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Models are studied, in which ability to supply labour is affected by a random variable (health) 
not observable by government. When ill-health strikes, the consumer must retire, but he may 
choose to retire in any case. Optimal social insurance policies are found for one-period, two- 
period, and continuous-time models. It is found that, under plausible conditions, at the opti- 
mums consumers are indifferent whether to work or not, but do work when able. Insur- 
ance contributions decrease with age, and insurance benefits increase with age of retirement. 
It is desirable to prevent private saving. Some comments on the U.S. Social Security system 
are added. 

1. Introduction 

No-one knows what work he will be capable of in the future. Uncertainty 
about earning ability in the last years of life is particularly great. The burden 

of this risk to the individual is eased both by private insurance and by the 
tax and social insurance system. Complete relief from risk is not available, 
because neither private insurance nor public arrangements distinguish fully 
between low income by choice and low income by necessity. Full insurance 
might defeat itself through moral hazard. For this reason, the design of 
optimal social insurance is an interesting and difficult problem. In this paper, 
we consider a simple form of earning-ability risk, and study optimal 
insurance for a population of identical individuals.’ 

*Financial support by the National Science Foundation during the preparation of this paper 
is gratefully acknowledged. Computing assistance was provided by the Computing and Research 
Support Unit of the Oxford University Social Studies Faculty; and research assistance by Jay 
Helms. 

‘In other papers (not yet published), we consider identical and diverse populations whose 
savings opportunities are limited only by linear taxation. 



We suppose that everyone lives for the same length of time, and that at 
any date an individual has either full earning capability or none: there is no 
partial loss of earning ability. Loss of ability strikes randomly. The govern- 
ment is assumed unable to distinguish those who cannot work from those 
who merely choose not to. Individuals are assumed to maximize their 
expected utility, and to be willing, without concern for the truth, to claim 
inability to work when it suits them. 

Three models will be used, with one period, with two periods, and with 

continuous time. The one-period model allows us to develop simply the basic 
condition determining whether or not there is a moral hazard problem. For 
the case where there is a problem, we relate the size of the optimal insurance 
plan to characteristics of the utility function. With the two-period model, we 
demonstrate an additional aspect of the moral hazard problem, that taxation 
of alternative commodities can increase expected utility. For our model, we 
find that, under plausible assumptions, an untaxed individual would try to 
save too much. Thus the optimal social insurance plan needs to be 
supplemented by an interest income tax. In the continuous-time model, we 
examine the optimal consumption path while working, and the optimal 
relationship between pension and date of retirement. Even in the absence of 
utility-discounting, and of a positive return to saving, we find that it is 
optimal for consumption to increase with age, and for retirement benefit to 
increase with retirement age. This leads us to suggest a way of incorporating 
these conclusions into the benefit structure of the U.S. Social Security 
system.2 

2. The one-period model 

Either the individual is capable of work or he is not. He knows the 
probability B that he can work. He is an expected-utility maximizer, his 
utility being specified by three utility functions: 

u1 (c) = utility of consumption c when working, 
u2 (c) = utility when able to work, but not working, 
u3 (c) = utility when unable to work. 

When working, he produces one unit of output. Assuming nonlinear taxation 
of income and one type of individual, the lack of continuous adjustment of 
labour supply is not critical; but the discrete nature of health outcomes is. 

On the assumption that work is unpleasant in the aggregate, we have 

U2(C)>UI(C) for all c. (1) 

‘The theoretical effects of social insurance on retirement have been studied by Feldstein (1974) 
and Sheshinski (1978). 



We also assume that work plus consumption is preferable to no work: 

&(l)>%(O). (2) 

There are no private insurance markets. The government pools risks well 
enough to be able to plan to distribute consumption, conditional on work, in 
such a way that the expected value of consumption equals the expected value 
of output for any individual. 

The government being unable to tell why an individual does not work, its 
policy is entirely described by ci, consumption for a person who is working, 
and c2, consumption for one who is not. This policy provides the individual 
with expected utility 

6n,(c1)+(l-(%(c2) if he works when he can, 

&(c2)+(1 -Qu,(c,) if he does not work. 

Thus he is willing to work if and only if 

Ut(Ct)2%(C2). (3) 

It is as well to suppose that, even in the case of indifference, the individual 
works if he is willing and able to do so. We shall comment on this 
assumption below. 

When individuals who can, work, the aggregate resource constraint is 

&,$(l-C))c,SH 

since the output of a worker is 1. Otherwise, cz =O. 

(4) 

The situation can be portrayed in a diagram, with ci and c2 on the axes. 
This is done in figs. 1 and 2,* where the plane is divided into two regions by 
the curve ui (c,) =u,(c,). By assumption (2), the point c1 = 1, c2 =0 lies below 
this curve. Everywhere on and below the curve, the individual works if he 
can; and above it, he does not work. The feasible region is the shaded area 
plus the origin. Three indifference curves, I,I,, I,I,, I,I,, are drawn, along 
which expected utility is constant given the private decision on whether to 
work. It will be noticed that the curve u1 =u2 lies entirely below the forty- 
live degree line: this expresses assumption (1). 

Evidently there are two cases to consider, which are shown in the two 
figures. In the first, the indifference curve is tangent to the line with equation 
Bc, + (1 - 8)c, = 0. Since the slope of the indifference curve is 

6 ui(ct) -__ 
l-8 u;(c,)’ 

(5) 
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and the slope of the budget line is -O/(1 -O), the optimum in this case is 
given by 

u;(cT)=u;(c;) and &$+(l-O)c2=6. (6) 

In this case we have the familiar description of a full optimum. The moral 
hazard constraint is ineffective, as can be seen from the diagram: in the full 
optimum, people are willing to work if they can. 

If at the allocation described by (6) we have ui <u2, the situation is 
different, and must be as shown in fig. 2. Here the optimum is given by the 
intersection of the budget constraint and the curve u, =u2: 

u,(4)=%(4) and ery+(l -e)C;=e. (7) 

For this case to occur, the indifference curve at this intersection point must 
slope down less steeply than the budget line. This will be the case if U; 5~; 
at all points of the curve u1 =uZ. If, on the contrary, u; > u; at all points of 
the curve, the first case applies. For convenience, we state all this as a formal 
theorem.3 

Theorem 1. Iffor all x and y 

ul(x)=uz(Y) implies u;(x)su;(YL (8) 

the optimum is given by (7). Iffor all x and y 

u1(x)=u2(y) implies u;(x)zu;(Y)> (9) 

the optimum is given by (6). 

The conditions in the theorem take on a more interesting shape if we 
make the further assumption that the loss in the ability to work has an 
additive effect on utility: 

ug(c)=u2(c)-b. (10) 

Since in this case marginal utility of consumption is the same in the two 
states, condition (8) can be stated as 

ul(x)=uz(Y) implies 4(X)54(Y), (11) 

for all x and y. 

3The model under consideration is equivalent to the standard maximization of an additive 
.nriol u~lfi~ fi,nrtinn The n~rtirttlar &$r&utiofi of &f&&t& ~~~!J~_& here has xt, to y”ILyl ..II.ULI .Y.I-..“.._ ..&_ yy’ ..wl.... 

our knowledge, been investigated previously. 
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Thus the moral hazard problem is present if compensating a worker so 
that he is indifferent to working results in a lower marginal utility of 
consumption than if he did not work and was not compensated. It seems to 
us that this condition will much more often be relevant than its contrary. 
For example, it follows when utility is additively separable in consumption 
and labour, and labour is disliked. 

3. Comparative statics under moral hazard 

By means of the diagram, we can examine the way in which the optimum 
changes when probabilities change, when the disutility of labour is changed, 

and when the utility of consumption is changed. 
When 8 increases, the budget line becomes steeper, rotating clockwise 

about the fixed point (1,O). -Thus, if moral hazard is present, c: and c; both 
increase. Similarly an increase in the disutility of work, i.e. u2 - ui, moves the 

curve u1 =u2 downwards, so that CT is increased and CT decreased. 
A change in the utility of consumption can also be analysed by considering 

how it affects the curve u1 =uZ. For example, we can show that an increase 
in risk-aversion can lead to a reduction in the extent of insurance, which may 
be contrary to some people’s intuition. Suppose utility and marginal utility 

at c: remain fixed, both with and without work, and that risk-aversion 

increases. ur is thereby decreased for c>c$, and in particular for CT (see fig. 
3). Therefore the curve u1 =u2 is shifted to the right in the neighbourhood of 
CT. Consequently the optimal c: is increased and the optimal c: is decreased: 
the extent of insurance is reduced, as claimed. A different kind of increase in 
risk-aversion can have the opposite effect, for example, by preserving utility 
and marginal utility at CT while increasing risk-aversion. By analogy to fig. 3 
the curve u1 =u2 is shifted up. 

The one-period model showed that the government’s inability to perceive 
whether earnings abilities are present may or may not render attainment of 
the first-best optimum impossible. If this possibility is affected, which is to 
say that the moral hazard problem is present, then, with individuals identical 
ex ante and only two levels of earnings ability, at the optimum individuals 
are indifferent to work. We shall see that this property persists as we extend 
the time frame of the analysis. 

4. The two-period model 

With two periods, we assume that everyone can work in the first period, 
and that an individual is able to work in period two with probability 8. 
These facts are known to the government. We shall want to use this model 
to discuss the significance of private saving behaviour, but, for the present, 
the government is assumed to offer individuals pairs of first and second 
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period consumptions: (c,,c,) if work is done in period two. (c,,,c~) if not. No 
private saving is allowed. Utility is now in every case a function of 
consumption in the two periods. The particular utility function will be 
denoted by superscript instead of subscript, subscripts being reserved for 
derivatives. 

The budget constraint is taken to be 

c,+R[Hc,+(l-O)cz]=l+6)R, (12) 

it being assumed that aggregate output when everyone works is unity, and 
that there is a constant interest factor4 R. In order to portray the situation 
on a two-dimensional diagram, we use the budget constraint (12) to 
eliminate one of the variables when everyone works who is able to do so. It 

is most convenient to use the variables co and 

z=c1-c2, (13) 

where z is the return to working and 1 -z the tax on labour income. Then 

we have from (12) 

Cl =q$+o+ (1 -G)z, 

l-C, 
c,=R+O(l -z). (15) 

Since consumption levels have to be nonnegative, it follows that, so long as 

everyone works when he can, c0 and z are constrained by three linear 
inequalities, c0 20, ci 20, and c2 20. These define a triangle in (c,, z)-space, 
as shown in fig. 4. 

However, people are willing to work when they can only if 

If zso, ClZ(.i, so that, maintaining our assumption that work has disutility, 
u2(c,, c2) > lll(cO, ci). Thus the inequality (16) implies that z >O. Notice also 
that, since an increase in z increases ci and decreases c2, (cO,z’) satisfies (16) 
whenever (c,, z) satisfies (16) and z’ > z. The region in which people work if 
they can is the one bounded by ABC in fig. 4: AB is the locus of points 
where people are indifferent whether to work or not. If (c,, z) is not in this 

“R equals the mverse of one plus the interest rate 
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region, either there is no feasible allocation with these values of q, and Z, or 
no-one works in the second period. 

In the latter case, c,, + Rc, = 1, and expected utility is Ouz(cO,cZ) 
+ (1 - B)u3(c,, cl). Let 

u,=max[&? + (1 -0)u3:c0 + Rc, = l] (17) 

be the maximum utility obtainable without work in the second period. 
The indifference curves drawn in the diagram are the curves of constant 

expected utility 8~’ + (1 -0)~’ on the assumption that work is done in the 
second period. The case shown is one for which the full optimum- the point 
F-is not feasible; and the maximum attainable utility is greater than u,, so 
that moral hazard is present in the optimum, and work is done in the second 
period. The same argument as in section 2 shows that the full optimum is 
unattainable if 

~1(xo,x1)=~2bc.bx2) implies u:(x,,x, ,54(x0,x2)> (18) 

where ui denotes the partial derivative with respect to xi. 
We concentrate on the case where moral hazard is present and there is 

work in the second period at the optimum. Then at the optimum the 
indifference curve is tangent to the curve AB. Also a small increase in z 
would reduce utility. An increase in c0 may either increase or decrease utility, 
depending on the sign of the slope of the curves at the optimum. We shall 
discuss conditions for this in a moment. 

The interesting point is that a change in c0 that would increase expected 
utility while z is held constant represents a savings opportunity that the 
individual would wish to avail himself of if he were allowed to; for, as can be 
seen from (14) and (15), a change in c0 brings about the changes in ci and c2 
that would happen if it were an act of private saving or dissaving. Thus in 
general, the optimum cannot be obtained without preventing access to the 
capital market, or, alternatively, imposing an appropriate tax or subsidy on 
savings. 

It is most likely that the curve AB representing the moral hazard 
constraint will have a negative slope at the point of tangency. If u2 tends to 
minus infinity as c2 tends to zero, then the curve U’ =u2 can hit the line c2 
= 0 only where c1 is also zero, i.e. on the vertical axis, with z = 0. Since z > 0 
at the point B, the slope of the curve AB is predominantly negative. We can 
also find a rather plausible local condition for the optimum to appear as in 
fig. 4. For this further analysis we assume that u2 and u3 differ only by a 
constant. i.e. have the same derivatives. 
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Theorem 2. Assume that u3 =u2 - b, 

u1(xo,x1)=u2(%,x2) implies u:(xo,x,)ru:c%,X2), (0 

u1c%,x1)=u2bo,x2) implies 
@?(&J*~ 

(ii) 

Then at the optimum, individuals want to save more. 

Proof: The claim is that at the optimum a reduction in cO would increase 
expected utility, z being held constant; i.e. that the curve u1 =u2 has a 
negative slope at the optimum. Since ui -u2 is an increasing function of z, 
we have to show that it is an increasing function of cO, 

g (d -u2)=u&u;-;(u: -u;,. 
0 

Here numerical subscripts denote differentiation with respect to the indicated 
consumption level. 

We shall argue that, at the optimum, 

(19) 

Given this equation, a/&, (u’ -u2) is positive if MA/U: is larger than ui/us 

(and conversely). The latter condition is precisely (ii). 
It remains to derive (19) given the assumption that at the optimum we 

have a moral hazard problem (which follows from (i)). From fig. 4 we know 
that at D an indifference curve is tangent to the moral hazard constraint. 
Equating these two slopes we have 

e(u,-~u~)+(l-e)(u~-~u:) (U:-~u;)-(u6k”:) 
e(1 -e)(u; -u:, (l-e)u:+Ou: 

Crossmultiplying, we obtain (19), which completes the proof. 

The first condition in the theorem is the one that we have earlier claimed 
to be plausible, and which is pretty much required for moral hazard to be 
present in the optimum. The second condition says that, at equal utilities 
whether working or not, the individual has a greater incentive to save when 
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not working. Our conclusion is that it is normal for a tax on saving to be 
associated with the optimal social insurance policy. 

Suppose now that saving is allowed, and is not taxed. This means that 
optimization is further constrained by a saving equilibrium condition, that 
the derivative of expected utility with respect to c,, is zero. Thus the 
condition is represented by the locus of points where the indifference curves 
have vertical slope, the curve FE in fig. 5. As one moves right along this 
curve, utility, and the size of the social insurance programme, diminish. If 
individuals made their savings plans under the assumption that they would 
work in the future, analysis would be completed by combining the savings 
constraint with the moral hazard constraint u1 (c,, cl)=u2(cc,, c2) and the 
optimum would be at E, where the two constraints intersect. However if the 
individual plans savings and future work at the same time, we have a 
different moral hazard condition : 

max [C3~‘(c~-s,c~+s)+(1-~)~~(c~-s,c~+s)] 

zmax [@(c,-s,c,+s)+(1-~)~~(c~-s,c~+s)]. 

This is a more stringent condition when a zero level of savings is optimal if 
the individual works; for the ability to adjust savings increases the utility 
available to those planning not to work. This is shown in fig. 5 as GJ with 
the optimum occurring at H. (This model is explored in more detail in 
another paper.) Notice that, when individuals are free to save without 
constraint or taxation, it is still optimal to be on the boundary of the feasible 
set.s 

One aspect of these solutions should be further noted. Since they are on 
the boundary of the feasible set, individuals are in fact indifferent whether to 

work in period 2 or not. Similarly in the one-period model they are 
indifferent between working and not working. If this indifference were 
reflected in random choice rather than an implausible adherence to govern- 
ment wishes, there would, strictly speaking, be no optimum, though the 
government could adopt policies arbitrarily close to the ones we have 
discussed under which individuals would certainly wish to work if they 
could. That is why it is not inappropriate to assume, as we have done, that 
the government can choose when the consumer is indifferent. Of course a 
fully satisfactory treatment of these matters would have to model the costs of 
implementing choices explicitly, and that would take us too far afield. 

The chief conclusion of this section is that a government concerned about 
social insurance would normally want to discourage private saving, for 

5To achieve the optimum at D in fig. 4, the government must either close the capital market, 
or introduce nonlinear wealth taxation to ensure that individuals do not desire to save. 



example by taxing it: and that, if it could not do so, the extent of the social 
insurance programme would be diminished. This exemplifies a general 
feature of moral hazard situations, that the provider of insurance would 
usually want to control trade in related commodities. For example, fire 
insurance companies should want their clients to buy fire extinguishers; and 

they like to see high taxes on the consumption of tobacco. 

5. The continuous-time model 

We turn to a model in which the retirement date is continuously variable, 
while maintaining the assumption that labour choice at each moment is 
discrete. This model allows us to ask two further questions: how con- 
sumption should be made to vary with age when working, and how the 
retirement benefit should depend upon the age of retirement. Since the 
moral hazard constraints can no longer be pictured in a diagram, the 
mathematics of the model is more complicated than for the previous models, 

but we shall use the earlier analysis to guide us to the solution. 
We make the following assumptions. If everyone were working, output per 

unit period would be unity. The real interest rate is zero. Utility is the 
undiscounted integral of instantaneous utility. When the individual is work- 
ing, his instantaneous utility is u1 (c); when not working, Us or uj(c) 
according to whether he is able to work or not. All three functions are 
strictly concave. To simplify the analysis, we assume from the outset that u2 

and uj differ by a constant: 

uz(c)=u,(c)+b, hZ0. 

Saving is controlled by the government. Consequently, consumption when 

working, a function of age, cl(t); and consumption when retired can be a 
function both of age t and of age at retirement, r, c,(t, r). The date s at which 
an individual becomes unable to work is a random variable, with density 
function f and distribution function F. The length of life is denoted by T, 
and f(s) > 0 for 0 <s < T. There are no atoms in the distribution. 

If the age of retirement is r and the age of disability is s, .sz I’, utility is” 

=i l,,(r)dt +‘i u,(t,r.)dt-b(T-s), 

hWe do not consider the possibility of a return to work after retirement. An approach to 
dealing with this complication would be to relate wages and pensions to experience rather than 
age. 
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where we have used (19), and introduced the notation 

Neither individual nor government can affect the last part of (20). Therefore 
we omit it from further considerations. What we are interested in is the 
utility of work and consumption. For someone who does retire at r, this can 
be written as 

t,(r)=j u,(t)dt+jul(t,r)dt. 
0 I 

(21) 

With retirement planned at r, expected utility can be taken to be 

v(c,,c2,r)=j u(s)f(s)ds+u(r)Cl-F(r)], 
0 

(22) 

since the individual has to retire at the date of disability s if s precedes the 
planned retirement date. Thus r is the age at which the individual decides to 

retire if he is still able to work at that date. 
Eq. (22) expresses the maximand for our problem as an average of U, the 

expected value of u(min(s, r)). This average occurs frequently in our analysis, 
and it is convenient to have a special notation for it. For any integrable 

function h, we define 

J,.(h)=i h(s)f’(s)ds+h(r)[l -F(r)]. (23) 

For later reference we note the following. 

Properties of J,: 

(i) J, is a positive linear functional for each r, 
(ii) J,(h) is monotonically increasing (or decreasing) in r if h is monotoni- 

cally increasing (or decreasing), 
(iii) J,(h) is a constant function of r if and only if h is a constant, 
(iv) If h is differentiable, 

$ J,(h)=h’(r)[l -F(r)]. (24) 
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Proof: (i) and (iv) follow immediately from (23). To prove (ii), we let I-’ 

> r, and calculate from (23) that 

J,.(h)-J,(h)=j [h(s)-h(r)]f(s)ds+[h(r’)-h(r)] j f(s)ds. (25) 
I I’ 

Thus J,,(h)>J,(h) if h is monotonically increasing. The case where h is 
monotonically decreasing is proved similarly. 

From (25) it also follows that J,(h) is constant if h is constant. To 
complete the proof of (iii), suppose that J,(h)=c, a constant, for all r. From 
(23) it follows that h(r) is differentiable, and (24) then implies h’=O, i.e. h is a 
constant. The proof is complete. 

The net resource cost to the government of an individual who retires at r 

is 

z(r)=i c,(t)dt+~c,(t,r)dt-r, 
0 , 

(26) 

recalling that a worker produces unit output. If the government requires A 
units of output for its own purposes, the aggregate resource constraint is 

J,(z)+ASO, (27) 

assuming that everyone selects the same retirement date and the government 
is subject to an expected value resource constraint. 

We can now state formally the problem to be addressed. We are to: 
maximize J,(u) subject to (27) and 

J,(U)5Jr(~), all tsr. (28) 

This last constraint says that individuals do not prefer to retire before r. 

Since the government can set consumption levels equal to zero for anyone 
who retires after a date it chooses, we need not be concerned about 
individual plans to work too long. Thus the effective constraint on govern- 
ment is that it choose r, and the functions c1 and c2 so that (27) and (28) 
hold. 

In the full, first-best optimum, the government is constrained only by (27) 
and marginal utilities of consumption should be equated in all circumstances: 

Cl (t)=cY, cz(f, r)=c:; with u~(c~)=u;(&). (29) 
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If under these circumstances we had ui (c~)~u,(c~), there would be no moral 
hazard problem, for, as one can see from (21), v(r) would be a nondecreasing 
function of r, and J,(u) consequently a nondecreasing function of t. 

In cases where no moral hazard problem arises, the optimal retirement 
date will often be T. From the fact that there is no moral hazard problem, it 
follows, using (24), that expected utility is a nondecreasing function of the 
retirement date: 

If it is also the case that expected resource costs decrease with the retirement 
date, then the optimum occurs at T. Using (24) again, we have 

iJ,(z)=[cy-c;-l][l-F(r)]. 

Thus it is sufficient for the optimum to occur at T that 

It might be that u;(x) =u;(y) implies x 5 y+ 1. If so the result follows. Even 
when this is not the case for all x and y, it is true at the optimum if the 
government has positive resource needs elsewhere (A > 0), and the optimum 
involves some work. For we have A = -J,(Z) and 

z(s)=sc~+(T-s)c;-s 

=(c:,-c;-l)s+Tc;. 

Thus if A is positive, and J,(z) consequently negative, I_$ -c: - 1~0, as 
claimed. By our previous argument, it follows that the optimum has 
retirement planned to be at T. 

As we argued above, the interesting case is where u; =u; is inconsistent 
with ui 2 u2, so that there is a moral hazard problem. Accordingly we 
assume from now on that 

u,h)=u2(c2) implies u;(c1)Sa;(cZ). (30) 

Before proceeding with the analysis, we note a convenient feature of the 
optimum. Once a man has retired, there is no advantage from inefficient 
intertemporal allocation of his consumption. Incentives to work depend on 
expected utility as a function of the retirement date, so the cost of providing 
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expected utility conditional on retirement should be minimized. With no 
discounting of utility and a zero interest rate, this implies 

(31) 

Then v and z can be written 

,:(r)=i u,(t)dt+u,(r)(T-r), 
0 

(32) 

~(r)=ic,(t)dt+c~(r)(T-r)-r. 
0 

(33) 

A bad feature of the maximization problem we have to deal with is a lack 
of the concavity conditions that would render necessary conditions for the 
optimum also sufficient. The moral hazard constraints (28) cannot be 
expected to be concave in any of the control variables cr, c2, or r’. But if we 
regard ur and u2 as the control variables, the maximand, and the constraints 
(28), are linear, and the resource constraint (27) is convex in them. Thus we 
have a well-behaved programming problem if I is taken as given. We shall 
first derive necessary and sufficient conditions for the optimum conditional 
upon a specified value of Y, and afterwards derive a necessary condition for 
optimality with respect to r. 

The earlier models yielded solutions in which the individual was indifferent 
whether to work or not. Correspondingly, one can expect that in the present 
model, the individual will be indifferent about the age of retirement. We first 
consider the best path with this property and then show that it is indeed 
optimal. We derive two differential equations for the growth of u,(t) and 
u,(t). After discussing their properties, we state and prove the optimality 
result as theorem 3. If J,(v) is a constant independent of t, then v(r) is a 
constant independent of r, by property (iii). We write 

a u,(t)dt+u2(r)(T-r)=c. (34) 

Given that v is constant, we ask what is the optimal combination of ur and 
u2. It is the one that for the given value of J,(z) maximizes I?, or equivalently 
for given 0 minimizes J,(z). 

Let Gr and G, be the inverse functions of ur(c) and u2(c) respectively, so 
that cI(t)=GI(u,(t)) and c2(t)=G2(u2(t)). Then we can use the constant 
utility condition to write resource usage in terms of ur (t) as 

z(r)=j G,(u,)dt+G 
0 

2(&[6-i u1 dr])(T-r)-r. (35) 



P.A. Diamond and J.A. Mirrlees, Social insurance 309 

We can substitute this in the expression for expected cost, J,.(z), and find the 
first-order conditions for expected cost minimization with respect to the 

function ur(t). From (35), we find that 

G’~(ul(t))-G(u~(r)), tsr, 

t>r. 
(36) 

Consequently, for t 5 r, 

a aZ 
-J,(z)=Jr __ 
au,(t) ( 1 au, (0 

=i Cg,(t)-g~(~)lf(S)ds+Cgl(t)-g~(r)lC1-F(r)l, 
(37) 

where we have introduced the notations 

For cost-minimization, the derivative (37) should vanish for all t: 

j Cgl(t)-g,(s)lf(s)ds+Cg,(t)-gZ(r)lC1-F(r)l=O. 
f 

(39) 

Differentiating with respect to t, and using a dot to denote a time- 
derivative. we obtain 

Cl -F(t)lg,(t)=Cgl(t)-gZ(t)lf(t), (40) 

which can be written equivalently as 

[1-f(t)] $ d (cl (t)) =[ut 1 1 1 (cl,(t)) -&(cl (q)lf@). 2 

Also, setting t =r in (39), we have 

gl(r)=g2(rh 

or, equivalently, 

(41) 
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We have shown that if there is indifference about retirement age at the 
optimum (so that u is constant), then (40) and (41) hold. Furthermore, since 
V(T) is constant, we find on differentiating (34) with respect to r that 

(T-t)ti,(t)=u,(t)-u,(t). (42) 

Thus we are describing the optimal path by two differential equations, (40) 
and (42), and two further conditions, (41) and the resource constraint (27). 
Notice that (40) and (42) are time-dependent differential equations. 

In fig. 6, we have a phase diagram for this pair of differential equations, in 
(c,,c,)-space. Since the equations are time-dependent, there is an infinity of 
paths through most points of the diagram, and solution paths can cross one 
another. Nevertheless a phase diagram is helpful: for, by (40), ci is stationary 
when g, =gz; and, by (42) c2 is stationary when ui =u2. These two curves 
are invariant with time. Since u1 and g, = l/u; (c, ) are increasing functions of 
ci, and u2 and g, are increasing functions of c2, both the stationary curves 
have positive slope. 

By assumption (29), the curve ui =tlz lies below the curve g, =g, (i.e. u; 
=u;). Between the two curves, both ci and c2 are increasing with t. (41) says 
that the solution we propose has to hit the g, =g, curve at t=r. Therefore 
both ci and c2 are increasing functions of t throughout the solution. We now 
prove that a path satisfying (40)-(42) and the resource constraint is the best 

path among those inducing retirement at a specified age Y. We also give 
conditions for the existence of an optimum for given r, and show that the 
optimal path is continuous in the planned retirement age. The reader can, 
without loss of continuity, turn to the discussion of optimal r in section 7. 
The formal statement of these results is as follows: 

Theorem 3. Assume that u, = u2 implies u’, 5 u;. Let r < T. Ij 

. uz-Ul 

2 T-t’ 

il =(g1 -g2& 
gl=g2 at r, 

and J,(z)+ A =O, the policies so defined are optimal for the given r. Assume 

further that u1 (0) =u,(O) = - co; and that for some constant B>O, -u;‘,W, 
2 B. Then a solution with the stated properties exists, for any r between 0 und 
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T such that 

i[l-F(s)]ds>A 
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(43 ) 

(i.e. such that positive consumption is feasible). 

6. Proof of theorem 3 

We first found a proof of this theorem by introducing Lagrange multipliers 
for the constraints, and following the standard method of proving sufficiency 
of the first-order conditions for constrained maximization problems. This 
method is rather involved. The proof we give here, though less clearly 
motivated in that Lagrange multipliers are not introduced explicitly, is 
briefer. We begin by establishing some preliminary results. These involve 
optimal shadow prices and alternative plans satisfying the moral hazard 
constraint. Using the lemmas, we go on to show that no feasible path has 
higher expected utility than the one specified. The policies satisfying the 
conditions of the theorem are denoted by asterisks. 

Lemma 1. J,(g?;v)2g:(O)J,(v)for 

Since CT is an increasing function 
and we have 

Since J,(v) is independent of t, 

any v satisfying J,(v) 5 J,(u). 

of t, g: is an increasing function of t, 

Also, 

(44) 

(45) 

+ j [g:(t) -gt(t)lv(t)f(t)dt, 
0 
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from the definition of J,(U), reversal of the order if integration in the first 
integral, and use of (40) in the second integral. This last expression simplifies 
to 

jgfJ,dt=gf(r)j:I.dt-jgfI,Sdt=gT(r)J,(r!)-J,(grl~), (46) 
0 0 0 

since gf(r)=gT(r). 

Combining (44) (45), and (46) we obtain lemma 1 

Lemma 2. J,(g:)=gT(O). 

The second and third conditions of the theorem are equivalent ‘to the 
vanishing of (37) for all t. Putting t =O, we obtain the stated result. 

We now show that any feasible path has expected utility no greater than 
the path satisfying the conditions in the statement of the theorem. From the 
definition of z we have 

z(.y)--z*(s)= iLG,(u,)-G,(u:ildt+CG,(u,(s)) 

-G,(u:(s))l(T-s). 

Since G, and G, are convex functions of their arguments, we can use the 
inequality for convex functions to obtain 

z(S)-z*(s)~jgT(t)(U1(t)-UT(t))dt+g:(s)(uz(s)-ur(s))(7-s). 
0 

Using the definition of U, (32) and the constancy of t:*(s), we can write this 
as 

4s,-z*cS,2~ (g:(t)-g:(s))(u,(t)-u:(t))dt+gf(s)(z:(s)-c*) 

= s- T “*(‘) (uI(t)-uT(t))dt+g;(s)(u(s)-u*). 
0 au:(t) 

(47) 

The second step follows from the expression for the derivative, (36). We 
now wish to apply the linear operator J, to (47). The first term on the right- 
hand side vanishes since (37) is zero for all t: 

Jr I &l:(t) 
’ dZ*o(u&)--U:(t))dt (IA,(~)--$(t))dt=O. 
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Thus we have 
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J,(z)-J,(z*)~J,(g~u)-J,(g:)~* 

2g:(o)cJ,(v)-u*l 

by lemmas 1 and 2. 
Now J,(z) + A 50, and J,(z*) + A =O. Therefore (48) implies that 

J,(o)Suu”, 

(48 ) 

i.e. expected utility is no greater on the alternative path than on the one 
satisfying the conditions of the theorem. This proves the sufficiency part of 
the theorem. Uniqueness follows from a strict inequality in (48) since the Gi 

are strictly convex. 
We next prove the existence part of the theorem. Consider all paths 

satisfying the differential equations (40) and (42) and satisfying the terminal 
condition u’, (cl (r))=u;(c2(r)). Denote the expected utility of any such path 
by V(x, r), where Y is the planned retirement date and x is the value of c1 (r). 
In terms of fig. 6 we are considering all solution paths which end on g, =g, 
at time Y. Denote the expected resource cost of such a path by Z(x,r). We 
first note without taking the space for formal proof that I/ and Z are 
differentiable functions of r and x. If Z(x, r) + A = 0, then we have an optimal 

path. We want to show that there exists an x satisfying the resource 
constraint when ui(0)= - m, and -u;/u; is bounded away from zero. Refer 
to the diagram. Since marginal utilities go to infinity as consumption goes to 
zero, g, and g, then go to zero, and the g, =g, curve passes through the 
origin. Similarly the curve u1 =u2 passes through the origin. Thus we can 
choose x to be as large or small as we please and find a path ending on g, 

=g, with cl(r) equal to x. 
By choosing x small enough, aggregate consumption, z(t) + f, can be made 

as small as we please, uniformly for 0 5 t 5 r. Thus J,(z(t) + (t)) can be made 

as small as we please. 

J,(t)=itf(t)dt+r-rF(r)=j[l-F(t)]dr 
0 0 

on integrating by parts. Therefore if (43) holds, J,(z)+A can be made 
negative by choosing x small enough. 

We now have to show that J,(z)+A can be made positive by choosing x 
large enough. By eq. (40), we have 

$xg, = ( ) z- 1 $log[l -F(t)] 

5 -$log [l-F(t)], 
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since g,/g, 2 0 and 1 -F decreases with t. By differentiation of the equation 
log g, = -log u; (cl ), we obtain 

4 d 
c,=---logg,. 

u;’ dt 

Integrating from 0 to Y, and using the assumption that -u’+‘, 2 B, we find 
that 

cl(0)zc,(r)+B-’ log(l-F(r)). (49 1 

Therefore by choosing x large enough, c, (0), and all c1 (t) for 05 t 2 r, can be 
made as large as we wish, thus increasing J,(z) without limit. 

The proof of existence is complete. 
The final argument in the theorem, leading to (49), also helps to establish 

that for all rs& I-< r the optimal x is bounded. For (49) implies (using 
definition (33)) that 

z(t)z[x+B-‘log(l-F(r))-l]t. 

Thus 

-ii=J,(z)L(x+C)j[l-F(t)]dt 
0 

(50) 

where C = B- ’ log( 1 -F(f)) - 1. This observation that x is bounded when r is 
bounded away from T will prove useful below. 

The rather restrictive conditions about utility functions introduced to 
prove existence are by no means necessary. One would not normally expect 
any difficulty in raising aggregate consumption. The condition at c = 0 was 

introduced merely to exclude cases with zero consumption, and their 
attendant corner oonditions. 

Throughout the argument, r has been taken to be less than T. The form of 
the differential equations makes it clear that the case r= T would need 
careful handling; and the above existence proof would not go through at all. 
As we shall see in the next section, in the most plausible cases the optimal 
value of r is less than T. This will emerge as a by-product of our discussion 
of the optimization of the planned retirement date r. 

Before turning to this, let us establish that the optimal path is continuous 
in r. We have defined V(x, r) as the expected utility of a path satisfying the 
differential equations (40) and (42) and ending on the curve g, =g, at time r 

with c1 (r) =x. If, for given r, x also satisfies Z(r,x)+A =O, it follows from 
theorem 3 that the solution path so defined yields a unique optimum. 
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Therefore the equation Z(r, x) +A =0 has a unique solution, and we can 

define a function x(r) by 

Z(r,x(r))+A=O. (51) 

We have already seen in (50) that x(r) is a bounded function, and Z is 

continuous in x and Y. Thus we have: 

Lemma 3. x(r) is a continuous function for r < T. 

It follows from this lemma that the optimal consumption paths and the 
maximum expected utility level V(r)= V(x(r), r) are continuous in r. 

7. The planned retirement date 

We have found sufficient conditions for the existence of an optimum when 
the planned retirement date is specified. We also concluded that both the 
maximum expected utility V(r), and the optimal plan, which we denote by 
cl(t), i = 1,2, are continuous functions of r. In the next section we shall prove 

that V(r) is in fact a differentiable function of r. In this section we give a 
heuristic derivation of V’(r). By setting V’(r) equal to zero, we get a 
necessary condition for the planned retirement date. 

We are able to make three further observations about the optimum. 
Sufficient conditions for the existence of an optimum are given. It is argued 
that c;(r) at the optimum is unique (although we do not claim that r is 
necessarily unique). We find sufficient conditions for r to be less than T. We 
are thus in a position to discuss the properties of the optimum, and to 
calculate it for any specific example. This is done for a logarithmic example 
in section 9. 

A heuristic calculation of V’(r) can be given as follows. Reducing r by E, 
we can, to first order, neglect the change in c{(t) arising from the change in r. 
Since v(t) is constant, it also follows that the reduction in r has no direct 
first-order effect on expected utility. But there is an effect on the resource 
constraint, for consumers still capable of working at r will, when r is 
reduced, consume c2 instead of ci between r -E and r, produce one unit less, 
and over the time from r until T consume (T - r)C2(r)e less than before. 
Since there are 1 -F(r) people in this situation the effect on the resource 
constraint is 

(l-F(r))(l-c,+c,--(T-r)?,)&. 

This resource gain could be used to raise consumption of the worker at the 
start of his working life without any effect on the moral hazard constraint. 
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The resulting increase in utility, u;(ci (0)) times the increase in resources, is 
equal to V’(r)&, to first order. 

Thus 

(52) 

To put this in more convenient form, we use (42) to replace (T - r)C, by 

(u2 -%)/%9 which is in turn equal to (u,/u;)-(ul/u;), since we have an 
optimality condition that u; =u; at r. Thus 

~‘(r)=ui(O)Cl -F(r)lCl+k,(r)-k,(r)], (53) 

where we define 

4(4(r)) 
k,(r)=------ 

u&C(r)) 
-c:(r); (54) 

hi is a function of r because c;(r) is uniquely determined by r. 

From (53), we obtain the first-order condition for optimality of r, 

k,(r)-k,(r)= -1. (55) 

For the remainder of this section and the next, we consider the sign of 
k, -k, + 1 along the curve g, = g,, since that curve contains the end-points 
for r-optimal paths as r varies. 

A straightforward calculation yields 

dk. 
-=r,&. 
dgi 

(56) 

From this it follows that, as g = g, = g, varies, 

; (k, -k,)=u, -u2 

co, (57) 

since u, CL+ on the curve g, = g,. 
The inequality (57) implies that there is at most one point (C1,C2) on the 

curve g, =g, at which k, -k, + 1 =O, and at which therefore V’(r)=0 for any 
r satisfying cF(r)=Ci, i= 1,2. If (c;(r),&(r)) lies to the left of that point, V’(r) 

>O; if it lies to the right, V’(r)<O. If there exists such a point (pi, c*), and if 
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there exists r* < T for which 

cF*(r*)=Ci, i-1,2, (58) 

this r* defines an optimal policy. We have not argued that there is never 
more than one value of r* satisfying (58). 

In order to give sufficient conditions for the existence of an optimum, we 
need conditions that imply the existence of a point satisfying the definition 
of (c~,c~). In the next section we show that it is sufficient to have three 

conditions (in addition to the existence of an optimal path for each r < T), 
that marginal utilities range over all positive numbers, that the moral 
hazard problem does not become vanishingly small, and that f, if it tends to 
zero as t+T, does not do so too rapidly. Specifically, we have: 

Theorem 4. Assume that for i= 1,2, u;(O)= m, ui(m)=O; that there exists 

a > 0 such that 

u2-u1 La when u;=u;; 

and that 

(T-t)f (t) 

1 -F(t) 

is bounded as t+T. Then there is an optimal r less than T. The optimal path 

or paths is identified by the unique (C1,Cz) satisfying 

h,(E,)-hh,(C,)= -1, 4 (Cl) = 4 (22 ), 

or by the smallest possible values of c;(r). 

The condition (59) is used to prove that optimal r is less than T: it is 
automatically satisfied if f(t) tends to a nonzero limit as t-+T. In cases 
where T is the optimal r, it has to be optimal for cr and c2 to tend to 
infinity as t tends to T. Such cases are therefore rather peculiar. 

In the next section, proofs of the above propositions are given. It can be 
omitted without loss of continuity. 

8. Proof of theorem 4 

We proceed by a sequence of lemmas. 
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Lemma 4. V(r) is a differentiable function, and 

V’(r)= gy [h,(r)-h,(r)+l], (60) 
I 2 

where h,, h, are dclfined by (54). 

Proof: Consider paths which give utility v with retirement planned at r, 

constructed as follows: u’j is chosen to minimize J,(zG,,) no matter what the 
value of V; and c2 is then chosen so as to achieve utility u: 

. (6lb) 

Except when v equals V(r) there is no assurance that such a path is feasible, 
but we need not be concerned. By the optimality of the path u; used for this 

purpose, we have, for all r and s, 

Jr(z”,(,,)2J,(4qr)), (62) 

where, using (61a) and (61b), we define for any r and v, 

z;(t)=; c;(t’)dt’+c;(t)(T-t)-t. 
0 

(63) 

Since the resource constraint is fixed, we have equal resource use on any 
optimal path : 

Combining thus (63) and (64) we have the pair of inequalities: 

J,(Z”,(,,)_J,(Z”,(,,)~O, (65a) 

J,(z;(,,)-J,(z;(,,)~o. (65b) 

z:(t) is a continuous function of r. Consequently (65) implies that there exists 
s’ between r and s for which 
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The two paths in (66) give the same consumption to workers. Thus applying 
the mean value theorem to z:(t), we have 

4&-G&,(t)= (T-t) [ &[ G V(r)- j “‘(t’)dt’ 
o U1 I) 

-G, I)1 
=G; ]){ V(r)-- WI}, (67) 

where u’ is a function of r, s, s’, t that lies between V(r) and V(s). As s tends 

to r, G; in (67) tends to 

g;(t)=G & V(r)-j u;(t’)dt’ , 
0 ) 

and consequently 

lim J,(G;)=J,(g;). 
S+, 

Applying J, to (67) and substituting from (66), we have 

Jr%, )- J,(z&,,)+ J,(G){V(r)- V(s)) =O. (69) 

(68) 

The definition of the J-operator shows that 

jz(t)f(t)dt-z(r)jf(t)dt J,(z)- J,(z) , r + 
S--T S--l 

z(s;Ip(r){l -F(s)}. 

(70) 

Putting z = z&, we see that the first term here tends to zero as s+r, while 

i[c,(t’)-c,(r)]dt’+(c2(s)-c,(r))(T-s)-s+r 
z(s)-z(r) , = 

s-r s-r 

-c;(r)-c5(r)+c2(r)(T-r). (71) 
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Dividing (69) by r-s, substituting from (70) and (71), and taking the limit as 
s-+r, we see that I’ is differentiable and has the value given in (60). 

Lemma 5. Iffor i=l,2, ui(O)=co, ul(a)=O; and ifthere exists a>0 such 
that 

u2-u1 la when u; =u;, (72) 

then there exists c,, C, such that 

h,(c,)-h,(c,)= -1, u;(c,)=u;(E;). (73) 

Proof: Consider first how hi(ci) behaves as ci-+O, or, equivalently, g-+0. 
Let E be an arbitrarily small positive number. Since ui is concave, 

Therefore 

ui tci) 
hi(ci)=---- ci 2 

Ui(E) 

uf(Ci) ul(ci) 

+--& as ci+o. 

It follows that if ui is negative for small ci, lim h,(ci) =O; while if u,(O)zO, it is 
also true that lim h,(c,) =O. Thus 

lim [h,(c,)-h,(c,)]=O. 
g-0 

(74) 

Now consider what happens as ci , c2 + cc ; or, equivalently, since lim u; = 0, 
g-+i;o. From (57) (72) and the assumption that g+a, h, -h, decreases 
without limit: 

lim [h,(c,)-h,(c,)]= --cc. 
g-x 

(75) 

Since h, - h2 is a continuous decreasing function of g, and (74) and (75) hold, 
a solution of (73) must exist, and the lemma is proved. 

Lemma 6. Let 

4(t)J-t)f (t) 
1 -F(t) 

(76) 
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be bounded as t-+T. If x(r) is defined by 

Z(r,x(r))+A=O, 

und A<Ji[l-F(t)]dt (so that positive consumption isfeusible), and u;(O)= 

-a, 

x(r)+co as r-+T. (77) 

Proof: If the conclusion does not hold, there exists a sequence (ry} 
tending to T, and a positive number M, such that 

4(r)SMM, (78) 

for r=rlrr2.... We show that this implies, for each t < T, that 

c’,‘(t)+O, c;‘(t)+O, 

as r,+T. Thus, in the limit, resources are not fully utilized, and the 

supposition that these are optimal plans must be false. 
Let E be a positive number. Then there exists cr>O such that 

[ 

1 1 
max ~-~ 

4(c1) G(G) 
%(C*)--U1(C1) 2% 

1 
(79) 

whenever ES c1 5 M, and c2 20. For if this were not the case, there would be 
a limit point c;,c; such that u;(c;)Iu;(c;), u,(c1)2u2(c2), OGC;; and that is 
impossible by assumption. 

Consider now an r-optimal plan satisfying (78). Applying (79) to the 
differential equations satisfied by the optimal path, we have, so long as c;(t) 

26 

Brmin(&, A). 

Since 4 defined in (76) is bounded, there exists N > 1 such that 

(80) 

G’-t)f(t) <N 

l-F(t) = ’ 
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and therefore (80) implies 

Integrating from t to r we obtain 

Rl(t)+U?(c;(t))<81(r)+uz(r)+~log[l -F(r)] -~logCl-F(t)]. 

(81) 

Since any optimal plan satisfies U> 2 u;, we have 

c!z(t)5tiK(t)), (82) 

where $ is a continuous increasing function, whose graph is the curve g, =g, 

in fig. 6. Since u’,(O)=u;(O)= co, $(O)=O. Applying (78) and (82) to (81), and 
omitting the positive term g,(t), we have 

%(c;(t))<UZ(ICIw))+ &+~logCl -F(r)] -;1ogc1 -F(t)], 
1 

provided that M 2 c\ (t) 2 E. 

If c’j (t)<s, (82) implies that c;(t)< $(E). Thus we have, in any case, 

u,(c;(t))<maxio(t)+alosCl -W-)1, u,(W))}, (83) 

where D(t) is independent of r. Letting r=r,-+T, and E+O in (83), we deduce 
that for any t < T, 

cy(t)-o. (84) 

To prove that c;“(t) also tends to zero, we use the differential equation 

s1=+1 -g2), 
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which can be solved in the form 

Cl-F(t)lg,(t)=Cl-F(r)lg,(r)+j gz@‘V(t’)df. 
f 

323 

Therefore if t < s < r,,, we have, using (78) and (82), 

[I -F(t)]g;‘(t)SCl --F(r,)l&+ j gW’V(t’)dt’ 
1 t 

+CF(r,)-m)l 
1 

~;wef))’ 

Now let r,+T, and then s-+T. We obtain 

g?(t)-4 t < T, 

which is equivalent to 

cY(t)-+O, t < T. 

It follows from (84) and (85) that, 

J,Jz)+ - j Cl -F(t)1 dt, 
0 

(85) 

as r,-+T, 

which is strictly less than -A. Therefore, for all r, close enough to T, there 

are resources to spare, and the plan cannot be optimal. The assumption that 
(78) holds for a sequence of r tending to T thus leads to a contradiction, and 
the lemma is proved. 

When the assumptions of these lemmas are satisfied, optimal r* is less 
than T. For when x(r)>E,, V’(r)<O. Since, by lemma 6, x(r)+co, V’(r)<0 
for all r sufficiently close to T. Since V is evidently continuous at T, T 
cannot be the optimal value of r. 

We have found conditions for the existence and uniqueness of the desired 
point (E,,?,) and for its being less than (c:(r),&(r)) for r sufficiently close to 
T. There remains one loose end. If the government is putting net resources 
into the social insurance system, A ~0, then the smallest value of c(r) as r 
varies is strictly positive. If C, is less than the smallest c;(r), the optimum 
occurs at this corner solution. 
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9. Features of solution 

Several aspects of the optimum emerge from the general analysis and call 
for explicit notice. In the first place, since u is constant, the consumer is 
indifferent about the date of his retirement. In effect, he is assumed to retire 
when the government wishes him to. A small deviation from the optimum 
would make the consumer strictly prefer Y to any other retirement date. But 
the government wishes consumers to retire before the end of life (and could 
set consumption for later retirers to zero to achieve this). This latter feature 
contrasts with the situation where the full optimum is achievable, in which, 
normally, everyone who can work does. The willingness to continue working 
beyond r comes from pension growth which is sufficiently rapid to preserve 
utility (42). As we will note below (see theorem 5), at the planned retirement 
date, the net cost to the government of having an individual work longer 
stops shrinking and starts growing. Thus the individual would not choose to 
work beyond r if the total compensation for additional work did not exceed 
the marginal product of labour. 

Secondly, since the lifetime utility of a man who loses his ability at s is U(S) 
- (T-s)b, the entire cost of ill-health is borne by the sufferer,’ but this is 
the only source of difference among the utilities of different individuals. If b 

were zero, everyone would have the same lifetime utility, while the marginal 

utility of consumption in different periods would vary from individual to 
individual. Insurance would be perfect in a naive sense, not the economist’s 

sense. 
Thirdly, it may seem curious that the solution is independent of b, that is, 

independent of the effect of ill-health. The reason is that marginal utilities 

are, by assumption, unaffected by the state of health of the consumer. In the 
more general case where the difference between u2 and uj varies with c2, the 
manner of dependence does affect the optimum. 

Fourthly, it is worth summarizing the basic features of the optimum that 
emerge from the diagram: 

(86) 

Thus an individual would always be immediately better off if he retired. He 
is prepared to continue working because of improved retirement benefits 
with additional work. It may be helpful to consider why one would not want 
u2 = ul. Starting from such a situation, an increase in c2 at retirement date, 
financed by a decrease in c1 earlier, increases expected utility from planning 
retirement at that date, since it transfers consumption to the state with 

‘We would not expect this result without the assumption that the marginal utility of 
consumption of a nonworker is independent of his health. 
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higher marginal utility. Thus work is not discouraged, and utility increased. 

The argument works at r, and therefore also at earlier dates.’ 
We also have 

4(cz)>4(ct). (87) 

Thus the individual would prefer more insurance. Moral hazard keeps the 
extent of social insurance down. 

We recall also the basic intertemporal facts, that c1 and c2 are differenti- 
able functions of time, and that 

dc 
‘>O, 
dt 

dc 
A>O. 
dt 

There is no difficulty in principle about calculating optimal policies. First 
the terminal point of the optimal path has to be found, by solving 
simultaneously u’, =u; and h, -h, = 1. Paths are calculated backwards from 
there with various values of r. In each case, J,(z) is calculated, and we have 

the solution for that particular value of the resource constraint. We illustrate 
the procedure with a simple case. 

Example: 

Id1 = log c, u,=a+logc, a>0 

f(s)=L T=l. 

It is readily checked that theorems 3 and 4 apply. In terms of c1 and c2, the 
differential equations in theorem 3 are 

(1-t)$log~+a, 

(1 -t)k, =cl -c2. 

sTo put it another way, higher retirement benefits are greater incentives to work in every 
earlier period. The later the date the more periods in which work is encouraged. With rising 
pension benefits, a rising wage is also desirable. Starting with a constant consumption plan, 
transferring resources to older ages permits more of the resources to go to consumption in the 
state with higher marginal utility. 
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The terminal point is given by ci =c2 and 

c,(logc,-l)-c,(logc,+a-l)+l=O, 

so that ci =c2 = l/a. 
To solve the differential equations, we define 

w=logc’, 
c2 

m=log(l-t)-log(l-r). 

In terms of these variables, we have 

dw -_=e-w 
dm 

-w+a-1, w=o at m=O, 

dc, 
-=cc,(w-u), 

1 

dm 
c2=- at m=O. 

a 

Solution of these equations gives the optimal path for any value of r. For 
each r we then compute J,(z), which is found, after a little manipulation, to 
be 

~,(z)=j: (I-t)(c,+c,-l)dt+- 
(1 -i-)2 

0 a 

-log(l -r) 

=(~-r)~ j 
0 

(c,+c,e-“--l)e2”dm+~ . 1 
In this case, then, it is relatively easy to obtain the solution for different 
resource constraints, since only one solution of the differential equations is 
required. 

In table 1 we give solutions for9 a=0.5, and three values of the 
government net subsidy to the scheme, --A, 0.5, 0, and -0.2. Table 2 
displays solutions for a case with much greater disutility of work, a = 1, and 
the same values of the net subsidy. It should be noted that in table 1 c1 and 
c2 are equal to 2 at r. This is a very high figure relative to the wage, which is 
unity. Since expected consumption is r - (r2/2)- A<+- A, it is even higher 
relative to mean consumption. A rather implausible assumption about the 
disutility of work is required to reduce cl(r) and c2(r) below unity. But in all 
cases people receive consumption during most of working life that is less 

91f the utility function with labour y were loge+ log(2-y), implying unit labour supply in the 
absence of lump-sum income, the disutility of work is log(2 -0) - log(2 - 1) = log 2 =0.6931, This 
Cobb~ Douglas model probably overstates the utility of not working at all. 
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than the wage plus the net subsidy, and only a very small proportion of the 
population obtain a retirement benefit that is greater than wage plus net 

subsidy. 
Two other features of the numerical results deserve comment. In all cases, 

c1 -c2 increases with t until t is very close to r. 

The second feature is that in table 1, r is nearly 1, even when there is a 
very large government deficit (A = -0.5). Thus the direct effect of moral 

Table 1 

a=0.5. 

A= -0.5 A=0 A=0.2 

t Cl C2 Cl C2 Cl C2 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
0.95 
0.99 

1.00 0.77 
1.03 0.78 
1.05 0.81 
1.09 0.83 
1.13 0.86 
1.17 0.90 ’ 
1.24 0.95 
1.32 1.02 
1.45 1.12 
1.69 1.34 
1.92 1.64 

r= 0.969 r = 0.998 

0.50 0.38 
0.51 0.39 
0.53 0.40 
0.54 0.42 
0.56 0.43 
0.59 0.45 
0.62 0.47 
0.66 0.51 
0.73 0.56 
0.86 0.66 
1.01 0.77 
1.46 1.13 

0.30 0.23 
0.31 0.24 
0.32 0.24 
0.33 0.25 
0.34 0.26 
0.35 0.27 
0.37 0.28 
0.40 0.31 
0.44 0.33 
0.51 0.39 
0.60 0.46 
0.88 0.67 

r=l.OOO 
(more accurately: 
1 - 1.8 x 10-4) 

Table 2 

a=l. 

A= -0.5 A=0 A=0.2 

t Cl CZ Cl C2 Cl C2 

0 0.87 0.59 
0.1 0.90 0.63 
0.2 0.93 0.69 
0.3 0.96 0.75 
0.4 0.99 0.85 
0.5 
0.6 
0.7 
0.8 
0.9 
0.95 
0.99 

0.49 0.28 
0.52 0.30 
0.54 0.32 
0.57 0.34 
0.61 0.36 
0.66 0.39 
0.72 0.44 
0.80 0.51 
0.91 0.65 

0.30 0.17 
0.31 0.18 
0.33 0.19 
0.35 0.20 
0.37 0.21 
0.40 0.23 
0.44 0.25 
0.50 0.29 
0.59 0.35 
0.78 0.49 
0.96 0.76 

r = 0.494 r=0.882 r = 0.963 
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hazard, arising from the consumer’s ability to retire healthy without special 
penalty, is almost entirely eliminated: hardly anyone retires early. 
Nevertheless, the optimal policy looks very different from the first-best 
optimum that would be achievable if individuals could be directly prevented 
from retiring except through ill-health. In that case, consumption would be 
constant throughout life, and the same whether the individual is working or 

not. 
When expected utility levels for the first- and second-best optima are 

compared, it is found that the utility loss from moral hazard may be small, 
despite the very different character of the optimal policy. For each of the six 
cases described above, r= 1 in the first-best optimum, and the consumption 
level is dictated by this fact. To calculate expected utility in the second-best 
optimum, we use the constancy of utility with respect to planned retirement 
date to deduce that expected utility is equal to the utility of a man who 
retires at time zero, viz. u2(c2(0)). The results are given in table 3. Utility has 
been transformed exponentially, so as to give figures comparable with 
consumption. It can be seen that the utility loss from moral hazard is small 
when a=0.5, but significant (up to 6 percent of consumption) when u= 1. 

In addition to comparing first- and second-best optima, it is natural to 
examine the implications of less complicated policies. As one example of a 
simpler policy consider selecting the optimal wage and benefit, assuming they 
are to be constant over the worker’s lifetime. The expected utility levels from 
following the best example of this policy (setting loge, =a +logc,) is shown 
in the third column of table 3. The level of exponentiated expected utility 
equals the level of ci actually consumed. The level of c2 satisfies c,/c2 =ea. 
Witha=0.5,thispolicyisclose to theothertwoinexpectedutility.Thelogarithmic 

utility function allows large differences in consumption patterns to yield similar 

expected utilities: the first best, cZ/c, is 1, while their ratio is 0.61 with the optimal 

Table 3 

Utility at the optimum.a 

ii A 
First 
best 

Second 
best 

Constant 
policy 

0.5 -0.5 1.28 1.27 1.24 
0.5 0 0.64 0.63 0.62 
0.5 0.2 0.39 0.38 0.37 

1 -0.5 1.65 1.60 1.46 
1 0 0.82 0.76 0.73 
1 0.2 0.49 0.46 0.44 

“The figures entered in the table are e”, where u is expected utility, and 
are therefore the equivalent consumption level for a man workng through- 
out life. No account is talien of utility losses through disability, which are 
the same in all cases. 



P.A. Diamond und J.A. Mirrlees, Social insurancr 329 

constant policy. When a = 1, the differences among policies are more substantial. 

In moving from the best constant policy to the first best, the ratio of c2/c1 changes 

from 0.37 to 1. 

10. Private saving 

As in the simpler models, we can ask whether individuals would attempt 
to alter their consumption plans if they thought they could lend or borrow 

at the zero interest rate which the government faces. Calculating the gain 
from savings, we shall show that individuals would choose to save. 

A consumer working at date t wants to lend for repayment at date t’ (< r) 
if 

When the opposite inequality holds, the consumer would choose to lend for 
repayment at date t’. 

Dividing by t’ - t and letting t’+t, we find that the consumer wants to 

save if 

d 
--u;(c1)> 
dt 

& (4 -4). (90) 

Only if there were equality here would the individual be content with the 
saving being done on his behalf by the government. Reference to theorem 3 
shows that the optimal policy does not eliminate incentives to save or 
dissave; for in the optimum, 

$(i)=I/F($-i). 
Now a simple calculation shows that 

Applying this inequality to (91), we obtain 

(91) 

(92) 

d 
$+1-F f (U; -&). (93) 
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This proves that the consumer wants to lend, that is, to save. The 
government can prevent this happening by suitable taxation of saving.” 

It is interesting to enquire what the government should do if it has chosen, 
or is constrained, to allow a perfect untaxed capital market. Then, in 
equilibrium, 

d 
d$=,-, f (U; -&), (94) 

and it is also the case that 

24; =u; at r. (95) 

This last equality holds because of the possibility of saving for retirement, or 

borrowing against retirement benefits from the period when one knows one 
will be retired. 

We conjecture that the third-best optimum, when private saving is 
unconstrained, is delined by (94), (95) and the condition that the consumer 
be indifferent about retiring age. 

11. The magnitude of transfers 

An insurance scheme is said 
of retirement have no effect 
individual. The optimal social 

to be actuarially fair if variations in the date 
upon the net discounted transfers to the 

insurance scheme we have derived is not in 
this sense actuarially fair. The net discounted transfer to an individual 
retiring at s is, in our notation, z(s) (see eq. (33)). 

The lifetime transfer declines with longer work if z’(s)tO. From the 
government’s budget equation, we can interpret -z’(s) as the net tax on 
work at s. That is, the net tax equals the marginal product of labour less the 
gain from working. That gain equals the extra consumption from working, 
cr -cZ, plus the increase in the value of the pension (T-s)C,(s). In addi- 
tion the rate of decline decreases with age: z”(s)>O. That is, the net tax on 
work declines with age, reaching zero at the optimal retirement age. Form- 
ally, we have: 

Theorem 5. For s < I, z is a decreasing function of s when social insurance 

is optimal. Moreover, z’(s) increases with s, reaching 0 at r. 

“Since u; > u;, undesired saving can be discouraged only by a tax on saving: a tax on wealth 
would be insufftcient since saving followed almost at once by retirement and dissaving would 
attract negligible tax. 
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Proof: The first statement follows from the second. From 

. z(s)=j c,(t)dt+c,(s)(T-s)-s, 
0 

we calculate 

Z’(S)=Ci(S)-c~(S)+C~(S)(T-s)-l 

=c,-cc,+ 
u2-u1 p-1, 

4 

and 

(96) 

Since til, C, ~0, u; <u; and u1 <u2 on the optimal path, (96) shows that z” 
> 0. When s = r, u’, = u; and E, = 0. Thus z”(r) =O. 

The meaning of this result is that those who are unfortunate enough to 
suffer disability early in life receive a larger net transfer from the State than 
those able to work until late in life. The optimal social insurance scheme 
subsidises those who retire early, though only to the extent compatible with 
maintaining incentives to work. Stated alternatively, there is a net tax on 
work so that net government revenue increases with individual work. In 
addition the rate of tax on work decreases with age, reaching zero at the 

optimal retirement age. Moreover, since i2 > 0, the gain for additional work 
always exceeds the extra current consumption from working. Thus we have 
the following: 

Corollary to theorem 5. Under the optimal policy, for all t 5 r, 

i.e. the extra current consumption obtained by working is always less than the 
marginal productivity of labour. 

12. Social Security in the United States 

Despite the level of mathematical complexity, the models we have con- 
sidered are very special. It would be silly to base policy on the particular 
equations we have derived. There are two aspects of the current U.S. public- 
provided pensions which it may not be premature to criticize on the basis of 
the analysis we have performed. First we shall put the models briefly in 
perspective. If individuals are saving rationally, the incentive for work comes 
from the change in their lifetime budget constraints with additional work. It 
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does not matter how that change is divided between current wages and 

increased future benefits. If they are consuming their net wage, it is necessary 
to consider separately the incentives which come from current wages for 
work and from increased future pensions as a result of additional work. If 
they are following savings rules which differ from both of these models, the 
two parts of compensation matter differently, although not necessarily in the 

manner we have analysed. The U.S. population no doubt contains in- 
dividuals whose behaviour is describable by a wide variety of models, and 
not just the fully rational model. Since it does not matter for rational 
individuals how the return to work is divided between wages and increase of 
pensions, it makes sense to pay attention to those who are not saving 
rationally in designing these two parts of total compensation. 

In the model analysed we found that a growing pension benefit permitted 
a higher pension, relative to the wage, than would be possible otherwise 
given the moral hazard problem. However if a pension which grows with 
work done is to serve as an incentive for work, individuals need to be aware 
of the relationship between pension and work done. While it would be 
expensive, a greater flow of information from the Social Security 
Administration to individuals nearing retirement age about their own 
pension prospects might well be worth the cost. 

Under the newly enacted amendments to the U.S. Social Security system 
individuals will receive their pensions independent of whether they continue 
working once they reach age 70. Before that age there is an earnings 
limitation on pension eligibility. In terms of our notation the payment of 
benefits independent of retirement represents a large and discontinuous 
increase m ci, the consumption enjoyed while working. In our analysis we 

found that a growing level of ci was optimal but that the growth should be 
continuous. ci can be increased continuously either by reducing taxes 
repeatedly for those continuing to work or by paying a steadily growing 
fraction of pension benefits independent of any retirement test. For example, 
15 % of benefits might be paid at age 65 independent of retirement and 85 “/, 
subject to the retirement test. The former fraction could grow steadily to 
100% as in individual ages to 70. Taking account of diversity in the 
population will affect the optimal total compensation for work. As we argued 
above, the elements considered in this analysis will play a disproportionate 
role in the division of that total return between its two components. 

13. Conclusions 

The main results we have obtained may be summarised by highlighting 
what they would recommend if they were fully applicable to the real world. 
Many of the results suggest practicable policy changes, and may be worthy 
of study in more realistic models. 
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(1) The presence of moral hazard implies the desirability of policies that 

leave consumers indifferent about the date of retirement. This conclusion 
might be modified in models where individuals begin with different abilities, 
or different probability distributions for the loss of earnings. 

(2) It is an essential adjunct to an optimal insurance scheme that capital 

transactions by consumers be taxed. In most cases, this would be a positive 
tax, discouraging saving. This conclusion might be modified if we allowed for 
nonrational saving behaviour. 

(3) Post-retirement benefits show a strong tendency to increase with the 
age of retirement. 

(4) Insurance contributions (1 -cl ) should diminish with age, sometimes 
quite rapidly. They may become negative eventually. This is not as odd as it 
seems, for the optimal allocation can be accomplished alternatively by paying 
part of benefits independent of retirement. The corollary to theorem 5 shows 
that the additional current consumption from working rather than retiring 
should never exceed the marginal product. 

(5) There are some indications that contributions diminish more rapidly, 
and benefits increase more rapidly, as age increases. 

(6) Under an optimal scheme, the incidence of retirement for reasons other 
than ill-health may be very low, even when the immediate utility gain from 
healthy retirement is quite large. Despite this, the form of the optimal scheme 
may be very different from a first-best redistribution between people of 
different ages that ignores all incentive considerations. 

(7) An actuarially fair scheme discourages retirement less than an optimal 

scheme. 
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