OPTIMAL PUBLIC EXPENDITURE WITH INFFFICIENT UNEMPLOYMENT

Pascal Michaillat, Emmanuel Saez

Review of Economic Studies, 2019

Paper available at https://www.pascalmichaillat.org/6.html

MAIN STABILIZATION POLICY: MONETARY POLICY

- policymakers rely primarily on monetary policy for stabilization
 - accordingly: extensive research on optimal monetary policy
- but monetary policy is sometimes constrained
 - zero lower bound (Japan, USA, EU)
 - monetary union (EU, USA)
 - → high unemployment
- then other stabilization policies are needed
 - but: very little is known about these alternative policies

THIS PAPER: OPTIMAL PUBLIC EXPENDITURE

- public expenditure is commonly used for stabilization
 - US: Great Depression (New Deal), Great Recession (ARRA)
- framework: matching model from Michaillat & Saez (2015)
- outcome: formula linking optimal stimulus spending to 3 sufficient statistics
 - 1. unemployment gap
 - 2. unemployment multiplier
 - 3. elasticity of substitution between public consumption & private consumption

OPTIMAL PUBLIC EXPENDITURE: EXISTING RESULTS

- Samuelson (1954):
 - public goods financed by lump-sum taxation
 - efficient level of production
 - rule: spend until marginal utilities are equalized
 - but: what if production is inefficient?
- Keynes (1936):
 - no tradeoffs between public consumption & private
 consumption (multiplier > 1)
 - rule: spend to fill output gap
 - but: what if there is a tradeoff?
- our theory blends the theories of Samuelson & Keynes

A SERVICE ECONOMY, WITHOUT FIRMS

A SERVICE ECONOMY, WITHOUT FIRMS

AN ASSET FOR SAVING

PRIVATE SERVICES (c) & PUBLIC SERVICES (g)

PRIVATE SERVICES (c) & PUBLIC SERVICES (g)

MATCHING: NOT ALL SERVICES ARE SOLD

MATCHING: NOT ALL SERVICES ARE SOLD

MATCHING: COSTLY TO PURCHASE SERVICES

MATCHING: COSTLY TO PURCHASE SERVICES

FEE SCHEDULE:

Fee for Long Term Services:

CHILDCARE

- ◆ All Full Time Nanny, Parent Helper, Family Assistant, Governess
- 15% of annual Gross Compensation (minimum fee = \$3000)
- All Part Time Nanny, Parent Helper, Family Assistant, Governess 15% of annual Gross Compensation (minimum fee = \$1500)

HOUSEHOLD

- ◆ All Full Time Housekeeper, Executive Housekeeper, Cook, Handyman, Companion 15% of annual Gross Compensation (minimum fee = \$3000)
- ◆ All Part Time Housekeeper, Executive Housekeeper, Cook, Handyman, Companion [15% of annual Gross Compensation (minimum fee = \$1500)

ESTATE/ PRIVATE OFFICE

 All Full Time and Part Time Estate Managers, Household Managers, Chefs, Valets, Butlers, Master Gardeners, Security Body Guards, Chauffeurs, Couples, Personal Assistants, Executive Assistant Candidates
 20% of annual Gross Compensation (minimum fee = \$3000)

Fee for On-Call & Temporary Services

- ◆ All On-Call and Temporary Work Assignments except for Baby Nurses, Newborn Specialists and Doulas 35% of ongoing Gross Compensation (minimum fee = \$35 a day)
- All Baby Nurses, Newborn Specialists & Doulas
 20% of ongoing Gross Compensation (minimum fee = \$50 a day)

SOCIALLY EFFICIENT RATE OF UNEMPLOYMENT

- too much unemployment is bad
 - too many services are idle
- · too little unemployment is bad
 - too many services are devoted to recruiting
- there is a socially efficient rate of unemployment (u*)
 - number of services enjoyed (y = g + c) is maximized
- when unemployment is efficient, Samuelson rule holds

STRUCTURE

- dynamic matching model
 - building on Michaillat & Saez (2015)
- · identical, self-employed households
- government
- 2 consumption goods traded on a matching market
 - public services & private services
- 1 asset for saving

MATCHING MARKET

- capacity of each household: k services
- household purchases: C(t) private services
- government purchases: G(t) public services
- output: Y(t) = C(t) + G(t) < k
- unemployment rate: u(t) = 1 Y(t)/k
- price of services: p(t)

MATCHING FUNCTION

- number of vacancies: v(t)
- matching function: $h(t) = \omega \cdot [k Y(t)]^{\eta} \cdot v(t)^{1-\eta}$
- market tightness: x(t) = v(t)/(k Y(t))
- selling rate & buying rate:

$$f(x(t)) = \frac{h(t)}{k - Y(t)} = \omega \cdot x(t)^{1 - \eta}$$
$$q(x(t)) = \frac{h(t)}{v(t)} = \omega \cdot x(t)^{-\eta}$$

MARKET FLOWS

- relationships separate at rate s
- given x, output and unemployment converge to

$$Y(x,k) = \frac{f(x)}{s + f(x)} \cdot k, \quad u(x) = \frac{s}{s + f(x)}$$

- convergence to steady state is extremely fast, so we assume:
 - Y(t) = Y(x(t), k)
 - u(t) = u(x(t))
 - see Hall (2005)

MATCHING COST: ho SERVICES PER VACANCY

output (Y) = consumption (y) + matching cost

$$Y = y + \rho \cdot v = y + s \cdot Y \cdot \frac{\rho}{q(x)}$$

- matching wedge: $\tau(x) = s \cdot \rho / [q(x) s \cdot \rho]$
- total consumption: $y = Y/[1 + \tau(x)]$
- private consumption: $c = C/[1 + \tau(x)]$
- public consumption: $g = G/[1 + \tau(x)]$

DEMAND STRUCTURE: EXAMPLE

- asset: land l(t) in fixed supply l_0
 - traded on a competitive market
 - Iacoviello (2005) and Liu, Wang, Zha (2013)
- households choose c(t) and l(t) to maximize utility

$$\int_0^{+\infty} e^{-\delta \cdot t} \cdot \left[\mathcal{U}(c,g) + \mathbf{V}(l) \right] dt$$

subject to flow budget constraint

$$\dot{l} = p \cdot [1 - u(x)] \cdot k - p \cdot [1 + \tau(x)] \cdot c - T$$

AGGREGATE DEMAND IN THE EXAMPLE

- market clearing on housing market: $l = l_0$
- private demand $c^d(x, g, p)$ is solution to Euler equation:

$$\frac{\partial \mathcal{U}}{\partial c}(c,g) = \frac{p \cdot (1 + \tau(x)) \cdot \mathcal{V}'(l_0)}{\delta}$$

- price of services relative to housing: p = p(x, g)
 - general price mechanism
 - (assumption required in matching model)

EQUILIBRIUM TIGHTNESS x(g)

UNEMPLOYMENT MULTIPLIER *m*

SOCIALLY EFFICIENT UNEMPLOYMENT RATE u^*

INEFFICIENTLY HIGH UNEMPLOYMENT RATE

INEFFICIENTLY LOW UNEMPLOYMENT RATE

GOVERNMENT'S PROBLEM

- households' flow utility is $\mathcal{U}(c,g)$
- public expenditure is financed by a lump-sum tax to maintain a balanced budget
- given x(g), the government chooses g to maximize

$$\mathcal{U}\left(\underbrace{y(x(g),k)-g}_{c},g\right)$$

CORRECTING THE SAMUELSON FORMULA

• first-order condition of government's problem is

$$0 = \frac{\partial \mathcal{U}}{\partial g} - \frac{\partial \mathcal{U}}{\partial c} + \frac{\partial \mathcal{U}}{\partial c} \cdot \frac{\partial y}{\partial x} \cdot \frac{dx}{dg}$$

optimal public expenditure satisfies

$$\underbrace{1 = MRS_{gc}}_{\text{Samuelson formula}} + \underbrace{\frac{\partial y}{\partial x} \cdot \frac{dx}{dg}}_{\text{correction}}$$

-
$$MRS_{qc} = (\partial \mathcal{U}/\partial g)/(\partial \mathcal{U}/\partial c)$$

 correction due to effect of public expenditure on welfare through tightness

INTRODUCING ESTIMABLE STATISTICS

- $(g/c)^*$: Samuelson spending
- elasticity of substitution between g and c:

$$1 - MRS_{gc} \approx \frac{1}{\epsilon} \cdot \frac{g/c - (g/c)^*}{(g/c)^*}$$

unemployment gap:

$$\frac{\partial y}{\partial x} \propto u - u^*$$

unemployment multiplier:

$$\frac{dx}{dg} \propto \mathbf{m} = -\frac{y}{1-u} \cdot \frac{du}{dg}$$

IMPLICIT FORMULA FOR OPTIMAL STIMULUS

$$\frac{g/c - (g/c)^*}{(g/c)^*} \approx z_0 \epsilon m \cdot \frac{u - u^*}{u^*}$$

- $g/c (g/c)^*$: stimulus spending
- ε: elasticity of substitution between g and c
 - = marginal social value of public spending
- m: unemployment multiplier
 - decrease in u when g increases by 1% of y
- $u u^*$: unemployment gap
 - = productive inefficiency
- z_0 : constant of the parameters η , u^*

DEPARTURES FROM SAMUELSON RULE

	<i>m</i> < 0	m = 0	<i>m</i> > 0
$u > u^*$	$g/c < (g/c)^*$	$g/c = (g/c)^*$	$g/c > (g/c)^*$
$u = u^*$	$g/c = (g/c)^*$	$g/c = (g/c)^*$	$g/c = (g/c)^*$
$u < u^*$	$g/c > (g/c)^*$	$g/c = (g/c)^*$	$g/c < (g/c)^*$

MARGINAL VALUE OF PUBLIC SERVICES

- ϵ = 0: digging holes or building pyramids
 - $-g/c = (g/c)^*$: Samuelson rule holds, no stimulus spending
- $\epsilon \to +\infty$: perfect substitution
 - $-u=u^*$: entirely fill unemployment gap, as in Keynes
- $\epsilon \in (0, +\infty)$: medium substitution
 - medium stabilization: $g/c \neq (g/c)^*$ but $u \neq u^*$
 - → partially fill unemployment gap

MAKING THE FORMULA EXPLICIT

- implicit formula: not useful for quantitative results because u in RHS responds to g/c in LHS
- starting from $(g/c)^*$ and $u_0 \neq u^*$:

$$\frac{g/c - (g/c)^*}{(g/c)^*} \approx z_0 \varepsilon m \cdot \frac{u(g/c) - u^*}{u^*}$$

• first-order Taylor expansion of u at $u((g/c)^*) = u_0$:

$$\frac{u - u^*}{u^*} \approx \frac{u_0 - u^*}{u^*} - z_1 \mathbf{m} \cdot \frac{g/c - (g/c)^*}{(g/c)^*}$$

• z_1 : constant of the parameters u^* , $(g/c)^*$

EXPLICIT FORMULA

• optimal q/c depends on fixed quantities:

$$\frac{g/c - (g/c)^*}{(g/c)^*} \approx \frac{z_0 \varepsilon m}{1 + z_1 z_0 \varepsilon m^2} \cdot \frac{u_0 - u^*}{u^*}$$

optimal u depends on fixed quantities:

$$u \approx u^* + \frac{u_0 - u^*}{1 + z_1 z_0 \varepsilon m^2}$$

approximations valid up to 2nd-order terms

RESULTS WITH DISTORTIONARY TAXATION

- endogenous capacity: $\mathcal{U}(c, g, k)$ with $\partial \mathcal{U}/\partial k < 0$
- linear income tax: $T = \tau^{L} \cdot (1 u(x)) \cdot k$
- everything remains valid
 - but $(g/c)^*$ is lower because of tax distortions
- however: link between multipliers changes
 - no tax distortions: m = dY/dG
 - tax distortions: m > dY/dG
 - with taxes, we may have dY/dG < 0 but m > 0

NUMERICAL ILLUSTRATION:

GREAT RECESSION IN THE US

STARTING POINT: WINTER 2008–2009

- unemployment = 6% and public spending = 16.5% of GDP
 - for illustration: we take these values as efficient
- unemployment is forecast to increase to 9%
 - initial unemployment gap = 9% 6% = 3%
- we compute optimal stimulus for various elasticities of substitution and unemployment multipliers

OPTIMAL STIMULUS SPENDING FOR VARIOUS ϵ

UNEMPLOYMENT UNDER OPTIMAL STIMULUS

SOME SIMULATIONS

OPTIMAL STIMULUS IN CALIBRATED MODEL

UNEMPLOYMENT RATE IN CALIBRATED MODEL

MULTIPLIER IN CALIBRATED MODEL

QUALITY OF APPROXIMATIONS IN FORMULA

- 1. dY/dG > 1 is not necessary for stimulus
 - stimulus requires unemployment multiplier > 0 (as in data)
- 2. bang-for-the-buck logic does not hold
 - strongest stimulus for m = 0.4
 - same stimulus for m = 0.1 and m = 1.4
- 3. completely filling the unemployment gap is not optimal
 - optimal to partially fill unemployment gap
 - except if public services = private services
- 4. low marginal social value of g does not imply no stimulus
 - optimal to reduce unemployment gap
 - except if public services = digging holes

DISTORTIONARY TAXES ⇒ SMALLER STIMULUS

- formula remains valid with distortionary taxation
 - but Samuelson spending is lower
- however, dY/dG is not useful anymore because $dY/dG \neq m$
 - -dY/dG = m + labor-supply response to taxes
 - labor-supply distortion reduces dY/dG but not m
 - so: m > dY/dG
 - possibly: dY/dG < 0 while m > 0
- distortionary taxation does not imply smaller stimulus
 - only average public spending is lower