230B: Public Economics
Taxable Income Elasticities

Emmanuel Saez

UC Berkeley
TAXABLE INCOME ELASTICITIES

Modern public finance literature focuses on taxable income elasticities instead of hours/participation elasticities

Two main reasons:

1) What matters for efficiency is the total behavioral response to tax rates (not only hours of work but also occupational choices, avoidance, etc.)

2) Data availability: taxable income is precisely measured in tax return data

Overview of this literature: Saez-Slemrod-Giertz JEL’12
FEDERAL US INCOME TAX CHANGES

Tax rates change frequently over time

Biggest tax rate changes have happened at the top:

Reagan I: ERTA’81: top rate ↓ 70% to 50% (1981-1982)
Reagan II: TRA’86: top rate ↓ 50% to 28% (1986-1988)
Clinton: OBRA’93: top rate ↑ 31% to 39.6% (1992-1993)
Bush: EGTRRA ’01: top rate ↓ 39.6% to 35% (2001-2003)
Obama ’13: top rate ↑ 35% to 39.6%+3.8% (2012-2013)
Trump ’17: top rate ↓ 37%+3.8% (2017-2018)

Taxable Income = Ordinary Income + Realized Capital Gains
- Deductions ⇒ Each component can respond to MTRs
Historically, a 70 percent marginal tax rate is not unusual
The top marginal income tax rates from 1913 to 2018

1981
Reagan took office

SOURCE: TAX POLICY CENTER
<table>
<thead>
<tr>
<th>Year</th>
<th>Ordinary Income</th>
<th>Earned Income</th>
<th>Capital Gains</th>
<th>Corporate Income</th>
</tr>
</thead>
<tbody>
<tr>
<td>1952-63</td>
<td>91.0</td>
<td>91.0</td>
<td>25.0</td>
<td>52</td>
</tr>
<tr>
<td>1964</td>
<td>77.0</td>
<td>77.0</td>
<td>25.0</td>
<td>50</td>
</tr>
<tr>
<td>1965-67</td>
<td>70.0</td>
<td>70.0</td>
<td>25.0</td>
<td>48</td>
</tr>
<tr>
<td>1968</td>
<td>75.3</td>
<td>75.3</td>
<td>26.9</td>
<td>53</td>
</tr>
<tr>
<td>1969</td>
<td>77.0</td>
<td>77.0</td>
<td>27.9</td>
<td>53</td>
</tr>
<tr>
<td>1970</td>
<td>71.8</td>
<td>71.8</td>
<td>32.3</td>
<td>49</td>
</tr>
<tr>
<td>1971</td>
<td>70.0</td>
<td>60.0</td>
<td>34.3</td>
<td>48</td>
</tr>
<tr>
<td>1972-75</td>
<td>70.0</td>
<td>50.0</td>
<td>36.5</td>
<td>48</td>
</tr>
<tr>
<td>1976-78</td>
<td>70.0</td>
<td>50.0</td>
<td>39.9</td>
<td>48</td>
</tr>
<tr>
<td>1979-80</td>
<td>70.0</td>
<td>50.0</td>
<td>28.0</td>
<td>46</td>
</tr>
<tr>
<td>1981</td>
<td>68.8</td>
<td>50.0</td>
<td>23.7</td>
<td>46</td>
</tr>
<tr>
<td>1982-86</td>
<td>50.0</td>
<td>50.0</td>
<td>20.0</td>
<td>46</td>
</tr>
<tr>
<td>1987</td>
<td>38.5</td>
<td>38.5</td>
<td>28.0</td>
<td>40</td>
</tr>
<tr>
<td>1988-90</td>
<td>28.0</td>
<td>28.0</td>
<td>28.0</td>
<td>34</td>
</tr>
<tr>
<td>1991-92</td>
<td>31.0</td>
<td>31.0</td>
<td>28.0</td>
<td>34</td>
</tr>
<tr>
<td>1993</td>
<td>39.6</td>
<td>39.6</td>
<td>28.0</td>
<td>35</td>
</tr>
<tr>
<td>1994-2000</td>
<td>39.6</td>
<td>42.5</td>
<td>28.0</td>
<td>35</td>
</tr>
<tr>
<td>2001</td>
<td>39.1</td>
<td>42.0</td>
<td>20.0</td>
<td>35</td>
</tr>
<tr>
<td>2002</td>
<td>38.6</td>
<td>41.5</td>
<td>20.0</td>
<td>35</td>
</tr>
<tr>
<td>2003-09</td>
<td>35.0</td>
<td>37.9</td>
<td>15.0</td>
<td>35</td>
</tr>
</tbody>
</table>

Notes: MTRs apply to top incomes. In some instances, lower income taxpayers may face higher MTRs because of income caps on payroll taxes or the so-called 33 percent "bubble" bracket following TRA 86. From 1952 to 1962, a 87% maximum average tax rate provision made the top marginal tax rate 87% instead of 91% for many very top income earners. From 1968 to 1970, rates include surtaxes. For earned income, MTRs include the Health Insurance portion of the payroll tax beginning with year 1994. Rates exclude the effect of phaseouts, which effectively raise top MTRs for many high-income filers. MTRs on realized capital gains are adjusted to reflect that, for some years, a fraction of realized gains were excluded from taxation. Since 2003, dividends are also tax favored with a maximum tax rate of 15%.

Source: Saez et al. (2010)
LONG-RUN EVIDENCE IN THE US

Goal: evaluate whether top pre-tax incomes respond to changes in one minus the marginal tax rate (=net-of-tax rate)

Focus is on pre-tax income before deductions and excluding realized capital gains

Pioneered by Feenberg-Poterba TPE’93 for period 1951-1990

Piketty-Saez QJE’03 estimate top income shares since 1913 [IRS tabulations for 1913-1959, IRS micro-files since 1960]

Saez TPE’04 proposes detailed analysis for 1960-2000 period using TAXSIM calculator at NBER linked to IRS micro-files

Piketty-Saez-Stantcheva AEJ’14 look at 1913-2010 period for the US
INCOME SHARE BASED ELASTICITY ESTIMATION

1) **Tax Reform Episode:** Compare top pre-tax income shares at t_0 (before reform) and t_1 (after reform)

$$e = \frac{\log sht_1 - \log sht_0}{\log(1 - \tau_{t_1}) - \log(1 - \tau_{t_0})}$$

where sht is top income share and τ_t is the average MTR for top group

Identification assumption: absent tax change, $sht_0 = sht_1$

2) **Full Time Series:** Run regression:

$$\log sht = \alpha + e \cdot \log(1 - \tau_t) + \varepsilon_t$$

and adding time controls to capture non-tax related top income share trends

ID assumption: non-tax related changes in $sht \perp \tau_t$
Table 1.

Elasticity estimates using top income share time series

<table>
<thead>
<tr>
<th></th>
<th>Top 1%</th>
<th>Next 9%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>A. Tax Reform Episodes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1981 vs. 1984 (ERTA 1981)</td>
<td>0.60</td>
<td>0.21</td>
</tr>
<tr>
<td>1986 vs. 1988 (TRA 1986)</td>
<td>1.36</td>
<td>-0.20</td>
</tr>
<tr>
<td>1992 vs. 1993 (OBRA 1993)</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>1991 vs. 1994 (OBRA 1993)</td>
<td>-0.39</td>
<td></td>
</tr>
<tr>
<td>B. Full Time Series 1960-2006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No time trends</td>
<td>1.71</td>
<td>0.01</td>
</tr>
<tr>
<td>(0.31)</td>
<td>(0.13)</td>
<td></td>
</tr>
<tr>
<td>Linear time trend</td>
<td>0.82</td>
<td>-0.02</td>
</tr>
<tr>
<td>(0.20)</td>
<td>(0.02)</td>
<td></td>
</tr>
<tr>
<td>Linear and square time trends</td>
<td>0.74</td>
<td>-0.05</td>
</tr>
<tr>
<td>(0.06)</td>
<td>(0.03)</td>
<td></td>
</tr>
<tr>
<td>Linear, square, and cube time trends</td>
<td>0.58</td>
<td>-0.02</td>
</tr>
<tr>
<td>(0.11)</td>
<td>(0.02)</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Estimates in panel A are obtained using series from Figure 1 and using the formula
\[e = \frac{\log(\text{income share after reform}) - \log(\text{income share before reform})}{\log(1 - \text{MTR after reform}) - \log(1 - \text{MTR before reform})} \]

Estimates in Panel B are obtained by time-series regression of \(\log(\text{top 1% income share})\) on a constant, \(\log (1 - \text{average marginal tax rate})\), and polynomials time controls from 1960 to 2006 (44 observations). OLS regression. Standard Errors from Newey-West with 8 lags.

Source: Saez et al. (2010)
LONG-RUN EVIDENCE IN THE US

1) Clear correlation between top incomes and top income rates both in several short-run tax reform episodes and in the long-run [but hard to assess long-run tax causality]

2) Correlation largely absent below the top 1% (such as the next 9%)

3) Top income shares sometimes do not respond to large tax rate cuts [e.g., Kennedy Tax Cuts of early 1960s]

2) and 3) suggest that context matters (such as opportunities to respond / avoid taxes matter), response not due to a universal labor supply elasticity
SPECIFIC TAX REFORM STUDIES

Literature initially developed by analyzing specific tax reforms (instead of full time series)

Lindsey JpubE’87 analyzes ERTA’81 using repeated cross-section tax data and finds large elasticities

Feldstein JPE’95 uses panel tax data to study TRA’86

Goolsbee JPE’00 uses executive compensation data to study OBRA’93

Gruber-Saez JpubE’02 uses 1979-1990 panel tax data

Saez TPE’17 uses income share to study 2013 top tax rate increase

Many other studies in the US and abroad (survey by Saez-Slemrod-Giertz JEL’12)
Use panel data from 1979-1990 on all tax changes available rather than a single reform

Model: \(z_{it} = z_{it}^0 \cdot (1 - \tau_{it})^e \) where \(z_{it}^0 \) is potential income (if MTR=0), \(e \) is elasticity

\[
\log \left(\frac{z_{it+3}}{z_{it}} \right) = \alpha + e \cdot \log \left(\frac{1 - \tau_{it+3}}{1 - \tau_{it}} \right) + \varepsilon_{it}
\]

\(\tau_{it+3} \) and \(\varepsilon_{it} \) are correlated [because \(\tau_{it+3} = T'_{t+3}(z_{it+3}) \)]

Instrument: predicted change in MTR assuming income stays constant: \(\log \left[(1 - \tau_{it+3}^p)/(1 - \tau_{it}) \right] \) where \(\tau_{it+3}^p = T'_{t+3}(z_{it}) \)

Isolates changes in tax law \((T_t(.)\) as the only source of variation in tax rates
Table 4
Basic elasticity results

<table>
<thead>
<tr>
<th>Income controls</th>
<th>None</th>
<th>Log income</th>
<th>Log income 10-piece spline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Broad income</td>
<td>Taxable income</td>
<td>Broad income</td>
</tr>
<tr>
<td>Elasticity</td>
<td>(-0.300)</td>
<td>(-0.462)</td>
<td>(0.170)</td>
</tr>
<tr>
<td></td>
<td>(0.120)</td>
<td>(0.194)</td>
<td>(0.106)</td>
</tr>
<tr>
<td>Dummy for marrieds</td>
<td>(-0.008)</td>
<td>(-0.062)</td>
<td>(0.045)</td>
</tr>
<tr>
<td></td>
<td>(0.010)</td>
<td>(0.018)</td>
<td>(0.014)</td>
</tr>
<tr>
<td>Dummy for singles</td>
<td>(-0.037)</td>
<td>(-0.053)</td>
<td>(-0.034)</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.019)</td>
<td>(0.013)</td>
</tr>
<tr>
<td>Log(income) control</td>
<td>(-0.083)</td>
<td>(-0.167)</td>
<td></td>
</tr>
</tbody>
</table>

Source: Gruber and Saez 2002
Find an elasticity of roughly 0.3-0.4 BUT results are very fragile [Saez-Slemrod-Giertz JEL’12]

1) Sensitive to exclusion of low incomes

2) Sensitive to controls for mean reversion

3) Subsequent studies find smaller elasticities using data from other countries [Kleven-Schultz AEJ-EP’14 for Denmark]

4) Bundles together small tax changes and large tax changes: if individuals respond only to large changes in short-medium run, then estimated elasticity is too low [Chetty et al. QJE’11]
Key Advantages:

a) Use full population of tax returns in Denmark since 1980 (large sample size, panel structure, many demographic variables, stable inequality)

b) A number of reforms changing tax rates differentially across three income brackets and across tax bases (capital income taxed separately from labor income)

c) Show compelling visual DD-evidence of tax responses around the 1986 large reform:

Define treatment and control group in year 1986 (pre-reform), follow the same people in years before and years after the reform (=panel analysis)
Figure 2. Two Decades of Danish Tax Reform

Panel A. Marginal Tax Rate on Labor Income

Panel B. Marginal Tax Rate on Negative Capital Income

Panel C. Marginal Tax Rate on Positive Capital Income

Panel D. Share of Taxpayers in the Three Tax Brackets

Source: Kleven and Schultz '12
Figure 6. Graphical Evidence on the Effects of the 1987-reform on Taxable Income

Panel A. Labor Income

Panel B. Positive Capital Income

Notes: Panel A considers the effect on labor income under two treatment group definitions using the grouping in Figure 3. Treatment 1 includes all groups in Figure 3 who experience an increase in the marginal net-of-tax rate on labor income as a result of the reform (1986–1989 difference), while treatment 2 includes the same groups except those in the middle bracket ("stay middle" group in Figure 3) who experience a relatively small net-of-tax rate increase. The control group includes those groups in Figure 3 who experience a decrease in the marginal net-of-tax rate as a result of the reform. Panel B considers the effect on positive capital income based on the grouping in Figure 5, with the treatment (control) group defined as those who experience an increase (decrease) in the marginal net-of-tax rate on positive capital income resulting from the reform. In both panels, only taxpayers who are in the sample in every year of the period under consideration (1984–1993) are included, and income levels in 1986 are normalized to 100 in both treatment and control groups (without loss of generality as identification come from percentage changes over time, not from a baseline).

Both panels show that trends are extreme logically to the extent of the reform (1982–1986) and start to diverge precisely in 1987 which is the first year with tax cuts. Most of the effect of the tax reform takes place within a period of 3 years. The figure also reports basic difference-in-differences estimates of the elasticity of taxable income (standard errors in parentheses), comparing treatment and control groups over the 3-year interval from 1986 to 1989. The estimates DD1 and DD2 in Panel A refer to treatment 1 and treatment 2, respectively. DD estimates in both panels are based on 2SLS regressions of log income on an after-reform time dummy, a treatment-group dummy, and the log marginal net-of-tax rate, the latter variable being instrumented by the interaction of the after-reform and treatment-group dummies.

Source: Kleven and Schultz ’12
Key Findings:

a) Small labor income elasticity (0.1)

b) bigger capital income elasticities (0.2-.3)

c) bigger elasticities for large reforms

d) modest income shifting between labor and capital in Denmark (likely because top rates on labor and capital are carefully aligned)

⇒ Danish tax system optimized to have broad base and few avoidance opportunities
Nonlinear pricing used in other settings (electricity, utility, cell phones consumption, etc.)

Ito AER’14 is a great example using household electricity consumption to estimate consumer responses:

1) Electricity priced nonlinearly based on monthly consumption

2) Ito compares people at the border of two electricity areas in Southern California: comparable groups facing different schedules and changes over time

3) Finds very compelling evidence that consumers respond to average price and not marginal price

To date, no such compelling design has been found for income taxation (see Taubinsky and Ree-Jones Restud’20)
I specifically focus on households located within 1 mile of the utility border.

Edison (Southern California Edison) provides electricity for the north side.

San Diego (San Diego Gas & Electric) provides electricity for the south side.

Source: Ito, 2011.
In contrast, they experience substantially different nonlinear pricing.

- **Edison** and **San Diego**: Cents per kWh in 2002

![Graph showing nonlinear pricing for Edison and San Diego.](source: Ito, 2011)
DD = (mean % change in San Diego) - (mean % change in Edison)

Relative changes for SDG&E customers relative to SCE customers.

Panel A: Top Decile (90% - 100%) of Consumption Distributions

Source: Ito, 2011
DD = (mean % change in San Diego) - (mean % change in Edison)

Relative changes for SDG&E customers relative to SCE customers.

Panel A: Top Decile (90% - 100%) of Consumption Distributions

Source: Ito, 2011
DD = (mean % change in San Diego) - (mean % change in Edison)

Relative changes for SDG&E customers relative to SCE customers.

Panel A: Top Decile (90% - 100%) of Consumption Distributions

Source: Ito, 2011
\[DD = (\text{mean } \% \text{ change in San Diego}) - (\text{mean } \% \text{ change in Edison}) \]

Relative changes for SDG&E customers relative to SCE customers.

Panel B. Fifth Decile (40% - 50%) of Consumption Distributions

Source: Ito, 2011
Estimation results: Marginal Price v.s. Average Price

2SLS Estimates: Marginal Price vs. Average Price

<table>
<thead>
<tr>
<th>Distance from border</th>
<th>1 mile (1)</th>
<th>1 mile (2)</th>
<th>1 mile (3)</th>
<th>0.5 mile (4)</th>
<th>0.5 mile (5)</th>
<th>0.5 mile (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>In(MP)</td>
<td>-.087</td>
<td>-.007</td>
<td>-.092</td>
<td>-.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.007)</td>
<td>(.015)</td>
<td>(.011)</td>
<td>(.020)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In(AP)</td>
<td>-.112</td>
<td>-.108</td>
<td>-.121</td>
<td>-.114</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.006)</td>
<td>(.013)</td>
<td>(.011)</td>
<td>(.017)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>6,513,600</td>
<td></td>
<td>3,520,320</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Dependent variable: ln(Electricity consumption)
- Standard errors are clustered at city-deciles levels

Source: Ito, 2011
FISCAL EXTERNALITIES

Tax changes due to tax avoidance often generate fiscal externalities.

A Fiscal externality is a change in tax revenue that occurs in any tax base z^B other than z due to the behavioral response to the tax change in the initial base z.

1. z^B can be a different tax base in the same time period (such as corporate income tax base) ⇒ Income shifting.

2. z^B can be the same tax base in a different time period (such as future income) ⇒ Inter-temporal Substitution.

Efficiency and optimal tax analysis depend on effect on total tax revenue so critical to identify fiscal externalities.
Inter-Temporal Substitution: Realized Capital Gains

Realized capital gains occur when individual sells asset at a higher price than buying price

Individuals have flexibility in the timing of asset sales and capital gains realizations

TRA’86 lowered the top tax rate on ordinary income from 50% to 28% but increased the top tax rate on realized capital gains from 20% to 28%

2013: tax rate on KG increased from 15% to 20%+3.8%

⇒ Surge in capital gains realizations in 1986 and 2012 and depressed capital gains in 1987 and 2013 (Saez TPE’17)

⇒ Short-term elasticity is very large but long-term elasticity is certainly much smaller
Top 1% pre-tax income share and top tax rates

Source: Top 1% income share: Piketty and Saez, 2003 updated to 2015, series including realized capital gains. Top MTR include Federal individual tax + uncapped FICA payroll tax.
Source: Piketty and Saez, 2003 updated to 2015. Series based on pre-tax cash market income including realized capital gains, and always excluding government transfers.
November 2020: Biden gets elected on a program to sharply increase capital gains tax rates.

During 2021: build back better bill is discussed in congress with higher surtaxes on incomes $10m+ and $25m+ that would also increase tax rates on capital gains by 5 and 8 points.

Rich realized a lot of capital gains in late 2020 and in 2021 for fear of imminent capital gains tax increases.

By mid 2022: clear that tax increases on the rich will not happen (Manchin-Sinema opposition in US senate)
US Top 0.1% Pre-Tax Income Share and Composition

Source: Piketty and Saez, 2003 updated. Series based on pre-tax cash market income including or excluding realized capital gains, and always excluding government transfers.
INTER-TEMPORAL SUBSTITUTION: STOCK-OPTIONS

Goolsbee JPE’00 analyzes CEO pay around the 1993 Clinton top tax rate increase ↑ [from 31% in 1992 to 39.6% in 1993 announced in late 1992] on executive pay

Finds a strong re-timing response through stock-option exercise (executive can choose the timing of their stock-option exercises)

⇒ Large short-term response due to re-timing, small long-term response

Some response but smaller around the 2013 tax increase
STOCK OPTIONS

Major form of compensation of US top executives. Theoretical goal is to motivate executives to increase the value of the company (stock price $P(t)$)

Stock-options granted at date t_0 allow executives to buy N company shares at price $P(t_0)$ on or after t_1 (in general $t_1 - t_0 \approx 3 - 5$ years = vesting period)

Executive exercises option at (chosen) time $t_2 \geq t_1$: pays $N \cdot P(t_0)$ to get shares valued $N \cdot P(t_2)$. Exercise profit $N \cdot [P(t_2) - P(t_0)]$ (taxed as wage income in the US)

After t_2, executive owns N shares, eventually sold at time $t_3 \geq t_2$: realized capital gain $N \cdot [P(t_3) - P(t_2)]$ (taxed as KG)
EXECUTIVE COMPENSATION

TABLE 2
AVerAGE COMPENSATION BY TYPE FOR HIGH-INCome EXECUTIVES
(in Thousands)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxable income</td>
<td>911</td>
<td>1,153</td>
<td>974</td>
<td>965</td>
<td>1,173</td>
</tr>
<tr>
<td>Salary</td>
<td>347</td>
<td>336</td>
<td>336</td>
<td>351</td>
<td>373</td>
</tr>
<tr>
<td>Bonus</td>
<td>198</td>
<td>207</td>
<td>241</td>
<td>284</td>
<td>330</td>
</tr>
<tr>
<td>LTIP payout</td>
<td>57</td>
<td>72</td>
<td>57</td>
<td>64</td>
<td>89</td>
</tr>
<tr>
<td>Options exercised</td>
<td>268</td>
<td>496</td>
<td>293</td>
<td>235</td>
<td>381</td>
</tr>
<tr>
<td>Other income (nontaxed)</td>
<td>36</td>
<td>37</td>
<td>66</td>
<td>54</td>
<td>78</td>
</tr>
</tbody>
</table>

Source.—Author's calculations for executives with permanent income greater than $275,000 per year.
Income Shifting: Corporate and Individual Tax Base

Businesses can be organized as **corporations** or **unincorporated businesses** [also called **pass-through** entities]

Corporate profits first taxed by corporate tax [rate $\tau_c = 21\%$]

Net-of-tax profits are taxed again at rate $\tau_{distrib}$ when finally distributed to shareholders. Two distribution options:

a) dividends [tax rate $\tau_d = 20\%$ today]

b) retained profits increase stock price: shareholders realize capital gains when finally selling the stock [tax rate $\tau_{cg} = 20\%$]

But distributions can be deferred so that $\tau_{distrib} << \tau_d, \tau_{cg}$

For **unincorporated businesses** (sole proprietorships, partnerships, S-corporations) profits are taxed directly and solely as individual income (tax rate $\tau_i = 37\%$ top MTR or even lower $\approx 30\%$ with 20% business profit deduction since 2018)
CORPORATE AND INDIVIDUAL TAX BASE

Corporate form best if \((1 - \tau_c) \cdot (1 - \tau_{\text{distrib}}) > 1 - \tau_i\)

US fed taxes in 2018: \(\tau_c = 21\%\), \(\tau_{cg} = \tau_d = 20\%\), (but \(\tau_{\text{distrib}} << 20\%\) if distribution deferred), \(\tau_i = 37\%\) or 30\%

After 2018 Trump change: corporate form is best, especially if wealthy business owner can defer distribution

Pre 2018, \(\tau_c = 35\%\) and \(\tau_i = 39.6\%\) \(\Rightarrow\) individual form better

\(\Rightarrow\) wealthy people likely to incorporate their businesses in 2018+ (Kennedy et al. 2023 shows some modest movement in 2018-19 likely to accelerate if \(\tau_c = 21\%\) perceived as permanent)

Before TRA’86 (and especially before ERTA’81), top individual rate \(\tau_i\) was much higher so corporate form was best

Shifts from corporate to individual base increases business profits at the expense of dividends and realized capital gains

Large part of TRA’86 response is due to such shifting
Thus, although we document a clear increase in entity-type switching after TCJA, this form of tax shifting is negligible and does not bias our elasticities.

Figure 11: Corporate Entity-Type Switching, 2013-2019

Notes: Figure shows the profit-weighted share of firms that switch their legal entity type from C-to-S or from S-to-C over our sample period. Entity switching is very rare, and increased only modestly after TCJA.

Source: Kennedy et al. 2023
Source: Piketty and Saez, 2003 updated to 2015. Series based on pre-tax cash market income excluding realized capital gains, and always excluding government transfers.
TOP RATES AND TOP INCOMES
INTERNATIONAL EVIDENCE

1) Use pre-tax top 1% income share data from 18 OECD countries since 1960 using the World Inequality Database

2) Compute top (statutory) individual income tax rates using OECD data [including both central and local income taxes].

Plot top 1% pre-tax income share against top MTR in 1960-4, in 2005-9, and 1960-4 vs. 2005-9
A. Top 1% Share and Top Marginal Tax Rate in 1960–4

B. Top 1% Share and Top Marginal Tax Rate in 2005–9

Elasticity = 1.90 (0.43)

Change in Top Tax Rate and Top 1% Share, 1960-4 to 2005-9

Elasticity = 0.47 (0.11)

Table 2: International Evidence on Top Income Elasticities

<table>
<thead>
<tr>
<th></th>
<th>All 18 countries and fixed periods</th>
<th>Bootstrapping period and country set</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>No controls</td>
<td>0.324 0.163 0.803</td>
<td>0.364 0.128 0.821</td>
</tr>
<tr>
<td></td>
<td>(0.034) (0.039) (0.053)</td>
<td>(0.043) (0.085) (0.032)</td>
</tr>
<tr>
<td>Time trend control</td>
<td>0.375 0.182 0.656</td>
<td>0.425 0.191 0.761</td>
</tr>
<tr>
<td></td>
<td>(0.042) (0.030) (0.056)</td>
<td>(0.045) (0.091) (0.032)</td>
</tr>
<tr>
<td>Country fixed effects</td>
<td>0.314 0.007 0.626</td>
<td>0.267 0.008 0.595</td>
</tr>
<tr>
<td></td>
<td>(0.025) (0.039) (0.044)</td>
<td>(0.035) (0.070) (0.026)</td>
</tr>
<tr>
<td>Number of observations</td>
<td>774 292 482</td>
<td>286 132 516</td>
</tr>
</tbody>
</table>

A. Effect of the Top Marginal Income Tax Rate on Top 1% Income Share

Regression: $\log(\text{Top 1\% share}) = a + e \cdot \log(1-\text{Top MTR}) + \epsilon$

- No controls
- Time trend control
- Country fixed effects
- Number of observations
ECONOMIC EFFECTS OF TAXING THE TOP 1%

Strong empirical evidence that pre-tax top incomes are affected by top tax rates

3 potential scenarios with very different policy consequences

1) Supply-Side: Top earners work less and earn less when top tax rate increases ⇒ Top tax rates should not be too high

2) Tax Avoidance/Evasion: Top earners avoid/evade more when top tax rate increases

⇒ a) Eliminate loopholes, b) Then increase top tax rates

3) Rent-seeking: Top 1% earners extract more pay (at the expense of the 99%) when top tax rates are low ⇒ High top tax rates are desirable
Real changes vs. tax avoidance?

Long-term Correlation between pre-tax top reported incomes and top tax rates

If due solely to tax avoidance, true top income shares were high in the 1950s-1970s but top earners could lower their taxable income (by retaining earnings in businesses and benefiting from lower tax rate on capital gains)

But top income share including K gains follows the same U-shape (Piketty, Saez, Stantcheva ’14)

Piketty, Saez, Zucman QJE’18: comprehensive national income estimates are also U-shaped over the century

⇒ Long-run evolution of inequality is not an artifact of tax avoidance or evasion
Tax Avoidance: Top 1% Income Shares and Top MTR

Year	Top 1% (incl. KG)	Top MTR	Top 1% (excl. KG)	MTR K gains
1913 | | | | |
1923 | | | | |
1933 | | | | |
1943 | | | | |
1953 | | | | |
1963 | | | | |
1973 | | | | |
1983 | | | | |
1993 | | | | |
2003 | | | | |
2013 | | | | |
Emmanuel Saez and Gabriel Zucman

untaxed capital income includes undistributed corporate profits, the imputed rents of homeowners, capital income paid to pension accounts, and dividends and interest retained in trusts, estates, and fiduciaries. Piketty, Saez, and Zucman (2018) estimate the distribution of 100 percent of national income by combining national accounts, tax, and survey data. As Figure 3 shows, in both fiscal income and national income statistics, the share of income earned by the top 1 percent was high before the 1930s and fell from the 1930s to the 1970s before rising again from the late 1970s on. This U-shaped evolution of income concentration is a bit less spectacular when one looks at national income rather than fiscal income, mainly because only the fraction of corporate profits paid out as dividends are included in fiscal income statistics, while all corporate profits are included in national income. Accounting for the totality of corporate profits generally increases the top 1 percent income share, but the effect is stronger in the post-WWII years, a time before the rise of pension plans somewhat broadened equity ownership.

One virtue of distributional national accounts is that they are not affected by legal changes in business organization. In the United States, a growing number of businesses have been organized as "pass-through" entities since the late 1980s. The income of pass-through entities—partnerships, S-corporations, sole proprietorships—is not subject to the corporate income tax; instead, all the income of these entities is reported on tax returns. Untaxed capital income includes undistributed corporate profits, the imputed rents of homeowners, capital income paid to pension accounts, and dividends and interest retained in trusts, estates, and fiduciaries.

Figure 3
Share of Income Earned by the Top 1 Percent

Note: This figure compares the share of fiscal income earned by the top 1 percent tax units (from Piketty and Saez 2003, updated series including capital gains in income to compute shares but not to define ranks, to smooth the lumpiness of realized capital gains) to the share of pre-tax national income earned by the top 1 percent equal-split adults (from Piketty, Saez, and Zucman 2018, updated September 2020, available on WID.world).
Real changes vs. tax Avoidance? Charitable giving

Test using charitable giving behavior of top income earners (Saez TPE '17)

Because charitable is tax deductible, incentives to give are stronger when tax rates are higher

Under the tax avoidance scenario, reported incomes and reported charitable giving should move in opposite directions

Empirically, charitable giving of top income earners has grown in close tandem with top incomes

⇒ Incomes at the top have grown for real
Charitable Giving of Top 1% Income Earners

Source: The figure depicts average charitable giving of top 1% incomes (normalized by average income per family) on the left y-axis.

Source: Saez TPE 2017
Charitable Giving of Top 1% Income Earners

Mean charitable giving of top 1% divided by mean income [left y-axis]

Top 1% Income Share [right y-axis]

Source: The figure depicts average charitable giving of top 1% incomes (normalized by average income per family) on the left y-axis. For comparison, the figure reports the top 1% income share (on the right y-axis).

Source: Saez TPE 2017
Supply-Side or Rent-Seeking?
(Piketty-Saez-Stantcheva AEJ’13)

Correlation between pre-tax top incomes and top tax rates

If rent-seeking: growth in top 1% incomes should come at the expense of bottom 99% (and conversely). Two macro tests:

1) US evidence:

a) Income growth was high and broadly distributed from 1946-1980 when top tax rates were high.

b) Growth has been weaker and skewed toward the rich after 1980 when top tax rates went down

⇒ Consistent with rent-seeking effects

2) Look at cross-country correlation between economic growth and top tax rate cuts ⇒ No correlation supports rent-seeking
Annual pre-tax income growth, 1946-1980

Average income growth: 2.0%
Annual pre-tax income growth, 1980-2018

Income percentile

Annual pre-tax income growth, 1980-2018

Top 0.001%
P99.99
P99.9
P99

Macro growth: 1.4%

People's growth: 0.65%
INTERNATIONAL CEO PAY EVIDENCE

Recent micro-data for 2006 gathered by Fernandes, Ferreira, Matos, Murphy RFS’12.

1) CEO pay across countries strongly negatively correlated with top tax rates

2) Correlation remains as strong even when controlling for firms’ characteristics and performance

⇒ Consistent with rent-seeking effects
A Average CEO Compensation

Elasticity = 1.97 (.27)

CEO pay ($ million, log-scale)

Top Income Marginal Tax Rate

Countries:
- United States
- United Kingdom
- France
- Norway
- Sweden
- Netherlands
- Australia
- Ireland
- Italy
- Switzerland
- Germany
- Canada

Piketty, Saez & Stantcheva (2012) Three Elasticities
B. Average CEO compensation with controls

Elasticity = 1.90 (0.29)
Table 4: International CEO Pay Evidence

<table>
<thead>
<tr>
<th>Outcome (LHS variable)</th>
<th>Log(CEO pay) (1)</th>
<th>Log(CEO pay) (2)</th>
<th>Log(CEO pay) (3)</th>
<th>Log(CEO pay) (4)</th>
<th>Log(CEO salary) (5)</th>
<th>Log(CEO bonus and equity pay) (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Explanatory variables (RHS variables)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>log(1-Top MTR)</td>
<td>1.97***</td>
<td>1.90***</td>
<td>1.92***</td>
<td>1.90***</td>
<td>0.35*</td>
<td>4.68***</td>
</tr>
<tr>
<td></td>
<td>(0.27)</td>
<td>(0.286)</td>
<td>(0.336)</td>
<td>(0.328)</td>
<td>(0.189)</td>
<td>(0.782)</td>
</tr>
<tr>
<td>Governance index</td>
<td>-0.10***</td>
<td>-0.19***</td>
<td>-0.02</td>
<td>-0.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.020)</td>
<td>(0.038)</td>
<td>(0.072)</td>
<td>(0.201)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>log(1-Top MTR)*Governance index</td>
<td>-0.13**</td>
<td>0.06</td>
<td>-0.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.057)</td>
<td>(0.089)</td>
<td>(0.281)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firm and CEO controls</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Number of observations</td>
<td>2,959</td>
<td>2,844</td>
<td>2,711</td>
<td>2,711</td>
<td>2,691</td>
<td>2,711</td>
</tr>
</tbody>
</table>
INTERNATIONAL MIGRATION

Public debate concern that top skilled individuals move to low tax countries (e.g., in EU context) or low tax states (within US Federation)

Migration concern bigger in public debate than supply-side concern within a country

Interesting variation due to proliferation of special low tax schemes for highly paid foreigners in Europe

Kleven-Landais-Saez AER’13 look at football players in Europe (highly mobile group, many tax reforms) ⇒ Find significant migration responses to taxes after European football market was de-regulated in ’95

Akcigit-Baslandze-Stantcheva AER’16 look at innovators (using patent data) mobility and find significant tax effects for top innovators

Various US states studies: Moretti-Wilson AER17, 2019, Rauh-Shyu ’19 (big effects), Young et al. ’16 (modest effects)
Exploit the 1991 Danish tax scheme: immigrants with high earnings ($\geq 103,000$ Euros/year) taxed at flat 25% rate (instead of regular progressive tax with top 59% rate) for 3 years

Use population wide Danish tax data and DD strategy: compare immigrants above eligibility earnings threshold (treatment) to immigrants below threshold (control)

Key Finding: Scheme doubles the number of highly paid foreigners in Denmark relative to controls

\Rightarrow Elasticity of migration with respect to net-of-tax rate above one (much larger than within country elasticity of earnings)

\Rightarrow Preferential schemes proliferate in EU (Flamant et al. 21)

\Rightarrow Tax coordination will be key to preserve progressive taxation in the EU (but tax competition hard-coded in EU treaties)
Control 1 = annualized income between .8 and .9 of threshold
Control 2 = annualized income between .9 and .995 of threshold.

DD elasticity:
Long-term: 1.62 (.16)
Short-term: 1.28 (.15)

Source: Kleven, Landais, Saez, Schultz QJE (2014)
Figure 4: Earnings Density for Foreigners

Bunching = 1.3 (.35)
Missing mass = .21 (.14)
Figure 6: Density of the Duration of Stay of Foreigners: 1991-2006

Diff−in−Diff

dP[Stay>3yr] / d(P99.5*After)

η = −.152 (.022)
REFERENCES

