
Review of Economic Studies (2001) 68, 205–229 0034-6527�01�00100205$02.00
 2001 The Review of Economic Studies Limited

Using Elasticities to Derive
Optimal Income Tax Rates

EMMANUEL SAEZ
Harûard Uniûersity and NBER

First ûersion receiûed June 1999; final ûersion accepted May 2000 (Eds.)

This paper derives optimal income tax formulas using compensated and uncompensated
elasticities of earnings with respect to tax rates. A simple formula for the high income optimal tax
rate is obtained as a function of these elasticities and the thickness of the top tail of the income
distribution. In the general non-linear income tax problem, this method using elasticities shows
precisely how the different economic effects come into play and which are the key relevant param-
eters in the optimal income tax formulas of Mirrlees. The optimal non-linear tax rate formulas
are expressed in terms of elasticities and the shape of the income distribution. These formulas are
implemented numerically using empirical earning distributions and a range of realistic elasticity
parameters.

1. INTRODUCTION

There is a controversial debate about the degree of progressivity that the income tax
should have. This debate is not limited to the economic research area but also attracts
much attention in the political sphere and among the public in general. At the centre
of the debate lies the equity-efficiency trade-off. Progressivity allows the government to
redistribute from rich to poor, but progressive taxation and high marginal tax rates have
efficiency costs. High rates may affect the incentives to work and may therefore reduce
the tax base, producing large deadweight losses. The modern setup for analysing the
equity-efficiency tradeoff using a general nonlinear income tax was built by Mirrlees
(1971). Since then, the theory of optimal income taxation based on the original Mirrlees
framework has been considerably developed. The implications for policy, however, are
limited for two main reasons.

First, optimal income tax schedules have few general properties: we know that opti-
mal rates must lie between 0 and 1 and that they equal zero at the top and the bottom.
These properties are of little practical relevance for tax policy. In particular the zero
marginal rate at the top is a very local result. In addition, numerical, simulations show
that tax schedules are very sensitive to the utility functions chosen. Second, optimal
income taxation has interested mostly theorists and has not changed the way applied
public finance economists think about the equity-efficiency tradeoff. Though behavioural
elasticities are the key concept in applied studies, there has been no systematic attempt to
derive results in optimal taxation which could be easily used in applied studies. As a result,
optimal income tax theory is often ignored and tax reform discussions are centred on the
concept of deadweight burden. Thus, most discussions on tax reforms focus only on the
efficiency aspect of taxation and do not incorporate the equity aspect in the analysis.

This paper argues that there is a simple link between optimal tax formulas and elas-
ticities of earnings familiar to empirical studies. It shows that using elasticities directly to
derive optimal income tax rates is a useful method to obtain new results in optimal income

205



206 REVIEW OF ECONOMIC STUDIES

taxation. First, a simple formula for the optimal tax rate for high incomes is derived as a
function of both substitution and income effects and the thickness of the top tail of the
income distribution. Second, deriving the general Mirrlees formula for optimal non-linear
tax rates in terms of elasticities provides a clear understanding of the key economic effects
underlying the formula. It shows that the shape of the income distribution plays a critical
role in the pattern of optimal tax rates. Third, the optimal tax formulas derived using
elasticities do not explicitly require the strong homogeneity assumptions about preferences
usually made in the optimal income tax literature. Therefore the elasticity method might
be robust to the introduction of heterogeneity in preferences. Last, because the formulas
derived are closely related to empirical magnitudes, they can be easily implemented numer-
ically using the empirical income distribution and making realistic assumptions about the
elasticity parameters.

The paper is organized as follows. Section 2 reviews the main results of the optimal
income tax literature. Section 3 derives a simple formula for optimal high income tax rates
and relates it to empirical magnitudes. Section 4 considers the general optimal non-linear
income tax problem. The formula of Mirrlees (1971) is derived directly in terms of elas-
ticities. Section 5 presents numerical simulations of optimal tax schedules and Section 6
concludes.

2. LITERATURE REVIEW

The Mirrlees (1971) model of optimal income taxation captures the key efficiency-equity
tradeoff issue of redistribution: the government has to rely on a distortionary nonlinear
income tax to meet both its revenue requirements and redistribute income. General results
about optimal tax schedules are fairly limited. Tuomala (1990) presents most of the formal
results.

Mirrlees (1971) showed that there is no gain from having marginal tax rates above
100% because nobody will choose to have such a rate at the margin. Mirrlees (1971) also
showed that optimal marginal rates cannot be negative. Seade (1982) clarified the con-
ditions under which this result holds. The most striking and well known result is that the
marginal tax rate should be zero at the income level of the top income level when the
income distribution is bounded (Sadka (1976) and Seade (1977)). Numerical simulations
have shown, however, that this result is very local (see Tuomala (1990)). This result is
therefore of little practical interest. Mirrlees (1971) did not derive this simple result
because he considered unbounded distributions of skills. He nonetheless presented precise
conjectures about asymptotic optimal rates in the case of utility functions separable in
consumption and labour. Nonetheless, these conjectures have remained practically
unnoticed in the subsequent optimal income tax literature. This can be explained by two
reasons. First, Mirrlees conjectures depend on the unobservable distribution of skills and
on abstract properties of the utility function with no obvious intuitive meaning. Second,
the zero top rate result was probably considered for a long time as the definitive result
because the empirical income distribution is indeed bounded. The present paper argues
that in fact unbounded distributions are of much more interest than bounded distributions
to address the high income optimal tax rate problem.

A symmetrical zero rate result has been obtained at the bottom. Seade (1977) showed
that if everybody works (and labour supply is bounded away from zero) then the bottom
rate is zero. However, if there is an atom of non workers then the bottom tax rate is
positive and numerical simulations show that, in this case, the bottom rate can be substan-
tial (Tuomala (1990)).
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A number of studies have tried to relate optimal income tax formulas to the elasticity
concepts used in applied work. Using the tools of optimal commodity tax theory, Dixit
and Sandmo (1977) expressed the optimal linear income tax rate in terms of elasticities.
However, in the case of the non-linear income tax problem, the attempts have been much
less systematic. Roberts (2000) uses a perturbation method, similar in spirit to what is
done in the present paper, and obtains optimal non-linear income tax formulas expressed
in terms of elasticities.1 He also derives asymptotic formulas that are similar to the ones
I obtain.2 Recently, Diamond (1998) analysed the case of utility functions with no income
effects and noticed that the Mirrlees formula for optimal rates is considerably simpler in
that case and could be expressed in terms of the labour supply elasticity. He also obtained
simple results about the asymptotic pattern of the marginal rates.3 Piketty (1997) con-
sidered the same quasi-linear utility case and derived Diamond’s optimal tax formulas for
the Rawlsian criterion without setting a formal programme of maximization. He con-
sidered instead small local changes in marginal rates and used directly the elasticity of
labour supply to derive the behavioural effects of this small reform. My paper clarifies
and generalizes this alternative method of derivation of optimal taxes. Finally, the non-
linear pricing literature, which considers models that are formally very close to optimal
income tax models, has developed a methodology to obtain optimal price formulas based
on demand profile elasticities that is also close to the method adopted here (see Wilson
(1993)).

Another strand of the public economics literature has developed similar elasticity
methods to calculate the marginal costs of public funds. The main purpose of this litera-
ture was to develop tools more sophisticated than simple deadweight burden computations
to evaluate the efficiency costs of different kinds of tax reforms and the optimal provision
of public goods (see e.g. Ballard and Fullerton (1992) and Dahlby (1998)). I will show
that the methods of this literature can be useful to derive results in optimal taxation and
that, in particular, Dahlby (1998) has come close to my results for high income rates.

Starting with Mirrlees (1971), considerable effort has gone into simulations of opti-
mal tax schedules. Following Stern (1976), attention has been paid on a careful calibration
of the elasticity of labour supply. Most simulation results are surveyed in Tuomala (1990).
It has been noticed that the level of inequality of the distribution of skills and the elasticit-
ies of labour supply significantly affect optimal schedules. Most simulations use a log-
normal distribution of skills which matches roughly the single moded empirical distri-
bution but has also an unrealistically thin top tail which leads to marginal rates converging
to zero. Nobody has tried to use empirical distributions of income to perform simulations
because the link between skills and realized incomes was never investigated in depth.4 The
present study pays careful attention to this issue and presents simulations based on the
empirical earnings distribution.

3. HIGH INCOME OPTIMAL TAX RATES

I show in this section that the classic method of the optimal linear income tax literature
can be used to derive in a simple way an optimal tax rate formula for high income earners.

1. Revesz (1989) also attempted to express the Mirrlees formulas in terms of elasticities.
2. The link between Roberts (2000) and the present analysis is discussed in detail in Section 4.
3. Some of these results had been obtained by Atkinson (1990) in a more specialized situation.
4. However, Kanbur and Tuomala (1994) realized that it is important to distinguish between the skill

distribution and the income distribution when calibrating the distribution of skills. Their work improved signifi-
cantly upon previous simulations. I come back to their contribution in Section 5.
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I will consider that the govenment sets a flat marginal rate τ above a given (high) income
level z̄ and then derive the welfare and tax revenue effects of a small increase in τ using
elasticities. The optimal tax rate τ is obtained when a small change in the tax rate has no
first-order effects on total social welfare.5

3.1. Elasticity concepts

I consider a standard two good model. Each taxpayer maximizes a well-behaved individ-
ual utility function uGu(c, z) which depends positively on consumption c and negatively
on earnings z. Individual skills or ability are embodied in the individual utility function.
Assuming that the individual faces a linear budget constraint cGz(1Aτ )CR, where τ is
the marginal tax rate and R is virtual (non-labour) income. The first-order condition of
the individual maximization programme, (1Aτ )ucCuzG0, defines implicitly a Marshallian
(uncompensated) earnings supply function zGz(1Aτ , R). The uncompensated elasticity is
defined such that

ζ uG
1Aτ

z

∂z

∂(1Aτ )
. (1)

Income effects are captured by the parameter

η G(1Aτ )
∂z

∂R
. (2)

The Hicksian (compensated) earnings function is the earnings level which minimizes cost
cAz needed to reach a given utility level u for a given tax rate τ and is denoted by zcG

zc (1Aτ , u). The compensated elasticity of earnings is defined by

ζ cG
1Aτ

z

∂z

∂(1Aτ )�u . (3)

The two elasticity concepts and the income effects parameter are related by the Slutsky
equation

ζ cGζ uAη. (4)

The compensated elasticity is always non-negative and η is non positive if leisure is
not an inferior good, an assumption I make from now on.

3.2. Deriûing the high income optimal tax rate

The government sets a constant linear rate τ of taxation above a given (high) level of
income z̄. I normalize without loss of generality the population with income above z̄ to
one and I note h(z) the density of the earnings distribution at the optimum tax regime.6

To obtain the optimal τ , I consider a small increase dτ in the top tax rate τ for incomes

5. Dahlby (1998) considered piecewise linear tax schedules and used the same kind of methodology to
compute the effects of a general tax rate reform on taxes paid by a ‘‘representative’’ individual in each tax
bracket. By specializing his results to a reform affecting only the tax rate of the top bracket, he derived a formula
for the tax rate maximizing taxes paid by the ‘‘representative’’ individual of the top bracket that is a special case
of the one obtained here.

6. Note that the density h(z) is endogenous to the tax schedule. I come back to this in detail later on.
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FIGURE 1

High income tax rate perturbation

above z̄ as depicted on Figure 1. This tax change has two effects on tax revenue. First,
there is a mechanical effect, which is the change in tax revenue if there were no behavioural
responses, and second, there is a reduction in tax revenue due to reduced earnings through
behavioural responses. Let us examine these two effects successively.

• Mechanical effect.
The mechanical effect (denoted by M ) represents the increase in tax receipts if there

were no behavioural responses. A taxpayer with income z (above z̄) would pay (zAz̄)dτ
additional taxes. Therefore, summing over the population above z̄ and denoting the mean
of incomes above z̄ by zm , the total mechanical effect M is equal to

MG[zmAz̄ ]dτ . (5)

• Behaûioural responses.
As shown in Figure 1, the tax change can be decomposed into two parts; first, an

overall uncompensated increase dτ in marginal rates (starting from 0 and not just from z̄),
second, an overall increase in virtual income dRGz̄dτ . Therefore, an individual with
income z changes its earnings by

dzG−
∂z

∂(1Aτ )
dτC

∂z

∂R
dRG−(ζ uzAη z̄)

dτ
1Aτ

, (6)

where we have used definitions (1) and (2). The reduction in income dz displayed in
equation (6) implies a reduction in tax receipts equal to τdz. The total reduction in tax
receipts due to the behavioural responses is simply the sum of the terms τdz over all
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individuals earning more than z̄

BG−(ζr uzmAη̄ z̄)
τdτ
1Aτ

, (7)

where ζr uG�S

z̄ ζ u
(z)zh(z)dz�zm is a weighted average of the uncompensated elasticity. The

elasticity term ζ u
(z) inside the integral is the average elasticity over individuals earning

income z. Similarly, η̄ G�S

z̄ η (z)h(z)dz is the average income effect. Note that η̄ and ζr u

are not averaged with the same weights. It is not necessary to assume that people earning
the same income have the same elasticity; the relevant parameters are simply the average
elasticities at given income levels.7

In order to obtain the optimal tax rate, we must equalize the revenue effect obtained
by summing (5) and (7) to the welfare effect due to the small tax reform. To obtain the
welfare effect, let us consider ḡ which is the ratio of social marginal utility for the top
bracket taxpayers to the marginal value of public funds for the government. In other
words, ḡ is defined such that the government is indifferent between ḡ more dollars of
public funds and one more dollar consumed by the taxpayers with income above z̄. The
smaller ḡ, the less the government values marginal consumption of high incomes. Thus ḡ
is a parameter reflecting the redistributive goals of the government.

To compute the welfare effects, let us note u((1Aτ )z(1Aτ , R)CR, z(1Aτ , R)), the
individual utility at the optimum labour supply choice for a top bracket taxpayer. Using
the envelope theorem, the effect of the small tax change on u is duGuc (−zdτCdR )G
−uc (zAz̄)dτ where (zAz̄)dτ is the mechanical increase in individual tax. As a result and
by definition of ḡ, each additional dollar raised by the government because of the tax
reform reduces on average social welfare of people in the top bracket by ḡ. Thus the total
welfare loss due to the tax reform is equal to ḡM. Consequently, the government sets the
rate τ such that, (1Aḡ)MCBG0. Thus, using (5) and (7), the optimal rate is such that

τ
1Aτ

G
(1Aḡ)(zm�z̄A1)

ζr uzm�z̄Aη̄
. (8)

Equation (8) gives a strikingly simple answer to the problem of the optimal marginal
rate for high income earners. Note that this formula does not require identical elasticities
among taxpayers and thus applies to populations with heterogeneous preferences or elas-
ticities. The only relevant behavioural parameters are the average elasticity ζr u and average
income effects η̄ for taxpayers with income above z̄. Unsurprisingly, the optimal rate τ is
a decreasing function of the social weight ḡ put on high income taxpayers, the average
elasticity ζr u, and the absolute size of income effects Aη̄ . Interestingly, the optimal rate is
an increasing function of zm�z̄. The ratio zm�z̄ is a key parameter for the high income
optimal tax problem. This parameter depends on the shape of the income distribution
and has not been studied in the optimal tax literature.

If the distribution of income is bounded, then, when z̄ is close to the top, the ratio
zm�z̄ tends to one and thus, from (8), we deduce that the top rate must be equal to zero.
This is the classical zero top rate result derived by Sadka (1976) and Seade (1977). The
intuition for the result is straightforward. As can be seen comparing (5) and (7), close to
the top, the mechanical increase in tax revenue M is negligible relative to the loss in tax

7. Note that, in deriving (7), I have implicitly assumed that the set of taxpayers who might jump discon-
tinuously because of the small tax reform is negligible. This is expected to be true almost surely but constructing
particular counter-examples might nonetheless be possible.
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revenue B due to the behavioural response implying that the optimal rate must be close
to zero.

3.3. Empirical earnings distributions and optimal top rate

To assess whether the zero top result is actually relevant, it is useful to examine the ratio
zm�z̄ using empirical earnings distributions. Figure 2 plots the values of the ratios zm�z̄
computed using annual wage income reported on tax return data for years 1992 and 1993
in the U.S.8 On Figure 2, the ratios zm�z̄ are reported as a function of z̄ for incomes
between $0 to $500,000 in the left panel and for incomes between $10,000 to $30 million
in the right panel (using a semi-log scale). Figure 2 shows that the ratio is strikingly stable
(and around 2) over the tail of the income distribution.9 As discussed above, the ratio
must be equal to one at the level of the highest income. However, Figure 2 shows that
even at income level $30 million, the ratio is still around 2. For example, if the second top
income taxpayer earns half as much as the top taxpayer then the ratio is equal to 2 at the
level of the second top earner. Thus the ratio might well come to one only in the vicinity
of the top income earner. Consequently, the zero top result only applies to the very highest
taxpayer and is therefore of no practical interest.

FIGURE 2

Ratio mean income above z divided by z, zm�z, years 1992 and 1993

From $150,000 to close to the very top, the ratio zm�z̄ is roughly constant around 2.
This means that formula (8) can be applied by replacing zm�z̄ by 2 for any z̄ above
$150,000. Distributions with constant ratio zm�z̄ are exactly Pareto distributions. There-
fore, the tails of empirical earnings distributions can be remarkably well approximated by
Pareto distributions.10 More precisely, a Pareto distribution with parameter aH1 is such
that Prob(IncomeHz)GC�za for some constant C. For a Pareto distribution, zm�z̄ is
constant and equal to a�(aA1). The higher a, the thinner is the tail of the income distri-
bution. For the U.S. wage income distribution, the ratio zm�z̄ is around 2 and thus the
parameter a is approximately equal to 2.

8. The public use tax files prepared yearly by the Internal Revenue Service have been used for this exercise.
This data is particularly fitted for this type of computations because it oversamples high income taxpayers. As
many as one third of the highest income earners in the U.S. are included in the sample. The ratios have been
computed using the amounts reported on the line Wages, Salaries and tips of Form 1040. The sample has been
restricted to married taxpayers only.

9. The ratio becomes noisy above $10 million because the number of taxpayers above that level is very
small and crossing only one taxpayer has a non trivial discrete effect on the curves.

10. Pareto discovered this empirical regularity more than a century ago (see Pareto (1965)).
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Assuming that the elasticity ζr u and income effects η̄ converge as z̄ increases, and
assuming that the ratio zm�z̄ converges (to a limit denoted by a�(aA1)), the optimal tax
rate (8) converges. Using the Slutsky equation (4), the limiting tax rate can be written in
terms of the limiting values of the elasticities ζr u and ζr c and the Pareto parameter a

τ̄ G
1Aḡ

1AḡCζr uCζr c(aA1)
. (9)

In that case, the government wants to set approximately the same linear rate τ̄ above
any large income level and thus τ̄ is indeed the optimal non-linear asymptotic rate of the
Mirrlees problem.11

The top rate τ̄ depends negatively of the thinness of the top tail distribution measured
by the Pareto parameter a. This is an intuitive result, if the distribution is thin then raising
the top rate for high income earners will raise little additional revenue. Interestingly, for
a given compensated elasticity ζr c, the precise division into income effects and uncompen-
sated rate effects matters. The higher are absolute income effects (−η̄) relative to uncom-
pensated effects (ζr u ), the higher is the asymptotic tax rate τ̄ . Put in other words, what
matters most for optimal taxation is whether taxpayers continue to work when tax rates
increase (without utility compensation). In particular, though ζr c is a sufficient statistic to
approximate the deadweight loss of taxation, same values of ζr c can lead to very different
optimal tax rates.

The case ḡG0 corresponds to the situation where the government does not value the
marginal consumption of high income earners and sets the top rate so as to extract as
much tax revenue as possible from high incomes (soak the rich). Formula (9) specialized
to the case ḡG0 is the high income tax rate maximizing tax revenue. In the case with no
income effects (ζr cGζr u ), this ‘‘Laffer’’ rate is equal to τ̄ G1�(1Caζr ) with a around 2 for
the U.S. This formula is a simple generalization of the well known formula for the flat tax
rate maximizing tax revenue, 1�(1Cζr ), where ζr is the average elasticity over all taxpayers.

As the income distribution is affected by taxation, a may depend on τ̄ . I show in
Section 4 that, in the Mirrlees model, the parameter a is independent of τ̄ as long as τ̄F1
which implies that formula (9) can be applied using directly the empirical value of a. The
intuition is the following. When elasticities are constant, changing the tax rate has the
same multiplicative effect on the incomes of each high income taxpayer and therefore the
ratio zm�z̄ is unchanged. Empirically, in the U.S. a does not seem to vary systematically
with the level of the top rate.12

There is little consensus in the empirical literature on behavioural responses to tax-
ation about the size of high income elasticities. Some studies have found estimates in
excess of 1 while others have found elasticities very close to zero. Gruber and Saez (2000)
summarize the empirical literature based on U.S. tax reforms and discuss the reasons for
discrepancies.13 They find elasticity estimates around 0·25 for gross income. It is unlikely,
though not impossible, that the long-term compensated elasticity are bigger than 0·5. The
uncompensated elasticity is probably even smaller.

Table 1 presents optimal asymptotic rates using formula (9) for a range of realistic
values for the Pareto parameter of the income distribution, ζr u and ζr c, (the asymptotic
elasticities) and ḡ. Except in the cases of high elasticities, the optimal rates are fairly high.
It is important to remember, though, that these optimal rates are the optimal tax rates on

11. This point is confirmed in Section 4.
12. See Saez (1999a) for an empirical examination.
13. The recent volume of Slemrod (2000) also provides a number of elasticity estimates for high incomes.



SAEZ ELASTICITIES AND INCOME TAXES 213

TABLE 1

Optimal tax rates for high income earners

Uncompensated elasticityG0 Uncompensated elasticityG0·2 Uncompensated elasticityG0·5

Compensated elasticity Compensated elasticity Compensated elasticity

0·2 0·5 0·8 0·2 0·5 0·8 0·5 0·8

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Social marginal utility with infinite income gG0
Pareto
parameter

1·5 91 80 71 77 69 63 57 53
2 83 67 56 71 59 50 50 43
2·5 77 57 45 67 51 42 44 37

Panel B: Social marginal utility with infinite income gG0·25
Pareto
parameter

1·5 88 75 65 71 63 56 50 45
2 80 60 48 65 52 43 43 37
2·5 71 50 38 60 44 32 38 31

g is the ratio of social marginal utility with infinite income over marginal value of public funds. The
Pareto parameter of the income distribution takes values 1·5, 2, 2·5. Optimal rates are computed according to
formula (9).

income assuming that there are no other taxes distorting the leisure-consumption choice.
Therefore, an optimal income tax rate τ derived from (9) should be reduced to (1At) · τ
in the presence of a consumption tax at rate t. Comparing the rows in Table 1 shows that
the Pareto parameter has a big impact on the optimal rate. Pareto parameters for income
distributions vary across countries, the parameter is low in the U.S. compared to most
European countries or Canada. A thorough investigation of Pareto parameters across
countries would be relatively simple to carry out and would provide an important piece
of information for tax policy discussions. Comparing columns (2), (5) and (7) (or columns
(3), (6), (8)), we see also that, at fixed compensated elasticity, the optimal rate is very
sensitive to the size of income effects.

4. OPTIMAL NON-LINEAR INCOME TAX RATES

The last section considered only the problem of optimal tax rates at the high income end.
In this section, I investigate the issue of optimal rates at any income level using the same
elasticity method. In order to contrast my approach to the original Mirrlees approach, I
first present briefly the Mirrlees (1971) model.

4.1. The Mirrlees model

In the model, all individuals have the same utility function which depends positively on
consumption c and negatively on labour supply l and is noted u(c, l ). Individuals differ
only in their skill level (denoted by n) which measures their marginal productivity. Earn-
ings are equal to zGnl. The population is normalized to one and the distribution of skills
is written F (n), with density f (n) and support in [0,S). cn , znGnln , and un denote the
consumption, earnings and utility level of an individual with skill n. The government
cannot observe skills and thus is restricted to setting taxes as a function only of earnings,
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cGzAT (z). The government maximizes a social welfare function

WG�
S

0

G(un ) f (n)dn, (10)

where G( · ) is an increasing and concave function of utility. The government maximizes
W subject to a resource constraint and incentive compatibility constraints. The resource
constraint states that total consumption is less than total earnings minus government
expenditures, E,

�
S

0

cn f (n)dn‰�
S

0

zn f (n)dnAE. (11)

I note p the multiplier of the budget constraint (11) which represents the marginal value
of public funds. The incentive compatibility constraints state that, for each n, the selected
labour supply ln maximizes utility u(nlAT (nl ), l ), given the tax function. The derivation
of the first-order condition for optimal rates is sketched in the Appendix. Note that in the
model, redistribution takes place through a guaranteed income level (equal to AT (0))
that is taxed away as earnings increase.

4.2. Optimal marginal rates

The general first-order condition Mirrlees obtained depends in a complicated way on the
derivatives of the utility function u(c, l ) which are not related in any obvious way to
empirical magnitudes (see equation (22) in Appendix). Moreover, it is derived using
powerful but blind Hamiltonian optimization. Thus, the optimal taxation literature has
not elucidated the key economic effects leading to the optimal formula. In this subsection,
I derive a formula for optimal tax rates using elasticities of earnings and show precisely
the key economics effects behind the optimal tax rate formula.

4.2.1. Results and deriûation. I denote by H (z) the cumulated income distribution
function (the total population is normalized to one) and by h(z) the density of the income
distribution at the optimum. I note g(z) the social marginal value of consumption for
taxpayers with income z, at the optimum, expressed in terms of the value of public funds.14

It is again important to keep in mind that both h(z) and g(z) are endogenous to the tax
schedule. I first present a simple preliminary result that is also useful to understand the
relation between the income distribution and the distribution of skills in the Mirrlees
economy.

Lemma 1. For any regular tax schedule T not necessarily optimal, the earnings func-
tion zn is non-decreasing and satisfies the following differential equation,

żn

zn

G
1Cζ u

(n)

n
Ażn

T″(n)

1AT ′(n)

ζ c
(n) . (12)

If equation (12) leads to żnF0 then zn is discontinuous and (12) does not hold.

The proof, which is routine algebra, is presented in the Appendix. In the case of a
linear tax (T″G0) the earnings equation (12) simplifies to dz�zG(1Cζ u )dn�n. In the

14. This is G ′ (u)uc�p using the notation of the Mirrlees model.
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general case, a correction term in T″ which represents the effect of the change in marginal
rates is present. By definition, the income density and the skill density are related through
the equation h(z)żGf (n). Consequently, for a given skill distribution and using Lemma
1, we see that a non-linear tax schedule produces a local deformation of the income
distribution density h(z).

In order to simplify the presentation of optimal tax rates formulas, I introduce h*(z)
which is the density of incomes that would take place at z if the tax schedule T ( · ) were
replaced by the linear tax schedule tangent to T ( · ) at level z.15 I call the density h*(z) the
ûirtual density. Applying Lemma 1 to the linearized schedule, we have ż*�zG(1Cζ u )�n
where ż* is the derivative of earnings with respect to n when the linearized schedule is in
place. By definition, we also have h*(z)ż*Gf (n). Thus h and h* are related through the
following equation

h*(z)

1AT ′(z)
G

h(z)

1AT ′ (z)Cζ czT″ (z)
. (13)

Of course, the virtual density h* is not identical to the actual density h. However,
because the density h at the optimum tax schedule is endogenous (changes in the tax
schedule affect the income distribution through behavioural responses), there is very little
inconvenience in using h* rather than h. Using h* is a way to get rid of the deformation
component induced by the non-linearity in the tax schedule. In that sense and as evidenced
by Lemma 1, h* is more closely related than h to the underlying skill distribution which
represents intrinsic inequality.

The following proposition presents the optimal tax formula expressed in terms of the
behavioural elasticities (same notations as in the previous section) and the shape of the
income distribution using the concept of virtual density h*.16

Proposition 1. The first-order condition for the optimal tax rate at income leûel z*
can be written as follows,

T ′ (z*)

1AT ′ (z*)
G

1

ζ c
(z*)

�1AH (z*)

z*h*(z*) � �
S

z*

(1Ag(z)) exp ��
z

z*
�1Aζ u

(z′ )

ζ c
(z′ )

� dz′
z′ �

h(z)

1AH (z*)
dz. (14)

Alternatiûely, using the notations of the Mirrlees model, this equation can be rewritten as,

T ′ (zn )

1AT ′ (zn )
GA(n)B (n), (15)

where

A(n)G�1Cζ u
(n)

ζ c
(n)

��1AF (n)

n f (n) � , (16)

B (n)G�
S

n
�1AG ′ (um )u(m)

c

p � exp ��
m

n
�1Aζ u

(s)

ζ c
(s)
� dzs

zs
� f (m)

1AF (n)
dm. (17)

In equations (16) and (17), sub or superscripts (n) mean that the parameter is com-
puted at the skill level n.

15. This linearized tax schedule is characterized by rate τGT ′ (z) and virtual income RGzAT(z)Az(1Aτ ).
16. The proof of the proposition makes clear why introducing h* is a useful simplification.
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Obtaining (15) in the context of the Mirrlees model is possible using the Mirrlees
first-order condition. This derivation is presented in the Appendix.17 This rearrangement
of terms of the Mirrlees formula is a generalization of the one developed by Diamond
(1998) in the case of quasi-linear utility functions. This method, however, does not show
the economic effects which lead to formula (14). Formula (14) can, however, be fruitfully
derived directly in terms of elasticities using the same method as in Section 3. The formula
is commented in the light of this direct derivation just after the proof.

Direct proof of Proposition 1. I consider the effect of the following small tax reform
perturbation around the optimal tax schedule. As depicted on Figure 3, marginal rates

FIGURE 3

Local marginal tax rate perturbation

are increased by an amount dτ for incomes between z* and z*Cdz*. I also assume that
dτ is second order compared to dz* so that bunching (and inversely gaps in the income
distribution) around z* or z*Cdz* induced by the discontinuous change in marginal rates
are negligible. This tax reform has three effects on tax receipts: a mechanical effect, an
elasticity effect for taxpayers with income between z* and z*Cdz*, and an income effect
for taxpayers with income above z*.

• Mechanical effect net of welfare loss.
As shown in Figure 3, every taxpayer with income z above z* pays dτdz* additional

taxes which are valued (1Ag(z))dτdz* by the government therefore the overall mechanical

17. Revesz (1989) has also attempted to express the optimal non-linear tax formula of Mirrlees in terms
of elasticities. His derivation is similar in spirit to the one presented in the Appendix.
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effect M net of welfare loss is equal to18

MGdτdz* �
S

z*

(1Ag(z))h(z)dz.

• Elasticity effect.
The increase dτ for a taxpayer with income z between z* and z*Cdz* has an elasticity

effect which produces a small change in income (denoted by dz). This change is the conse-
quence of two effects. First, there is a direct compensated effect due to the exogenous
increase dτ . The compensated elasticity is the relevant one here because the change dτ
takes place at level z* just below z. Second, there is an indirect effect due to the shift of
the taxpayer on the tax schedule by dz which induces an endogenous additional change
in marginal rates equal to dT ′GT″dz. Therefore, the behavioural equation can be written
as follows

dzG−ζ cz*
dτCdT ′
1AT ′

,

which implies

dzG−ζ cz*
dτ

1AT ′Cζ cz*T″
.

It is easy to see that 1AT ′Cζ cz*T″H0 if and only if the curvature of the indifference
curve at the individual optimum bundle is larger than the curvature of the schedule
zAT (z), or equivalently, if and only if, the individual second-order condition is strictly
satisfied. Mirrlees (1971) showed that bunching of types occurs when this condition fails.
I assume here that 1AT ′Cζ cz*T″H0. Note that this condition is always satisfied at points
where T″(z*)Â0.

Introducing the virtual density h*(z*) and using equation (13), the overall effect on
tax receipts (denoted by E ) can be simply written as

EG−ζ c
(z*)z*

T ′
1AT ′

h*(z*)dτdz*,

where ζ c
(z*) is the compensated elasticity at income level z*. The use of the virtual density

h* is useful because it allows to get rid of the complication due to the endogenous change
in marginal rate dT ′GT″dz. In other words, one can derive the above expression for E
without taking into account the endogenous change in marginal rates by just replacing h
by h*.

• Income effect.
A taxpayer with income z above z* paysAdRGdτdz* additional taxes. So, taxpayers

above the small band [z*, z*Cdz*] are induced to work more through income effects
which reinforce the mechanical effect. The income response dz is again due to two effects.
First, there is the direct income effect (equal to ηdR�(1AT ′ )). Second, there is an indirect
elastic effect due to the change in marginal rates dT ′GT″dz induced by the shift dz along
the tax schedule. Therefore

dzG−ζ cz
T″dz

1AT ′
Aη

dτdz*

1AT ′
,

18. The tax reform has also an effect on h(z) but this is a second order effect in the computation of M.
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which implies

dzG−η
dτdz*

1AT ′Czζ cT″
. (18)

Introducing again the virtual density h*(z) to get rid of the endogenous rate change com-
ponent and summing (18) over all taxpayers with income larger than z*, I obtain the total
tax revenue effect due to income effects responses

IGdτdz* �
S

z*

Aη (z)
T ′

1AT ′
h*(z)dz.

As in Section 3, in deriving E and I, I have implicitly assumed that the set of taxpayers
who might jump discontinuously because of the small tax reform is negligible. This
amounts to assuming that only local incentive constraints bind at the optimum. Mirrlees
(1971) proved that, assuming the single-crossing property holds, this is always the case
except at bunching points.

Any small tax reform around the optimum schedule has no first-order effect on wel-
fare. Thus the sum of the three effects M, E and I must be zero which implies

T ′
1AT ′

G
1

ζ c �1AH (z*)

z*h*(z*) �
B��

S

z*

(1Ag(z))
h(z)

1AH (z*)
dzC�

S

z*

Aη
T ′

1AT ′
h*(z)

1AH (z*)
dz� . (19)

Equation (19) can be considered as a first-order linear differential equation and can
be integrated (see Appendix) using the standard method to obtain equation (14) of the
proposition. Changing variables from z* to n, and using the fact that, by Lemma 1,
z*h*(z*)(1Cζ u )Gnf (n), it is straightforward to obtain equation (15) of Proposition 1.
When changing variables from z* to n, an additional term 1Cζ u appears on the right-
hand side to form the term A(n) of equation (15). This counterintuitive term (higher
uncompensated elasticity should not lead to higher marginal rates) should be incorporated
into the skill distribution ratio (1AF )�(nf ) to lead to the income distribution ratio
(1AH )�(z*h*). Expressing optimal tax formulas in terms of the skill distribution instead
of the income distribution can thus be misleading. 	 	

4.2.2. Interpretation and implications.

• Interpretation of Proposition 1.
In the light of this direct proof, let us analyse the decomposition of optimal tax rates

presented in Proposition 1. Analysing equation (14), it appears that three elements deter-
mine optimal income tax rates: the shape of the income (or skill ) distribution, elasticity
(and income) effects, and social marginal weights.

• Shape of income distribution.
The shape of the income distribution affects the optimal rate at level z* mainly

through the term (1AH (z*))�(z*h(z*)). The elastic distortion at z* induced by a marginal
rate increase at that level is proportional to income at that level times number of people
at that income level (z*h(z*)) while the gain in tax receipts is proportional to the number
of people above z* (i.e. 1AH (z*)). Therefore, the government should apply high marginal
rates at levels where the density of taxpayers is low compared to the number of taxpayers
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with higher income. This is obviously the case at the bottom of the income distribution
because z*h(z*) is close to zero while 1AH (z*) is close to one. At the top, for a Pareto
distribution with parameter a, the ratio (1AH )�(z*h) is constant and equal to 1�a. From
the evidence displayed in Section 3, we expect the ratio to converge to a constant close to
0·5 (remember that a is around 2) for large z*. Figure 4 presents the graphs of the ratio
(1AH(z))�(zh(z)) for years 1992 and 1993 as a function of z. These graphs are based on
the same data and samples as the graphs of Figure 2. The ratios are U-shaped. The hazard
ratio is very high for low incomes, it decreases until income level $80,000 and then
increases until $200,000. Above $200,000, the ratio is indeed approximately constant,
around 0·5, showing that the Pareto approximation is adequate. The fact that the ratio
increases from $80,000 to $200,000 suggests that, with constant elasticities, optimal rates
should be increasing in that range.

FIGURE 4

Hazard ratio (1AH(z))�(zh(z)), years 1992 and 1993

Of course, the ratio (1AH )�(z*h) is endogenous (because of behavioural responses,
changing the tax schedule may change the income distribution). Nevertheless, directly
using the income distribution allows a better understanding of the optimal tax rate for-
mula. In the numerical simulations presented in the following section, the endogeneity
issue is solved by estimating an exogenous skill distribution based on the actual income
distribution.

• Substitution and income effects.
Behavioural effects enter the formula for optimal rates in two ways. First, increasing

marginal rates at level z* induces a compensated response from taxpayers earning z*.
Therefore, ζ c

(z*) enters negatively the optimal tax rate at income level z*. Second, this
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marginal rate change increases the tax burden of all taxpayers with income above z*. This
effect induces these taxpayers to work more through income effects which is good for tax
receipts. Therefore, this income effect leads to higher marginal rates (everything else being
equal) through the exponential term in (14) which is larger than one. Note that this term
is identically equal to one when there are no income effects (this case was studied by
Diamond (1998)).19

• Social marginal welfare weights.
The social marginal weights g(z) enter the optimal tax formula through the term

(1Ag(z)) inside the integral. Social marginal weights represent the relative value for the
government of an additional dollar of consumption at each income level. More precisely,
the government is indifferent between giving 1�g(z1) additional dollars to a taxpayer with
income z1 or giving 1�g(z2) dollars to a taxpayer with income z2 . These weights summarize
in a transparent way the distributive objectives of the government. If the government has
redistributive tastes, then these weights are decreasing in income. In that case, expression
(1Ag(z)) in equation (14) is increasing in z. Therefore, taste for redistribution is unsurpris-
ingly an element tending to make the tax schedule progressive. If the government had no
redistributive goals, then it would choose the same marginal welfare weights for everybody
and thus equation (14) can also be applied in the case with no redistributive concerns.
The shape of the income distribution and the size of both substitution and income effects
would still matter for the optimal income tax.

The original Mirrlees (1971) derivation relies heavily on the fact that there is a uni-
dimensional skill parameter which characterizes each taxpayer. Mirrlees (1986) tried to
extend the model to heterogeneous populations where individuals are characterized by a
multidimensional parameter instead of a single dimensional skill parameter. He adopted
the same approach as he used in his original 1971 study and derived first-order conditions
for the optimal tax schedule. However, these conditions were even more complicated than
in the unidimensional case and thus it proved impossible to obtain results or interpret the
first-order conditions in that general case. The direct proof using elasticities shows that it
is not necessary to introduce a unidimensional exogenous skill distribution to obtain for-
mula (14). Therefore, formula (14) might, in principle, be valid for any heterogeneous
population as long as ζ u

(z) and ζ c
(z) are considered as average elasticities at income level

z.20 It is, in fact, possible to recover formula (14) using the first-order conditions of the
general multi-dimensional case derived in Mirrlees (1986). Therefore, the elasticity method
could be a useful step to take to extend in a fruitful way the Mirrlees (1971) model to
heterogeneous populations. One important caveat should be mentioned: formula (14) is
valid only at points where the first-order condition characterizes the optimal schedule.
The small literature on multi-dimensional screening models has shown that assessing
whether first-order conditions characterize the optimum schedule is much more compli-
cated in the multi-dimensional case because non-local incentive constraints are likely to
bind in these problems (see the analysis of Rochet and Choné (1998)). Therefore, in the
multi-dimensional case, without additional restrictive conditions, formula (14) might not
be valid. The difficult analysis of the singularities in the multi-dimensional case is beyond
the scope of the present paper.

19. The heuristic proof shows clearly why negative tax rates are never optimal. If the tax rate were negative
in some range then increasing it a little bit in that range would decrease earnings of taxpayers in that range
(because of the substitution effect) but this behavioural response would increase tax receipts because the tax rate
is negatiûe in that range. Therefore, this small tax reform would unambiguously increase welfare.

20. Equation (13) linking the virtual density h* to the actual density h can be generalized to the case of
heterogeneous populations.
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In any case, Proposition 1 suggests that the unidimensional skill distribution in the
Mirrlees model should not be considered as a real economic element (which could be
measured empirically) but rather as a simplification device to perform computations and
numerical simulations. The skill distribution should simply be chosen so that the resulting
income distribution is close to the empirical income distribution. This route is followed in
Section 5.

Formula (14) could also be used to pursue a positiûe analysis of actual tax schedules.
Considering the actual tax schedule T ( · ) and the actual income distribution H ( · ), and
making assumptions about the patterns of elasticities ζ u

(z) and ζ c
(z) , it is also possible to

use equation (14) to infer the marginal social weights g(z). Even if the government does
not explicitly maximize welfare, it may be interesting to know what are the implicit weights
that the government is using. For example, if some of the weights appear to be negative
then the tax schedule is not second-best Pareto efficient.21

• Links with preûious studies.
As discussed in Section 2, Roberts (2000) has obtained a formula equivalent to (19)

using also a perturbation approach. His perturbation induces all taxpayers in a small
band of income to bunch at the upper end of the band. His derivation is perhaps less
transparent than the present one because it is obtained using Taylor expansions and does
not decompose the tax revenue changes into income and substitution effects. Moreover,
his approach relies on the assumption that there is only one type of individual at each
income level as in the Mirrlees (1971) model.

The derivation presented here is also close to the demand profile approach used in
the literature on optimal nonlinear pricing for a regulated monopoly (see Wilson (1993)).
The nonlinear price problem is formally equivalent to the optimal income tax problem
with constant welfare weights g(z). Moreover, the non-linear pricing literature generally
assumes away income effects. In that particular case, the non-linear pricing literature has
been able to derive optimal pricing formulas directly in terms of demand profiles and
express optimal pricing formulas as a simple inverse elasticity rule that is formally equival-
ent to formula (14) with no income effects and constant weights g(z). In the income tax
case, the demand profile elasticity becomes the elasticity of the number of taxpayers above
a given income level z (i.e. 1AH (z)) with respect to (one minus) the marginal rate at z
(i.e. 1AT ′ (z)).22 In the case of the income tax problem, it is more convenient to express
optimal tax formulas in terms of standard labour supply elasticities rather than the
‘‘demand profile’’ elasticity. Nonetheless, it is perhaps surprising that the optimal income
tax literature before Diamond (1998) did not consider more seriously the case with no
income effect which is standard in the nonlinear pricing literature because it is very
convenient to solve and analyse.

• Optimal asymptotic rates.
It is possible to recover the high income optimal tax formula (9) from Section 3 using

equation (14) for large z*.23 With large z, g(z) tends to ḡ, and the ratio (1AH )�(z*h*)
tends to 1�a when the tail is Paretian. Assuming that elasticities converge, the exponential
term in (14) is approximately equal to (z�z*)1Aζr u/ζr c

and thus the fact that h(z) is Paretian
implies that the integral term in (14) tends to (1Aḡ)a� [aA(1Aζr u�ζr c )]. Putting together
these results, one can obtain (9).

21. This analysis has been used frequently in the commodity taxation literature where it is known as the
inverse optimum problem (see e.g. Ahmed and Stern (1984)).

22. See Saez (1999b) for more details.
23. Saez (1999a) discusses this point in detail.
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Diamond (1998) obtained this formula in the case with no income effects but
expressed the formula in terms of the Pareto parameter of the skill distribution instead of
the income distribution.24 Using Lemma 1, it can be shown that the Pareto parameter of
the income distribution is equal to the Pareto parameter of the skill distribution divided
by 1Cζr u. This shows that, as discussed in Section 3, the Pareto parameter a is independent
of the limiting tax rate in the Mirrlees model. Roberts (2000) also obtained an asymptotic
formula that is close to equation (9). However, the basic methodology of Section 3 is a
much easier way to obtain the same optimal tax rate result for high incomes than going
through the asymptotics of the general formula.

5. NUMERICAL SIMULATIONS

5.1. Methodology

As we saw in the previous section, there are three key elements that determine optimal
tax rates: elasticities, the shape of the income distribution, and the redistributive tastes of
the government. In the simulations, careful attention is paid to the calibration of each of
these parameters.

Simulations are presented using utility functions with constant compensated elasticity
ζ c. This provides a useful benchmark because the compensated elasticity is the key param-
eter in empirical studies. Even though there is empirical evidence showing that elasticities
may be higher at the low end and the high end of the income distribution (see e.g. Blundell
(1992) and Gruber and Saez (2000)), it is useful to start with the case of constant elasticit-
ies in order to see how optimal tax rates should be set in that benchmark case. It is fairly
simple to adapt the simulation methodology to the case of varying elasticities.25

As we saw, for a given compensated elasticity, varying income effects affects optimal
rates. As most, though not all, empirical studies find small income effects relative to
substitution effects (see e.g. Blundell and MaCurdy (1999)), it is useful to consider the
case with no income effects. Therefore, in the simulations, I use two types of utility func-
tions with constant elasticities. With utility functions of Type I

uGlog �cA l 1Ck

1Ck� , (20)

there are no income effects. The elasticity (uncompensated and compensated) is equal to
1�k. This case was examined theoretically by Atkinson (1990) and Diamond (1998).

Type II utility functions are such that

uGlog (c)Alog �1C l 1Ck

1Ck� . (21)

The compensated elasticity is equal to 1�k but there are income effects. The uncompen-
sated elasticity ζ u can be shown to tend to zero when n tends to infinity. Comparing the
results of Type I and Type II utility functions will allow us to assess the impact of income
effects on optimal schedules keeping constant substitution effects. It is important to keep
in mind that the utility functions should be chosen so as to replicate the empirical elasticit-
ies and that l does not necessarily represent hours of work. As a result, Type I utility

24. That is why his table of high income optimal tax rates is not directly comparable to the results
presented in Table 1. He also confused a and 1Ca when selecting examples.

25. This is attempted by Gruber and Saez (2000) in a simpler four-bracket optimal income tax setting.



SAEZ ELASTICITIES AND INCOME TAXES 223

function, where l tends to infinity for large n, is clearly not realistic when l represents
hours of work but is nevertheless appropriate if, as evidenced empirically, income effects
are much smaller than substitution effects. As discussed in Section 3, there is controversy
in the empirical literature about the size of substitution effects. I choose two values for
the compensated elasticity parameters ζ cG0·25 and ζ cG0·5. These values fall within the
middle range of empirical estimates.

I use the earnings distribution of year 1992 from tax return data to perform numerical
simulations. Formula (14) cannot be directly applied using the empirical income distri-
bution because the income distribution is affected by taxation. Therefore, it is useful to
come back to the Mirrlees formulation and use an exogenous skill distribution to perform
numerical simulations. The main innovation is that the skill distribution is calibrated such
that, given the utility function chosen and the actual tax schedule, the resulting income
distribution replicates the empirical earnings distribution. Previous simulations almost
always used log-normal skill distributions which match globally unimodal empirical distri-
butions but approximate very poorly empirical distributions at the tails (both top and
bottom tails). Moreover, changing the elasticity parameter without changing the skill dis-
tribution, as usually done in numerical simulations, might be misleading because changing
the elasticities modifies the resulting income distribution and thus might affect optimal
rates also through this indirect effect.

Optimal rates simulations are performed using two different social welfare criteria,
Utilitarian and Rawlsian. Because for both types of utility functions, uc→0 as n→S, ḡ
is always equal to zero and thus the asymptotic rates are the same with both welfare
criteria. In the case of the Utilitarian criterion, social marginal weights g(z) are pro-
portional to uc which is approximately decreasing at the rate 1�c. Optimal rates are com-
puted such that the ratio of government spending E to aggregate production is equal to
0·25. The original Mirrlees (1971) method of computation is used and the details are
presented in the Appendix.

5.2. Results

Optimal marginal rates are plotted on Figure 5 for yearly wage incomes between $0 and
$300,000. The curves represent the optimal non-linear marginal rates and the dashed hori-
zontal lines represent the optimal linear rates (see below). As expected, the level of the
optimal rates depends on the level of elasticities and on the type of the utility function.
In all four cases, however, the optimal rates are clearly U-shaped.26 Optimal rates are
decreasing from $0 to $75,000 and then increase until income level $200,000. Above
$200,000, the optimal rates are close to their asymptotic level. This U-shape pattern is
strikingly close to many actual tax schedules. The high rates at the bottom obtained in
the simulations correspond to the phasing-out of the guaranteed income level. As in actual
systems, the simulations suggest that the government should apply high rates at the bot-
tom in order to target welfare only to low incomes. In most countries, rates drop signifi-
cantly once welfare programmes are phased-out and tax rates are in general increasing at
high income levels because most income tax systems are progressive. In the simulations
presented, tax rates increase at high income levels because of the shape of the income
distribution (as discussed above) and because of the redistributive tastes of the govern-
ment. Note that the increasing pattern of tax rates due to the U-shape pattern of the ratio

26. The rate at the bottom is not zero because labour supply tends to zero as the skill n tends to zero,
violating one of the assumptions of Seade (1977).
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FIGURE 5

Optimal tax simulations

(1AH )�(zh) cannot be obtained with a log-normal skill distribution because in that case,
the ratio (1AH )�(zh) is always decreasing. The increasing pattern of marginal rates at the
high end depends of course on the assumption of constant elasticities and might be
reversed if elasticities are increasing with income (Gruber and Saez (2000)).

As expected, the Rawlsian criterion leads to higher marginal rates. The difference in
rates between the two welfare criteria is larger at low incomes and decreases smoothly
toward 0 (the asymptotic rates are the same).

I have also reported in dashed lines on Figure 5, the optimal linear rates computed
for the same utility functions, welfare criteria and skill distribution (the upper one corre-
sponding to ζ cG0·25 and the lower one to ζ cG0·5). The optimal linear rates are also
computed so that government spending over total earnings be equal to 0·25. Table 2
reports the optimal average marginal rates weighted by income in the non-linear case
along with the optimal linear rate.27 The guaranteed consumption levels of people with
skill zero (who supply zero labour and thus earn zero income) in terms of average income
are also reported. As average incomes differ in the linear and non-linear cases, I also
report (in parentheses) the ratio of the guaranteed income for the linear case to the guaran-
teed income for the non-linear case: this ratio allows a simple comparison between the
absolute levels of consumption of the poorest individuals in the linear and non-linear case.

The average marginal rates are substantially lower in the non-linear cases than in the
linear cases. The guaranteed levels of consumption are slightly higher in relative terms in
the linear cases (than in the non-linear cases) but as average earnings are lower in the
linear cases, the absolute levels are similar. Therefore, non-linear taxation is significantly

27. The asymptotic rate in the non-linear case is reported in parentheses.
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TABLE 2

Numerical simulations of optimal taxes

Utilitarian criterion Rawlsian criterion

Compensated elasticity Compensated elasticity

0·25 0·5 0·25 0.5

Non-linear Linear Non-linear Linear Non-linear Linear Non-linear Linear
(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Utility Type I (no income effects)
Optimal Average Rate 0·51 0·61 0·38 0·51 0·68 0·80 0·52 0·67
(Asymptotic Rate) (0·68) (0·51) (0·68) (0·51)

Guaranteed Income Level 0·33 0·36 0·21 0·26 0·55 0·55 0·42 0·42
(linear over non-linear level) (1·03) (1·09) (0·92) (0·87)

Panel B: Utility Type II (income effects)
Optimal Average Rate 0·59 0·67 0·48 0·60 0·77 0·88 0·65 0·82
(Asymptotic Rate) (0·81) (0·69) (0·81) (0·69)

Guaranteed Income Level 0·40 0·42 0·31 0·35 0·60 0·63 0·50 0·57
(linear over non-linear level) (1·00) (1·01) (0·92) (0·92)

In the non-linear case, optimal rates are averaged with income weights; asymptotic rates are reported in paren-
theses below average rates. The guaranteed income level is expressed in percentage of average income. The ratio
of the absolute guaranteed level in the linear case over the absolute guaranteed level in the non-linear case is
reported in parentheses.

more efficient than linear taxation to redistribute income. In particular, it is better from
an efficiency point of view to have high marginal rates at the bottom (which corresponds
to the phasing out of the guaranteed income level).

Mirrlees (1971) found much smaller optimal marginal rates in the simulations he
presented. Rates were slightly decreasing along the income distribution and the levels
around 20% to 30%. The smaller rates he found were the consequence of two effects.
First, the utility function he chose (uGlog (c)Clog (1Al )) implies high elasticities. Income
effects are constant with η G−0·5 and compensated elasticities are large with ζ c decreasing
from around 1 (at the bottom decile) to 0·5 (at the top decile). These high elasticities lead
to low optimal tax rates. Second, the log-normal distribution for skills implies that the
hazard ratio (1AH(z))�(zh(z)) is decreasing over the income distribution and tends to zero
as income tends to infinity. This implied a decreasing pattern of optimal rates.

Subsequently, Tuomala (1990) presented simulations of optimal rates using utility
functions with smaller elasticities. As in Stern (1976) for the linear tax case, Tuomala
(1990) used the concept of elasticity of substitution between consumption and leisure to
calibrate utility functions. This concept does not map in any simple way into the concepts
of income effects and elasticities used in the present paper. Tuomala’s utility function
implies that the compensated elasticity is around 0·5 but income effects are unrealistically
large (η 
 −1) implying a negative uncompensated elasticity. Unsurprisingly, he found
higher tax rates but the pattern of optimal rates was still regressive, from around 60% at
the bottom to around 25% at 99-th percentile because of the shape of the skill distribution.
Kanbur and Tuomala (1994) noticed that it is important to calibrate the log-normal skill
distribution indirectly so that the income distribution inferred from the skill distribution
matches the actual distribution. They obtained optimal tax rates substantially higher than
previous simulations and closer to those presented here.

6. CONCLUSION

Using elasticities to derive optimal income tax rates is a fruitful method for a number of
reasons. First, it is straightforward to obtain an optimal tax formula for high incomes.
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The literature following Mirrlees (1971) on optimal income taxation had not been able to
obtain this simple formula. Using elasticity estimates from the empirical literature, the
formula for asymptotic top rates suggests that marginal rates for labour income should
not be lower than 50% and may be as high as 80%. Second, the elasticity method has the
advantage of showing precisely how the different economic effects come into play and
which are the relevant parameters for optimal taxation. The original maximization method
of Mirrlees (1971) did not allow such a simple economic interpretation. Third, because
optimal tax formulas are expressed in terms of parameters that can be observed or esti-
mated, numerical simulations can be performed and calibrated using the empirical income
distribution.

The analysis can be extended in several ways. First, the ratios zm�z̄ and
(1AH (z))�(zh) introduced in Sections 3 and 4 are closely linked to optimal pattern of
marginal rates and can be fruitfully examined using empirical income distributions. It
would be interesting to compute these ratios for other years and countries to see whether
the U-shape pattern is universal of specific to the U.S. Second, the general framework
under which the approach used here to derive optimal tax rates is valid, needs still to be
worked out precisely. Last, it might be fruitful to apply the same methodology to other
tax and redistribution problems. In particular, the issue of optimal tax rates at the bottom
of income distribution deserves more attention in order to cast light on the important
problem of designing income maintenance programmes.

APPENDIX

Deriûing the Mirrlees optimal tax formula

Each individual chooses l to maximize u(nlAT(nl ), l ), which implies, n(1AT ′ (zn ))ucCulG0. Differentiating un

with respect to n, we have du�dnG−lul �n. Following Mirrlees (1971), in the maximization programme of the
government, un is regarded as the state variable, ln as the control variable while cn is determined implicitly as a
function of un and ln from the equation unGu(cn , ln ). The government maximizes equation (10) by choosing ln
and un subject to equation (11) and du�dnG−lul �n. Denoting by p and φ(n) the corresponding multipliers, we
obtain (see Mirrlees (1971), equation (33))

�nCu(n)
l

u(n)
c
� f (n)G

ψ (n)
l

n �
S

n
� 1

u(m)
c

A
G ′(um )

p �Tnm f (m)dm, (22)

where TnmGexp [−�m
n (lsucl (cs , ls ))�(suc (cs , ls ))ds]. ψ is defined such that ψ (u, l )G−lul (c, l ) where c is a function

of (u, l ) such that uGu (c, l ). A superscript (n) means that the corresponding function is estimated at (cn , ln , un ).

Proof of Lemma 1.

żn�znG(lnCnl̇n )�(nln ) and lnGl (wn , Rn ) where wnGn(1AT ′ ) is the net-of-tax wage rate and RnG

nlnAT(nln )Anln (1AT ′ ) is the virtual income of an individual with skill n. I note l (w, R) the uncompensated
labour supply function. Therefore

l̇nG
∂l

∂w
[1AT ′An(nl̇nCln )T ″ ]C

∂l

∂R
(nl̇nCln )(nlnT ″ ),

and rearranging

l̇nG
wn

l

∂l

∂w

l

n
C�wn

∂l

∂R
A

wn

l

∂l

∂w�
nlnT ″

n(1AT ′ )
[lnCnl̇n ].

Using the definitions (1) and (2) along with the Slutsky equation (4)

l̇nGζ u ln
n
Ażn

lnT ″
1AT ′

ζ c,
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and therefore

żn

zn

G
nl̇nCln

nln
G

1Cζ u

n
Ażn

T ″
1AT ′

ζ c

which is exactly (12). The second-order condition for individual maximization is żnÂ0. Therefore, if (12) leads
to żnF0, this means that T ′ decreases too fast producing a discontinuity in the income distribution. 	 	

Proof of Proposition 1

In order to rewrite equation (2) in terms of elasticities, I first derive formulas for ζ u, ζ c and η as a function of
the utility function u and its derivatives. The uncompensated labour supply l (w, R) is obtained implicitly from
the first-order condition of the individual maximization programme, wucCulG0. Differentiating this condition
with respect to l, w and R leads to

[uccw
2C2uclwCull ]dlC[ucCuccwlCucl ]dwC[uccwCulc ]dRG0.

Replacing w by Aul �uc , the following formulas for ζ u and η are obtained

ζ uG
ul�lA(ul �uc )

2uccC(ul �uc )ucl

ullC(ul�uc )
2uccA2(ul �uc )ucl

, (23)

η G
A(ul �uc )

2uccC(ul �uc )ucl

ullC(ul �uc )
2uccA2(ul �uc )ucl

,

and using the Slutsky equation (4)

ζ cG
ul �l

ullC(ul�uc )
2uccA2(ul �uc )ucl

. (24)

The first-order condition of the individual n(1AT ′ )ucCulG0 implies nCul �ucGnT ′G−(ul �uc )T ′�(1AT ′ ).
Therefore (22) can first be rewritten as follows

T ′
1AT ′

G−
ψ l

ul
�1AF (n)

n f (n) � �
S

n
�1AG ′ (um )u(m)

c

p � u(n)
c

u(m)
c

Tnm � f (m)

1AF (n)�dm. (25)

The first part of (25) is equal to A(n) iffAψ l �ulG(1Cζ u )�ζ c. ψ is defined such that ψ (u, l )G−lul (c, l )
where c is a function of (u, l ) such that uGu(c, l ). Therefore, using (23) and (24), simple algebra shows that
Aψ l �ulG(1Cζ u )�ζ c.

The integral term of (25) is equal to B(n) if it is shown that

Tnm

u(n)
c

u(m)
c

Gexp ��
m

n
�1Aζ u

(s)

ζ c
(s)
� żs

zs

ds�.
By definition of Tnm and expressing u(n)

c �u(m)
c as an integral

Tnmu(n)
c �u(m)

c Gexp ��
m

n
�−d log (u(s)

c )

ds
A

lsu
(s)
cl

su(s)
c
�ds� . (26)

I note J (s)G−(du(s)
c �dsClsu

(s)
cl �s)�u(s)

c the expression in (26) inside the integral. Now, u(s)
c Guc (cs , ls ), therefore

du(s)
c �dsGu(s)

cc ċsCu(s)
cl l̇s . From du�dnG−lul�n, I obtain u(s)

c ċsCu(s)
l l̇sGu̇sG−lsu

(s)
l �s. Substituting ċs from the latter

into the former, I obtain du(s)
c �dsG−[sl̇sCls ]ulucc�(suc )Cucl l̇s . Substituting this expression for du(s)

c �ds in J (s) and
using again the expressions (23) and (24), we have finally

J (s)G[lulucc�u2
cAlucl�uc ]�lsCsl̇s

sls �G�ζ
cAζ u

ζ c � żs

zs

,

which finishes the proof. Note that on bunching intervals included in (n, m), żsGċsG0, J (s)G0, and all the
preceding equations remain true, and thus the proof goes through. 	 	

Deriûation of the formula for optimal rates (14) from formula (19)

I note

K(z)G�
S

z

Aη
T ′

1AT ′
h*(z′ )dz′.
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Equation (19) can be considered as a first-order differential equation in K(z), K ′ (z*)GD(z*)[C(z*)CK(z*)],
where C(z*)G�S

z* [1Ag(z)]h(z)dz and D(z*)Gη�(z*ζ c ). Routine integration using the method of the variation
of the constant and taking into account that K(S )G0, leads to

K(z*)G−�
S

z*

D(z)C(z) exp �−�
z

z*

D(z′ )dz′ �dz.

Integration by parts leads to

K(z*)G−�
S

z*

C ′ (z) exp �−�
z

z*

D(z′ )dz′ �dzAC(z*). (27)

Differentiation of (27) leads directly to (14). 	 	

Numerical simulations

Separability of the utility function in labour and consumption simplifies the computations. Therefore, for Type
I utility, I use uGcAl kC1�(kC1), and G(u)Glog (u) (in the utilitarian case). For Type II utilities, uG
log (c)Alog [1Cl kC1�(kC1)] and G(u)Gu (in the utilitarian case). For both types of utility functions, optimal
rates are computed by solving a system of two differential equations in u(n) and ρ(n)G(nCul �uc )�ψ l . The
system of differential equations can be written as follows

dρ
dn

G−
ρ
n �1Cnf ′

f �A 1

nuc

C
G ′ (u)

pn
,

and du�dnG−lul �n.

The system of differential equations used to solve optimal rates depends on f (n) through the expression
nf ′ (n)� f (n). f (n) is derived from the empirical distribution of wage income in such a way that the distribution
of income z(n)Gnl (n) inferred from f (n) with flat taxes (reproducing approximately the real tax schedule)
matches the empirical distribution. I check that the optimal solutions lead to increasing earnings zn which is a
necessary and sufficient condition for individual second-order conditions (Mirrlees (1971)).
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