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Abstract

Recent years have seen a surge of applied work using bunching approaches,
a development that is closely linked to the increased availability of admin-
istrative data. These approaches exploit the incentives for bunching created
by discontinuities in the slope of choice sets (kinks) or in the level of choice
sets (notches) to study the behavior of individuals and firms. Although the
bunching approach was originally developed in the context of taxation, it
is beginning to find applications in many other areas, such as social secu-
rity, social insurance, welfare programs, education, regulation, private sector
prices, and reference-dependent preferences. This review provides a guide
to bunching estimation, discusses its strengths and weaknesses, surveys a
range of applications across fields, and considers reasons for the ubiquity of
kinks and notches.
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1. INTRODUCTION

Recent years have seen the development of a new empirical approach in economics: the bunching
approach. This approach uses bunching around points that feature discontinuities in incentives to
elicit behavioral responses and estimate structural parameters. The approach was initially devel-
oped to estimate behavioral responses to taxes and transfers, but is now finding applications in other
areas and settings. This review provides a guide to bunching estimation, discusses its strengths
and weaknesses, draws links to other literatures, and ponders directions for future research.

The literature distinguishes between two conceptually different bunching designs. One type of
design is based on kink points—discrete changes in the slope of choice sets—and was developed by
Saez (2010) and Chetty et al. (2011). The other type of design is based on notch points—discrete
changes in the level of choice sets—and was developed by Kleven & Waseem (2013). In the context
of taxes and transfers, the distinction corresponds to whether the discontinuity occurs in the
marginal tax rate or in the average tax rate. Kinks and notches offer different empirical advantages
and challenges, as discussed below, and they tend to feature in different types of settings. Although
kinks are commonly observed in income redistribution policies (such as graduated income tax
systems), notches are ubiquitous across a wide range of other tax and nontax settings.

The emergence of the bunching approach is closely linked to another recent development in
applied research: the increased use of administrative data. Because of the local nature of bunch-
ing responses—moving to specific points from nearby regions—estimating bunching precisely
requires large data sets with very little measurement error. We rarely see any bunching in survey
data due to small sample sizes and measurement error. With access to big administrative data
sets, conversely, simply plotting the raw data can often reveal bunching and provides prima facie
evidence of a causal effect of the incentive in question. A key question, however, is what we can
learn from such responses in terms of structural and more externally valid parameters.

I argue that two broad lessons have emerged from the bunching literature to date. First,
although bunching provides compelling nonparametric evidence of a behavioral response, moving
from observed bunching to a structural parameter that can be used to predict the effects of policy
changes is difficult. This is particularly true in the context of labor supply—the context for which
the bunching approach was initially developed—due to a range of optimization frictions that
attenuate bunching and are difficult to observe and model.1 These frictions include aspects such as
hours constraints, search costs, inattention, and uncertainty. Such frictions imply that any evidence
of sharp bunching in earnings likely results from tax evasion or tax avoidance rather than real labor
supply responses. Indeed, several applications of the bunching approach explicitly consider evasion
and avoidance as their main objects of interest. Second, these difficulties of estimating structural
elasticities do not invalidate the bunching approach, but they imply that the approach may be better
used in different ways than initially intended. This includes studying different outcomes than labor
supply (some that are less subject to optimization friction), and it includes using bunching for other
purposes than to obtain price elasticities for policy prediction. I provide many examples of such
alternative uses of the bunching approach below.

The bunching literature is tied to an earlier literature estimating labor supply in the presence of
kinked budget sets, namely the nonlinear budget set approach pioneered by Burtless & Hausman
(1978) and Hausman (1981). This literature estimated labor supply using models that predict
bunching at kink points even though no bunching was found in the survey data they used, an issue
that was debated by Heckman (1983) and Hausman (1983). The way that theory and data were
reconciled in those studies was by allowing for measurement error in the data and optimization

1As argued below, this limitation is stronger for kinks than for notches, but it does apply to both.
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error by households through the modeling of the error term. Although access to administrative data
largely resolves the problem of measurement error, it does not reduce the scope for optimization
error in shaping bunching, as highlighted above. The study of optimization frictions in the recent
bunching literature is closely related to the debate about how to model the error term in the
nonlinear budget set approach.

Bunching designs are related to two other research designs often used in empirical work: the
regression discontinuity (RD) and the regression kink (RK) designs as laid out, for example, by
Imbens & Lemieux (2008) and Card et al. (2015). RD and RK designs essentially exploit notched
and kinked incentives, respectively, but in situations in which the assignment variable—the variable
that determines whether the agent is above or below the relevant threshold—is not subject to
choice or manipulation. Bunching designs consider the opposite case, in which the assignment
variable is a direct choice. In this sense, whenever we observe discrete jumps in incentives at
specific thresholds, it is potentially possible to use either RD/RK designs or bunching designs,
depending on the manipulability of the assignment variable. A complication in practice is that
the manipulability of the assignment variable may not always be clearly determined, especially in
situations with optimization frictions.

The article proceeds as follows. Section 2 describes the relationship between the bunching
literature and the traditional nonlinear budget set approach, Section 3 lays out the theory under-
lying bunching estimation, Section 4 describes the empirical implementation and challenges of
bunching approaches, Section 5 discusses applications across a wide range of topics, and Section 6
concludes.

2. TRADITIONAL NONLINEAR BUDGET SET APPROACH

The econometric study of nonlinear budget sets was initially developed by Burtless & Hausman
(1978) and Hausman (1981), who considered, respectively, labor supply responses to the negative
income tax experiments and those to the federal income tax in the United States. They started
from the observation that income tax and transfer systems create piecewise linear budget sets with
two types of kink points. A convex kink point is created in which the marginal tax rate discretely
increases (such as at bracket cutoffs in graduated income taxes), and a nonconvex kink point is
created in which the marginal tax rate discretely falls (such as at points at which means-tested
transfers are fully exhausted and no longer taxed away at the margin). The first type of kink should
produce bunching, whereas the second type of kink should produce a hole in the distribution of
earnings. They parametrically estimated labor supply models in which workers locate either in the
interior of a linear budget segment or at a convex kink point. This approach became very dominant
during the 1980s and was applied to a wide range of government policies, such as income taxes,
welfare programs, social insurance, and social security. A review of this literature is provided by
Moffitt (1990).

An advantage of the approach was its clear link between theory and empirics, but there was an
elephant in the room: Although the models underlying the estimations implied bunching at convex
kink points, no bunching was found in the survey data used.2 Nor were any holes observed around
nonconvex kink points. Given that the size of bunching and holes at kink points is proportional to

2A notable exception is the study by Burtless & Moffitt (1984) of the effect of US Social Security on retirement ages and
earnings after retirement. They found strong bunching in retirement ages at 65 (corresponding to a convex kink point in
Social Security benefits as a function of retirement age) as well as in postretirement earnings at the exemption threshold
above which benefits are taxed away (corresponding to a convex kink point in benefits as a function of earnings). Bunching in
earnings at the exemption threshold was also studied by Friedberg (1998, 2000).
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the compensated elasticity of labor supply, a point later clarified by Saez (1999, 2010), it would seem
that the nonlinear budget set approach should produce compensated elasticity estimates of zero.
The solution to this bind was to allow the econometric model to have two error terms: One error
term would represent unobserved preference heterogeneity; the other error term would represent
optimization error capturing the inability of individuals to fine-tune hours worked precisely.
The preference error term affects whether the true desired location is at the kink, whereas the
optimization error term allows for individuals preferring the kink to be observed away from it.3

The models were then estimated using maximum likelihood assuming that each of the error terms
is normally distributed.

This approach allowed researchers to structurally estimate labor supply models, sometimes
finding very large compensated elasticities as in Hausman (1981), using data with no bunching or
holes around kink points. The approach would yield an estimate of the variance of the optimization
error term: This would be determined by the amount of clustering around kink points—the
less clustering, the larger the variance—and represent the degree of optimization error among
individuals. As discussed below, this approach is conceptually related to the recent bunching
literature, which emphasizes the role of optimization frictions in creating a gap between observed
elasticities and true structural elasticities (Chetty et al. 2011, Chetty 2012, Kleven & Waseem
2013) and argues that the latter may be much larger than the former.

Where the two literatures diverge is in terms of empirical identification. In the nonlinear budget
set literature, identification was achieved using a parametric model and making distributional
assumptions on the two error terms. The presence of kinks and bunching (or their absence) was
largely treated as a technical complication in fitting models to the data; the fact that kink points
represent quasi-experimental variation in incentives and that bunching can be directly informative
of responsiveness was not exploited. The recent literature, conversely, uses bunching directly to
elicit behavioral responses and to estimate elasticities. Unlike the earlier literature, the recent
bunching literature achieves identification only from what happens locally around the kink rather
than from variation within brackets.

3. BUNCHING THEORY

3.1. Kinks

This section lays out the bunching theory that underlies the empirical designs discussed below.
The analysis is framed in terms of earnings responses to taxes, but the conceptual framework—or
modified versions of it—has found applications in a range of other settings. It starts by considering
kink points created by discontinuities in marginal tax rates, the analysis of which was developed
by Saez (2010).

Consider individuals with preferences defined over after-tax income (value of consumption) and
before-tax income (cost of effort). The utility function can be written as u (z − T(z), z/n), where
z is earnings, T(z) is a tax function, and n is ability. There is heterogeneity in ability captured by
a density distribution f (n). Assuming that the ability distribution, preferences, and the tax system
are smooth, individual optimization generates an earnings distribution that is also smooth. As a
baseline, we consider a linear tax system T(z) = t · z and denote the smooth earnings distribution
in this baseline by h0 (z).

3The optimization error term could also represent measurement error: Both forms of error attenuate bunching and are
observationally equivalent in this context. Another (closely related) approach to deal with the absence of bunching when
fitting nonlinear budget set models to the data was to smooth the budget set around the kink (MaCurdy et al. 1990).
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Figure 1
Kink analysis, showing the effects of a convex kink—a discrete increase in the marginal tax rate from t to t + �t at the earnings
threshold z∗—in a (a) budget set diagram and (b) density diagram. In panel a, the individual with ability n∗ + �n∗ is the marginal
bunching individual. This individual chooses z∗ + �z∗ before the kink is introduced and z∗ after the kink is introduced. All workers
initially located on the interval (z∗, z∗ + �z∗) bunch at the kink, whereas all those initially located above z∗ + �z∗ reduce earnings
within the interior of the upper bracket. As shown in panel b, the implications of these responses for the earnings distribution are sharp
bunching at z∗ (the size of which is equal to the gray shaded area just above z∗) and a left shift of the distribution in the upper bracket.

Suppose that a convex kink—a discrete increase in the marginal tax rate from t to t + �t—is
introduced at the earnings threshold z∗. The kinked tax function is given by T(z) = t · z + �t ·
(z − z∗)·I (z > z∗), where I(·) is an indicator function. Figure 1a,b illustrates the effects in a budget
set diagram and a density distribution diagram, respectively. Absent the kink, workers locate along
the linear budget line with slope 1 − t depending on their abilities. As shown in the figure, an
individual with ability n∗ chooses earnings z∗, and an individual with ability n∗ + �n∗ chooses
z∗ + �z∗. When the kink is introduced, the individual initially located at z∗ + �z∗ is tangent to
the upper part of the budget set at the kink point z∗ and therefore moves down to the kink. This is
the marginal bunching individual: All workers initially located on the interval (z∗, z∗ + �z∗) move
to the kink point; all workers initially located above this interval stay in the interior of the upper
bracket. This behavior produces excess bunching in the earnings distribution at the kink point, as
shown in Figure 1b. It does not produce a hole in the distribution above the kink because those
located above the marginal buncher reduce their earnings in response to the higher marginal tax
rate and fill up the hole. These interior responses are represented by the left shift of the density
distribution above z∗. The excess bunching at z∗ is precisely offset by the missing mass on (z∗,∞)
in the postkink relative to the prekink distribution.4

4A clarification of terminology is in order here: I am using the terms prekink (baseline) and postkink, although in many
empirical applications there is no such temporal variation in the kink. In a typical application, there is an observed scenario
with a kink (postkink) and an unobserved—but potentially estimable—counterfactual scenario without a kink (prekink).
Furthermore, the analysis here assumes that the counterfactual scenario without a kink is characterized by the lower-bracket
tax rate t throughout (in which case bunchers are coming from above z∗) as opposed to the higher-bracket tax rate t + �t
throughout (in which case bunchers would be coming from below). To be consistent with this counterfactual benchmark,
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The key insight of the bunching approach is that the (compensated) earnings elasticity can be
inferred from the response by the marginal buncher, �z∗, and that this response is proportional to
the amount of excess bunching. For the marginal buncher, the earnings response �z∗ represents
a standard interior response between two tangency points. Hence, assuming that the kink �t is
small, we can define an earnings elasticity as

e = �z∗/z∗

�t/(1 − t)
. (1)

Given that the kink does not change the tax rate on inframarginal units of income below z∗, it
does not produce income effects on the (small) bunching segment (z∗, z∗ + �z∗). The absence of
income effects implies that e represents a compensated elasticity. Large kinks can produce large
bunching segments in which case the elasticity e will be a weighted average of the compensated
and uncompensated elasticities.5

The final step of the approach is to link the earnings response �z∗ in the elasticity formula
to the amount of bunching, which is the empirical entity that will be estimated. Denoting total
bunching by B, we have

B =
∫ z∗+�z∗

z∗
h0 (z) dz � h0 (z∗) �z∗, (2)

where the approximation assumes that the baseline (counterfactual) density h0(z) is constant on
the bunching segment (z∗, z∗ +�z∗). The constant density assumption simplifies the analysis (and
is innocuous when the bunching segment is small), but the assumption is in general unnecessary.
Empirical implementations of the approach can allow for curvature and use the exact bunching re-
lationship in Equation 2. From Equations 1 and 2, we have a relationship going from the estimable
entities B, h0 (z∗) via the earnings response of the marginal buncher �z∗ to the compensated elas-
ticity e . This is a local elasticity at the earnings level z∗.

The preceding analysis assumes homogeneous preferences u (·) and thus a single elasticity e
at the earnings level z∗. However, it is straightforward to allow for heterogeneity in elasticities.
Consider a joint distribution of abilities n and elasticities e given by f̂ (n, e), and a joint baseline
distribution of earnings z and elasticities e given by ĥ0 (z, e). We have h0 (z) = ∫

e ĥ0 (z, e) de . At
each elasticity level e , we can characterize earnings responses to a kink exactly as above and denote
the response of the marginal buncher by �z∗

e . We can then link bunching B to the average earnings
response E[�z∗

e ] as follows:

B =
∫

e

∫ z∗+�z∗
e

z∗
ĥ0 (z, e) dzde � h0 (z∗) E

[
�z∗

e

]
. (3)

the counterfactual distribution should be estimated assuming that the bunching mass in the observed distribution comes
from above z∗. One could alternatively consider a counterfactual in which the higher-bracket tax rate applies throughout and
estimate a counterfactual distribution assuming that the bunching mass comes from below. As long as the kink is small, the
two procedures will produce the same elasticity estimate. If the kink is large, the two elasticity estimates may be different. For
reasons explained in Section 4.1, this subtle distinction between different linear counterfactuals (i.e., whether bunchers are
coming from above or below) is unlikely to make much of a difference in most bunching applications.
5This can be seen formally as follows. The earnings supply function of an individual in the upper tax bracket z > z∗ can be
written as z = z (1 − t̃, Y ), where t̃ is the marginal tax rate in the upper bracket (i.e., t̃ = t before the kink; t̃ = t +�t after the
kink) and Y ≡ t̃ · z − T(z) is virtual income. Denoting by ec and eu the compensated and uncompensated elasticities of z with
respect to 1 − t̃, the Slutsky decomposition implies eu = ec +η, where η = (1 − t̃) (∂z/∂Y ) is the income effect. Considering a
small change in the marginal tax rate from t to t + �t above the threshold z∗, and using the Slutsky decomposition, one finds
that the earnings reduction �z in the interior of the upper bracket satisfies (�z/z)/(�t/(1− t)) = (1−�a/�t) ·ec +�a/�t ·eu,
where �a ≡ �t (z − z∗) /z is the change in the average tax rate at the income level z. For upper-bracket taxpayers located close
to the kink (z ≈ z∗), we have �a ≈ 0 such that the right-hand side equals ec. Specifically, the marginal bunching individual
(whose response is like an interior response and therefore can be characterized as above) comes from a point z = z∗ + �z∗

close to the kink, so the earnings response �z = �z∗ of this individual is related to ec.
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Here the approximation assumes that the counterfactual density ĥ0 (z, e) is constant in z on the
bunching segment (z∗, z∗ + �z∗

e ) for all e . Replacing �z∗ by E[�z∗
e ] in Equation 1, we can link

bunching to the local average earnings elasticity at z∗.
The analysis presented so far is exact only if the kink is sufficiently small. In the presence of

large kinks, it is necessary to specify preferences parametrically to obtain exact elasticities (but this
introduces potential functional form sensitivity, as discussed below). The typical approach is to
specify a quasi-linear, isoelastic utility function

u = z − T(z) − n
1 + 1/e

·
( z

n

)1+1/e
, (4)

thus ruling out income effects of tax changes on earnings z. With this utility function, earnings in
the linear tax baseline are given by z = n (1 − t)e .

As explained above, in the presence of the kink the marginal buncher (with ability n∗ + �n∗)
is tangent to the upper part of the kinked budget set at z∗ and to the initial linear budget set at
z∗ + �z∗. Hence two tangency conditions must be met for the marginal buncher: Actual earnings
with the kink satisfy z∗ = (n∗ + �n∗) (1 − t − �t)e , and counterfactual earnings without the kink
satisfy z∗ + �z∗ = (n∗ + �n∗) (1 − t)e . These two conditions imply

z∗ + �z∗

z∗ =
(

1 − t
1 − t − �t

)e

, (5)

or equivalently

e = − log (1 + �z∗/z∗)
log (1 − �t/(1 − t))

, (6)

which is a generalization of Equation 1. When �t is small (so that �z∗ is also small), we have
log (1 + �z∗/z∗) ≈ �z∗/z∗ and log (1 − �t/ (1 − t)) ≈ −�t/ (1 − t), in which case the exact
parametric formula (Equation 6) is approximately equal to the simpler nonparametric version
(Equation 1).

Finally, although we have focused on the implications of a convex kink, the conceptual analysis
can be extended to a nonconvex kink as created by a discrete fall in the marginal tax rate at a
threshold. For example, nonconvex kinks are observed at points where means-tested transfers
are fully phased out and therefore no longer taxed away at the margin. This type of kink should
produce a hole around the threshold z∗, as individuals who would otherwise locate in a range just
below the threshold are willing to locate strictly above the threshold, whereas individuals further
down do not respond at all. In this case, there will be a marginal responding individual, who
is precisely indifferent between a point strictly below and a point strictly above the threshold.
No individual locates between these two points, and the width of the hole can be linked to the
compensated earnings elasticity. Even though nonconvex kinks are quite common, their analysis
has not received much attention in the literature for the simple reason that no research has found
any evidence of holes around such kinks. This nonfinding poses a challenge to the framework that
I discuss and try to resolve below.

3.2. Notches

We now turn to the analysis of notches created by discontinuities in tax liability (i.e., in the average
tax rate), the analysis of which was developed by Kleven & Waseem (2013). The basic conceptual
framework is the same as above: Preferences are modeled in the same way, there is a smooth
distribution of ability f (n), and there is a smooth distribution of earnings h0 (z) in the baseline
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without notches. As with kinks, I start by considering a homogeneous earnings elasticity and then
generalize to allow for heterogeneity.

Starting from a baseline with linear taxation, consider the introduction of a notch—a discrete
increase in the average tax rate from t to t +�t—at the earnings threshold z∗. That is, we consider
a tax function given by T(z) = t · z+�t · z · I(z > z∗). This upward tax notch (average tax increase)
is analogous to a convex kink (marginal tax increase), and the case of downward tax notches is
discussed below. The notch considered here takes the form of a discontinuity in a proportional tax
rate, and thus the threshold represents a discontinuity in both the average and marginal tax rate.
Although such proportional tax notches are quite common in practice, an alternative form of notch
consists of a tax liability jump without any change in the marginal tax rate. It is straightforward to
include such notches in the analysis as well (Kleven & Waseem 2013).

Figure 2 shows the implications of the notch in a budget set diagram (Figure 2a) and in
density distribution diagrams (Figure 2b,c). There will be bunching at the notch point by all
individuals who had incomes in an interval (z∗, z∗ + �z∗) prior to the introduction of the notch.
The individual originally located at z∗ + �z∗ is the marginal bunching individual: This person is
exactly indifferent between the notch point z∗ and the best interior point zI after the tax change.
Those initially located above z∗ + �z∗ reduce their earnings in response to the proportional tax
change, but stay in the interior of the upper bracket. There is a hole in the postnotch density
distribution, as no individual is willing to locate between z∗ and zI.

An important difference between kinks and notches is that the latter create a region of strictly
dominated choice (z∗, z∗ + �zD). In this region, it is possible to increase both consumption and
leisure by moving down to the notch point z∗, making such earnings choices dominated under
any parametric form for preferences. The dominated region (z∗, z∗ + �zD) creates a lower bound
for the bunching region (z∗, z∗ + �z∗). In the case of L-shaped Leontief preferences—such that
the compensated earnings elasticity is zero—the bunching region would correspond exactly to the
dominated region.

As with kinks, the fundamental idea is that the earnings response �z∗ of the marginal buncher
(which can be uncovered from bunching) is related to the compensated elasticity e . In the case of
notches, the relationship between the two can be characterized using the indifference condition
between the notch point z∗ and the interior location zI for the marginal buncher, as opposed to
the tangency condition at z∗ used in the case of kinks.

Based on the preference specification (Equation 4), utility at the notch point z∗ for the marginal
buncher is given by

u∗ = (1 − t) z∗ − n∗ + �n∗

1 + 1/e

(
z∗

n∗ + �n∗

)1+1/e

. (7)

Using the first-order condition zI = (n∗ + �n∗) (1 − t − �t)e , one can write utility at the interior
point zI as

uI =
(

1
1 + e

)
(n∗ + �n∗) (1 − t − �t)1+e

. (8)

From the condition u∗ = uI and using the relationship n∗ +�n∗ = z∗+�z∗
(1−t)e , we can rearrange terms

so as to obtain

1
1 + �z∗/z∗ − 1

1 + 1/e

[
1

1 + �z∗/z∗

]1+1/e

− 1
1 + e

[
1 − �t

1 − t

]1+e

= 0. (9)

This condition, which is the analog of Equations 5 and 6 for kinks, characterizes the relationship
between the percentage earnings response �z∗/z∗, the percentage change in the average net-of-
tax rate �t/(1 − t), and the compensated elasticity e . As the earnings response is estimated from
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Figure 2
Notch analysis, showing the effects of a notch—a discrete increase in the average tax rate from t to t + �t at the earnings threshold
z∗—in (a) a budget set diagram and (b,c) density distribution diagrams. In panel a, the individual with ability n∗ + �n∗ is the marginal
bunching individual. This individual chooses z∗ + �z∗ before the notch is introduced, and is indifferent between the threshold z∗ and
the best interior location zI after the notch. All workers initially located on (z∗, z∗ + �z∗) bunch at the notch, whereas all those initially
located above z∗ + �z∗ reduce earnings marginally within the interior of the upper bracket. Panel a is drawn for a specific elasticity
e > 0, and panel b shows the corresponding postnotch density distribution, which features sharp bunching at z∗ (the size of which is
equal to the gray shaded area just above z∗) and an empty hole between z∗ and zI. Panel c shows the density distribution with
heterogeneous elasticities on (0, e), which is completely empty only in the strictly dominated region.
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bunching, the condition should be viewed as defining the elasticity e as an implicit function of the
observed values of �z∗/z∗ and �t/(1 − t).

The elasticity formula (Equation 9) confirms the argument above that the strictly dominated
range is a lower bound for the earnings response in this frictionless model. As the elasticity e
converges to zero, Equation 9 implies

lim
e→0

�z∗ = �t · z∗

1 − t − �t
≡ �zD, (10)

where �zD is defined such that the earnings level z∗ + �zD ensures the same consumption as the
notch point z∗. The fact that, absent any optimization frictions, notches should create a completely
empty range of the earnings distribution under any elasticity is very useful for the empirical
estimation of structural elasticities in settings in which optimization frictions are present.

I have so far assumed a single elasticity e at the earnings level z∗, but it is conceptually straight-
forward to allow for heterogeneity as in the analysis of kinks. With a joint distribution f̂ (n, e),
the preceding analysis characterizes earnings responses �z∗

e at a particular value of e . Aggregating
across all elasticity levels [assuming that e is smoothly distributed on (0, ē)] would give the type
of earnings distribution illustrated in Figure 2c. Here the hole does not have a sharp upper edge;
instead, the distribution gradually converges toward the counterfactual. As in the case of kinks, we
can link bunching B to the average earnings response E[�z∗

e ] based on the relationship given in
Equation 3. Using Equation 9, one can then estimate the elasticity at the average response E[�z∗

e ].
Because of the nonlinearity of Equation 9, the elasticity at the average response is generally dif-
ferent from the average elasticity, creating a form of aggregation bias. However, such bias can be
bounded and is typically very small, as discussed below.

The analysis can be extended to the case of downward tax notches, in which the average tax rate
falls discretely above a threshold (see Kleven et al. 2014). In this case, the theoretical predictions
are a mirror image of those described above. In response to a reduction in the average tax rate by
�t above the threshold z∗, there will be bunching just above z∗ and a hole below z∗. A marginal
bunching individual at ability n∗ −�n∗ is indifferent between the notch point z∗ and the prenotch
location z∗ − �z∗.6 This indifference condition can be shown to imply

(
1 − �z∗

z∗

)
+ e

(
1 − �z∗

z∗

)−1/e

− (1 + e)
(

1 + �t
1 − t

)
= 0, (11)

which is the analog of the condition in Equation 9 for the case of upward tax notches. It is then
possible to link bunching B to the earnings response �z∗ (using Equation 2 or 3) and the earnings
response to the elasticity e (using Equation 11). A conceptual difference between upward and
downward tax notches is that the latter do not create a strictly dominated region because moving
from below the notch to above the notch (and thus obtaining larger consumption) is associated
with less leisure. Because of the absence of a dominated region, as the elasticity e converges to zero,
Equation 11 implies that the earnings response �z∗ also converges to zero. Besides this difference,
upward and downward notches work in similar ways, as opposed to convex and nonconvex kinks,
which work in very different ways.

The preceding analysis of notches relies on a functional form for utility. Although the earn-
ings response �z∗ (estimated from bunching at the notch) can be nonparametrically identified,
the underlying structural elasticity e that could be used for out-of-sample prediction cannot. It
is of interest to develop a reduced-form approach without such parametric reliance, similar to

6With a downward tax notch, the best interior location zI is identical to the prenotch location z∗ − �z∗ because the marginal
buncher faces no change in the budget set in the no-bunching scenario.
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the Saez elasticity (Equation 1) for kinks. As discussed by Kleven & Waseem (2013), a reduced-
form approach is less straightforward for notches than for kinks because the behavioral response
is driven by a jump in the average tax rate rather than in the marginal tax rate of direct rele-
vance to the structural parameter of interest. They propose a reduced-form approximation in
which the earnings response �z∗ is related to the change in the implicit marginal tax rate be-
tween z∗ and z∗ + �z∗ created by the notch. With the implicit marginal tax rate defined as
t∗ ≡ [T (z∗ + �z∗) − T (z∗)] /�z∗ ≈ t + �t · z∗/�z∗, the reduced-form elasticity is given by

eR ≡ �z∗/z∗

�t∗/ (1 − t∗)
≈ (�z∗/z∗)2

�t/ (1 − t)
. (12)

As shown by Kleven & Waseem (2013), this simple quadratic formula represents an upper bound
on the true structural elasticity e under a weak assumption on preferences.

3.3. Extensions

In this section, I discuss a number of extensions of the baseline framework presented above:
optimization frictions, reference dependence, dynamics, and extensive margin responses.

3.3.1. Optimization frictions. In the frictionless model considered above, bunching depends on
a structural elasticity e and a vector of observable parameters x, i.e., B = B (e, x). This allows us to
go from an estimate of bunching to an estimate of the structural elasticity. However, in practice,
agents may face optimization frictions such as adjustment costs and attention costs that prevent
them from bunching at kinks and notches (Chetty et al. 2011, Chetty 2012, Kleven & Waseem
2013).7 In this case, we can write bunching as B = B (e, φ, x), where φ is a parameter, or a vector of
parameters, characterizing the adjustment costs. In this case, a single observation of bunching will
be consistent with a set of (e, φ) combinations. The observed elasticity obtained from bunching is
generally different from the true structural elasticity e , with the gap between the two determined
by the unobserved friction φ.

I now describe two conceptual approaches to uncover the structural parameter e in the presence
of optimization frictions, first a nonparametric approach based on notches and then a parametric
approach that can be applied to both kinks and notches.8 In general, the fundamental problem
described above is that we have only one empirical moment B and two unobserved parameters
(e, φ), or more than two unobserved parameters if φ is a vector. Hence the general solution is to
obtain additional empirical moments that depend on the same parameters (e, φ).

In the case of notches, Kleven & Waseem (2013) develop an approach in which the additional
empirical moment is the hole in the distribution above the threshold, or specifically the hole in
the strictly dominated region just above the threshold. Because the dominated region should be
empty in a frictionless world under any preferences, the observed density mass in this region can
be used to measure attenuation bias from frictions. To see how the approach works, denote by
a(z, e, φ) the share of individuals at earnings level z and elasticity level e who are unresponsive due

7Another implication of optimization friction is that agents who do respond may not be able to target the threshold precisely,
so that excess bunching manifests itself as diffuse excess mass rather than a point mass. As long as excess mass is not too
diffuse to be visible, this can easily be incorporated in empirical applications by allowing for a bunching interval rather than
a bunching point.
8Other things equal, bunching at notches should be less affected by optimization frictions than bunching at kinks because
notches create much stronger incentives to bunch and are therefore more likely to overcome adjustment costs.
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to adjustment costs φ. We then have

B =
∫

e

∫ z∗+�z∗
e

z∗
(1 − a(z, e, φ)) ĥ0 (z, e) dzde � h0 (z∗) (1 − a∗(φ)) E

[
�z∗

e

]
, (13)

where the approximation assumes a locally constant counterfactual density (as above) and a locally
constant share of unresponsive individuals, a(z, e, φ) = a∗(φ) for (z∗, z∗ + �z∗

e ) and all e . In this
expression, E[�z∗

e ] is the frictionless response governed by the parameter e . Given estimates of
B and h0(z∗), the frictionless response can be identified using an estimate of the share of nonop-
timizers a∗(φ), which can be obtained from the observed density mass in the strictly dominated
region.

The approach is based on the assumption that the share of nonoptimizers is constant in a
region above the notch, but it does not rely on specific parametric assumptions on the structure
and distribution of adjustment costs φ.9 The local fraction of nonoptimizers a∗(φ) represents a
sufficient statistic (together with bunching) for the structural elasticity e . However, a limitation of
the approach is that not all notches are associated with strictly dominated regions. In the labor-
leisure context considered here, upward tax notches create dominated regions, but downward tax
notches do not. More generally, notches in other decision contexts than labor-leisure do not always
create strictly dominated regions (e.g., Almunia & Lopez-Rodriguez 2015, Best et al. 2015b, Best
& Kleven 2016). In such cases, one can implement a more parametric version of the approach by
ruling out extreme preferences, allowing for the recovery of a∗(φ) from a very narrow range above
the threshold (e.g., Best et al. 2015b).

Kinks do not allow for this type of approach. A single kink offers only one empirical moment
for estimation—the size of bunching—which is consistent with many (e, φ) combinations.10 To
separately estimate the structural parameter e , one must obtain at least one more bunching obser-
vation that depends on the same underlying parameters. In principle, this is possible if we observe
variation in the size of the kink that is orthogonal to e and φ. In practice, there are two potential
sources of such variation: (a) differently sized kinks located at different earnings thresholds and
(b) changes in the size of a kink at a given earnings threshold over time. With such additional
variation, we can make progress by assuming that the additional bunching moment(s) is gener-
ated by the same underlying elasticity and friction. Versions of approaches (a) and (b) have been
developed by Chetty et al. (2010, 2011) and Gelber et al. (2014).

These approaches require us to specify the adjustment cost parameters in φ. The simplest
possible case is one with a fixed cost of adjusting earnings equal to φ̄, corresponding to the
specification in Gelber et al. (2014). In this case, if we observe bunching in two different kink

9Kleven & Waseem (2013) argue that, in general, a∗(φ) obtained from the dominated region is a lower bound on friction
over the entire bunching segment (z∗, z∗ + �z∗

e ). This is because, given the adjustment cost φ, the fraction of nonresponders
a(z, e, φ) is naturally increasing in earnings as the utility gain of moving to the notch is falling in earnings. However, the
bias depends on the distribution of adjustment costs φ. In a scenario in which a fraction of agents have zero adjustment costs
(optimizers) and a fraction have prohibitively high adjustment costs (nonoptimizers), a∗(φ) accurately captures the fraction of
nonoptimizers and yields unbiased estimates.
10In theory, there is another potentially useful moment besides the size of the bunch, namely the width or the diffuseness of
the bunch. If there is a lot of optimization friction that makes it hard to target the kink point precisely, we would expect excess
bunching to be very diffuse around the threshold. Hence, in a situation in which bunching around the kink is small (by itself,
suggesting either a small elasticity e or a large friction φ) and at the same time sharp (suggesting a small friction φ), it becomes
harder to argue that the true structural elasticity is large. Still, it is conceivable that a subset of agents are completely unaware
of the kink or completely unable to adjust their behavior with any amount of precision (while another subset of informed and
flexible agents can bunch sharply), allowing for the observation of small and sharp bunching in a situation in which the true
structural elasticity is large.
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scenarios, we have

B1 = B1
(
e, φ̄, x1

)
, (14)

B2 = B2
(
e, φ̄, x2

)
, (15)

where xi is a vector of observable tax variables and the counterfactual density for kink i . These
are two equations in two unknowns that can be solved for the adjustment cost and the structural
elasticity e . The key parametric assumptions are that the friction takes the form of a fixed cost and
that the fixed cost and elasticity are the same at the two kinks. If we generalize the adjustment cost
to include both a fixed cost element φ̄ and a variable cost element governed by another parameter
γ , then we would need three bunching moments to estimate the model or alternatively have to
calibrate one of the friction parameters. Chetty et al. (2010) consider a more involved model in
which the friction results from the cost of searching for a job with earnings at the kink. In this
model, the search cost depends on two parameters (a scale parameter φ and an elasticity parameter
γ ), and search effort affects the variance of the distribution job offers (assumed to be normal with a
baseline variance under zero search given by σ 2). Hence, the model has three friction parameters
φ, γ , and σ 2 and a structural elasticity e , which would require four bunching moments to be fully
identified. As they have only two bunching moments, they calibrate two friction parameters φ and
σ 2 and solve for γ and e based on a system like Equations 14 and 15.

Finally, the kink approaches described here—relying on parametric assumptions on the struc-
ture and distribution of optimization frictions—are related to the nonlinear budget set approach
discussed in Section 2, which was based on parametrically estimating a distribution of optimization
errors using bunching (or rather its absence) at kink points.11

3.3.2. Reference points. An issue that has received relatively little attention in the literature is
that kinks and notches may represent reference points. This would be the case if the threshold were
a natural focal point for reasons other than the financial incentive (for example, because it is a salient
round number) or if the creation of a statutory threshold makes it a focal point. When governments
legislate that public policies change at specific thresholds, they are potentially creating reference
points in addition to financial incentives. A concrete example is when social security benefits change
at statutory retirement ages, conceivably creating focal points for retirement by workers and their
employers. Opposite optimization frictions, such reference point effects, amplify bunching and
make the observed elasticity overstate the structural price elasticity.

Theories of reference dependence can be cast in the language of kinks and notches. The most
influential theory of reference dependence is prospect theory by Kahneman & Tversky (1979),
which posits that utility is defined over differences from a reference point and features a kink—a
discontinuity in the first derivative—at the reference point. This kink is assumed to be convex, a
feature known as loss aversion, implying that individuals should bunch at the reference point. An
alternative theory of reference dependence is one in which utility features a notch—a discontinuity
in the level—at the reference point. This would produce bunching on one side and a hole on the
other side of the reference point.12 These two models may be appropriate in different settings and
could potentially be distinguished empirically. The notch-based theory is arguably more natural

11The identifying variation is different in the two approaches, however. Although the nonlinear budget set approach achieved
identification based on cross-sectional variation in labor supply and taxes within brackets, the kink approach is based on
differences in bunching observed under different tax parameters.
12As shown by Allen et al. (2016), the joint presence of bunching and a hole on each side of the reference point can also
be reconciled with prospect theory due to another one of its features: diminishing sensitivity—a discontinuity in the second
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in settings in which reference points represent goals that agents strive to meet (e.g., Pope &
Simonsohn 2011, Allen et al. 2016), as opposed to settings in which reference points represent
expectations or the status quo (e.g., Koszegi & Rabin 2006).

Allowing for reference dependence could resolve two unexplained findings in the bunching
literature. First, although we observe excess bunching around convex kink points (at least those
that are large and salient), no research has found evidence of holes around nonconvex kink points
(e.g., Saez 2010, Kleven & Waseem 2012, Einav et al. 2015b). A potential explanation is that,
whereas a convex kink point represents a desirable location and hence may come to serve as a
reference point, a nonconvex kink point is an undesirable location and therefore not a natural
reference point. In other words, a convex kink tells agents where to be, and a nonconvex kink
tells them only where not to be. Second, several studies find asymmetric bunching around convex
kinks—bunching below the threshold, but not above—similar to the prediction for notches (e.g.,
Devereux et al. 2014, Gelber et al. 2014, Seim 2015). Such a pattern can be reconciled with the
models of reference-dependent preferences described above.

These arguments imply that observed bunching may confound the financial incentive effect
with a reference point effect as well as optimization frictions. That is, observed bunching is given
by B = B (e, φ, r, x), where r captures the reference point effect. In such cases, the solution to
identifying the incentive effect would have to be in the same spirit as those discussed for frictions:
It is necessary to obtain additional empirical moments to separately identify e , φ, and r . At least
three moments that depend on the same underlying parameters are required. Although this may
sound difficult to do in practice, in some settings it is feasible. An example is a situation in which
reference points are round numbers, in which case there will be round-number bunching, as
documented by Kleven & Waseem (2013) for reported taxable income and by Best & Kleven
(2016) for house prices. When the kink or notch of interest is located at a round number, extra
moments that depend on the same reference point effect can be obtained from similar round
numbers that are not notches. Netting out round-number bunching in this way, we are left with
two unknown parameters, e and φ, that can be estimated using the approaches described above.

3.3.3. Dynamics. The bunching theory presented above is based on a static labor supply model.
Three basic points have been made on the implications of extending the bunching analysis to a
dynamic setting. First, bunching responses to a within-period tax kink in a multiperiod setting
relates to the Frisch elasticity (including intertemporal substitution) rather than to the static
compensated elasticity (Saez 2010). This argument assumes that bunching decisions made in a
given period do not affect the likelihood of bunching at kinks or notches in future periods. Second,
although the Frisch elasticity is larger than the compensated elasticity in the standard life-cycle
labor supply model (MaCurdy 1981, Blundell & MaCurdy 1999), this is not necessarily true
in a model in which current earnings affect future wages through career concerns, learning by
doing, etc. In models with career effects of work effort, the response to temporary tax changes
can be relatively small (Saez 2010, Best & Kleven 2013b), which may be a reason—in addition to
optimization frictions discussed above—for observing small bunching at kinks and notches. Third,
the presence of career effects reduces, but does not eliminate, the presence of a strictly dominated
range above notches (Kleven & Waseem 2013). This assumes that the relationship between current
earnings and future wages is continuous. In this case, when crossing the notch point, current net-of-
tax earnings fall discretely, while future net-of-tax earnings increase only marginally by continuity

derivative of utility—according to which agents are risk averse in gains and risk loving in losses. Without diminishing sensitivity,
prospect theory predicts bunching at the reference point, but no hole.

448 Kleven

A
nn

u.
 R

ev
. E

co
n.

 2
01

6.
8:

43
5-

46
4.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
L

on
do

n 
Sc

ho
ol

 o
f 

E
co

no
m

ic
s 

an
d 

Po
lit

ic
al

 S
ci

en
ce

 o
n 

11
/2

8/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.



EC08CH16-Kleven ARI 10 October 2016 13:13

of the career effect. Given consumption smoothing behavior, this implies lower consumption in
all periods along with lower leisure in the current period, so this is still strictly dominated.

Extending the bunching approach to dynamic settings is still in its infancy. As discussed below, a
few recent bunching studies explicitly model dynamics and structurally estimate elasticities, but in
different contexts than labor supply. Although the static model may be a reasonable approximation
in a number of contexts—such as annual labor supply decisions by low-skilled workers—in other
contexts dynamics is central to the decision problem (Best et al. 2015b; Einav et al. 2015a,b; Manoli
& Weber 2015).

3.3.4. Extensive margin. Bunching at kinks or notches represents intensive margin responses to
price incentives, and above we focus on how to relate such responses to a structural parameter of in-
terest. A difference between kinks and notches is that the latter, by introducing a discrete jump in tax
liability, may also create extensive margin responses above the threshold. Such responses will shift
down the distribution throughout the upper bracket. The approach laid out above relies on an esti-
mate of the earnings response �z∗ by the marginal buncher using the relationships in Equations 2
and 3, which require an estimate of the counterfactual density h0 (z) around the threshold z∗. More
precisely, to estimate the intensive margin response conditional on participation, we need an esti-
mate of the counterfactual density absent intensive margin responses to the notch, as opposed to
the counterfactual density absent any response to the notch. Kleven & Waseem (2013) label the
two concepts the partial and full counterfactuals, respectively.

Kleven & Waseem (2013) make a simple point of relevance to the empirical estimation of h0 (z):
Extensive margin responses converge to zero just above the notch. Intuitively, if in the absence
of the notch individuals prefer earnings slightly above z∗, then in the presence of the notch they
are better off moving to z∗ (which is almost as good as the prenotch situation) than moving to
z = 0. In other words, the partial counterfactual of relevance to the estimation is smooth around
the notch.

To see this formally, consider a model in which individuals choose earnings conditional on
participation (z > 0) as characterized above, and then make a discrete choice between z > 0 and
z = 0 facing a fixed cost of participation q that is smoothly distributed in the population. Utility
from participation is given by u (z − T(z), z/n) − q , and utility from nonparticipation is given
by u0. This implies that an individual participates if and only if q ≤ u (z − T(z), z/n) − u0 ≡ q̄ .
When a notch is introduced at z∗, this creates both intensive and extensive responses by those with
z > z∗. Consider individuals initially located at z = z∗ + ε, where ε > 0 is sufficiently small that
the threshold z∗ is preferred to the initial choice, conditional on participating. Such individuals
respond at the extensive margin only if they were initially very close to the indifference point
between participation and nonparticipation, specifically if q ∈ (q̄ − �q̄ , q̄ ), where

�q̄ = u ((z∗ + ε) (1 − t) , (z∗ + ε) /n) − u (z∗ (1 − t) , z∗/n) . (16)

This implies limε→0 �q̄ = 0 such that there are no extensive responses very close to the threshold.
Best & Kleven (2013a) generalize this argument to a matching frictions model with bargaining.

In such frameworks, if a match between two parties (for example, a worker and an employer) would
have occurred at z∗ + ε ≈ z∗ absent the notch, then it is better for the worker to accept a pay
cut of ε than to break the match (either dropping out of the labor market or keep searching for
another employer). Kopczuk & Munroe (2015) note that, in a matching frictions model, part of the
extensive response may reflect that matches above the threshold break down in favor of searching
for another match below the notch (as opposed to dropping out of the market completely). They
go on to argue that such extensive responses may be present “close to the notch” (making the hole
bigger than the bunch), but it remains the case in their setting that these responses must converge
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to zero just above the notch. The next section discusses how these insights impact the empirical
implementation of the bunching approach in settings in which extensive responses are present.

4. BUNCHING ESTIMATION

4.1. Counterfactual Distribution and Bunching

The conceptual approach laid out in the previous section relies on an estimate of the counterfactual
distribution, i.e., what the distribution would have looked like in the absence of kinks or notches.
I start by describing what has become the standard approach to obtaining such counterfactuals,
developed by Chetty et al. (2011) in the context of kinks and extended by Kleven & Waseem
(2013) to notches, and then discuss potential issues with the approach and possible refinements.
For the sake of concreteness, I describe the estimation procedure in the language of earnings
responses to taxes (even though a broader set of applications is considered below), focusing on
the case of kinked/notched tax increases in which bunchers are coming from above an earnings
threshold.

The standard approach is to fit a flexible polynomial to the observed distribution, excluding
data in a range around the threshold z∗, and extrapolate the fitted distribution to the threshold.
Grouping individuals into earnings bins indexed by j , researchers have estimated the counterfac-
tual distribution using a regression of the following form:

c j =
p∑

i=0

βi · (
zj

)i +
z+∑

i=z−

γi · 1
[
zj = i

] + ν j , (17)

where c j is the number of individuals in bin j , zj is the earnings level in bin j , [z−, z+] is the
excluded range, and p is the order of the polynomial.13 In the case of kinks, the excluded range
should be the area featuring excess bunching and will typically be a narrow symmetric range
around the threshold (i.e., [z−, z+] = [z∗ − �, z∗ + �]).14 In the case of notches, the excluded
range should span the entire area affected by bunching responses (i.e., the area featuring either
bunching or a hole) and will generally be a wider asymmetric range around the threshold. We
come back to the determination of this range below.

The counterfactual bin counts are obtained as the predicted values from Equation 17 omitting
the contribution of the dummies in the excluded range [i.e., ĉ j = ∑p

i=0 β̂i · (zj )i ]. Excess bunching
is then estimated as the difference between the observed and counterfactual bin counts in the
bunching range (i.e., in the excluded range in the case of kinks and in the low-tax side of the
excluded range in the case of notches). In the frictions methodology of Kleven & Waseem (2013),
the fraction of nonoptimizers is obtained as the cumulated observed bin counts in the dominated
range as a fraction of the cumulated counterfactual bin counts in that range. Following Chetty
et al. (2011), standard errors are typically calculated using a bootstrap procedure in which a
large number of earnings distributions are generated by random resampling of the residuals in
Equation 17.

I now consider a number of technical issues and extensions of the baseline specification
(Equation 17). First, the approach relies on specifying the excluded range [z−, z+]. In the case
of kinks, this can typically be determined visually, but in the case of notches, the diffuseness of

13The estimation procedure initially developed by Saez (2010) can be viewed essentially as a special case of Equation 17, where
p = 0, i.e., where the counterfactual distribution is assumed to be uniform in a narrow range around the bunch.
14In the frictionless model presented above, bunching is a mass point at z∗, in which case we have � = 0. In reality, bunching
will always be somewhat diffuse due to optimization error and randomness in earnings, which is accounted for by � > 0.
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the hole above the notch may make it difficult to visually determine the upper bound z+. To deal
with this issue, Kleven & Waseem (2013) develop an approach based on the condition that, absent
extensive margin responses, excess mass below the notch must be equal to missing mass above the
notch. Hence, they estimate Equation 17 together with z+ through an iterative procedure that
ensures that bunching mass equals missing mass.15

Second, Equation 17 does not account for the left shift in the observed distribution in the
interior of the upper bracket, as illustrated in Figure 1b for kinks and Figure 2b,c for notches.
That is, it assumes that the observed bin counts above z+ correspond to counterfactual bin counts
even though these observations may be distorted by intensive margin responses to the higher
marginal tax rate within the upper bracket. In general, such effects are larger for kinks than for
notches because the interior marginal tax rate change is typically larger for kinks. Although it
is possible to account for such effects when estimating the counterfactual, there are two reasons
why this can be ignored in many practical applications: (a) As shown in Figure 1b for kinks, the
interior shift in the distribution corresponds to the bunching response �z∗ (the shift is smaller in
the case of notches), which tends to be a very small number due to the local nature of bunching
responses. (b) The implications of shifting a distribution to the left depends on its slope and will
have a significant effect on bin counts around the threshold only if the distribution is sufficiently
steep. Because of points (a) and (b), unless bunching responses are very large and the density
is steep, the interior shift will have little impact on observed bin counts in a range above the
threshold.16,17

Third, notches may create extensive margin responses above the threshold. Such responses
shift down the observed distribution in the upper bracket, making missing mass above z∗ larger
than excess bunching at z∗. In this case, estimating the counterfactual using bins above z+ does
not represent the full counterfactual stripped of all behavioral responses to the notch. As clarified
by Kleven & Waseem (2013) and discussed above, correctly estimating the intensive margin
response relies on an estimate of the partial counterfactual stripped of intensive responses only.
This partial counterfactual should ensure that excess mass at the notch equals missing mass above
the notch (even though this is not a feature of the full counterfactual) and be smooth at the
threshold z∗, both of which are guaranteed by the approach described above. The smoothness
of the partial counterfactual at z∗ follows from the insight that extensive responses converge to
zero as we approach the threshold, an implication of a broad class of models. However, although
the approach based on Equation 17—using observations above z+ that are affected by extensive
responses—is not conceptually wrong, in practice it is harder to obtain a robust estimate of the

15Diamond & Persson (2016) extend this method to estimate both the lower and upper bounds of the excluded range by
making a parametric assumption on the counterfactual distribution (log-concavity) in addition to imposing the condition that
bunching mass equals missing mass.
16Following Chetty et al. (2011), the standard approach to dealing with this issue has been to assume that the observed
distribution is a downward shift (as opposed to a left shift) of the counterfactual within the estimation range above z∗ [as
opposed to the full upper bracket (z∗, ∞)], thus estimating Equation 17 based on an upward adjustment of c j above z∗ that
ensures that the counterfactual and observed distributions integrate to the same number in the estimation range. This approach
may introduce bias, especially in relatively flat distributions in which interior responses do not affect bin counts (except at the
very top of the distribution, away from the threshold being analyzed). It would be feasible to implement a conceptually more
satisfying approach that does not have this potential bias, but for the reasons stated above, it will matter very little in most
applications.
17These arguments have implications for the discussion in Section 3.1 regarding the distinction between different counter-
factual scenarios in which bunchers come from either above the threshold (if the counterfactual features the lower-bracket tax
rate throughout) or below the threshold (if the counterfactual features the higher-bracket tax rate throughout). The arguments
provided here imply that, in most applications, the choice of which counterfactual benchmark to consider will have very little
impact on the estimation.
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counterfactual distribution if extensive responses are strong (as discussed in Kopczuk & Munroe
2015 and Best & Kleven 2016). In such cases, an alternative to the baseline specification is one
in which the counterfactual and bunching are estimated using only data below the notch (i.e.,
below z−).

Fourth, in some settings, there may be round-number bunching, a possibility discussed above in
the context of reference points. In this case, the smooth counterfactual obtained from Equation 17
is imprecise and—if the kink or notch is itself located at a round number—biased. To solve this
problem, Kleven & Waseem (2013) extend the baseline specification with round-number fixed
effects, identified off of round numbers that are not kinks or notches. These round-number fixed
effects should be flexible enough to account for the anatomy of rounding in the data (i.e., the
fact that some round numbers are rounder than others and therefore associated with stronger
bunching).

Finally, the estimation approach described above is a minimalist approach, requiring only a
single cross section of data, and it may not be compelling in all contexts. A requirement for the
approach to work is that the (intensive margin) distortions created by kinks and notches are very
local, so that the extrapolation of the fitted distribution is done over a relatively small range.
In situations in which the approach is not compelling, more sophisticated alternatives exist that
require richer data or richer variation. It is worth considering two such alternatives.

First, if there is time variation in the size of the kink or notch, it is possible to identify the be-
havioral response based on the difference in bunching before versus after the tax change. Similarly,
if there is cross-sectional variation in the size of the kink or notch across agents, the behavioral
response can be identified from the difference in bunching across agents. Such difference-in-
bunching strategies use the observed distribution under one tax regime to obtain the counterfac-
tual distribution for the other tax regime. Brown (2013) and Best et al. (2015a) provide examples of
this kind of approach. Note that a difference-in-bunching strategy rules out using the additional
bunching observation to separately estimate the structural elasticity and optimization frictions, as
described in the previous section. That is, the presence of an extra bunching observation can be
used either to improve the estimation of the counterfactual or to estimate an additional parameter,
but not both.

Second, with panel data it may be possible to use information on individual choices over time
to improve the estimation of the counterfactual. Best et al. (2015b) develop a panel approach in a
setting in which notches (in interest rates) apply to a state variable (mortgage debt), the evolution
of which is observed in real time, and in which the notches apply at a point in time, namely at
the time of remortgaging. In this case, mortgage debt is observed just before the remortgaging
decision and can be used to obtain an individual-level counterfactual. Although their setting lends
itself very naturally to such a panel approach, it may be possible to leverage panel data in other
settings to improve the estimation.

4.2. Identification Assumptions and Issues

The research design described above allows researchers to go from bunching at kinks or notches to
estimates of intensive margin elasticities. The approach relies on a set of identification assumptions,
which I summarize here.

4.2.1. Smoothness. The main assumption is smoothness of the counterfactual distribution.
There are two potential threats to this assumption: (a) If other policies change at the same thresh-
old, then the distribution may not be smooth absent the specific policy being analyzed. In such
cases, bunching represents a reduced-form response to a package of policies rather than to a
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specific policy, making it difficult to uncover structural parameters. (b) If the threshold serves as
a reference point, either because it is natural focal point for reasons unrelated to the policy or
the policy itself makes it a reference point, then bunching confounds the incentive effect with
a reference-point effect. When threats (a) and (b) are present, the general solution is to obtain
additional bunching observations—for example, from variation in the size of the discontinuity
over time or in the cross section—that depend on the same confounding effect.

4.2.2. Shape of counterfactual. Besides smoothness, the approach relies on an estimate of the
specific shape of the counterfactual distribution. The approach does not require global knowl-
edge of this shape: Only the local properties around the threshold are required. Behavioral re-
sponses are typically very local in the case of kinks, but less so in the case of notches. That is,
while notches provide more powerful variation than kinks, they require one to extrapolate over
a larger range when estimating the counterfactual based on Equation 17 (or to obtain the coun-
terfactual using a different approach, as described above). Sensitivity analyses with respect to
the order of the polynomial p and the excluded range [z−, z+] can reveal the robustness of the
estimates.

4.2.3. Model. Estimating the smooth counterfactual density around the threshold is sufficient
to identify reduced-form responses, but the identification of structural parameters makes it nec-
essary to specify a model. This point is not specific to the bunching approach: Translating any
reduced-form estimate—for example, based on quasi-experiments or randomized experiments—
into structural parameters that may have external validity beyond the experiment requires mod-
eling assumptions. Sections 3.1 and 3.2 consider a simple labor supply model that gives a direct
mapping between the reduced-form bunching response and a structural parameter of interest, the
compensated elasticity of labor supply. This is a static, frictionless model with no uncertainty and
quasi-linear, isoelastic preferences. Those sections discuss the implications of relaxing some of
these assumptions (such as introducing optimization frictions), but changing any of these model
features will in general change the mapping between bunching and structural parameters. Recent
work has begun to develop more structural bunching approaches that allow for dynamics and
uncertainty, in particular Einav et al. (2015a,b) on spending responses to a health insurance kink
in US Medicare and Best et al. (2015b) on debt responses to mortgage interest notches in the
United Kingdom. These studies are discussed further in Section 5.

4.2.4. Aggregation bias. In the presence of heterogeneity in the elasticity e , bunching identifies
the average behavioral response across different e types. Hence, when the elasticity is calculated
based on a bunching estimate and one of the (nonlinear) elasticity formulas derived above, the
resulting estimate represents the elasticity at the average response as opposed to the average
elasticity, creating potential aggregation bias. It is possible to bound such aggregation bias in the
case of notches because we observe the possible range of responses. The minimum response corre-
sponds to the dominated range (which may be zero for some notches) and represents an elasticity of
emin = 0. The maximum response corresponds (roughly) to the point of convergence between the
actual and counterfactual distributions, represented by an elasticity of emax 
 0. The largest possi-
ble variance in responses (and thus the largest possible aggregation bias) occurs when the estimated
average response is generated from these minimum and maximum responses, with appropriately
chosen population weights. An upper bound on aggregation bias can therefore be obtained by
calculating the average elasticity based on emin and emax using the same population weights.
Best et al. (2015b) conduct such an exercise and find that the potential aggregation bias is very
small.
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5. BUNCHING APPLICATIONS

5.1. Tax Policy and Tax Enforcement

I start by discussing a set of tax applications, for which the bunching approach was initially de-
veloped.18 The first cohort of bunching papers produced two basic insights that have guided
subsequent research in the area.

The first insight is that, in contexts in which bunching is likely to require real earnings responses,
the observed amount of bunching is very small (or zero) in elasticity terms. This applies to wage
earners whose earnings are subject to third-party reporting and therefore difficult to manipulate
through evasion or avoidance activities. Indeed, Saez (2010) finds zero bunching for wage earners
at the large kink points created by the US income tax schedule and earned income tax credit
(EITC). Chetty et al. (2011) find visually clear bunching by wage earners at a large kink point
in Denmark, but the corresponding elasticity was only 0.01 for all wage earners and 0.02 for
married women. Similarly, Bastani & Selin (2014) find no bunching by wage earners at a large
kink in Sweden. Additionally, bunching estimates of real earnings elasticities tend to be small
even when they are based on notch points that create much stronger incentives than kink points.
Even though the absolute amount of bunching is generally much larger and sharper at notch
points, it is still modest in elasticity terms, as documented by Kleven & Waseem (2013) for
formal wage earners in Pakistan and by Kleven et al. (2014) for high-income foreign employees in
Denmark.

The second insight is that, in contexts in which evasion and avoidance responses are feasi-
ble, observed bunching can be large in elasticity terms. Saez (2010), Chetty et al. (2011), Kleven
& Waseem (2013), and Bastani & Selin (2014) find much larger bunching for self-employed
individuals than for wage earners, consistent with the larger scope for evasion and avoidance
among the self-employed (and also with smaller adjustment costs in labor supply). Kleven et al.
(2011) estimate the evasion channel using the difference in bunching before and after random-
ized tax audits. They focus on two bunching contexts that feature easily available evasion and
avoidance opportunities, namely bunching by self-employed individuals at the top income tax
kink in Denmark and bunching by stockholders at a kink point in a separate stock income tax.
Although they do find evidence of evasion-driven bunching, most of the observed bunching can
be explained by legal tax avoidance. In particular, bunching in the stock income tax implies a
huge elasticity of 2.2, almost all of which can be attributed to avoidance such as intertemporal
shifting of dividends in closely held corporations. Le Maire & Schjerning (2013) analyze the im-
portance of intertemporal income shifting for bunching by self-employed individuals in Denmark.
Extending the static bunching model presented in Section 3.1 to allow for intertemporal shift-
ing, they estimate that more than half of the elasticity for the self-employed represents income
shifting.

These insights have led to two developments in the literature. One is to directly study the
role of optimization frictions such as adjustment and information costs in shaping behavioral

18Although the modern bunching approach originates with Saez (2010), the very first tax-bunching paper is arguably by
Slemrod (1985), who exploits the fact that US tax authorities use tax tables to ascertain tax liability in $50 income bins,
implying that actual tax liability is a step function of taxable income rather than the continuous function implied by the
statutory tax code. In other words, there are (tiny) notches at every $50 multiple of taxable income, creating an incen-
tive to reduce income (most likely through underreporting) from just above to just below one of these income thresh-
olds. Indeed, Slemrod (1985) finds that there is a disproportionate amount of taxpayers located within the top $10 of these
$50 brackets.
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responses to tax-transfer incentives; the other is to study evasion and avoidance responses to tax
and enforcement policies. I now discuss these two developments in turn.

5.1.1. Optimization frictions. A general insight from the literature is that bunching is larger
(in elasticity terms) when the kink or notch is larger, when it is more salient, and when it is stable
over time. This provides prima facie evidence that bunching is shaped by optimization frictions.
Chetty et al. (2011) study such frictions qualitatively, arguing that the anatomy of bunching in
Denmark is consistent with the predictions of a model in which workers face hours constraints
within jobs along with search costs of switching jobs. The two key predictions of such a model are
a size prediction (larger kinks generate larger elasticities) and a scope prediction (kinks that affect
a larger number of workers generate larger elasticities), with the latter reflecting that firms or
unions tailor wage-hours packages to match aggregate worker preferences and thus create more
aggregate bunching at common kinks.

Moving beyond these qualitative insights, some papers quantify the impact of optimization
frictions and estimate the underlying structural parameters that govern behavior without frictions.
This research has pursued the different approaches described in Section 3.3, including the notch
approach by Kleven & Waseem (2013) and the parametric kink approaches by Chetty et al. (2010),
Chetty (2012), and Gelber et al. (2014). This body of work argues that structural elasticities may
be larger than observed bunching-based elasticities by an order of magnitude. For example, using
the mass of individuals observed in dominated regions above notches, Kleven & Waseem (2013)
estimate that about 90% of workers do not adjust labor supply due to some form of optimization
friction. Using the same approach in a different context—value-added tax notches in the United
Kingdom—Liu & Lockwood (2015) find something similar: Almost 90% of firms do not adjust
turnover due to optimization frictions. These findings imply that, if not for frictions, bunching at
notches would be 10 times larger than observed.19

Motivated by the idea that bunching is inversely related to optimization frictions such as inat-
tention and misperception, Chetty et al. (2013) use variation in bunching across neighborhoods to
proxy for differences in knowledge about tax incentives. Specifically, they study earnings responses
to the EITC in the United States using bunching by self-employed individuals at the first kink of
the EITC as their measure of knowledge about incentives. Because responding to a policy requires
knowing about the policy, they identify the impact of the EITC on wage earnings by compar-
ing neighborhoods that differ in the degree of bunching by the self-employed (“knowledge”) at
the first EITC kink. To avoid confounding effects from omitted variables that vary across low-
bunching and high-bunching neighborhoods, they leverage their measure of knowledge against
another source of variation, namely that EITC eligibility depends on the presence of children.
Based on an event study approach, they consider changes in earnings around the birth of the first
child in high- versus low-knowledge neighborhoods. Their findings suggest substantial intensive
margin earnings responses to EITC incentives, conditional on knowledge. The bunching design
by Chetty et al. (2013) is conceptually different from those discussed above: Rather than using

19A different way to gauge the impact of frictions in attenuating bunching is to compare the kink-based elasticity of 0.01 by
Chetty et al. (2011) to the reform-based elasticity of 0.2 by Kleven & Schultz (2014), both of them based on Danish register
data and the same measure of third-party reported earnings. Using a large tax reform in Denmark in the late 1980s, the
difference-in-differences estimate by Kleven & Schultz (2014) identifies the elasticity from variation across tax brackets over
time and is arguably less sensitive to the types of adjustment and attention costs that may affect bunching. As discussed by
Kleven & Schultz (2014), despite some differences in time period and sample, it is difficult to explain the large difference in
estimates by anything other than optimization frictions.
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bunching to directly elicit a behavioral elasticity, they essentially use it as an instrument for the
perceived EITC incentives.

5.1.2. Evasion and enforcement. The study of tax evasion using bunching can be divided into
three categories. The first category uses bunching created by discontinuities in tax rates—in general
conflating real and evasion/avoidance responses—and then leverages variation in enforcement
parameters to elicit evasion responses based on differences in bunching. The first paper following
such a strategy was Kleven et al. (2011) discussed above, studying the effect of randomized tax
audits on bunching around tax kinks. Another paper in this category is by Fack & Landais (2016),
who study the relationship between bunching at kink points and the introduction of third-party
reporting on deductions for charitable contributions in France.

The second category exploits discontinuities directly in tax enforcement. Almunia & Lopez-
Rodriguez (2015) study an enforcement notch created by a large taxpayers unit in Spain. Above a
threshold for firm turnover, tax authorities devote larger resources to enforcement (more audits
and better audits), which creates bunching below the threshold and missing mass above. Further-
more, variation in bunching across sectors that differ with respect to the prevalence of third-party
information trails is used to gauge the interaction between audit effects and information trails.
Dwenger et al. (2016) study a randomized field experiment in which they introduce notched audit
probabilities as well as standard uniform audit probabilities. Although randomization is in princi-
ple sufficient for identification without the additional quasi-experimental variation from notches,
in practice field experiment studies have struggled to find significant effects of randomized (uni-
form) audit threats. Dwenger et al. (2016) find that notched audit probabilities create effects that
are larger and more statistically significant than uniform audit probabilities.

The third category exploits discontinuous changes in tax bases that vary with respect to the
scope for evasion. Best et al. (2015a) develop a bunching approach based on minimum tax schemes
in which agents are taxed on either base z1 or base z2 (at the tax rates τ1 or τ2, respectively)
depending on which tax liability is larger. That is, tax liability is given by T = max {τ1z1, τ2z2},
which implies a discrete jump in both the tax rate and tax base where z1/z2 crosses the threshold
τ2/τ1. Because tax liability is continuous under such a scheme, the threshold τ2/τ1 represents a kink
point rather than a notch point. Versions of such minimum tax schemes are ubiquitous around
the world. Best et al. (2015a) specifically consider a minimum tax scheme in Pakistan in which
corporations are taxed either on profits or on turnover (with a lower rate applying to the broader
turnover base). They show that this kink creates potentially strong compliance incentives, but
only weak real incentives at the firm level, enabling them to use bunching at the minimum tax
kink to elicit evasion responses to switches between profit and turnover taxes. They estimate that
turnover taxes reduce evasion by up to 60–70% of corporate income as compared to profit taxes.20

The methodology and qualitative findings by Best et al. (2015a) are replicated for Hungary by
Mosberger (2015).

5.2. Other Policies and Prices

Although the bunching approach was originally developed in the context of taxation and has
mostly been applied there, versions of the approach are beginning to find applications in many

20In a similar spirit, Bachas & Soto (2016) use corporate tax notches in Costa Rica to estimate a corporate evasion rate equal
to 70% of profits, with most of the effect coming through over-reporting of costs rather than through under-reporting of
turnover.
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other settings that feature kinks or notches. The settings that have been studied include pensions
(Brown 2013, Manoli & Weber 2015), social insurance (Persson 2014; Einav et al. 2015a,b; Le
Barbanchon 2016), welfare programs (Yelowitz 1995, Camacho & Conover 2011), education (Dee
et al. 2011, Brehm et al. 2015, Diamond & Persson 2016), labor regulation (Garicano et al. 2013,
Gourio & Roys 2014), minimum wages (Harasztosi & Lindner 2015), fuel economy policy (Sallee
& Slemrod 2012, Ito & Sallee 2015), electricity prices (Ito 2014), cellular service prices (Grubb
& Osborne 2015), and mortgage interest rates (Best et al. 2015b, DeFusco & Paciorek 2016).

Two general points are worth noting about this range of applications. First, many of these
applications are based on notches rather than on kinks. Indeed, once we move beyond the study
of progressive tax-transfer schedules, notches seem to be more commonly observed than kinks.
Second, a number of the applications exploit discontinuities in private sector incentive schemes,
as opposed to discontinuities created by government policies. That the bunching approach may
allow for causal identification based on observational (equilibrium) variation in privately set prices
is a potentially important advantage for the applicability of the approach.

Rather than discussing all the applications listed above, I focus on two that develop the bunching
approach in a more structural and dynamic direction. The first application is provided by Einav
et al. (2015a,b), who study drug demand responses to prices using a kink point created by the
so-called donut hole in US Medicare. Instead of applying the simple Saez (2010) estimator, they
specify and structurally estimate a dynamic model that allows for uncertainty and frictions (in the
form of lumpiness in spending). Making parametric assumptions, they estimate the model so as
to fit the reduced-form bunching pattern along with other moments of the data. Based on the
structural estimation, they are able to make out-of-sample predictions of the spending responses
to alternative health insurance designs. Einav et al. (2015a) compare this structural bunching
approach to the simpler Saez approach in terms of their out-of-sample predictions and show that
the two approaches—both of them consistent with the reduced-form bunching pattern in the
data—can produce very different out-of-sample predictions due to their different assumptions
about frictions and uncertainty.

Why is the out-of-sample prediction sensitive to the underlying model of Einav et al. (2015a,b)?
The reason is closely related to the discrepancy between observed and structural elasticities—or
between micro and macro elasticities—analyzed in the earlier bunching literature (e.g., Chetty
et al. 2010, Chetty 2012, Kleven & Waseem 2013, Gelber et al. 2014). Although these analyses
were framed in terms of different elasticity concepts, they could alternatively have been framed
in terms of the sensitivity of out-of-sample predictions to modeling assumptions. For example,
Chetty et al. (2010) convert a Saez-style elasticity of 0.01 into a structural elasticity of 0.34 by
specifying a parametric model with frictions (hours constraints and search costs) and estimating
a system such as that in Equations 14 and 15 using two bunching moments. For Einav et al.
(2015a,b), the frictions are lumpiness and uncertainty, which make their structural elasticity much
larger than what would otherwise be implied by the modest amount of observed bunching. At a
higher level, these findings hark back to the nonlinear budget set approach in which researchers
obtained large structural elasticities despite the absence of bunching by allowing for optimization
error or by smoothening the kink.21

21Also related to these ideas, the early working paper versions of Saez’s bunching paper (Saez 1999, 2002) show that the absence
of bunching at US tax kinks can be reconciled with an elasticity of 0.5 by allowing for either uncertainty in income (which
effectively smoothens the kink) or by hours constraints in which workers choose between a few discrete options (lumpiness).
In the language used above, this corresponds to saying that the observed elasticity is zero, whereas the structural elasticity
when allowing for randomness or lumpiness may be as high as 0.5 (or higher if allowing for both frictions simultaneously), or
similarly that the out-of-sample prediction is sensitive to the assumed model.
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The second application is provided by Best et al. (2015b), who study the response of household
debt and intertemporal consumption allocation to interest rates using mortgage notches in the
United Kingdom. Based on bunching at interest rate notches, they estimate both reduced-form
mortgage demand elasticities ( à la Saez-Kleven-Waseem) and the underlying structural elasticities
of intertemporal substitution. The structural estimation requires them to specify a dynamic model
and make a set of parametric assumptions. They show that the estimation is very robust to a
wide range of assumptions about uncertainty, risk aversion, discount factors, present bias, and
beliefs about the future. A key reason that their notch-based findings are robust (whereas the
aforementioned kink-based findings are sensitive) is that they directly estimate the amount of
friction from the observed density mass in dominated regions above notches, as in Kleven &
Waseem (2013). That is, when Best et al. (2015b) change modeling assumptions, the friction is
always accounted for using the Kleven-Waseem friction adjustment. Hence, they are not moving
between elasticity concepts with and without friction when comparing different models. Even
in their setting, if the actual amount of friction were much larger than what is captured by the
Kleven-Waseem adjustment, then the true structural elasticity would be much larger as well. In
this sense, bunching-based elasticities are always sensitive to what is assumed about optimization
frictions.

5.3. Behavioral Kinks and Notches: Reference Points and Norms

The applications described above consider settings featuring discontinuities in extrinsic incentives
such as taxes, enforcement, and social insurance. Section 3.3 discusses reference dependence as
a potential confounder when mapping a reduced-form bunching pattern into a structural price
elasticity, for example, when a kink or a notch is located at a salient round number and therefore
subject to round-number bunching (Kleven & Waseem 2013, Best & Kleven 2016). Besides posing
an identification problem in some settings, reference dependence is an interesting behavioral
phenomenon, and the bunching approach offers a way to study it outside the lab. In particular,
when we observe sharp bunching at points where extrinsic incentives are smooth, this indicates
some form of reference dependence (i.e., an intrinsic or psychological discontinuity). As described
above, theories of reference dependence can be understood using the language of kinks and notches
and potentially analyzed using the techniques laid out here.

Several recent papers use bunching to study reference dependence and norms. For example,
Allen et al. (2016) provide evidence of bunching just below round numbers (and missing mass
just above) in marathon finishing times such as 3:00 and 4:00 hours. Absent any discontinuities in
extrinsic rewards at those finishing times, they interpret this as evidence of reference-dependent
preferences. Based on calibration exercises, they show that the reduced-form bunching pattern is
consistent with a model of prospect theory (loss aversion). As explained in Section 3.3, the reason
why prospect theory can produce a combination of bunching and holes around reference points—
despite modeling these points as kinks—has to do with the theory’s assumption of diminishing
sensitivity, a discontinuity in the second derivative of utility. Alternatively, if reference dependence
is modeled simply as a notch in utility, the reduced-form pattern can be explained without having
to invoke the second derivative.

The evidence on marathon runners is consistent with evidence on round-number bunching in
a wide range of other settings. Round-number effects have been documented in the contexts of
baseball batting averages and students’ test scores (Pope & Simonsohn 2011), odometer mileage
in used-car purchases (Lacetera et al. 2012, Busse et al. 2013), reported taxable income (Kleven
& Waseem 2013), and house prices (Pope et al. 2015, Best & Kleven 2016). The exact reason
why round numbers serve as reference points may vary across settings—including goal setting and
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limited attention—but in general their modeling requires some form of intrinsic or behavioral
discontinuity in the objective that agents are maximizing. However, once the behavioral disconti-
nuity is there, this may give rise to confounding extrinsic incentives in equilibrium. For example,
in Lacetera et al. (2012), the preference for used cars with odometer values just below 10,000 mile
thresholds affects car prices just below those thresholds and therefore creates an extrinsic incentive
as well.

Related to the last point, the convention in statistical testing of defining threshold significance
levels such as 5% and 10%—arbitrary round-number reference points—creates extrinsic incentives
for researchers to pick marginally significant specifications over insignificant ones. Studying the
distributions of test statistics, Gerber & Malhotra (2008), Simonsohn et al. (2014), and Brodeur
et al. (2016) document the existence of such distortions. Although these authors do not draw a link
between their ideas and the bunching approach, there is a close relationship between the two. For
example, Brodeur et al. (2016) show evidence of excess mass just below 5% in the distribution of
p values along with missing mass between 10% and 25%. They find no evidence of either excess
mass or missing mass in the 5–10% range, which may be the result of two offsetting forces: The
desire to move below the 5% notch creates missing mass between 5% and 10%, whereas the desire
to move below the 10% notch creates excess mass between 5% and 10%.

Finally, I describe a number of contexts in which bunching at reference points goes beyond
round-number effects. First, Rees-Jones (2014) argues that loss aversion affects tax avoidance
behavior when filing tax returns in the United States. Specifically, when taxpayers file returns at
the end of the tax year, they receive refunds (gains) or incur back payments (losses) depending on
whether the balance due is negative or positive given realized taxable income and tax withholding
during the year. Although the marginal tax rate does not change around a zero balance due,
the observed distribution of balances features excess bunching at zero. This is consistent with
a loss aversion model in which taxpayers frame back payments as losses that are associated with a
discretely larger marginal disutility of lost income. In this setting, a zero balance due serves as a
reference point for tax filing behavior.

Second, considering a German church tax that relies on voluntary compliance—underpayments
are never penalized and overpayments are not reimbursed—Dwenger et al. (2016) document sharp
bunching at the point of exact compliance. Absent any extrinsic incentive to pay taxes, they argue
that this empirical pattern requires either a discontinuity in intrinsic motivation at the point of
exact compliance, what they label “duty to comply,” or the presence of attention/salience effects
of exact compliance. Leveraging a randomized field experiment, they show that making the point
of exact compliance more salient does not affect the observed bunching pattern, so it may be driven
by duty to comply. In any case, this is an example in which the letter of the law, even though it
provides no explicit incentive, comes to serve as a reference point for the behavior of intrinsically
motivated taxpayers.

Third, Bertrand et al. (2015) advance the idea that gender identity norms prescribe that men
should make more money than women within households (i.e., a “male-breadwinner norm”).
Consistent with such a norm, they document a sharp cliff at the 50% threshold in the distribution
of female income shares in US households. The implication of such a cliff seems to be the existence
of a notch in household preferences at a 50% female income share—a breadwinner notch—which
would naturally produce excess bunching below 50%. However, the distributions presented by
Bertrand et al. (2015) do not feature bunching, nor do they take the logical step of analyzing
the breadwinner norm as a notched incentive. Based on these ideas, Kleven et al. (2016) analyze
the breadwinner notch using Danish administrative data. They document excess bunching below
50% and missing mass above 50% in the distribution of female income shares, and convert this
reduced-form pattern into a money metric of the male-breadwinner norm. This exercise consists of
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representing the breadwinner notch as an implicit tax on female earnings above the 50% reference
point, and then inverting the bunching approach laid out in Section 3: Instead of estimating an
elasticity parameter based on observed bunching and a known tax incentive, the idea is to estimate
the implicit tax notch based on observed bunching and an elasticity parameter that has to be
calibrated or estimated using another source of variation. The idea of using bunching at reference
points to estimate money metrics of their importance is potentially feasible in other settings.

6. A BROADER PERSPECTIVE

In this article, I have reviewed the bunching approach to empirical research, discussed its main
identification assumptions and challenges, and considered a range of applications in public finance
and other fields. The approach is still relatively young, with its recent popularity closely linked to
the explosion of work using administrative data.22 Due to the ubiquity of kinks and notches across
a wide set of contexts and the increasing availability of administrative data, the approach is likely to
find numerous applications and evolve in new directions in the coming years. It is possible that the
context in which the approach was first conceived—estimating the real labor supply elasticity—is
not the ideal application in light of the challenges discussed here. The presence of optimization
frictions and reference dependence makes the observed elasticity very context specific, and without
knowing the right model of these behavioral aspects, it is difficult to link the observed elasticity
to a stable, structural parameter.23 I have considered a set of other decision environments—in
particular, environments in which the decision variable can be continuously adjusted without
much friction—in which the approach may be better suited to uncover structural parameters and
sufficient statistics for welfare analysis.

Up to this point, I have focused on bunching as an empirical strategy, taking as given that kinks
and notches exist in the real world. A conceptually different set of questions relates to whether
kinks or notches are socially desirable and why they are used so frequently. In standard mechanism
design models, kinks may be a feature of an optimal incentive scheme—and if not, they generally
represent a reasonable approximation of the fully optimal, continuously differentiable scheme—
whereas notches are typically ruled out as a property of optimal incentive schemes (Mirrlees 1971).
Given that notches are ubiquitous in practice, it is natural to ask if those who implement them
make bad decisions or if our models miss relevant features of actual decision environments. The
key assumptions that make notches suboptimal is that the underlying fundamentals are continuous,
that agents are sophisticated optimizers, and that the available policy instruments are sufficiently
flexible. If we break any of those assumptions, notches may become optimal.

The role of constrained policy instruments for the desirability of notches is discussed by
Slemrod (2010). Such constraints are (implicitly) the reason that notches can be optimal in the
first theoretical treatment of the problem by Blinder & Rosen (1985), a comparison between a
notched tax incentive and a linear tax incentive. Gillitzer et al. (2016) explicitly ground the desir-
ability of tax notches in restrictions on the set of policy instruments in their analysis of optimal line
drawing in taxation. Although natural restrictions on the policy space may be sufficient reason for
notches in some contexts, in other context notches are clearly dominated by feasible continuous

22It is striking that, among the roughly 80 papers cited in this review, approximately 60 of them are dated 2010 or later.
23As discussed, this limitation is stronger for kinks than for notches. This is the case both because notches create stronger
incentive changes (and are thus more likely to overcome optimization frictions) and because notches offer less parametric
ways of controlling for any remaining attenuation bias from friction.
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policies. Examples in which the case for notches is not compelling include the various tax contexts
considered by Sallee & Slemrod (2012), Kleven & Waseem (2013), and Best & Kleven (2016).24

Another possible reason for notches is that individuals are not the sophisticated optimizers
assumed in our canonical models, and specifically that they find discrete categories simpler and
more intuitive than a continuum. Although the idea of continuous variables may be second na-
ture to economists and other mathematically inclined people (see, e.g., Dawkins 2011), to most
people discrete classification comes more naturally.25 The discussion of behavioral notches or
reference points in the previous section suggests that there is a demand for notches: Even when
discrete categories or notches are not imposed by policy makers, individuals tend to create them by
dividing continuous space into discrete categories that separate high and low, success and failure,
gains and losses, etc. Even scientists do this with their arbitrarily chosen thresholds that separate
statistically significant and insignificant (e.g., Brodeur et al. 2016) when they could just consider
the p value as a continuous measure of statistical precision. Whenever such thresholds are created,
there is a notched incentive that could be analyzed using the techniques laid out here.
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