponds to this choice of at solves the maximization

problem (5) and the components of its asymptotic covariance matrix ∆(θ∗)−1Σ(θ∗)∆(θ∗)−1

in Theorem 4 are given by

∆(θ∗) = −E{ p
α(1−α)

|θ∗0Wt|p−2
1+|θ∗0Wt|p [f0,t(θ

∗0Wt)|θ∗0Wt|+ (F0,t(θ∗0Wt)− α)p−1−|θ
∗0Wt|p

1+|θ∗0Wt|p ]WtW
0
t}, (13)
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and

Σ(θ∗) = E[(α2 − (2α− 1)F0,t(θ∗0Wt))
1

α2(1−α)2
p2|θ∗0Wt|2p−2
(1+|θ∗0Wt|p)2WtW

0
t ], (14)

for any p ∈ N∗. The matrices ∆(θ∗) and Σ(θ∗) in (13) and (14) above have an entirely novel

form, not seen in the previous work. Their expressions can further be used to study the

behavior of the asymptotic covariance matrix of θ̂T as p changes, for example. Depending

on the true conditional distribution of the data in hand, different values of p in the above

expressions will lead to estimators with different asymptotic covariances, some of which may

be lower than in the standard Koenker and Bassett (1978) case.

We now turn to the problem of asymptotic covariance matrix estimation, based on the

formulas for ∆(θ∗) and Σ(θ∗), derived in Theorem 4. The main difficulty is that the latter

requires estimating conditional density, f0,t, and distribution, F0,t, of Yt, which is a difficult

problem in itself. An alternative approach is to estimate ∆(θ∗) and Σ(θ∗) by numerical dif-

ferentiation. Recall that ∆(θ∗) corresponds to expected value of the Hessian matrix of lnϕα
t ,

while Σ(θ∗) is the asymptotic covariance matrix of the scores of lnϕα
t . This second-moment

matrix can be estimated by the sample second moment of the scores {st(yt, wt, θ̂T )}16t6T ,

Σ̂T (θ̂T ) ≡ T−1
PT

t=1 st(yt, wt, θ̂T )st(yt, wt, θ̂T )
0. The jth row of st, st,j, is obtained by numer-

ical differentiation,

st,j(yt, wt, θ̂T ) ≡ [lnϕα
t (yt, q

α
t (wt, θ̂T + ej²T ))− lnϕα

t (yt, q
α
t (wt, θ̂T − ej²T ))]/2²T , (15)

where ej the jth unit vector and ²T a small positive constant that depends on the sample

size. Similarly, the second-order numerical derivative estimator of∆(θ∗), ∆̂T (θ̂T ), has (i, j)th

element given by

∆̂T (θ̂T )i,j ≡ [LT (θ̂T + ei²T + ej²T )− LT (θ̂T − ei²T + ej²T ) (16)

−LT (θ̂T + ei²T − ej²T ) + LT (θ̂T − ei²T − ej²T )]/4²2T .

If the step size ²T is such that ²T → 0 and T 1/2²T → ∞, then Σ̂T (θ̂T ) − Σ(θ∗)
p→ 0 and

∆̂T (θ̂T ) − ∆(θ∗)
p→ 0. Hence the asymptotic covariance matrix of θ̂T can be consistently
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estimated by ∆̂T (θ̂T )
−1Σ̂T (θ̂T )∆̂T (θ̂T )

−1 (see, e.g. Theorem 7.4 in Newey and McFadden

1994).

5 Minimax Representation

Our previous theoretical developments have shown that the quasi-maximum likelihood ap-

proach based on tick-exponential family of densities provides consistent and asymptotically

normal estimators for conditional quantiles. In practice, however, solving the maximization

problem (6) is made difficult by the properties of the objective function LT , which is (i) not

linear, (ii) not convex and (iii) not everywhere differentiable. We illustrate the implications

of (i)-(iii) on the optimization of LT (θ), by considering the most favorable situation in which

the conditional quantile qαt is linear in θ, qαt (wt, θ) = θ0wt, and the function at is linear in η.

In the linear case, (6) can be formulated as a linear program: the main idea is to consider

the dual problem in d ≡ (d1, . . . , dT )0, which can be written maxd T−1
PT

t=1 ytdt subject to

dt ∈ [α − 1,α] for all t, 1 6 t 6 T , and T−1
PT

t=1wtdt = 0. Questions of uniqueness of the

solution to the dual problem and the practical implementation of the linear programming

algorithm have already been studied in the literature (see, e.g., Buchinsky, 1992, Koenker

and Park, 1996). When we relax the linearity of qαt , the objective function lnϕ
α
t (yt, q

α
t (wt, θ))

is not linear in θ and the initial optimization problem no longer has a linear programming

representation. However, due to the linearity of at, the function to maximize is still convex

(though non-differentiable) in θ and its optimization can be carried out by using algorithms

based on the computation of sub-gradients, such as cutting plane methods (see, e.g. Frenk,

Gromicho and Zhang, 1994) or can be solved directly by interior-point methods (see, e.g.,

Koenker and Park, 1996). Once we consider functions at which are not linear in η, we

are left with objective functions LT which are neither convex nor differentiable in θ. Hence,

standard optimization techniques for convex non-differentiable functions no longer apply and

one is left with non-gradient based methods such as simulated annealing, genetic algorithm

or Markov Chain Monte Carlo methods (see, e.g., Chernozhukov and Hong, 2003).
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The optimization algorithm that we propose in this paper is based on the following

simple idea: the function ϕα
t in (3) is exponential by parts and can therefore be represented

as a maximum of two exponential branches which are twice continuously differentiable. For

example, consider a simple case where T = 1, i.e. only observations (y1, z1) are available.

The problem of maximizing L1(θ) becomes in that case maxθ∈Θ lnϕα
1 (y1, q

α
t (w1t, θ)), i.e.

maxθ∈Θmin {lnψα
1 (y1, q

α
t (w1t, θ)), lnφ

α
1 (y1, q

α
t (w1t, θ))}, where we have defined

ψα
t (y, η) ≡ exp{α[at(η)− ct(y)]} and φα

t (y, η) ≡ exp{−(1− α)[at(η)− bt(y)]}, (17)

for all t > 0, y ∈ R and η ∈Mt. Provided (A3) and (A3’) hold, the functions ψ
α
t (y, ·) :Mt →

R and φα
t (y, ·) :Mt → R in (17) are twice continuously differentiable. By using the fact that

for all (x, y) ∈ R2 we have min {x, y} = −max {−x,−y}, and that the parameter space

Θ is compact (A2), the previous maximization problem is equivalent to the minimization

problem

−min
θ∈Θ
[max {− lnψα

1 (y1, q
α
t (w1t, θ)),− lnφα

1 (y1, q
α
t (w1t, θ))}]. (18)

We have thus transformed the initial maximization problem into a minimax problem (18),

which involves only functions ψα
1 and φα

1 which are twice continuously differentiable in θ. In

other words, even though we cannot change the convexity of the objective function LT , we

can recover the differentiability property by using the minimax representation. Note that

this transformation makes minimal assumptions on Θ and is applicable for both linear and

nonlinear conditional quantile models qαt as well as for functions at which may or may not

be linear. We show, in the following theorem, that a result similar to the one above applies

for T > 1.

Theorem 6 (minimax representation) Let εθ ≡ (εθ,1, εθ,2, . . . , εθ,T )
0 be a T -vector of

order statistics, εθ,1 6 εθ,2 6 . . . 6 εθ,T , of an error term εt ≡ yt − qαt (wt, θ), and let

yθ ≡ (yθ,1, yθ,2, . . . , yθ,T )0 and wθ ≡ (wθ,1, wθ,2, . . . , wθ,T )
0 be T -vectors of corresponding ob-

servations. Under assumption (A2), the QMLE θ̂T is a solution to a minimax problem
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minθ∈Θ[max06k6T{Pk(yθ, wθ, θ)}], where

Pk(yθ, wθ, θ) ≡

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−T−1
TP
t=1

lnψα
t (yθ,t, q

α
t (wθ,t, θ)), if k = 0,

−T−1[
kP
t=1

lnφα
t (yθ,t, q

α
t (wθ,t, θ)) +

TP
s=k+1

lnψα
s (yθ,s, q

α
s (wθ,s, θ))], if 1 6 k < T ,

−T−1
TP
t=1

lnφα
t (yθ,t, q

α
t (wθ,t, θ)), if k = T .

The tick-exponential QMLE θ̂T can thus be obtained as a solution to the classical mini-

max problem, in which the function Pk(yθ, wθ, ·) is twice continuously differentiable on Θ, for

all k, 0 6 k 6 T . The minimax problem in Theorem 6 can further be transformed into a con-

strained minimization problem with quadratic objective function, whose solution converges

to the solution of the initial problem. Note that solving minθ∈Θ[max06k6T{Pk(yθ, wθ, θ)}] is

equivalent to solving: min γ subject to: Pk(yθ, wθ, θ) 6 γ, for all k, 0 6 k 6 T . The Kuhn-

Tucker equations relative to this constrained minimization problem are the same as if we

were searching the step ∆θ 6= 0 which solves the quadratic problem: min∆θ
1
2
∆θ0Q̃∆θ +∆γ

subject to: Pk(yθ, wθ, θ) + ∇θPk(yθ, wθ, θ)
0∆θ 6 γ + ∆γ, in which Q̃ is some positive def-

inite matrix. In other words, the step ∆θ is in a direction of descent for the function

max06k6T{Pk(yθ, wθ, θ)}, which ensures the convergence of the algorithm (see, e.g., Theo-

rem 1 in Brayton, Director, Hachtel and Vidigal, 1979). The practical implementation of

a minimax algorithm can, for example, be done by using a Sequential Quadratic Program-

ming (SQP) method.8 SQP methods represent the state of the art in nonlinear programming

methods and their overview can be found in Gill, Murray and Wright (1981).

6 Conclusion

In this paper we have defined a new family of densities, called the tick-exponential fam-

ily, whose role in the conditional quantile estimation is analog to the role of the linear-

exponential family in the conditional mean estimation. Our first result is to show that if
8This is the approach used to implement the function fminimax in Matlab statistical software.
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one can consistently estimate the true parameter of a correctly specified conditional quantile

model by maximizing a quasi-likelihood, then this quasi-likelihood necessarily belongs to the

tick-exponential family. In other words, we show that the tick-exponential assumption is

a necessary condition for consistency. As a second result of the paper, we provide a set of

primitive conditions which are sufficient for the class of tick-exponential QMLEs to be con-

sistent. Thirdly, we show that the latter are also asymptotically normally distributed with

the asymptotic covariance matrix which accounts for possible model misspecification. As a

natural application of our results we propose a consistent covariance matrix estimator based

on the tick-exponential scores and hessian thus providing an alternative to extant kernel-

or bootstrap based methods. For practical purposes and as a final result of our paper, we

provide an easy-to-implement algorithm for the maximization of the tick-exponential (quasi)

log-likelihood based on the minimax representation.
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Appendix
Notation:

if V is a real n-vector, V ≡ (V1, . . . , Vn)0, then |V | denotes the L2-norm of V , i.e. |V |2 ≡

V 0V =
Pn

i=1 V
2
i . If M is a real n× n-matrix, M ≡ (Mij)16i,j6n, then |M | denotes the L∞-

norm ofM , i.e. |M | ≡ max16i,j6n |Mij|. The function 1 : Ft → {0, 1} is a standard indicator

function, i.e. for any event A ∈ Ft we have 1{A} = 1 if A is true and = 0 otherwise. Note

that we use a slightly different notation for the Heaviside function 1 : R→ [0, 1] which is a

real function, i.e. for any x ∈ R, we have 1(x) = 0 if x < 0 and 1(x) = 1 if x > 0.

Proof of Theorem 2. First, note that under (i) - (iv) θ̂T is consistent for θ
∗ ∈ Θ̊ (see,

e.g., Theorem 2.1 in Newey and McFadden, 1994). IfM is correctly specified, then θ∗ = θ0

only if∇θE[LT (θ0)] = 0, i.e. T−1
PT

t=1E{∇θq
α
t (Wt, θ0)E[∂ lnϕ

α
t (Yt, q

α
t (Wt, θ0))/∂η|Gt]} = 0.

Since this first order condition needs to hold for any sample size T , any choice of M and

any true value θ0 ∈ Θ̊, we have that θ∗ = θ0 only if

E[1(qαt (Wt, θ0)− Yt)− α|Gt] = 0, a.s.− P0 (19)

⇒ E[∂ lnϕα
t (Yt, q

α
t (Wt, θ0))/∂η|Gt] = 0, a.s.− P0,

for all t, 1 6 t 6 T , and all absolutely continuous distribution function F0,t in F̃ . Let then

ãt(Yt, q
α
t (Wt, θ0)) ≡

∂ lnϕα
t (Yt, q

α
t (Wt, θ0))/∂η

α− 1(qαt (Wt, θ0)− Yt)
. (20)

We now show that (19) implies: (1) ãt is Gt-measurable, and (2) ãt > 0, for any t, 1 6 t 6 T .

Consider a decomposition ãt(Yt, qαt (Wt, θ0)) = E[ãt(Yt, q
α
t (Wt, θ0))|Gt] + εt, where E[εt|Gt] =

0. Then E[∂ lnϕ
α
t

∂η
(Yt, q

α
t (Wt, θ0))|Gt] = E[ãt(Yt, q

α
t (Wt, θ0))|Gt]E[α − 1(qαt (Wt, θ0) − Yt)|Gt]

+E{εt[α − 1(qαt (Wt, θ0) − Yt)]|Gt}, so that (19) implies that for every F0,t ∈ F̃ we have

E{εt[α− 1(qαt (Wt, θ0)− Yt)]|Gt} = 0, a.s.− P0, for all t, 1 6 t 6 T . Hence εt = 0, a.s.− P0,

for all t, 1 6 t 6 T , so that ãt is Gt-measurable in which case it cannot depend on Yt and we

can write

ãt(Yt, q
α
t (Wt, θ0)) = ãt(q

α
t (Wt, θ0)). (21)
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Moreover, ãt > 0: a necessary condition for θ0 ∈ Θ̊ to be a maximizer of E[LT (θ)] is

that for every ξ ∈ Rk, ξ0∆θθE[LT (θ0)]ξ 6 0. Combining (20), (21) and (A1), we have

ξ0∆θθE[LT (θ0)]ξ = −T−1
PT

t=1Qt, where for any t, 1 6 t 6 T ,

Qt ≡ E[(ξ0∇θq
α
t (Wt, θ0))

2ãt(q
α
t (Wt, θ0))f0,t(q

α
t (Wt, θ0))].

Hence, ξ0∆θθE[LT (θ0)]ξ is negative for any sample size T , only if Qt > 0, for all t, 1 6 t 6 T .

Since this inequality needs to hold for any conditional pdf f0,t, a necessary condition is that

ãt(q
α
t (Wt, θ0)) > 0, a.s.−P0, for all t, 1 6 t 6 T . The interiority of the solution θ0 moreover

implies that ãt 6= 0 so that ãt > 0, for all t, 1 6 t 6 T . Therefore, (19) implies that for any

θ0 ∈ Θ̊ and any t, 1 6 t 6 T ,

∂ lnϕα
t (Yt, q

α
t (Wt, θ0))/∂η = ãt(q

α
t (Wt, θ0))[α− 1(qαt (Wt, θ0)− Yt)], a.s.− P0, (22)

with ãt > 0. The remainder of the proof is straightforward: we need to integrate (22) with

respect to η. Taking into account the a.s. − P0 continuity of lnϕα
t and the fact that (22)

needs to hold for any θ0 ∈ Θ̊, the above integrates into

lnϕα
t (Yt, q

α
t (Wt, θ)) =

⎧⎨⎩ −(1− α)[at(q
α
t (Wt, θ))− bt(Yt)], if Yt 6 qαt (Wt, θ),

α[at(q
α
t (Wt, θ))− ct(Yt)], if Yt > qαt (Wt, θ),

, a.s.− P0,

where for every t, 1 6 t 6 T , at is an indefinite integral of ãt so that a0t = ãt > 0, and

bt : R→ R and ct : R→ R are Ft-measurable. This completes the proof of Theorem 2.

Proof of Theorem 3. As previously, we consider LT (θ) = T−1
PT

t=1 lnϕ
α
t (yt, q

α
t (wt, θ))

and

E[LT (θ)] = T−1
XT

t=1
E{at(qαt (Wt, θ))Et[α− 1(qαt (Wt, θ)− Yt)] (23)

+(1− α)Et[bt(Yt) · 1(qαt (Wt, θ)− Yt)]− αEt[ct(Yt) · (1− 1(qαt (Wt, θ)− Yt))]},

and check that all the conditions of Theorem 2.1 in Newey andMcFadden (1994, p 2121) hold.

First, note that their condition (ii) is satisfied by imposing (A2). Next, we show that their
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uniqueness condition (i) holds: assume there exists θ̃ ∈ Θ such that E[LT (θ̃)] = E[LT (θ
∗)].

Since for any θ̃ ∈ Θ, E[LT (θ∗)− LT (θ̃)] > 0, the previous equality implies

[at(q
α
t (Wt, θ̃))− at(qαt (Wt, θ

∗))]Et[α− 1(qαt (Wt, θ
∗)− Yt)] (24)

+ at(q
α
t (Wt, θ̃))Et[dt(Yt,Wt, θ̃, θ

∗)]

= Et{[(1− α)bt(Yt) + αct(Yt)]dt(Yt,Wt, θ̃, θ
∗)}, a.s.− P0,

for every t, 1 6 t 6 T , where dt(Yt,Wt, θ̃, θ
∗) ≡ 1(qαt (Wt, θ

∗) − Yt)− 1(qαt (Wt, θ̃) − Yt). Let

At ≡ {ω ∈ Ω : qαt (Wt(ω), θ
∗) 6 qαt (Wt(ω), θ̃)} and Bt ≡ {ω ∈ Ω : qαt (Wt(ω), θ

∗) < Yt(ω) 6

qαt (Wt(ω), θ̃)}. We have dt(Yt,Wt, θ̃, θ
∗) = −1 on At ∩Bt, and = 0 on At ∩ Bct . Hence, (24)

becomes

α[at(q
α
t (Wt, θ̃))− at(qαt (Wt, θ

∗))] = at(q
α
t (Wt, θ̃))− [(1− α)bt(Yt) + αct(Yt)], on At ∩Bt,

[at(q
α
t (Wt, θ̃))− at(qαt (Wt, θ

∗))][α− 1(qαt (Wt, θ
∗)− Yt)] = 0, on At ∩Bct .

Next, let Ct ≡ {ω ∈ Ω : qαt (Wt(ω), θ̃) < Yt(ω) 6 qαt (Wt(ω), θ
∗)}. Similarly, dt(Yt,Wt, θ̃, θ

∗) =

1 on Act ∩ Ct, and = 0 on Act ∩ Cct , so that (24) becomes

(α− 1)[at(qαt (Wt, θ̃))− at(qαt (Wt, θ
∗))] = [(1− α)bt(Yt) + αct(Yt)]− at(qαt (Wt, θ̃)), on Act ∩ Ct,

[at(q
α
t (Wt, θ̃))− at(qαt (Wt, θ

∗))][α− 1(qαt (Wt, θ
∗)− Yt)] = 0, on Act ∩ Cct .

Hence, for every t, 1 6 t 6 T , at(qαt (Wt, θ̃)) = at(q
α
t (Wt, θ

∗)), on At ∩ Bct and Act ∩ Cct ,

which by continuity and monotonicity of at onMt in turn implies qαt (Wt, θ̃) = q
α
t (Wt, θ

∗), on

At ∩ Bct and Act ∩ Cct , which can only hold if At ≡ {ω ∈ Ω : qαt (Wt(ω), θ
∗) = qαt (Wt(ω), θ)},

i.e. Act = ∅ and Bt = Ct = ∅. The variable Yt being continuously distributed, this implies

qαt (Wt, θ̃) = qαt (Wt, θ
∗), a.s. − P0, for all t, 1 6 t 6 T , which by using the identification

condition (i) in (A0) gives θ̃ = θ∗.

We next show that the continuity condition (iii) and the uniform convergence condition (iv)

of Theorem 2.1 hold, by using a weak uniform law of large numbers (ULLN) in Theorem

A.2.5 in White (1994, p 353). We start by showing that for every t, 1 6 t 6 T , the function

θ 7→ lnϕα
t (Yt, q

α
t (Wt, θ)) is Lipshitz-L1 a.s. on Θ (see Definition A.2.3 in White, 1994, p 352):
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recall that for every t, 1 6 t 6 T , qαt (Wt, ·) is continuous a.s. on Θ, i.e. for each θ̄ ∈ Θ and

for each ε > 0 there exists δ̄ε > 0 such that for |θ − θ̄| < δ̄ε, qαt (Wt, θ̄) and qαt (Wt, θ) are

sufficiently close, meaning that if Yt ≷ qαt (Wt, θ̄), a.s. − P0, then Yt ≷ qαt (Wt, θ), a.s. − P0.

Now fix some t, 1 6 t 6 T , and consider the following two cases:

CASE 1: if Yt < qαt (Wt, θ̄), a.s. − P0, then for |θ − θ̄| < δ̄ε we have | lnϕα
t (Yt, q

α
t (Wt, θ)) −

lnϕα
t (Yt, q

α
t (Wt, θ̄))| = (1− α)a0t(q

α
t (Wt, θ̄

c
))|∇θq

α
t (Wt, θ̄

c
)0(θ − θ̄)|, a.s. − P0, for some θ̄c ≡

cθ+(1−c)θ̄, c ∈ (0, 1). Using (A3) we then have | lnϕα
t (Yt, q

α
t (Wt, θ))−lnϕα

t (Yt, q
α
t (Wt, θ̄))| 6

L̄t|θ−θ̄|, a.s.−P0, where L̄t ≡ K|∇θq
α
t (Wt, θ̄

c
)|. From (A5) we know thatE[|∇θq

α
t (Wt, θ̄

c
)|] 6

E[supθ∈Θ |∇θq
α
t (Wt, θ)|] <∞, so that E[|L̄t|] <∞, for any t, 1 6 t 6 T . Hence, we have an

Ft-measurable random variable L̄t : Ω→ R+ such that for all θ : |θ − θ̄| 6 δ̄,

| lnϕα
t (Yt, q

α
t (Wt, θ))− lnϕα

t (Yt, q
α
t (Wt, θ̄))| 6 L̄t|θ − θ̄|, a.s.− P0, (25)

and which satisfies T−1
PT

t=1E(L̄t) <∞.

CASE 2: if Yt > qαt (Wt, θ0) a.s.-P0, then by a similar reasoning we can show that (25) holds,

so that for every t, 1 6 t 6 T , the function θ 7→ lnϕα
t (Yt, q

α
t (Wt, θ)) is Lipshitz-L1 a.s. on Θ.

Next, we need to show that the sequences {ϕ̄t(δ)} and {ϕt(δ)} obey the weak law of large

numbers (LLN) locally at θ̄ for all θ̄ ∈ Θ̊, where for every t, 1 6 t 6 T , we have defined

ϕ̄t(δ) ≡ supθ∈Θ{lnϕα
t (Yt, q

α
t (Wt, θ)) : |θ − θ̄| < δ} and ϕ

t
(δ) ≡ infθ∈Θ{lnϕα

t (Yt, q
α
t (Wt, θ)) :

|θ − θ̄| < δ} (see Definition A.2.4 and Theorem A.2.5 in White, 1994). We know from

(A4) that {Xt} is α-mixing of size −r/(r − 2), r > 2, so that by condition (iv) in (A0)

Wt is α-mixing of same size (see Theorem 3.49 in White, 2001, p 50). Similarly, for

every t, 1 6 t 6 T , lnϕα
t is an Ft-measurable function of Yt and Wt. Hence, for every

θ ∈ Θ the sequence {lnϕα
t (Yt, q

α
t (Wt, θ))} is α-mixing of size −r/(r − 2), r > 2, then

so must be {ϕ̄t(δ)} and {ϕt(δ)}. Now fix some θ̄ ∈ Θ̊ and let δ̄θ > 0 be such that

{θ : |θ − θ̄| < δ̄θ} ⊂ Θ. Note that for every 0 < δ 6 δ̄θ and every t, 1 6 t 6 T ,

we have |ϕ̄t(δ)| 6 supθ∈Θ | lnϕα
t (Yt, q

α
t (Wt, θ))|, a.s. − P0, so that by triangular inequality

|ϕ̄t(δ)| 6 supθ∈Θ |at(qαt (Wt, θ))|+ |bt(Yt)|+ |ct(Yt)|, a.s.− P0. The same inequality holds for

ϕ
t
(δ). Now, for a given r > 2 and ² > 0, there exists a constant nr,² > 1 such that, for every
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0 < δ 6 δ̄θ and every t, 1 6 t 6 T , we have

E(|ϕ̄t(δ)|r+²) 6 nr,²E{[sup
θ∈Θ

|at(qαt (Wt, θ))|]r+² + |bt(Yt)|r+² + |ct(Yt)|r+²}

6 nr,²[max{1, E(sup
θ∈Θ

|at(qαt (Wt, θ))|r+²)}+E(|bt(Yt)|r+²) + E(|ct(Yt)|r+²)],

where the same inequality holds for ϕ
t
(δ). Thus, by (A5), E(|ϕ̄t(δ)|r+²) <∞ andE(|ϕ

t
(δ)|r+²) <

∞, for all t, 1 6 t 6 T . The weak LLN for α-mixing sequences provided by Corollary

3.48 in White (2001, p 49) then ensures T−1
PT

t=1{ϕ̄t(δ) − E[ϕ̄t(δ)]}
p→ 0 and, similarly,

T−1
PT

t=1{ϕt(δ)−E[ϕt(δ)]}
p→ 0. (Note that the results of Corollary 3.48 in White, 2001, p

49, apply to mixing sequences with α of size −r/(r− 1) with r > 1. We know however that,

for r > 2, mixing with α of size −r/(r − 2) implies mixing with α of size −r/(r − 1)).

We can now use the results from Theorem A.2.5 in White (1994, p 353): the above conver-

gence of {ϕ̄t(δ)} and {ϕt(δ)} together with the Lipshitz-L1 property of {lnϕ
α
t } imply that

the function θ 7→ E[LT (θ)] is continuous on Θ, and that LT (θ)−E[LT (θ)]
p→ 0 uniformly on

Θ. This shows that the conditions (iii) and (iv) of Newey and McFadden’s (1994) Theorem

2.1 hold. We can therefore apply their result to show that θ̂
p→ θ∗, which completes the first

part of the proof.

It remains to show that whenM is correctly specified so that (A1) holds, we have θ∗ = θ0

where θ0 corresponds to the true value of the parameter θ. For this it is sufficient to show

that θ0 maximizes E[LT (θ)]. Combining (23) with (A1), we know that E[LT (θ0)] > E[LT (θ)]

if and only if for every t, 1 6 t 6 T , we have

at(q
α
t (Wt, θ))Et[dt(Yt,Wt, θ, θ0)] 6 Et{[(1−α)bt(Yt)+αct(Yt)]dt(Yt,Wt, θ, θ0)}, a.s.−P0. (26)

As previously, dt(Yt,Wt, θ, θ0) = −1 on At ∩Bt, = 0 on At ∩Bct , = 1 on Act ∩Ct, and = 0 on

Act∩Cct . Moreover, by continuity of ϕα
t (·, η), (1−α)bt(Yt)+αct(Yt) = at(Yt) 6 at(qαt (Wt, θ)) on

At ∩Bt (recall that a0t > 0) and (1− α)bt(Yt) + αct(Yt) = at(Yt) > at(q
α
t (Wt, θ)) on Act ∩ Ct.

By using a similar reasoning to the one above we show that at(qαt (Wt, θ))dt(Yt,Wt, θ, θ0)

6 [(1− α)bt(Yt) + αct(Yt)]dt(Yt,Wt, θ, θ0), a.s.− P0, which implies (26) and ensures that θ0
is a maximizer of E[LT (θ)]. Combined with the previous uniqueness result, this implies that
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θ∗ = θ0 so that under correct model specification we have θ̂T
p→ θ0, which completes the

proof of Theorem 3.

Proof of Theorem 4 and Corollary 5. In this proof, we check that all the conditions

of Theorem 7.2 in Newey and McFadden (1994, p 2186) hold. We first show that θ̂T satisfies

an asymptotic first order condition:

Lemma 7 Under assumptions of Theorem 4,
√
T∇θLT (θ̂T )

p→ 0.

As shown in the proof of Theorem 3, we have ∇θE[LT (θ
∗)] = 0 and ∇θE[LT (θ0)] = 0

when M is correctly specified (condition (i) of Theorem 7.2). By (A2), θ∗ and θ0 are in-

terior points of Θ so that condition (ii) holds. We now check the nonsingularity condition

(iii): by (A3’) we know that, for every t, 1 6 t 6 T , a0t(q
α
t (Wt, θ))∇θq

α
t (Wt, θ) is contin-

uously differentiable a.s. − P0 on Θ with derivative a00t (q
α
t (Wt, θ))∇θq

α
t (Wt, θ)∇θq

α
t (Wt, θ)

0

+a0t(q
α
t (Wt, θ))∆θθq

α
t (Wt, θ). Let then

∆t(Yt,Wt, θ) ≡ −∆1,t(θ) +∆2,t(θ), (27)

where for all t, 1 6 t 6 T ,

∆1,t(θ) ≡ a0t(q
α
t (Wt, θ))∇θq

α
t (Wt, θ)∇θq

α
t (Wt, θ)

0δ(qαt (Wt, θ)− Yt),

∆2,t(θ) ≡ [a00t (q
α
t (Wt, θ))∇θq

α
t (Wt, θ)∇θq

α
t (Wt, θ)

0

+a0t(q
α
t (Wt, θ))∆θθq

α
t (Wt, θ)][α− 1(qαt (Wt, θ)− Yt)],

and δ is the Dirac delta function (see footnote 1). We first show that locally at any θ ∈ Θ, the

sample mean of {∆t(Yt,Wt, θ)} converges in probability to its expected value. By (iv) in (A0)

and (A4) we know that for every θ ∈ Θ, {∆t(Yt,Wt, θ)} is α-mixing with α of size −r/(r−2)

with r > 2 (see Theorem 3.49 in White, 2001, p 50). From (A5’) we know that for r > 2

and some ² > 0, E(supθ∈Θ |∇θq
α
t (Wt, θ)|2(r+²)) < ∞ and E(supθ∈Θ |∆θθq

α
t (Wt, θ)|r+²) < ∞,

for all t, 1 6 t 6 T . Moreover, using (A3), (A3’) and triangle inequality, there exist some

some constant nr,² > 1 such that |∆t(Yt,Wt, θ)|r+² 6 nr,²[L
r+²|∇θq

α
t (Wt, θ)∇θq

α
t (Wt, θ)

0|r+²
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+Kr+²|∆θθq
α
t (Wt, θ)|r+²], a.s. − P0. The norm equivalence, |∇θq

α
t (Wt, θ)∇θq

α
t (Wt, θ)

0|r+² 6

c2|∇θq
α
t (Wt, θ)|2(r+²), a.s. − P0, for some c > 0 and all θ ∈ Θ, (A5’) and the previous

inequality then imply E(supθ∈Θ |∆t(Yt,Wt, θ)|r+²) < ∞, for all t, 1 6 t 6 T . Applying

the weak LLN for α-mixing sequences (see Corollary 3.48 in White, 2001, p 49) then gives

T−1
PT

t=1∆t(Yt,Wt, θ)
p→ ∆(θ) ≡ T−1

PT
t=1E[∆t(Yt,Wt, θ)] locally at θ, for all θ ∈ Θ. We

can then say that ∆(θ) is the derivative of ∇θE[LT (θ)] in a neighborhood of any θ ∈ Θ. In

particular, for θ∗ we have ∆(θ∗) as in (9). For any ξ ∈ Rk, we know that ξ0∆(θ∗)ξ 6 0 so

that ξ0∆(θ∗)ξ = 0 implies that for all t, 1 6 t 6 T , ξ0E[∆1,t(θ
∗)|Gt]ξ = ξ0E[∆2,t(θ

∗)|Gt]ξ,

a.s. − P0. We now show (by contradiction) that ξ = 0: assume ξ 6= 0. Given positive

definiteness of E[∆1,t(θ
∗)|Gt], for all t, 1 6 t 6 T , (since a0t > 0, f0,t > 0 and ∇θqt∇θq

0
t of full

rank) we then have ξ0E[∆2,t(θ
∗)|Gt]ξ > 0, a.s.− P0. Consider for example qαt (Wt, θ) = θ so

that ξ0E[∆2,t(θ
∗)|Gt]ξ = |ξ|2a00t (θ∗)[α− F0,t(θ∗)]. We can always find at such that a00t (θ∗) and

[α − F0,t(θ∗)] have opposite signs which leads to contradiction. Hence ξ0∆(θ∗)ξ = 0 implies

ξ = 0 so that ∆(θ∗) is negative definite, therefore nonsingular. Same result for ∆(θ0) in (11)

is an immediate consequence of (iii) in (A0), (A1), a0t > 0 and f0,t > 0, 1 6 t 6 T . Hence,

∆(θ∗) and ∆(θ0) are nonsingular, which verifies condition (iii) of Theorem 7.2.

Next, we use a central limit theorem (CLT) α-mixing sequences (see e.g. Theorem 5.20 in

White, 2001, p 130) to show that condition (iv) of Theorem 7.2 holds. We need the following

lemma:

Lemma 8 Under assumptions of Theorem 4, T−1
PT

t=1 st(yt, wt, θ
∗)st(yt, wt, θ

∗)0
p→ Σ(θ∗),

with st and Σ(θ∗) as in (8) and (10), respectively. If, in addition, (A1) holds, then we have

T−1
PT

t=1 st(yt, wt, θ0)st(yt, wt, θ0)
0 p→ Σ(θ0) with Σ(θ0) as in (12).

By (iv) in (A0) and (A4), we know that the sequence {st(Yt,Wt, θ)} is α-mixing with α of

size −r/(r−2), r > 2, for every θ ∈ Θ (see Theorem 3.49 in White, 2001, p 50). Using (A5’)

and (A3) we have: for r > 2 and some ² > 0 we have E(supθ∈Θ |∇θq
α
t (Wt, θ)|2(r+²)) < ∞,

so that E(supθ∈Θ |si,t(Yt,Wt, θ)|2+²) 6 K2+²
i max{1, E(supθ∈Θ |∇θq

α
t (Wt, θ)|2(r+²))} <∞, for

every t, 1 6 t 6 T . Taking into account results from Lemma 8, a0t > 0, 0 < α < 1
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and (iii) in (A0), we know that Σ(θ∗) and Σ(θ0) are positive definite and can therefore

apply the CLT for α-mixing sequences (Theorem 5.20 in White, 2001, p 130) to show that
√
T∇θLT (θ

∗)
d→ N (0,Σ(θ∗)) and

√
T∇θLT (θ0)

d→ N (0,Σ(θ0)).

Finally, the stochastic equicontinuity condition (v) of Theorem 7.2 is shown in the fol-

lowing lemma:

Lemma 9 Under assumptions of Theorem 4, for any δT → 0, supθ:|θ−θ∗|6δT
√
T |∇θLT (θ)−

∇θLT (θ
∗)−E[∇θLT (θ)]|/[1 +

√
T |θ− θ∗|] p→ 0, and the same holds if we replace θ∗ with θ0.

Application of the result by Newey and McFadden (1994) then gives
√
T (θ̂T − θ∗) →

N (0,∆(θ∗)−1Σ(θ∗)∆(θ∗)−1) with Σ(θ∗) as in (10) and ∆(θ∗) as in (9). Equivalently, under

(A1),
√
T (θ̂T − θ0) → N (0,∆(θ0)−1Σ(θ0)∆(θ0)−1) with Σ(θ0) as in (12) and ∆(θ0) as in

(11), which completes the proof of Theorem 4.

Proof of Lemma 7. Our approach is similar to that of Ruppert and Carroll (1980)

(see their proof of Lemma A.2). Let L̂T ,j(h) ≡ T−1
PT

t=1 lnϕ
α
t (yt, q

α
t (wt, θ̂T + hej), where

{ej}kj=1 is the standard basis of Rk, and h ∈ R is such that for all j = 1, . . . , k, θ̂T +hej ∈ Θ.

Note that L̂T ,j(0) = LT (θ̂T ), for every j = 1, . . . , k. Also, let ĜT,j(h) be the derivative form

right of L̂T,j(h), so that

ĜT,j(h) = T
−1
XT

t=1
a0t(q

α
t (wt, θ̂T + hej))[α− 1(qαt (wt, θ̂T + hej)− yt)]∂qαt (wt, θ̂T + hej)/∂θj.

Since the function h 7→ L̂T ,j(h) achieves its minimum at h = 0 we have, for ε > 0,

ĜT,j(−ε) 6 ĜT,j(0) 6 ĜT,j(ε), with ĜT,j(−ε) 6 0 and ĜT,j(ε) > 0. Therefore |ĜT,j(0)| 6

ĜT,j(ε) − ĜT,j(−ε). By taking the limit of this inequality as ε → 0, we get |ĜT,j(0)| 6

T−1
PT

t=1 |a0t(qαt (wt, θ̂T ))| ·1{yt = qαt (wt, θ̂T )}· |∂qαt (wt, θ̂T )/∂θj|. Now let ² > 0 and note that

P0(
√
T |∇θLT (θ̂T )| > ²)

6 P0(
√
T max16j6k |ĜT,j(0)| > ²)

6 P0(max16j6k
PT

t=1 |a0t(qαt (Wt, θ̂T ))| · 1{Yt = qαt (Wt, θ̂T )} · |∂qαt (Wt, θ̂T )/∂θj| > ²
√
T ).
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Since Yt is continuously distributed, we have P0(1{Yt = qαt (Wt, θ̂T )} 6= 0) = 0, which com-

bined with the fact that a0t is bounded (A3) ensures (by dominated convergence) that, for

any ² > 0, limT→∞ P0(
√
T∇θLT (θ̂T ) > ²) = 0, and completes the proof of Lemma 7.

Proof of Lemma 8. Let σm,n(θ), 1 6 m,n 6 k, denote the element of the matrix Σ(θ)

which lies in the mth row and nth column, i.e.

σm,n(θ) ≡ cov[T−1/2
XT

t=1
smt (Yt,Wt, θ), T

−1/2
XT

t=1
snt (Yt,Wt, θ)].

Given that the sequence {st(Yt,Wt, θ
∗)} is uncorrelated and that E[st(Yt,Wt, θ

∗)] = 0, for all

t, 1 6 t 6 T , (A1’) we have that σm,n(θ∗) = T−1
PT

t=1E[s
m
t (Yt,Wt, θ

∗)snt (Yt,Wt, θ
∗)], for all

m,n. Similarly by using the martingale difference property of {st(Yt,Wt, θ0),Gt} implied by

(A1), we have σm,n(θ0) = T−1
PT

t=1E[s
m
t (Yt,Wt, θ0)s

n
t (Yt,Wt, θ0)]. We now show that the

sample mean of {smt (Yt,Wt, θ
∗)snt (Yt,Wt, θ

∗)} and {smt (Yt,Wt, θ0)s
n
t (Yt,Wt, θ0)} converge to

their expected values: first note that by (iv) in (A0) and (A4), the sequence {st(Yt,Wt, θ)}

is α-mixing with α of size −r/(r − 2), r > 2, for every θ ∈ Θ (see Theorem 3.49 in White,

2001, p 50), and so are {smt (Yt,Wt, θ)s
n
t (Yt,Wt, θ)} for any couple (m,n), 1 6 m,n 6 k.

Next, by (A5’) we know that for r > 2 and some ² > 0, E(supθ∈Θ |∇θq
α
t (Wt, θ)|2(r+²)) <∞,

for all t, 1 6 t 6 T . Using (A3) and norm equivalence, there exists a positive constant c such

that E(supθ∈Θ |smt (Yt,Wt, θ)s
n
t (Yt,Wt, θ)|r+²) 6 max{1,K2(r+²)

i }E(supθ∈Θ |∂qαt (Wt, θ)/∂θm ·

∂qαt (Wt, θ)/∂θn|r+²)6 max{1,K2(r+²)
i }max{1, c2E(supθ∈Θ |∇θq

α
t (Wt, θ)|2(r+²))}, a.s.−P0, for

any θ ∈ Θ. Hence, for any (m,n), 1 6 m,n 6 k, E(supθ∈Θ |smt (Yt,Wt, θ)s
n
t (Yt,Wt, θ)|r+²) <

∞, for all t, 1 6 t 6 T , and the weak LLN for α-mixing sequences (see Corollary 3.48

in White, 2001, p 49) ensures that T−1
PT

t=1 s
m
t (Yt,Wt, θ

∗)snt (Yt,Wt, θ
∗)

p→ σm,n(θ∗) and

T−1
PT

t=1 s
m
t (Yt,Wt, θ0)s

n
t (Yt,Wt, θ0)

p→ σm,n(θ0). Finally, note that Et[(α − 1(qαt (Wt, θ
∗) −

Yt)))
2] = α2 − (2α− 1)F0,t(qαt (Wt, θ

∗)) which implies (10). Under (A1), we have α2 − (2α−

1)F0,t(q
α
t (Wt, θ0)) = α(1− α), which shows (12) and completes the proof of Lemma 8.

Proof of Lemma 9. We use primitive conditions for stochastic equicontinuity given in

Theorem 7.3 in Newey and McFadden (1994, p 2188): by (A1’) we have E[st(Yt,Wt, θ
∗)] = 0,
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for all t, 1 6 t 6 T , and the same holds for θ0 under (A1). Let then

rt(Yt,Wt, θ) ≡ |st(Yt,Wt, θ)− st(Yt,Wt, θ
∗)−∆t(Yt,Wt, θ

∗)(θ − θ∗)|/|θ − θ∗|, (28)

where st and ∆t are as defined in (8) and (27), respectively. We simplify the notation and let

gt(Wt, θ) ≡ a0t(qαt (Wt, θ))∇θq
α
t (Wt, θ), Ut ≡ qαt (Wt, θ

∗)− Yt and εt ≡ qαt (Wt, θ)− qαt (Wt, θ
∗),

1 6 t 6 T . Note that by (A0) and (A3’) gt(Wt, ·), 1 6 t 6 T , is continuously differentiable

a.s.−P0 on Θ with derivative dgt(Wt, ·), and that limθ→θ∗ P0(εt = 0) = 1 and P0(Ut = 0) = 0,

for any θ in Θ̊. We have

rt(Yt,Wt, θ) 6 |gt(Wt, θ)− gt(Wt, θ
∗)− dgt(Wt, θ

∗)0(θ − θ∗)|/|θ − θ∗| (29)

+|1(Ut + εt)− 1(Ut)− εtδ(Ut)| · |gt(Wt, θ)|/|θ − θ∗|

+δ(Ut)|∇θq
α
t (Wt, θ

∗)gt(Wt, θ
∗)0(θ − θ∗)|/|θ − θ∗|

+δ(Ut)|[qαt (Wt, θ)− qαt (Wt, θ
∗)]gt(Wt, θ)|/|θ − θ∗|,

for all t, 1 6 t 6 T , and show that the four terms on the right hand side of (29), denoted

ri,t(Yt,Wt, θ), 1 6 i 6 4, converge to zero with probability one as θ → θ∗: note that the mean

value expansion of gt around θ∗ and the continuity of dgt imply (by dominated convergence)

the result for the first term. By multiplying r2,t(Yt,Wt, θ) above and below by |εt|, using

(A3) and writing the mean value expansion of qαt around θ∗, we show that the second term of

the right hand side of (29) is bounded above by KSt|1(Ut+εt)−1(Ut)−εtδ(Ut)|/|εt|, where,

for any t, 1 6 t 6 T , we let St ≡ max{1, supθ∈Θ |∇θq
α
t (Wt, θ)|2}. Note that by (A5’) we have

E(S2t ) <∞, for every t, 1 6 t 6 T . For any η > 0 and ε > 0 let then S ≡ [2E(S2t )/η]1/2 <∞,

ε0 ≡ ε/K > 0 and ε00 ≡ ε0/S > 0: we have P0(r2,t(Yt,Wt, θ) > ε) 6 P0(|1(Ut + εt)− 1(Ut)−

εtδ(Ut)|/|εt| > ε0/S)+P0(St > S), so that by Chebyshev’s inequality P0(r2,t(Yt,Wt, θ) > ε) 6

P0(|1(Ut+εt)−1(Ut)−εtδ(Ut)|/|εt| > ε00)+η/2. Given ε00 > 0 and η/3 > 0, there exist some

e > 0 such that |εt| < e implies P0(|1(Ut+εt)−1(Ut)−εtδ(Ut)|/|εt| > ε00) < η/3. By continuity

of qαt (Wt, ·) a.s. onΘ, we know that for this e > 0, there exist some ρ > 0 such that |θ−θ∗| < ρ

implies |εt| < e, and therefore implies the previous inequality. Hence, for any η > 0 and

any ε > 0 we have found ρ > 0 such that |θ − θ∗| < ρ implies P0(r2,t(Yt,Wt, θ) > ε) < η,
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i.e. P0(limθ→θ∗ r2,t(Yt,Wt, θ) = 0) = 1. Finally, for r3,t(Yt,Wt, θ) and r4,t(Yt,Wt, θ), note

that by (A3) and the mean value expansion of gt around θ∗, they are bounded above by

δ(Ut)KSt, for every t, 1 6 t 6 T . Same as previously, we show that for any θ ∈ Θ,

η > 0 and ε > 0 we have P0(r3,t(Yt,Wt, θ) > ε) 6 P0(δ(Ut) > ε00) + η/2, so that by using

P0(δ(Ut) > ε00) = 0 we get P0(r3,t(Yt,Wt, θ) > ε) < η, i.e. P0(r3,t(Yt,Wt, θ) = 0) = 1. Same

conclusion holds for r4,t(Yt,Wt, θ). Combining previous results yields rt(Yt,Wt, θ) → 0 as

θ → θ∗ with probability one, for every t, 1 6 t 6 T . We now show that there exists some ² > 0

such that E[supθ∈Θ:|θ−θ∗|<² rt(Yt,Wt, θ)] <∞, for all t, 1 6 t 6 T . Using the same notation

as above, we have, by (A3), (A3’) and norm equivalence, that for every ²1 > 0 such that

{θ : |θ−θ∗| < ²1} ⊂ Θ, E[supθ∈Θ:|θ−θ∗|<²1 r1,t(Yt,Wt, θ)] 6 2Lc2E[supθ∈Θ |∇θq
α
t (Wt, θ)|2]+2K·

E[supθ∈Θ |∆θθq
α
t (Wt, θ)|], where c is some positive constant. (A5’) then implies finiteness. For

r2,t(Yt,Wt, θ), note that by continuity of qat (Wt, ·), we can always choose an ²2 > 0 such that

for every θ ∈ {θ : |θ−θ∗| < ²2} ⊂ Θ, qαt (Wt, θ
∗)−Yt and qαt (Wt, θ)−Yt are of same sign. In that

case, using (A3), we have supθ∈Θ:|θ−θ∗|<²2 r2,t(Yt,Wt, θ) 6 KStδ(Ut), a.s.− P0, since Ut does

not depend on θ. Hence, E[supθ∈Θ:|θ−θ∗|<²2 r2,t(Yt,Wt, θ)] 6 K · E[Stf0,t(qαt (Wt, θ
∗))] < ∞,

for all t, 1 6 t 6 T , by using (A5’) and (A6). Similarly, we show that there exist ²3 > 0

and ²4 > 0 such that the same inequality holds for r3,t(Yt,Wt, θ) and r4,t(Yt,Wt, θ). Letting

² ≡ min{²i : 1 6 i 6 4} > 0 gives the result. Note that equivalent reasoning applies if

we replace θ∗ with θ0. Combining above results with the established local convergence in

probability of the sample mean of {∆t(Yt,Wt, θ)} for all θ ∈ Θ, then shows (by Theorem 7.3

in Newey and McFadden, 1994) that Lemma 9 holds.

Proof of Theorem 6. When T = 1, the two optimization problems have been shown

to be equivalent. Now consider T > 1: given (y1, w1, . . . , yT , wT )0, maximizing the tick-

exponential log-likelihood is equivalent to minimizing T−1
PT

t=1max{− lnψα
t (yt, q

α
t (wt, θ)),

− lnφα
t (yt, q

α
t (wt, θ))}, where the functions ψα

t and φα
t , 1 6 t 6 T , are as defined in (17). For

θ and T fixed, let kθ, 1 6 kθ 6 T , denote the order such that εθ,kθ < 0 6 εθ,kθ+1, and let

εθ,0 ≡ −∞ and εθ,T+1 ≡ +∞. First, consider t such that 1 6 t 6 kθ: then εθ,t 6 εθ,kθ < 0

38



so that max {− lnψα
t (yθ,t, q

α
t (wθ,t, θ)),− lnφα

t (yθ,t, q
α
t (wθ,t, θ))} = − lnφα

t (yθ,t, q
α
t (wθ,t, θ)), for

1 6 t 6 kθ. Similarly, for t such that kθ + 1 6 t 6 T , we have 0 6 εθ,kθ+1 6 εθ,t

and so max {− lnψα
t (yθ,t, q

α
t (wθ,t, θ)),− lnφα

t (yθ,t, q
α
t (wθ,t, θ))} = − lnψα

t (yθ,t, q
α
t (wθ,t, θ)), for

kθ + 1 6 t 6 T . Hence

T−1
XT

t=1
max {− lnψα

t (yt, q
α
t (wt, θ)),− lnφα

t (yt, q
α
t (wt, θ))} (30)

= T−1[
Xkθ

t=1
− lnφα

t (yθ,t, q
α
t (wθ,t, θ)) +

XT

t=kθ+1
− lnψα

t (yθ,t, q
α
t (wθ,t, θ))],

where
Ps

t ≡ 0 if s < t. First consider k such that k < kθ:Xk

t=1
− lnφα

t (yθ,t, q
α
t (wθ,t, θ)) +

XT

t=k+1
− lnψα

t (yθ,t, q
α
t (wθ,t, θ))

6
Xk

t=1
− lnφα

t (yθ,t, q
α
t (wθ,t, θ)) +

XT

t=kθ+1
− lnψα

t (yθ,t, q
α
t (wθ,t, θ))

+
Xkθ

t=k+1
max {− lnψα

t (yθ,t, q
α
t (wθ,t, θ)),− lnφα

t (yθ,t, q
α
t (wθ,t, θ))}

=
Xkθ

t=1
− lnφα

t (yθ,t, q
α
t (wθ,t, θ)) +

XT

t=kθ+1
− lnψα

t (yθ,t, q
α
t (wθ,t, θ)).

Similarly we can show that the same result holds for all k such that k > kθ. Hence, the right

hand side of the above inequality is a maximum over k of Pk(yθ, wθ, θ), which combined with

(30) completes the proof of Theorem 6.
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