Taxation and International Migration of Superstars: Evidence from the European Football Market

Henrik Kleven (London School of Economics)

Camille Landais (Stanford University)

Emmanuel Saez (UC Berkeley)

September 2012

Why Focus on Tax-Induced International Migration?

- High-skilled labor potentially very responsive to tax differentials when migration barriers are low
- Such responses increase the efficiency cost of taxation and limits the redistributive ability of governments [Mirrlees (1982), Bhagwati-Wilson (1989)]
- Internationally mobile labor may induce socially suboptimal labor tax competition between countries [Wildasin (2006)]
- Very salient issue in the policy debate

Recent Policy Debate in the United Kingdom

In April 2010, the top MTR increased from 40% to 50% on annual income above £150k. This has triggered a heated debate.

The Times, February 2, 2010:

"The Chancellor's announcement [of the 50p tax rate] sparked ... warnings that hedge fund managers and bankers would lead an exodus to friendlier tax regimes"

Arsene Wenger in *The Sunday Times*, April 25, 2009: "With the new taxation system, ..., the domination of the Premier League will go, that is for sure"

Existing Evidence is Extremely Scarce

- A small literature on migration across tax jurisdictions within countries [Kirchgassner and Pommerehne (1996), Feldstein and Wrobel (1998)]
- But no work on tax-induced migration across countries
- Why this gap in the literature?
 - Lack of micro data containing citizenship information
 - Critical issues regarding how to identify causal effects on migration

Why Football?

1. Salient policy issue:

A highly visible segment of the labor force; people care about the movements of footballers in and of itself

2. Data availability:

Extensive data on the careers and mobility of football players can be gathered for many countries over long time periods

3. Identification:

Many compelling sources of variation in tax policy and labor market regulation over time, within and between countries

4. Upper bound:

Mobility costs are low for football players → upper bound on the migration response to taxation

Main Contributions and Findings

- Theoretical model of taxation and migration allowing for rigid labor demand and sorting effects
- 2. Reduced-form graphical evidence showing clear migration effects of country-specific tax reforms
- **3. Multinomial regressions** using quasi-experimental variation from many countries simultaneously
 - **a. Migration overall:** the location elasticity with respect to the net-of-tax rate is positive and large, especially for foreign players
 - **b. Ability sorting:** the location elasticity is extremely large at the top of the ability distribution and negative at the bottom
 - c. **Displacement:** cross-effect between foreign and domestic players is negative

Presentation Outline

- 1. Context and data
 - European football: institutional background
 - Football and tax data
- 2. Graphical (non-parametric) evidence
 - Cross-country evidence: Bosman Ruling
 - Within-country evidence: Spanish "Beckham Law" & Danish "Researchers' Tax Scheme"
- 3. Theoretical framework
 - Migration effects under flexible vs. rigid labor demand
- 4. Multinomial regression analysis
 - Migration, ability sorting and displacement effects
- Revenue-maximizing tax rates on high-income foreigners and policy implications

European Football: The Basics

- Football clubs are attached to a particular city and a local stadium
- Each club has a squad of about 25-40 players
- Within each country, there is a top national league including between 12 and 22 national clubs depending on country
- On top of national leagues, there are two Europe-wide competitions gathering the best clubs from each country
- Clubs and players sign contracts, which specify a duration (typically 2-4 years) and an annual salary

Transfers and the Bosman Ruling

- Until 1995, the market for football players was heavily regulated:
 - > 3-Player Rule: no more than three foreign players could be aligned in any game in the UEFA club competitions
 - Transfer-Fee Rule: transfer fees applied to out-of-contract players
- Bosman Ruling by the European Court of Justice on Dec 15, 1995:
 No restrictions on the free movement of labor →
 - Elimination of the 3-Player Rule for EU players in EU clubs
 - Elimination of the Transfer-Fee Rule for EU players in EU clubs

European Football Data

- Data on the universe of first-league football players and first-league clubs in 14 European countries since 1985:
 - Countries: Austria, Belgium, Denmark, England, France, Germany, Greece, Italy, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland
 - Player information: nationality, date of birth, club affiliation, performance stats, national team selection. Data also includes salary information for a subsample and subset of years
 - Club information: position in national league in each year, results from all games played in international competitions
- Players cannot live far away from the hometown of their club → easy to track down the tax residence status of players

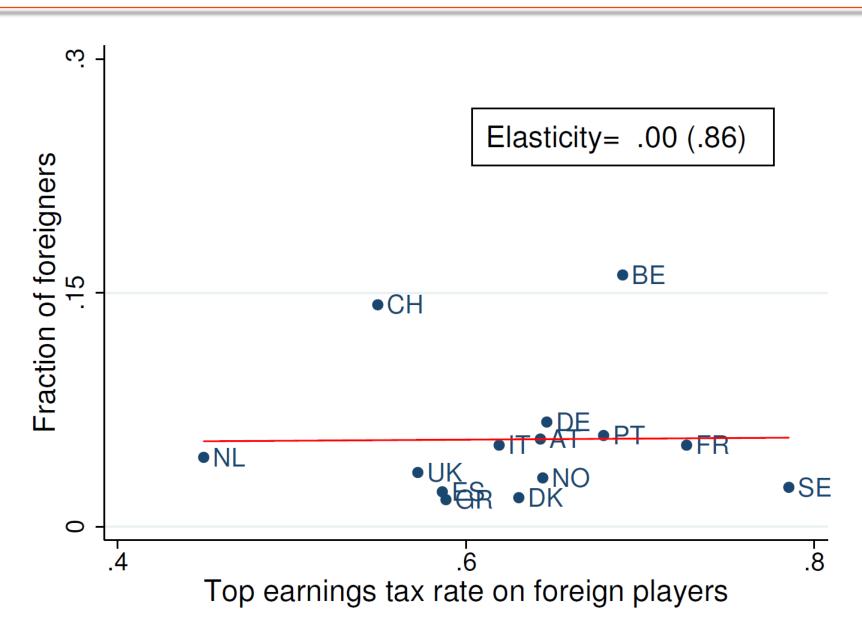
Tax Rate Data

- The appropriate tax rate for migration decisions is the ATR, but this is not observed for the full sample due to incomplete salary data
- Given the very high salaries of top football players, the ATR is closely approximated by the top MTR
 - > The difference is less than 10% for two-thirds of the sample
 - > The top MTR has the advantage of being easy to compute and exogenous

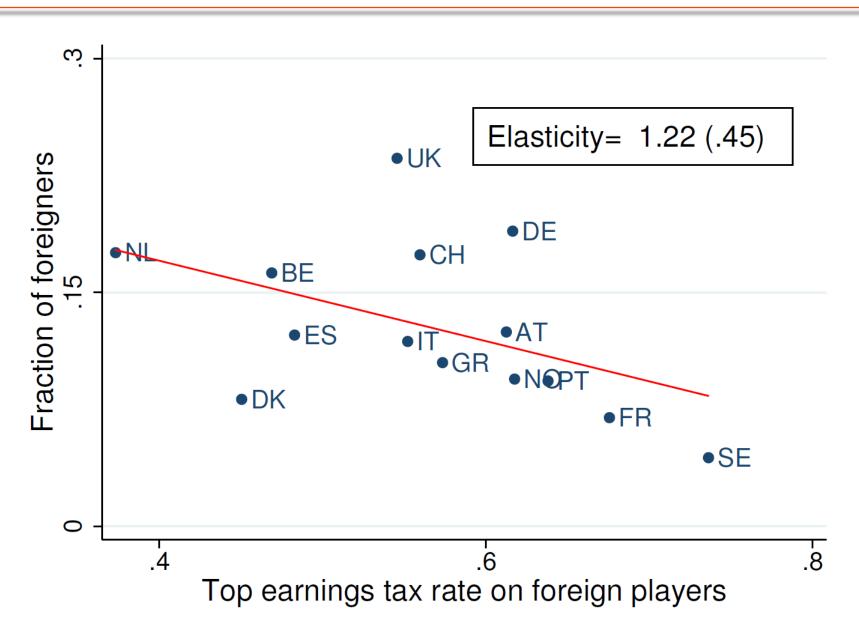
Our strategy:

- Use top MTRs including the top income tax rate, uncapped payroll taxes, and value-added taxes (always accounting for special rules applying to immigrant workers and athletes)
- Robustness check: use ATRs based on imputed earnings (obtained from actual earnings observed for a subsample)

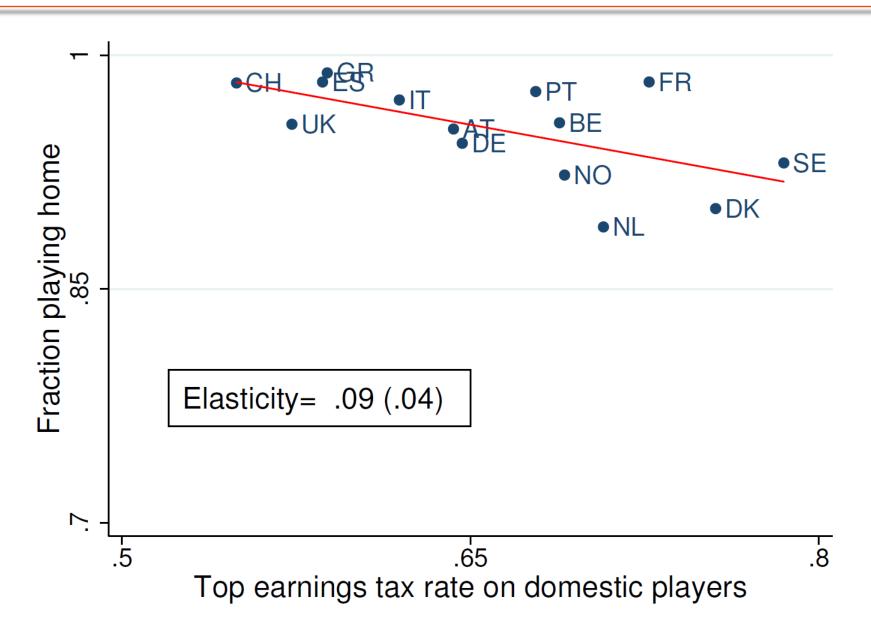
Sources of Identification

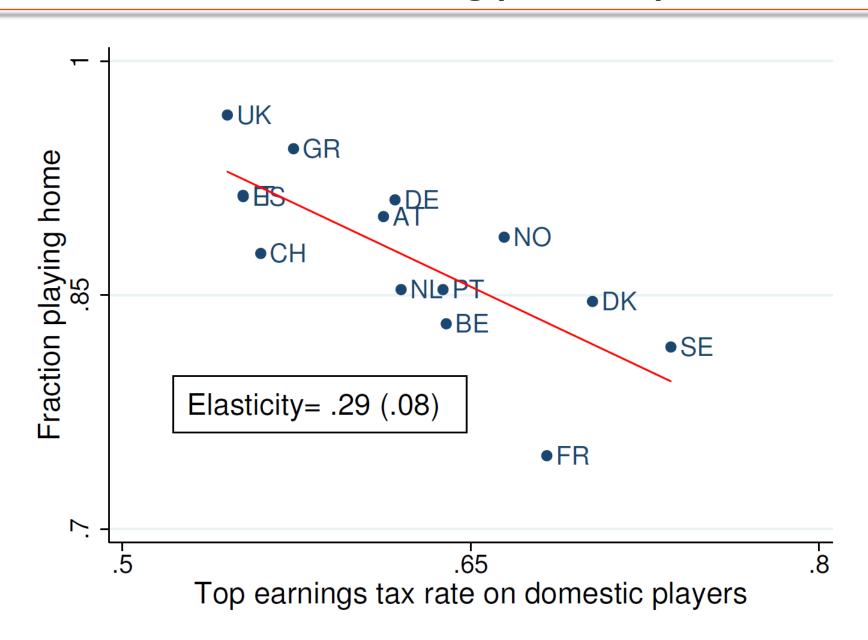

Bosman Ruling:

- Sudden liberalization of the European football market in Dec 1995
 - expect top players to go from high-tax to low-tax countries
- But inability to control for unobservable (time-varying) country characteristics that affect mobility patterns

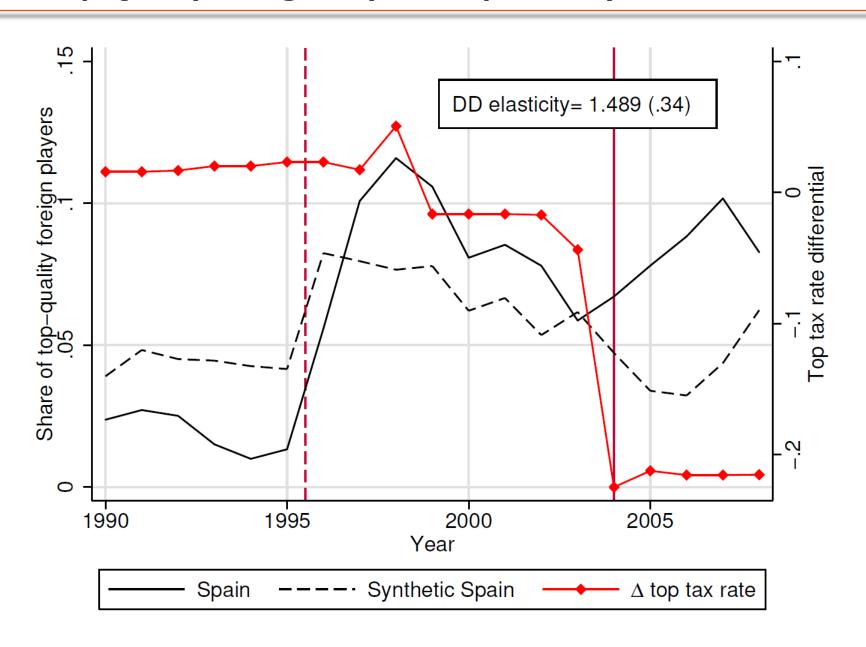

Tax reforms with intra-country variation in top MTRs:

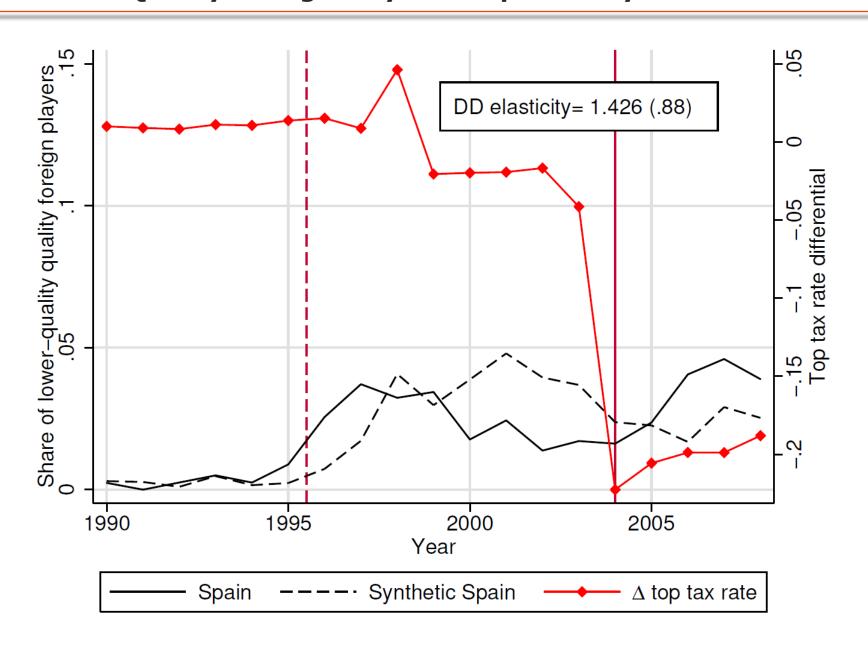
- Special tax schemes to foreigners: Netherlands (1980s), Denmark (1992), Belgium (2002), Spain (2004), France (2008)
- A cohort-based tax reform in Greece (1993)
- → can fully control for country fixed effects varying over time


In-Migration of Foreign Players: Before Bosman Ruling (1985-1995)

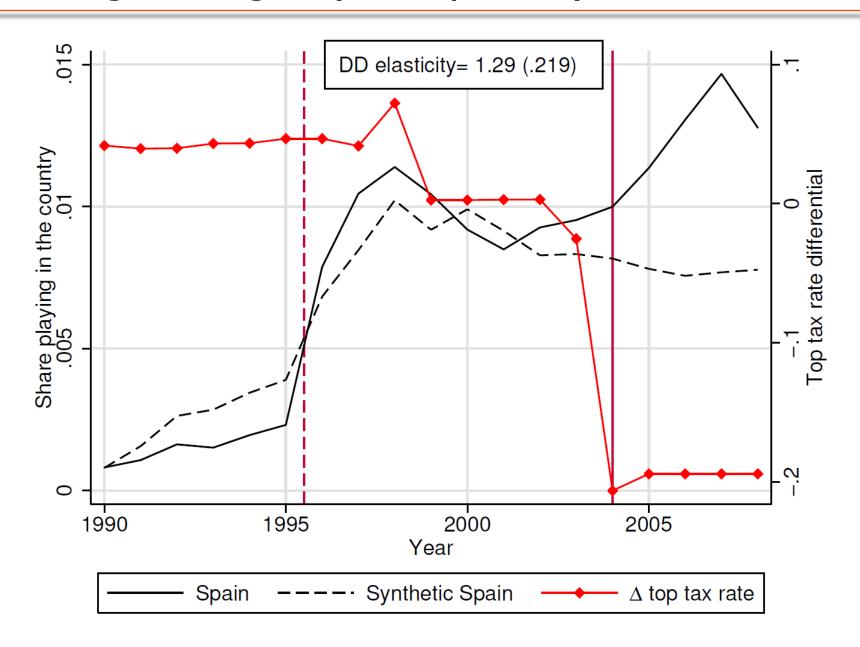

In-Migration of Foreign Players: After Bosman Ruling (1996-2008)

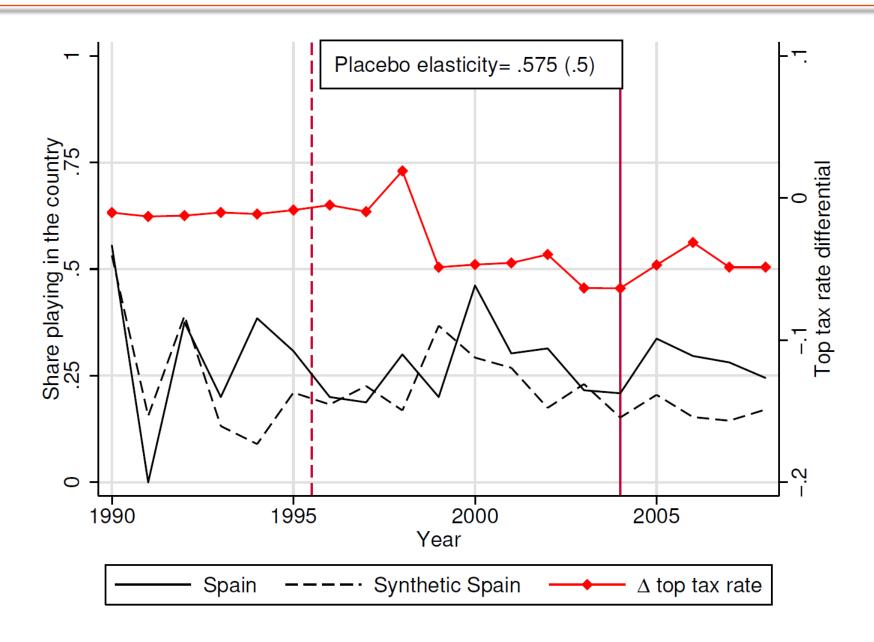
Out-Migration of Domestic Players: Before Bosman Ruling (1985-1995)


Out-Migration of Domestic Players: After Bosman Ruling (1996-2008)

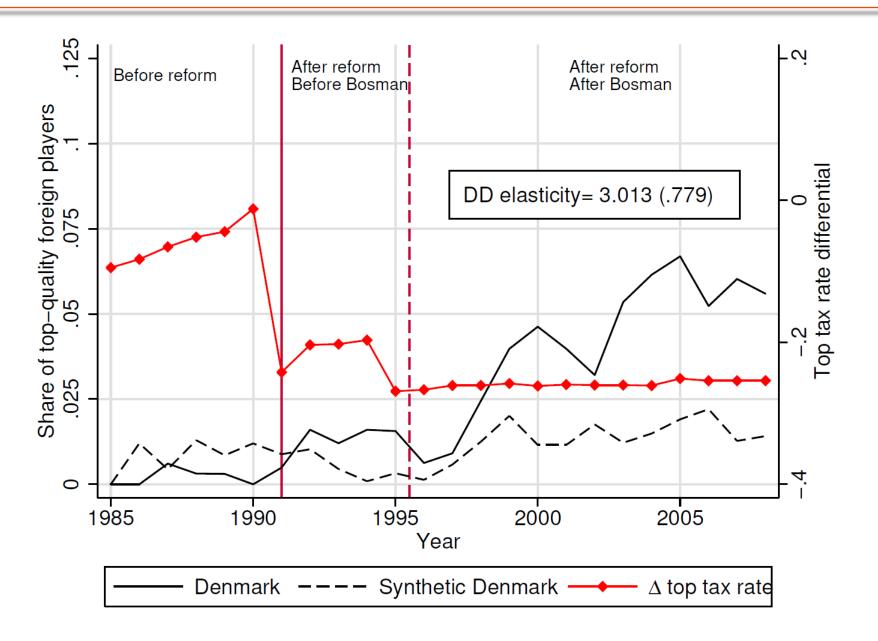

"Beckham Law" in Spain

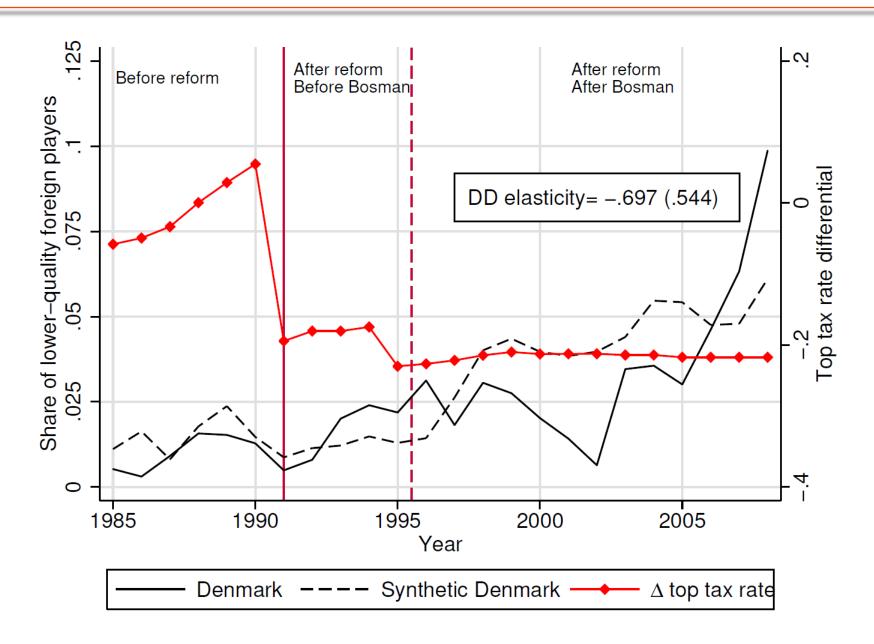
- Passed in 2005 and applying to all foreign workers moving to Spain after Jan 1, 2004. Anticipation of scheme from the 2004-05 season.
- Imposes a **flat tax of 24%** in lieu of the regular progressive income tax with a top rate of 43% in 2008
- Eligibility requires that the individual has not been a Spanish tax resident for the preceding 10 years
- Synthetic control approach (Abadie et al. 2010)
 - Compare Spain to a synthetic control country constructed to minimize the pre-reform distance between treatment and control in terms of the outcome variable and a football league quality index
 - Synthetic control: largest weight on Italy; small positive weights on England, France and Portugal; zero weights on the rest


Migration Effects of 2004 Beckham Law: Top-Quality Foreign Players in Spain vs Synthetic Control


Migration Effects of 2004 Beckham Law: Lower-Quality Foreign Players in Spain vs Synthetic Control

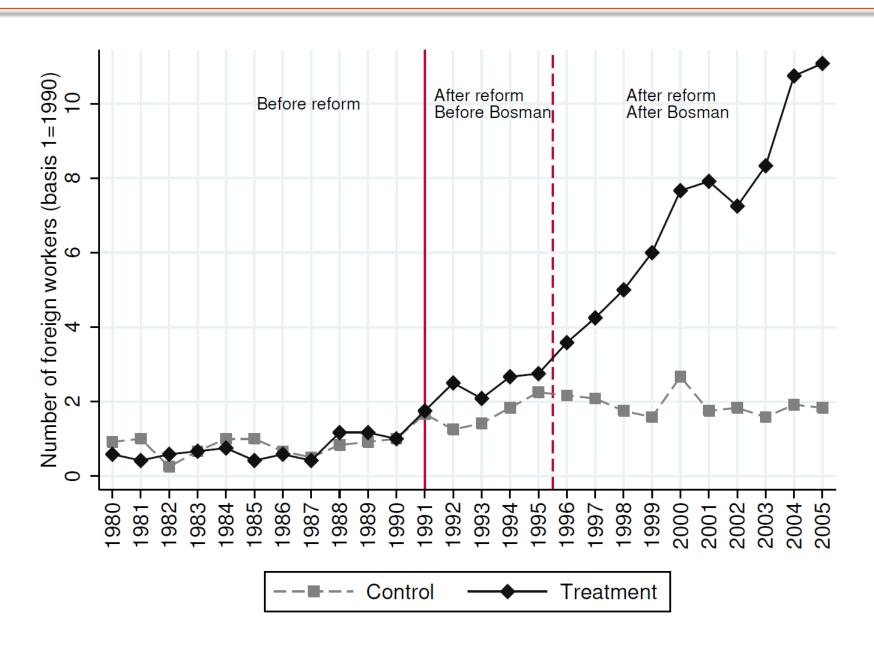
Migration Effects of 2004 Beckham Law: Eligible Foreign Players in Spain vs Synthetic Control

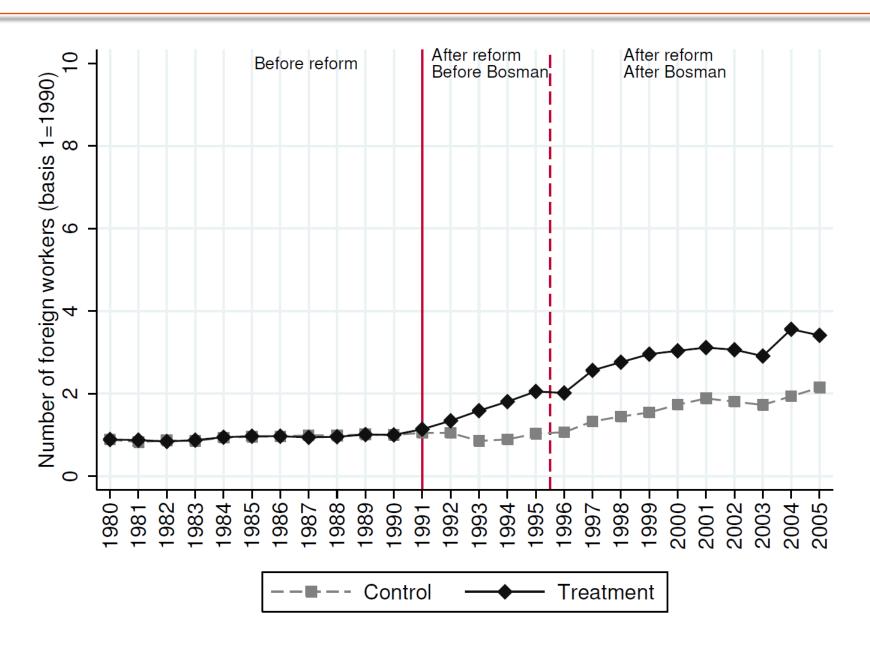

Migration Effects of 2004 Beckham Law: Non-Eligible Foreign Players in Spain vs Synthetic Control


"Researchers' Tax Scheme" in Denmark

- Passed in 1992 and applying to foreign researchers & high-income foreigners in other professions moving to Denmark after Jun 1, 1991
- Imposes a flat tax of 30% (25% after 1995) in lieu of the regular progressive income tax with a top rate of above 60% for a maximum duration of 3 years
- Eligibility requires annual income above a cutoff of 103,000 Euros (2009 prices), or about the 99th percentile of the income distribution
- We again take a synthetic control approach, and in this case the synthetic control country consists mostly of Sweden with small weights on Norway, England, and Italy

Migration Effects of Danish Foreigner Tax Scheme: Top-Quality Foreign Players in Denmark vs Synthetic Control


Migration Effects of Danish Foreigner Tax Scheme: Lower-Quality Foreign Players in Denmark vs Synthetic Control


External Validity and Upper-Bound Argument

- We have argued that the football market is characterized by low mobility costs and hence provides an upper bound on migration responses for the high-skilled labor market as a whole
- For the Danish scheme, this can be verified using full population administrative data from Kleven-Landais-Saez-Schultz (2011)
- Empirical strategy:
 - ➤ Identify migration responses using the income eligibility threshold by comparing the number of foreigners above the threshold to the number of foreigners between 80-99.5% of the threshold
 - Compare migration responses in "Sports & Entertainment" to migration responses in all other sectors

Migration Effects of Danish Foreigner Tax Scheme: Sports & Entertainment

Migration Effects of Danish Foreigner Tax Scheme: All Other Industries

Theoretical Framework

Supply side:

- N countries; a continuum of football players from each country; each player endowed with ability = a; salary in country $n = w_{na}$
- A player from country m playing in country n gets utility $u_{nma} = u(w_{na}(1-τ_{nm})) + μ_{nm}$ for all n,m
- This player chooses country n iff u_{nma} ≥ u_{n'ma} for all n'
- A joint distribution of $(a, \mu_{1m}, ..., \mu_{Nm})$ for each country m
 - \rightarrow supply of players $p_{nma}(w_{na}(1-\tau_{nm}))$
 - \rightarrow foreign players $p_{nfa}(w_{na}(1-\tau_{nf}))$, domestic players $p_{nda}(w_{na}(1-\tau_{nd}))$

Theoretical Framework

Flexible demand side (standard model)

- Linear perfect substitution technology: w_{na} = a
- Concave perfect substitution technology: w_{na} = a × w_n

Rigid demand side

- Football market in each country hires measure one of players
 [a continuum of clubs of measure one hires one player each]
- Positive club surplus s_n ; player salary $w_{na} = a s_n$
- Rigid-demand equilibrium:

$$p_{nd}(s_n, 1-\tau_{nd}) + p_{nf}(s_n, 1-\tau_{nf}) = 1 \rightarrow s_n = s_n(1-\tau_{nd}, 1-\tau_{nf})$$

Comparative Statics

Flexible-demand model (linear technology):

- At any ability level, the number of foreign players in country n is decreasing in τ_{nf} and unaffected by τ_{nd}
- (similarly for domestic players)

Rigid-demand model:

- Number of foreign players in country n decreases with τ_{nf} at high abilities, increases with τ_{nf} at low abilities, and increases with τ_{nd} at all abilities
- Total number of foreign players in country n decreases with τ_{nf} and increases with τ_{nd}
- (similarly for domestic players)

Multinomial Regression Analysis: Baseline Model without Sorting and Displacement Effects

Based on the model, player i playing in country n at time t gets utility

$$\begin{split} u_{i,n,t} &= \alpha \cdot log((1 - \tau_{i,n,t}) w_{i,n,t}) + \mu_{i,n,t} \\ &= \alpha \cdot log(1 - \tau_{i,n,t}) + \alpha \cdot log(w_{i,n,t}) + home_{i,n} + \beta_n \cdot x_{i,t} + \gamma_n + v_{i,n,t} \end{split}$$

How to control for unobserved wage variation?

- Linear perfect substitution technology: w_{i,n,t} = a_{i,t}
 - → non-parametric controls for player ability
- Concave perfect substitution technology: w_{i,n,t} = a_{i,t} × w_{n,t}
 - → non-parametric ability controls + country*year fixed effect
- Robustness check: imperfect substitution technology
 - → allow for country*year*ability fixed effect

(failure to control for unobserved wage variation → downward bias)

Measuring Player Ability

- Age, age-squared, and experience in the football market
- Dummy for selection into the national team of the home country
- Continuous quality index based on the club careers of players:
 - For each club in country n in season t, compute club quality based on club ranking in national league and league ranking in Europe
 - 2. Assign to player i in season t, a value $V_{i,t}$ equal to the average quality of the clubs he has played for in prior seasons t-T,...,t-1
 - 3. Assign to each player his quantile position in the distribution of $V_{i,t}$
 - 4. Include dummies for being located in different quantiles of the V-distribution (quantiles 0-25, 25-50, 50-75, 75-95, 95-100)

Summary of Baseline Estimation Model

Our model can now be specified as

$$\begin{split} u_{i,n,t} &= \alpha \cdot log((1 - \tau_{i,n,t}) w_{i,n,t}) + \mu_{i,n,t} \\ &= \alpha \cdot log(1 - \tau_{i,n,t}) + \alpha \cdot log(w_{i,n,t}) + home_{i,n} + \beta_n \cdot x_{i,t} + \gamma_n + v_{i,n,t} \\ &= \alpha \cdot log(1 - \tau_{i,n,t}) + \delta_n \cdot A_{i,t} + \eta_{n,t} + home_{i,n} + \beta_n \cdot x_{i,t} + \gamma_n + v_{i,n,t} \end{split}$$

Where we have

 $A_{i,t}$ = non-parametric controls for player ability

 $\eta_{n,t}$ = country*year fixed effect

Check also specifications with $\eta_{n,t} \cdot A_{i,t}$ (instead of $\delta_n \cdot A_{i,t} + \eta_{n,t}$)

Assume that $v_{i,n,t}$ is type I extreme value distributed \rightarrow multinomial logit model can be estimated by maximum likelihood

Multinomial Logit Estimates (1996-2008): Specifications with Top MTRs

	(1)	(2)	(3)	(4)		
	Utility parameter estimates					
log(1 - MTR)	1.323***	0.729***	1.089***	0.634***		
	(0.073)	(0.116)	(0.159)	(0.132)		
	Implied elasticities					
$arepsilon_{domestic}$.156	.074	.121	.070		
	(.009)	(.012)	(.018)	(.015)		
$arepsilon_{for eigner}$	1.308	.704	1.057	.621		
	(.072)	(.112)	(.154)	(.130)		
Country F-E	NO	YES	YES	YES		
Age, age squared, exp., and quality dummies interacted with country F-E	NO	YES	YES	YES		
Year×country F-E	NO	NO	YES	YES		
Age, age squared, exp., quality interacted with year×country F-E	NO	NO	NO	YES		
Observations	55225	55225	55225	55225		

Multinomial Logit Estimates (1996-2008): Specifications with Imputed ATRs

	(1)	(2)	(3)	(4)		
	Utility parameter estimates					
log(1 - ATR)	1.599***	0.931***	1.721***	1.123***		
	(0.079)	(0.138)	(0.197)	(0.161)		
		Implied elasticities				
$arepsilon_{domestic}$.184	.093	.184	.122		
$arepsilon_{for eigner}$	(.009)	(.014)	(.021)	(.017)		
	1.582	.900	1.654	1.100		
	(.078)	(.133)	(.190)	(.157)		
Country F-E	NO	YES	YES	YES		
Age, age squared, exp., and quality dummies interacted with country F-E	NO	YES	YES	YES		
Year×country F-E	NO	NO	YES	YES		
Age, age squared, exp., quality interacted with year×country F-E	NO	NO	NO	YES		
Observations	55225	55225	55225	55225		

Rigid-Demand Model: Ability Sorting and Displacement Effects

The supply side of the model is unchanged

Rigid-demand constraint \rightarrow clubs extract positive surplus s_n that vary with tax rates \rightarrow players salaries $a - s_n$ vary with tax rates \rightarrow ability sorting and displacement

Empirical strategy:

- Consider specifications with no country*year fixed effects (as this would absorb the wage variation driving the effects of interest)
- Test two hypotheses:
 - **1. Ability sorting:** allow the effect of $log(1-\tau)$ to vary by ability, and test if the effect is negative at low abilities and positive at high abilities
 - 2. **Displacement:** for domestic (foreign) players, include $log(1-\tau)$ on foreign (domestic) players, and test if the cross effect is negative

Rigid-Demand Model Estimates: Ability Sorting, Displacement, and Second Leagues

	(1)	(2)	(3)	(4)	(5)	(6)	
		A. Top leagues (1999-2008)			B. Adding the five best second leagues (1999-2008)		
$log(1-\tau)$	1.138*** (0.118)			0.995*** (0.128)			
$log(1-\tau) \times low$		-0.512*** (0.149)	-0.529*** (0.145)		-0.391* (0.158)	-0.448** (0.154)	
$log(1-\tau)\times top$		1.409*** (0.136)	1.301*** (0.132)		1.494*** (0.136)	1.409*** (0.133)	
$log(1-\tau^f) \times domestic$			-0.618*** (0.119)			-0.635*** (0.134)	
$log(1-\tau^d) \times foreign$			-0.149 (0.178)			-0.201 (0.192)	

Estimation of Revenue-Maximizing Tax Rates (Laffer Rates)

Assume **uncoordinated tax setting**. For each country n, consider both a uniform rate τ_n and selective rates (τ_{nd}, τ_{nf})

Flexible-demand model:

Uniform Laffer rate between 71-89% in all countries

Rigid-demand model:

- Uniform Laffer rate between 84-98% in all countries
- Foreigner Laffer rate << uniform Laffer rate in most countries</p>
 - → special tax schemes to foreigners optimal?

Caveats and Discussion:

- Coordination: special tax schemes to foreigners never optimal
- No coordination: productivity spillovers and public good aspects strengthens the normative case for preferential rates to foreign players

Conclusions and Future Work

- First compelling evidence of a link between taxation and migration:
 - a. Overall location elasticity is positive and large
 - b. Elasticity is very large at the top, negative at the bottom [ability sorting]
 - c. Cross-tax elasticity btw foreigners and locals is negative [displacement]
- Football players are relatively mobile → upper bound on the effects for the labor market as a whole
- Ongoing work broadens the analysis to the entire labor market [Kleven-Landais-Saez-Schultz (2011)]:
 - Focuses on the Danish Foreigner Tax Scheme
 - Administrative data on the universe of domestic and foreign residents in Denmark over a long time period