AGGREGATE DEMAND, IDLE TIME, AND

UNEMPLOYMENT

Pascal Michaillat, Emmanuel Saez

Quarterly Journal of Economics, 2015

Paper available at https://www.pascalmichaillat.org/3.html

UNEMPLOYMENT FLUCTUATIONS REMAIN

INSUFFICIENTLY UNDERSTOOD

UNEMPLOYMENT FLUCTUATIONS REMAIN

INSUFFICIENTLY UNDERSTOOD

UNEMPLOYMENT FLUCTUATIONS REMAIN

INSUFFICIENTLY UNDERSTOOD

- matching model of the labor market
 - tractable
 - but no aggregate demand
- New Keynesian model with matching frictions on the labor market
 - many shocks, including aggregate demand
 - but complex

- vast literature after Barro & Grossman [1971]
 - revival after the Great Recession
- captures effect of aggregate demand on unemployment
- but supply-side factors are irrelevant in demand-determined regimes
- and difficult to analyze because of multiple regimes

THIS PAPER'S MODEL

- Barro-Grossman architecture
- matching structure on product market & labor market
 - instead of disequilibrium structure
 - markets can be too slack or too tight but remain in equilibrium
- aggregate demand affects unemployment
 - as do labor productivity, mismatch, job search, and labor-force participation
- simple: graphical representation of equilibrium

BASIC MODEL: PRODUCT MARKET

- static model
- measure 1 of identical households
- households produce and consume services
 - no firms: services produced within households
 - households cannot consume their own services
- services are traded on matching market
- households visit other households to buy services

MATCHING FUNCTION & TIGHTNESS

MATCHING FUNCTION & TIGHTNESS

MATCHING FUNCTION & TIGHTNESS

LOW PRODUCT MARKET TIGHTNESS

HIGH PRODUCT MARKET TIGHTNESS

EVIDENCE OF UNSOLD CAPACITY

- consumption ≡ output net of matching services
 - consumption, not output, yields utility
- key relationship: output = $[1 + \tau(x)] \cdot \text{consumption}$
- matching wedge $\tau(x)$ summarizes matching costs:

$$\underbrace{y}_{\text{output}} = \underbrace{c}_{\text{consumption}} + \underbrace{\rho \cdot v}_{\text{matching services}} = c + \rho \cdot \frac{y}{q(x)}$$
$$\Rightarrow y = \left[1 + \frac{\rho}{q(x) - \rho}\right] \cdot c \equiv \left[1 + \tau(x)\right] \cdot c$$

EVIDENCE OF MATCHING COSTS

- output y < capacity k because the matching function prevents all services from being sold
 - selling probability f(x) < 1
- consumption c < output y because some services are devoted to matching so cannot provide utility
 - matching wedge $\tau(x) > 0$
- consumption is directly relevant for welfare

 aggregate supply ≡ number of services consumed at tightness x, given the supply of services k and matching process

$$c^{s}(x) = \frac{f(x)}{1 + \tau(x)} \cdot k = [f(x) - \rho \cdot x] \cdot k$$

 could represent aggregate supply in terms of output instead of consumption, but consumption is linked to welfare

quantity of services

quantity of services

quantity of services

- money is in fixed supply μ
- households hold *m* units of money
- the price of services in terms of money is p
- real money balances enter the utility function
 - Barro & Grossman [1971]
 - Blanchard & Kiyotaki [1987]

- take price *p* and tightness *x* as given
- choose c, m to maximize utility

subject to budget constraint

$$\underbrace{m}_{\text{money}} + \underbrace{p \cdot (1 + \tau(x)) \cdot c}_{\text{expenditure on services}} = \underbrace{\mu}_{\text{endowment}} + \underbrace{f(x) \cdot p \cdot k}_{\text{labor income}}$$

AGGREGATE DEMAND

optimal consumption decision:

$$\underbrace{(1+\tau(x))}_{\text{relative price}} \cdot \underbrace{\frac{1}{1+\chi} \cdot \left(\frac{m}{p}\right)^{-\frac{1}{e}}}_{\text{MU of real money}} = \underbrace{\frac{\chi}{1+\chi} \cdot c^{-\frac{1}{e}}}_{\text{MU of services}}$$

- money market clears: $m = \mu$
- aggregate demand gives desired consumption of services given price p and tightness x:

$$c^{d}(x,p) = \left(\frac{\chi}{1+\tau(x)}\right)^{\epsilon} \cdot \frac{\mu}{p}$$

LINKING AGGREGATE DEMAND & VISITS

- there is a direct link between consumption of services, purchase of services, and visits
- if the desired consumption is $c^d(x, p)$
- the desired number of purchases is

$$(1+\tau(x))\cdot c^d(x,p)$$

and the required number of visits is

$$v = \frac{(1 + \tau(x)) \cdot c^d(x, p)}{q(x)}$$

TIGHTNESS & AGGREGATE DEMAND

• price p + tightness x equilibrate supply and demand:

$$c^{s}(x) = c^{d}(x, p)$$

- the matching equilibrium is richer than the Walrasian
 equilibrium—where only price equilibrates supply and demand
 - can describe "Walrasian situations" where price responds to shocks and tightness is constant
 - but can also describe "Keynesian situations" where price is constant and tightness responds to shocks

- we need a price mechanism to completely describe the equilibrium
- here we consider two polar cases:
 - fixed price [Barro & Grossman 1971]
 - competitive price [Moen 1997]
- in the paper we also consider:
 - bargaining (typical in the matching literature)
 - partially rigid price [Blanchard & Gali 2010]

COMPARATIVE STATICS

INCREASE IN AD WITH FIXED PRICE ($\chi \uparrow$)

INCREASE IN AD WITH FIXED PRICE ($\chi \uparrow$)

INCREASE IN AS WITH FIXED PRICE ($k \uparrow$)

COMPARATIVE STATICS WITH FIXED PRICE

	output	tightness
increase in:	У	X
aggregate demand χ	+	+
aggregate supply <i>k</i>	+	_

EFFICIENT EQUILIBRIUM: CONSUMPTION IS MAXIMUM

SLACK EQUILIBRIUM: CONSUMPTION IS TOO LOW

TIGHT EQUILIBRIUM: CONSUMPTION IS TOO LOW

COMPARATIVE STATICS WITH COMPETITIVE PRICE

	output	tightness
increase in:	У	X
aggregate demand χ	0	0
aggregate supply <i>k</i>	+	0

COMPLETE MODEL: PRODUCT MARKET &

LABOR MARKET & UNEMPLOYMENT

- workers are hired on matching labor market
- production is sold on matching product market
- firms employ producers and recruiters
 - number of recruiters = $\hat{\tau}(\theta) \times$ producers
 - number of employees = $[1 + \hat{\tau}(\theta)] \times$ producers
- take real wage w and tightnesses x and θ as given
- choose number of producers *n* to maximize profits

optimal employment decision:

$$\underbrace{f(x)}_{\text{selling probability}} \cdot \underbrace{\alpha \cdot a \cdot n^{\alpha - 1}}_{\text{MPL}} = (1 + \underbrace{\hat{\tau}(\theta)}_{\text{matching wedge}}) \cdot \underbrace{w}_{\text{real wage}}$$

- same as Walrasian first-order condition, except for selling probability < 1 and matching wedge > 0
- labor demand gives the desired number of producers:

$$n^{d}(\theta, x, w) = \left[\frac{f(x) \cdot a \cdot \alpha}{(1 + \hat{\tau}(\theta)) \cdot w}\right]^{\frac{1}{1 - \alpha}}$$

PARTIAL EQUILIBRIUM ON LABOR MARKET

 prices (p, w) and tightnesses (x, θ) equilibrate supply and demand on product and labor markets:

$$\begin{cases} c^{s}(x,\theta) = c^{d}(x,p) \\ n^{s}(\theta) = n^{d}(\theta,x,w) \end{cases}$$

- need to specify price and wage mechanisms
 - fixed price and fixed wage
 - competitive price and competitive wage

EFFECT OF AD WITH FIXED PRICES

EFFECT OF AD WITH FIXED PRICES

EFFECT OF AD WITH FIXED PRICES

KEYNESIAN, CLASSICAL, & FRICTIONAL

UNEMPLOYMENT

equilibrium unemployment rate:

$$u = 1 - \frac{1}{h} \cdot \left(\frac{f(x) \cdot a \cdot \alpha}{w}\right)^{\frac{1}{1-\alpha}} \cdot \left(\frac{1}{1+\hat{\tau}(\theta)}\right)^{\frac{\alpha}{1-\alpha}}$$

• if f(x) = 1, $w = a\alpha h^{\alpha-1}$, and $\hat{\tau}(\theta) = 0$, then u = 0

- the factors of unemployment therefore are
 - Keynesian factor: f(x) < 1
 - classical factor: $w > a \cdot \alpha \cdot h^{\alpha-1}$
 - frictional factor: $\hat{\tau}(\theta) > 0$

COMPARATIVE STATICS WITH FIXED PRICES

	product		labor	
	output	tightness	employment	tightness
increase in:	У	X	l	θ
aggregate demand χ	+	+	+	+
technology a	+	-	+	+
labor supply <i>h</i>	+	_	+	-

COMPARATIVE STATICS WITH FIXED PRICES

	product		labor	
	output	tightness	employment	tightness
increase in:	У	X	l	θ
aggregate demand χ	+	+	+	+
technology a	+	-	+	+
labor supply <i>k</i>	+	_	+	-

COMPARATIVE STATICS WITH COMPETITIVE PRICES

	product		labor	
	output	tightness	employment	tightness
increase in:	У	X	l	θ
aggregate demand χ	0	0	0	0
technology <i>a</i>	+	0	0	0
labor supply <i>k</i>	+	0	+	0

RIGID OR FLEXIBLE PRICES?

X CONSTRUCTED FROM CAPACITY UTILIZATION IN SPC

FLUCTUATIONS IN $X \Longrightarrow$ RIGID PRICE

FLUCTUATIONS IN $\theta \Rightarrow$ RIGID REAL WAGE

LABOR DEMAND

OR LABOR SUPPLY SHOCKS?

- source of labor demand shocks:
 - aggregate demand χ
 - technology a
- source of labor supply shocks:
 - labor-force participation h
 - *h* can also be interpreted as job-search effort

- labor supply shocks:
 - negative correlation between employment (*l*) and labor
 market tightness (θ)
- labor demand shocks:
 - positive correlation between employment (*l*) and labor
 market tightness (θ)

$\operatorname{corr}(l, \theta) > 0 \Longrightarrow \operatorname{Labor demand}$

CROSS-CORRELOGRAM: θ (LEADING) & l

AGGREGATE DEMAND

OR TECHNOLOGY SHOCKS?

- aggregate demand shocks:
 - positive correlation between output (y) and product market tightness (x)
- technology shocks:
 - negative correlation between output (y) and product
 market tightness (x)

 $\operatorname{corr}(y, x) > 0 \Longrightarrow \operatorname{AD}$

CROSS-CORRELOGRAM: X (LEADING) & Y

CONCLUSION

- we develop a tractable, general-equilibrium model of unemployment fluctuations
- we construct empirical series for
 - product market tightness
 - labor market tightness
- we find that unemployment fluctuations stem from
 - price rigidity and real-wage rigidity
 - aggregate demand shocks

- optimal unemployment insurance
 - Landais, Michaillat, & Saez [2018]
- optimal public expenditure
 - Michaillat & Saez [2019]
- optimal monetary policy
 - Michaillat & Saez [2021]