Externalities

131 Undergraduate Public Economics
Emmanuel Saez
UC Berkeley
Second part of course is going to cover market failures and show how government interventions can help

1) Externalities and public goods

2) Asymmetric information (social insurance)

3) Individual failures (savings for retirement)
EXTERNALITIES

Market failure: A problem that violates one of the assumptions of the 1st welfare theorem and causes the market economy to deliver an outcome that does not maximize efficiency.

Externality: Externalities arise whenever the actions of one economic agent directly affect another economic agent outside the market mechanism.

Externality example: a steel plant that pollutes a river used for recreation.

Not an externality example: a steel plant uses more electricity and bids up the price of electricity for other electricity customers.

Externalities are one important case of market failure.
NEGATIVE PRODUCTION EXTERNALITIES

Negative production externality: When a firm’s production reduces the well-being of others who are not compensated by the firm.

Private marginal cost (PMC): The direct cost to producers of producing an additional unit of a good

Marginal Damage (MD): Any additional costs associated with the production of the good that are imposed on others but that producers do not pay

Social marginal cost (SMC = PMC + MD): The private marginal cost to producers plus marginal damage

Example: steel plant pollutes a river but plant does not face any pollution regulation (and hence ignores pollution when deciding how much to produce)
Economics of Negative Production Externalities: Steel Production

Price of steel

Quantity of steel

Deadweight loss

Social marginal cost, $SMC = PMC + MD$

$S = Private marginal cost, PMC$

$100 = Marginal damage, MD$

$D = Private marginal benefit, PMB = Social marginal benefit, SMB$

Overproduction
EXTERNALITY THEORY: ECONOMICS OF NEGATIVE CONSUMPTION EXTERNALITIES

Negative consumption externality: When an individual’s consumption reduces the well-being of others who are not compensated by the individual.

Private marginal benefit (PMB): The direct benefit to consumers of consuming an additional unit of a good by the consumer.

Social marginal benefit (SMB): The private marginal benefit to consumers plus any costs associated with the consumption of the good that are imposed on others.

Example: Using a car and emitting carbon contributing to global warming
The consumption of large cars such as SUVs produces three types of negative externalities:

1. **Environmental externalities**: Compact cars get 25 miles/gallon, but SUVs get only 20.
2. **Wear and tear on roads**: Larger cars wear down the roads more.
3. **Safety externalities**: The odds of having a fatal accident quadruple if the accident is with a typical SUV and not with a car of the same size.
Externality Theory: Positive Externalities

Positive production externality: When a firm’s production increases the well-being of others but the firm is not compensated by those others.

Example: Beehives of honey producers have a positive impact on pollination and agricultural output

Positive consumption externality: When an individual’s consumption increases the well-being of others but the individual is not compensated by those others.

Example: Beautiful private garden that passers-by enjoy seeing
5.1 Positive Externalities

Market Failure Due to Positive Production Externality in the Oil Exploration Market

Expenditures on oil exploration by any company have a positive externality because they offer more profitable opportunities for other companies. This leads to a social marginal cost that is below the private marginal cost, and a social optimum quantity (Q_2) that is greater than the competitive market equilibrium quantity (Q_1). There is underproduction of $Q_2 - Q_1$, with an associated deadweight loss of area ABC.
Externality Theory: Market Outcome is Inefficient

With a free market, quantity and price are such that $PMB = PMC$

Social optimum is such that $SMB = SMC$

\Rightarrow Private market leads to an inefficient outcome (1st welfare theorem does not work)

Negative production externalities lead to over production

Positive production externalities lead to under production

Negative consumption externalities lead to over consumption

Positive consumption externalities lead to under consumption
Private-Sector Solutions to Negative Externalities

Key question raised by Ronald Coase (famous Nobel Prize winner Chicago libertarian economist):

Are externalities really outside the market mechanism?

Internalizing the externality: When either private negotiations or government action lead the price to the party to fully reflect the external costs or benefits of that party’s actions.
PRIVATE-SECTOR SOLUTIONS TO NEGATIVE EXTERNALITIES: COASE THEOREM

Coase Theorem (Part I): When there are well-defined property rights and costless bargaining, then negotiations between the party creating the externality and the party affected by the externality can bring about the socially optimal market quantity.

Coase Theorem (Part II): The efficient quantity for a good producing an externality does not depend on which party is assigned the property rights, as long as someone is assigned those rights.
COASE THEOREM EXAMPLE

Firms pollute a river enjoyed by swimmers. If firms ignore swimmers, there is too much pollution

1) Swimmers own river: If river is owned by swimmers then swimmers can charge firms for polluting the river. They will charge firms the marginal damage (MD) per unit of pollution.

Why price pollution at MD? If price is above MD, swimmers would want to sell an extra unit of pollution and get hit by pollution damage MD, so price must fall. MD is the equilibrium efficient price in the newly created pollution market.

2) Firms own river: If river is owned by firms then firm can charge swimmers in exchange of polluting less. They will also charge swimmers the MD per unit of pollution reduction.

Final level of pollution will be the same in 1) and 2)
5.2 The Solution: Coasian Payments

The graph illustrates the concept of Coasian Payments. The graph shows the relationship between the price of steel and the quantity of steel produced and consumed. The diagram includes the following elements:

- **Price of steel**
- **Quantity of steel**
- **SMC = PMC₂**
- **S = PMC₁**
- **D = PMB = SMB**
- **Payment**
- **MD = $100**

The graph uses points A and B to demonstrate the Coasian solution. The key points are:

- **P₁** and **P₂** are the prices at different quantities of steel.
- **Q₁** and **Q₂** are the quantities of steel at different prices.

The graph visually represents the Coasian solution by showing how payments can correct for externalities, moving from an inefficient market outcome at point A to a new efficient outcome at point B, where the marginal social cost equals the marginal social benefit. The Coasian solution involves payments made between parties to ensure that the market outcomes align with social optimal outcomes.
PROBLEMS WITH COASIAN SOLUTION

In practice, the Coase theorem is unlikely to solve many of the types of externalities that cause market failures.

1) The assignment problem: In cases where externalities affect many agents (e.g. global warming), assigning property rights is difficult

⇒ Coasian solutions are likely to be more effective for small, localized externalities than for larger, more global externalities involving large number of people and firms

2) The holdout problem: Shared ownership of property rights gives each owner power over all the others (because joint owners have to all agree to the Coasian solution)

As with the assignment problem, the holdout problem would be amplified with an externality involving many parties.
PROBLEMS WITH COASIAN SOLUTION

3) Transaction Costs and Negotiating Problems: The Coasian approach ignores the fundamental problem that it is hard to negotiate when there are large numbers of individuals on one or both sides of the negotiation.

This problem is amplified for an externality such as global warming, where the potentially divergent interests of billions of parties on one side must be somehow aggregated for a negotiation.
PROBLEMS WITH COASIAN SOLUTION: BOTTOM LINE

Ronald Coase’s insight that externalities can sometimes be internalized was useful.

It provides the competitive market model with a defense against the onslaught of market failures.

It is also an excellent reason to suspect that the market may be able to internalize some small-scale, localized externalities.

It won’t help with large-scale, global externalities, where only a “government” can successfully aggregate the interests of all individuals suffering from externality.
Public Sector Remedies For Externalities

Public policy makers employ two types of remedies to resolve the problems associated with negative externalities:

1) **quantity regulation**: government limits use of externality producing chemicals. Example CFCs [chlorofluorocarbons] that deplete ozone layer

2) **corrective taxation**: corrective tax or subsidy equal to marginal damage per unit. Example: Carbon tax to fight global warming due to CO2 emissions

1) and 2) can be combined with **tradable emissions permits** to firms that can then be traded (cap-and-trade for carbon emissions)

Key advantage of price policy or tradable permits: price of emissions is the same for all which is efficient
5.3 Corrective Taxation
CORRECTIVE TAXES VS. TRADABLE PERMITS

Two differences between corrective taxes and tradable permits (carbon tax vs. cap-and-trade in the case of CO2 emissions)

1) **Initial allocation of permits:** If the government sells them to firms, this is equivalent to the tax

 If the government gives them to current firms for free, this is like the tax + large transfer to initial polluting firms.

2) **Uncertainty in marginal costs:** With uncertainty in costs of reducing pollution, tax cannot target a specific quantity while tradable permits can ⇒ two policies no longer equivalent.

 Taxes preferable when MD curve is flat. Tradable permits are preferable when MD curve is steep.
Uncertainty About Costs of Reduction: Case 1: Flat MD Curve (Global Warming)
5.4 Uncertainty About Costs of Reduction: Case 2: Steep MD Curve (Nuclear leakage)
Empirical Example: Acid Rain and Health

Acid rain due to contamination by emissions of sulfur dioxide (SO$_2$) and nitrogen oxide (NO$_x$).

1970 Clean Air Act: Landmark federal legislation that first regulated acid rain-causing emissions by setting maximum standards for atmospheric concentrations of various substances, including SO$_2$.

The 1990 Amendments and Emissions Trading:

SO$_2$ allowance system: The feature of the 1990 amendments to the Clean Air Act that granted plants permits to emit SO$_2$ in limited quantities and allowed them to trade those permits.
Empirical Example: Effects of Clean Air Act of 1970

How does acid rain (or SO2) affect health?

Observational approach: relate mortality in a geographical area to the level of particulates (such as SO2) in the air

Problem: Areas with more particulates may differ from areas with fewer particulates in many other ways, not just in the amount of particulates in the air

Chay and Greenstone (2003) use clean air act of 1970 to resolve the causality problem:

Areas with more particulates than threshold required to clean up air [treatment group]. Areas with less particulates than threshold are control group.

Compares infant mortality across 2 types of places before and after (DD approach)
Figure 2: Trends in TSPs Pollution and Infant Mortality, by 1972 Nonattainment Status

A. Trends in Mean TSPs Concentrations, by 1972 Nonattainment Status

Source: Authors’ tabulations from EPA’s “Quick Look Reports” data file.

B. Trends in Internal Infant Mortality Rate, by 1972 Nonattainment Status

Source: Chay and Greenstone (2003)
Figure 2: Trends in TSPs Pollution and Infant Mortality, by 1972 Nonattainment Status

A. Trends in Mean TSPs Concentrations, by 1972 Nonattainment Status

- Mean of Average Daily Readings (Micrograms per Cubic Meter)
 - Nonattainment
 - Attainment

Source: Authors' tabulations from EPA's "Quick Look Reports" data file.

B. Trends in Internal Infant Mortality Rate, by 1972 Nonattainment Status

- Internal Infant Mortality Rate (per 100,000 Live Births)
 - Nonattainment
 - Attainment

Source: Chay and Greenstone (2003)
Climate Change and CO2 Emissions

Industrialization has dramatically increased CO2 emissions and atmospheric CO2 generates global warming

Four factors make this challenging (Wagner-Weitzman 2015):

1) **Global**: Emissions in one country affect the full world

2) **Irreversible**: Atmospheric CO2 has long life (centuries) [absent carbon capture tech breakthrough]

3) **Long-term**: Costs of global warming are decades/centuries away [how should this be discounted?]

4) **Uncertain**: Great uncertainty in costs of global warming [mitigation vs. amplifying feedback loops]

How fast should we start reducing emissions? [Stern-Weitzman want a fast reduction, Nordhaus advocates a slower path]
Global temperature anomalies averaged and adjusted to early industrial baseline (1881-1910)
Source: NASA GISS, NOAA NCEI, ESRL
Main costs of global warming

Enormous variation across geographical areas and economic development. Pace of change makes adaptation daunting

1) Sea rise will flood low lying coasts and major population centers in many countries (e.g., Miami, Florida; value of real estate subject to regular flooding has dropped)

2) Impact on bio-diversity (mass extinctions)

3) Agricultural production could be disrupted by climate change and the increased weather variability it generates:
 demand for food is very inelastic in the short-run ⇒ Spikes in prices if agricultural output falls ⇒ disruption/famines possible in low income countries

4) Droughts and heat waves will make many places less livable
 Some societies may collapse and generate mass migration movements
Empirical Example: Costs of Global Warming

Estimating costs of Global warming is daunting because society will adapt and reduce costs (relative to a scenario with no adaptation)

Example: heat waves and mortality analysis of Barreca et al. (2016)

1) The mortality effect of an extremely hot day (80°F+) declined by about 75% between 1900-1959 and 1960-2004.

2) Adoption of residential air conditioning (AC) explains the entire decline

3) Worldwide adoption of AC will speed up the rate of climate change (if fossil fuel powered)
Figure 2: Estimated Temperature-Mortality Relationship (Continued)

Notes: Figure 2 plots the response function between log monthly mortality rate and average daily temperatures, obtained by fitting Equation (1). The response function is normalized with the 60°F – 69°F category set equal to zero so each estimate corresponds to the estimated impact of an additional day in bin j on the log monthly mortality rate.

Global Warming: Economists’ Narrow View

Economists view global warming as a classical externality

CO2 emissions impose a global warming externality ⇒ Solution is to impose a carbon tax equal to the marginal damage of CO2 emissions and let market forces work their magic

E.g. see recent economists’ statement in favor of carbon tax (rebated with a fixed carbon dividend)

But what is the marginal damage of CO2? It depends greatly on how you discount the future

Economists use interest rate r to discount future: 1 today is worth $(1 + r)^T$ in T years (long-distance future heavily discounted: e.g., $r = 4\%$ and $T = 1000 \Rightarrow (1 + r)^T = 10^{17}$)

If interest rate is high, it is desirable to let global warming happen and societies collapse!
Global Warming: Broader View

Massive CO2 emissions pose existential civilizational risk (like CFC destroying vital ozone layer)

Only solution is to decarbonize and we need to do it fast (within decades not centuries)

Decarbonization is within sight: renewable electricity (solar/wind) + grid + big batteries could power most energy needs and replace most fossil fuels

⇒ could be done without killing economic growth and without huge short-term disruptions (less costly than coronavirus)

Economists’ useful point: some sectors are easier to decarbonize than others (e.g. cars easier than planes)
⇒ start decarbonizing easiest sectors first (Sachs 2020)
How to Decarbonize? Richer countries

Must become a clear policy choice that mobilizes society

Encourage research on renewable technologies both public and private (King, David et al. 2015)

Plan phase out of carbon in various sectors [industrial policy] and weaken fossil fuel industry political power (Sachs 2020)

Raising carbon tax could be one tool (but we should not bet everything on it)

Be flexible and compensate low income losers (to avoid yellow vests protests as in France with higher gas tax)

In the US, modest Obama moves are being undone by Trump

Democrats offer **Green New Deal** (economic planning and industrial policy ideas coupled with social justice vision)
How to Decarbonize? Developing countries

Disagreement between rich and developing countries on who should bear the cost of curbing greenhouse gas emissions.

Rich countries responsible for most of historical CO2 emissions.

Poor countries want to develop using the cheapest available technologies (coal power is cheaper than solar power, etc.).

Makes sense for richer countries to encourage/help poorer countries leapfrog carbon in favor of renewable energy.

Carrot: R&D on renewables in rich countries can be adopted in poorer countries, direct subsidies can help.

Stick: Impose tariffs on carbon content of imported goods.
REFERENCES

Worth Publishers, Chapters 5 and 6

Barreca, Alan, et al. “Adapting to Climate Change: The Remarkable De-
cline in the US Temperature-Mortality Relationship over the 20th Century.”
Journal of Political Economy 124(1), 2016, 105-159.(web)

Chay, K. and M. Greenstone “Air Quality, Infant Mortality, and the Clean

Ellerman, A. Denny, ed. “Markets for clean air: The US acid rain pro-
gram.” Cambridge University Press, 2000.(web)

Gruber, Jonathan. “Tobacco at the crossroads: the past and future of
smoking regulation in the United States.” The Journal of Economic Per-
spectives 15.2 (2001): 193-212.(web)

King, David et al. 2015 “A Global Apollo Programme to Combat Climate
Change”, LSE Report (web)

Models of Global Warming.” MIT Press (MA), 2000.(web)

Sachs, Jeffrey. 2019. “Getting to a Carbon-Free Economy: The urgent is attainable, and at entirely affordable cost.”, The American Prospect. (web)
