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RESOLVING NEW KEYNESIAN ANOMALIES WITH
WEALTH IN THE UTILITY FUNCTION

Pascal Michaillat and Emmanuel Saez*

Abstract—At the zero lower bound, the New Keynesian model predicts that
output and inflation collapse to implausibly low levels and that government
spending and forward guidance have implausibly large effects. To resolve
these anomalies, we introduce wealth into the utility function; the justifica-
tion is that wealth is a marker of social status, and people value status. Since
people partly save to accrue social status, the Euler equation is modified.
As a result, when the marginal utility of wealth is sufficiently large, the dy-
namical system representing the zero-lower-bound equilibrium transforms
from a saddle to a source, which resolves all the anomalies.

I. Introduction

A current issue in monetary economics is that the New
Keynesian model makes several anomalous predictions

when the zero lower bound (ZLB) on nominal interest rates is
binding: an implausibly large collapse of output and inflation
(Eggertsson & Woodford, 2004; Eggertsson, 2011; Wern-
ing, 2011), an implausibly large effect of forward guidance
(Del Negro, Giannoni, & Patterson, 2015; Carlstrom, Fuerst,
& Paustian, 2015; Cochrane, 2017), and an implausibly large
effect of government spending (Christiano, Eichenbaum, &
Rebello, 2011; Woodford, 2011; Cochrane, 2017).

Several papers have developed variants of the New Key-
nesian model that behave well at the ZLB (Gabaix, 2016;
Diba & Loisel, 2019; Cochrane, 2018; Bilbiie, 2019; Acharya
& Dogra, 2019), but these variants are more complex than
the standard model. In some cases, the derivations are com-
plicated by bounded rationality or heterogeneity. In other
cases, the dynamical system representing the equilibrium—
normally composed of a Euler equation and a Phillips
curve—includes additional differential equations that de-
scribe bank-reserve dynamics, price-level dynamics, or the
evolution of the wealth distribution. Moreover, a good chunk
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of the analysis is conducted by numerical simulations. Hence,
it is sometimes difficult to grasp the nature of the anomalies
and their resolutions.

It may therefore be valuable to strip the logic to the bone.
We do so using a New Keynesian model in which relative
wealth enters the utility function. The justification for the as-
sumption is that relative wealth is a marker of social status,
and people value high social status. We deviate from the stan-
dard model only minimally: the derivations are the same, the
equilibrium is described by a dynamical system composed
of a Euler equation and a Phillips curve, and the only dif-
ference is an extra term in the Euler equation. We also veer
away from numerical simulations and establish our results
with phase diagrams describing the dynamics of output and
inflation given by the Euler-Phillips system. The model’s sim-
plicity and the phase diagrams allow us to gain new insights
into the anomalies and their resolutions.1

Using the phase diagrams, we begin by depicting the
anomalies in the standard New Keynesian model. First, we
find that output and inflation collapse to unboundedly low
levels when the ZLB episode is arbitrarily long-lasting. Sec-
ond, we find a duration of forward guidance above which
any ZLB episode, irrespective of its duration, is transformed
into a boom. The boom is unbounded when the ZLB episode
is arbitrarily long-lasting. Third, we find an amount of gov-
ernment spending at which the government-spending multi-
plier becomes infinite when the ZLB episode is arbitrarily
long-lasting. Furthermore, when government spending ex-
ceeds this amount, an arbitrarily long ZLB episode prompts
an unbounded boom.

The phase diagrams also pinpoint the origin of the anoma-
lies: they arise because the Euler-Phillips system is a saddle

1Our approach relates to the work of Michaillat and Saez (2014), Ono
and Yamada (2018), and Michau (2018). By assuming wealth in the utility
function, they obtain non-New-Keynesian models that behave well at the
ZLB. But their results are not portable to the New Keynesian framework be-
cause they require strong forms of wage or price rigidity (exogenous wages,
fixed inflation, or downward nominal wage rigidity). Our approach also re-
lates to the work of Fisher (2015) and Campbell et al. (2017), who build
New Keynesian models with government bonds in the utility function. The
bonds-in-the-utility assumption captures special features of government
bonds relative to other assets, such as safety and liquidity (Krishnamurthy
& Vissing-Jorgensen, 2012). While their assumption and ours are concep-
tually different, they affect equilibrium conditions in a similar way. These
papers use their assumption to generate risk-premium shocks (Fisher) and
to alleviate the forward-guidance puzzle (Campbell et al.).
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at the ZLB. In normal times, by contrast, the Euler-Phillips
system is a source, so there are no anomalies. In economic
terms, the anomalies arise because household consumption
(given by the Euler equation) responds too strongly to the
real interest rate. Indeed, since the only motive for saving
is future consumption, households are very forward-looking,
and their response to interest rates is strong.

Once wealth enters the utility function, however, the Eu-
ler equation is “discounted”—in the sense of McKay, Naka-
mura, and Steinsson (2017)—which alters the properties of
the Euler-Phillips system. People now save partly because
they enjoy holding wealth; this is a present consideration,
which does not require them to look into the future. As peo-
ple are less forward-looking, their consumption responds less
to interest rates, which creates discounting.

With enough marginal utility of wealth, the discounting is
strong enough to transform the Euler-Phillips system from
a saddle to a source at the ZLB and thus eliminate all the
anomalies. First, output and inflation never collapse at the
ZLB: they are bounded below by the ZLB steady state. Sec-
ond, when the ZLB episode is long enough, the economy
necessarily experiences a slump, irrespective of the duration
of forward guidance. Third, government-spending multipli-
ers are always finite, irrespective of the duration of the ZLB
episode.

Apart from its anomalies, the standard New Keynesian
model has several other intriguing properties at the ZLB—
some labeled “paradoxes” because they defy usual economic
logic (Eggertsson, 2010; Werning, 2011; Eggertsson & Krug-
man, 2012). Our model shares these properties. First, the
paradox of thrift holds: when households desire to save more
than their neighbors, the economy contracts and they end
up saving the same amount as the neighbors. The paradox
of toil also holds: when households desire to work more,
the economy contracts and they end up working less. The
paradox of flexibility is present too: the economy contracts
when prices become more flexible. Finally, the government-
spending multiplier is above 1, so government spending stim-
ulates private consumption.

II. Justification for Wealth in the Utility Function

Before delving into the model, we justify our assumption
of wealth in the utility function.

The standard model assumes that people save to smooth
consumption over time, but it has long been recognized that
people seem to enjoy accumulating wealth irrespective of fu-
ture consumption. Describing the European upper class of the
early twentieth century, Keynes (1919) noted that “The duty
of saving became nine-tenths of virtue and the growth of the
cake the object of true religion . . . Saving was for old age or
for your children; but this was only in theory—the virtue of
the cake was that it was never to be consumed, neither by you
nor by your children after you.” Irving Fisher added, “A man
may include in the benefits of his wealth . . . the social stand-

ing he thinks it gives him, or political power and influence,
or the mere miserly sense of possession, or the satisfaction
in the mere process of further accumulation” (Fisher, 1930,
17). Fisher’s perspective is interesting since he developed the
theory of saving based on consumption smoothing.

Neuroscientific evidence confirms that wealth itself pro-
vides utility, independent of the consumption it can buy.
Camerer, Loewenstein, and Prelec (2005, 32) note that
“brain-scans conducted while people win or lose money sug-
gest that money activates similar reward areas as do other
‘primary reinforcers’ like food and drugs, which implies that
money confers direct utility, rather than simply being valued
only for what it can buy.”

Among all the reasons that people may value wealth, we fo-
cus on social status: we postulate that people enjoy wealth be-
cause it provides social status. We therefore introduce relative
(not absolute) wealth into the utility function.2 The assump-
tion is convenient: in equilibrium, everybody is the same,
so relative wealth is 0. And the assumption seems plausible.
Adam Smith, David Ricardo, John Rae, John Stuart Mill,
Alfred Marshall, Thorstein Veblen, and Frank Knight all be-
lieved that people accumulate wealth to attain high social
status (Steedman, 1981). More recently, a broad literature
has documented that people seek to achieve high social sta-
tus and that accumulating wealth is a prevalent pathway to
do so (Weiss & Fershtman, 1998; Heffetz & Frank, 2011;
Fiske, 2010; Anderson, Hildreth, & Howland, 2015; Cheng
& Tracy, 2013; Ridgeway, 2014; Mattan, Kubota, & Cloutier,
2017).3

III. New Keynesian Model with Wealth
in the Utility Function

We extend the New Keynesian model by assuming that
households derive utility not only from consumption and
leisure but also from relative wealth. To simplify deriva-
tions and be able to represent the equilibrium with phase
diagrams, we use an alternative formulation of the New Key-
nesian model, inspired by Benhabib, Schmitt-Grohe, and
Uribe (2001), and Werning (2011). Our formulation fea-
tures continuous time instead of discrete time, self-employed

2Cole, Mailath, and Postlewaite (1992, 1995) develop models in which
relative wealth does not directly confer utility but has other attributes such
that people behave as if wealth entered their utility function. In one such
model, wealthier individuals have higher social rankings, which allows them
to marry wealthier partners and enjoy higher utility.

3The wealth-in-the-utility assumption has been found useful in models of
long-run growth (Kurz, 1968; Konrad, 1992; Zou, 1994; Corneo & Jeanne,
1997; Futagami & Shibata, 1998), risk attitudes (Robson, 1992; Clemens,
2004), asset pricing (Bakshi & Chen, 1996; Gong & Zou, 2002; Kamihi-
gashi, 2008; Michau, Ono, & Schlegl, 2018), life-cycle consumption (Zou,
1995; Carroll, 2000; Francis, 2009; Straub, 2019), social stratification (Long
& Shimomura, 2004), international macroeconomics (Fisher, 2005; Fisher
& Hof, 2005), financial crises (Kumhof, Ranciere, & Winant, 2015), and
optimal taxation (Saez & Stantcheva, 2018). Such usefulness lends further
support to the assumption.
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households instead of firms and households, and Rotemberg
(1982) pricing instead of Calvo (1983) pricing.

A. Assumptions

The economy is composed of a measure 1 of self-employed
households. Each household j ∈ [0, 1] produces y j (t ) units
of a good j at time t , sold to other households at a price p j (t ).
The household’s production function is y j (t ) = ah j (t ), where
a > 0 represents the level of technology and h j (t ) is hours of
work. Working causes a disutility κh j (t ), where κ > 0 is the
marginal disutility of labor.

The goods produced by households are imperfect sub-
stitutes for one another, so each household exercises some
monopoly power. Moreover, households face a quadratic cost
when they change their price: changing a price at a rate
π j (t ) = ṗ j (t )/p j (t ) causes a disutility γπ j (t )2/2. The pa-
rameter γ > 0 governs the cost to change prices and thus
price rigidity.

Each household consumes goods produced by other house-
holds. Household j buys quantities c jk (t ) of the goods k ∈
[0, 1]. These quantities are aggregated into a consumption
index,

c j (t ) =
[∫ 1

0
c jk (t )(ε−1)/ε dk

]ε/(ε−1)

,

where ε > 1 is the elasticity of substitution between goods.
The consumption index yields utility ln(c j (t )). Given the con-
sumption index, the relevant price index is

p(t ) =
[∫ 1

0
p j (t )1−ε di

]1/(1−ε)

.

When households optimally allocate their consumption ex-
penditure across goods, p(t ) is the price of one unit of
consumption index. The inflation rate is defined as π(t ) =
ṗ(t )/p(t ).

Households save using government bonds. Since we pos-
tulate that people derive utility from their relative real wealth,
and since bonds are the only store of wealth, holding bonds
directly provides utility. Formally, holding a nominal quantity
of bonds b j (t ) yields utility

u

(
b j (t ) − b(t )

p(t )

)
.

The function u : R → R is increasing and concave, b(t ) =∫ 1
0 bk (t ) dk is average nominal wealth, and [b j (t ) − b(t )]/

p(t ) is household j’s relative real wealth.
Bonds earn a nominal interest rate ih(t ) = i(t ) + σ, where

i(t ) ≥ 0 is the nominal interest rate set by the central bank,
and σ ≥ 0 is a spread between the monetary-policy rate (i(t ))
and the rate that households use for savings decisions (ih(t )).
The spread σ captures the efficiency of financial intermedi-
ation (Woodford, 2011); the spread is large when financial

intermediation is severely disrupted, as during the Great De-
pression and Great Recession. The law of motion of house-
hold j’s bond holdings is

ḃ j (t ) = ih(t )b j (t ) + p j (t )y j (t ) −
∫ 1

0
pk (t )c jk (t ) dk − τ(t ).

The term ih(t )b j (t ) is interest income; p j (t )y j (t ) is labor in-
come;

∫ 1
0 pk (t )c jk (t ) dk is consumption expenditure; and τ(t )

is a lump-sum tax (used, among other things, to service gov-
ernment debt).

Finally, the problem of household j is to choose time
paths for y j (t ), p j (t ), h j (t ), π j (t ), c jk (t ) for all k ∈ [0, 1],
and b j (t ) to maximize the discounted sum of instantaneous
utilities,

∫ ∞

0
e−δt

[
ln(c j (t ))+u

(
b j (t )−b(t )

p(t )

)
−κh j (t )− γ

2
π j (t )2

]
dt,

where δ > 0 is the time discount rate. The household faces
four constraints: production function; law of motion of good
j’s price, ṗ j (t ) = π j (t )p j (t ); law of motion of bond hold-
ings; and demand for good j coming from other households’
maximization,

y j (t ) =
[

p j (t )

p(t )

]−ε

c(t ),

where c(t ) = ∫ 1
0 ck (t ) dk is aggregate consumption. The

household also faces a borrowing constraint preventing Ponzi
schemes. The household takes as given aggregate variables,
initial wealth b j (0), and initial price p j (0). All households
face the same initial conditions, so they behave the same.

B. Euler Equation and Phillips Curve

The equilibrium is described by a system of two differ-
ential equations: a Euler equation and a Phillips curve. The
Euler-Phillips system governs the dynamics of output y(t )
and inflation π(t ). Here we present the system; formal and
heuristic derivations are in online appendices A and B; a
discrete-time version is in online appendix C.

The Phillips curve arises from households’ optimal pricing
decisions:

π̇(t ) = δπ(t ) − εκ

γa

[
y(t ) − yn

]
, (1)

where

yn = ε − 1

ε
· a

κ
. (2)

The Phillips curve is not modified by wealth in the utility
function.
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The steady-state Phillips curve, obtained by setting π̇ = 0
in equation (1), describes inflation as a linearly increasing
function of output:

π = εκ

δγa

(
y − yn

)
. (3)

We see that yn is the natural level of output: the level at which
producers keep their prices constant.

The Euler equation arises from households’ optimal
consumption-savings decisions:

ẏ(t )

y(t )
= r(t ) − rn + u′(0)

[
y(t ) − yn

]
, (4)

where r(t ) = i(t ) − π(t ) is the real monetary-policy rate and

rn = δ − σ − u′(0)yn. (5)

The marginal utility of wealth, u′(0), enters the Euler equa-
tion, so unlike the Phillips curve, the Euler equation is modi-
fied by the wealth-in-the-utility assumption. To understand
why consumption-savings choices are affected by the as-
sumption, we rewrite the Euler equation as

ẏ(t )

y(t )
= rh(t ) − δ + u′(0)y(t ), (6)

where rh(t ) = r(t ) + σ is the real interest rate on bonds. In
the standard equation, consumption-savings choices are gov-
erned by the financial returns on wealth, given by rh(t ), and
the cost of delaying consumption, given by δ. Here, people
also enjoy holding wealth, so a new term appears to cap-
ture the hedonic returns on wealth: the marginal rate of sub-
stitution between wealth and consumption, u′(0)y(t ). In the
marginal rate of substitution, the marginal utility of wealth
is u′(0) because in equilibrium, all households hold the same
wealth so relative wealth is 0; the marginal utility of con-
sumption is 1/y(t ) because consumption utility is log. Thus,
the wealth-in-the-utility assumption operates by transform-
ing the rate of return on wealth from rh(t ) to rh(t ) + u′(0)y(t ).

Because consumption-savings choices depend not only on
interest rates but also on the marginal rate of substitution be-
tween wealth and consumption, future interest rates have less
impact on today’s consumption than in the standard model:
the Euler equation is discounted. In fact, the discrete-time ver-
sion of equation (4) features discounting exactly as in McKay,
Nakamura, and Steinsson (2017) (see online appendix C).

The steady-state Euler equation is obtained by setting ẏ =
0 in equation (4):

u′(0)(y − yn) = rn − r. (7)

The equation describes output as a linearly decreasing func-
tion of the real monetary-policy rate—as in the old-fashioned,
Keynesian IS curve. We see that rn is the natural rate of inter-
est: the real monetary-policy rate at which households con-
sume a quantity yn.

The steady-state Euler equation is deeply affected by
the wealth-in-the-utility assumption. To understand why, we
rewrite equation (7) as

rh + u′(0)y = δ. (8)

The standard steady-state Euler equation boils down to rh =
δ. It imposes that the financial rate of return on wealth equals
the time discount rate—otherwise, households would not
keep their consumption constant. With wealth in the utility
function, the returns on wealth are not only financial but also
hedonic. The total rate of return becomes rh + u′(0)y, where
the hedonic returns are measured by u′(0)y. The steady-state
Euler equation imposes that the total rate of return on wealth
equals the time discount rate, so it now involves output y.
When the real interest rate rh is higher, people have a finan-
cial incentive to save more and postpone consumption. They
keep consumption constant only if the hedonic returns on
wealth fall enough to offset the increase in financial returns:
this requires output to decline. As a result, with wealth in
the utility function, the steady-state Euler equation describes
output as a decreasing function of the real interest rate—as in
the traditional IS curve but through a different mechanism.

The wealth-in-the-utility assumption adds one parameter
to the equilibrium conditions: u′(0). Accordingly, we com-
pare two submodels:

Definition 1. The New Keynesian (NK) model has zero
marginal utility of wealth: u′(0) = 0. The wealth-in-the-
utility New Keynesian (WUNK) model has sufficient marginal
utility of wealth:

u′(0) >
εκ

δγa
. (9)

The NK model is the standard model; the WUNK model
is the extension proposed in this paper. When prices are fixed
(γ → ∞), condition (9) becomes u′(0) > 0; when prices are
perfectly flexible (γ = 0), condition (9) becomes u′(0) > ∞.
Hence, at the fixed-price limit, the WUNK model only re-
quires an infinitesimal marginal utility of wealth; at the
flexible-price limit, the WUNK model is not well defined.
In the WUNK model, we also impose δ > σ + ε−1

δγ
in order

to accommodate positive natural rates of interest.4

4Indeed, using equations (2) and (9), we see that in the WUNK model,

u′(0)yn >
ε − 1

δγ
.

This implies that the natural rate of interest, given by equation (5), is
bounded above:

rn < δ − σ − ε − 1

δγ
.

For the WUNK model to accommodate positive natural rates of interest,
the upper bound on the natural rate must be positive. This requires the time
discount rate to be large enough.
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C. Natural Rate of Interest and Monetary Policy

The central bank aims to maintain the economy at the nat-
ural steady state, where inflation is at 0 and output is at its
natural level.

In normal times, the natural rate of interest is posi-
tive, and the central bank is able to maintain the econ-
omy at the natural steady state using the simple policy rule
i(π(t )) = rn + φπ(t ). The corresponding real policy rate is
r(π(t )) = rn + (φ − 1) π(t ). The parameter φ ≥ 0 governs
the response of interest rates to inflation: monetary policy is
active when φ > 1 and passive when φ < 1.

When the natural rate of interest is negative, however, the
natural steady state cannot be achieved—because this would
require the central bank to set a negative nominal policy rate,
which would violate the ZLB. In that case, the central bank
moves to the ZLB: i(t ) = 0, so r(t ) = −π(t ).

What could cause the natural rate of interest to be negative?
A first possibility is a banking crisis, which disrupts financial
intermediation and raises the interest-rate spread (Woodford,
2011; Eggertsson, 2011). The natural rate of interest turns
negative when the spread is large enough: σ > δ − u′(0)yn.
Another possibility in the WUNK model is a drop in con-
sumer sentiment, which leads households to favor saving
over consumption, and can be parameterized by an increase
in the marginal utility of wealth. The natural rate of inter-
est turns negative when the marginal utility is large enough:
u′(0) > (δ − σ)/yn.

D. Properties of the Euler-Phillips System

We now establish the properties of the Euler-Phillips sys-
tems in the NK and WUNK models by constructing their
phase diagrams.5 The diagrams are displayed in figure 1.

We begin with the Phillips curve, which gives π̇. First, we
plot the locus π̇ = 0, which we label “Phillips.” The locus
is given by equation (3): it is linear, upward sloping, and
goes through the point [y = yn, π = 0]. Second, we plot the
arrows giving the directions of the trajectories solving the
Euler-Phillips system. The sign of π̇ is given by equation (1):
any point above the Phillips line (where π̇ = 0) has π̇ > 0,
and any point below the line has π̇ < 0. So inflation is rising
above the Phillips line and falling below it.

We next turn to the Euler equation, which gives ẏ. Whereas
the Phillips curve is the same in the NK and WUNK mod-
els, and in normal times and at the ZLB, the Euler equa-
tion is different in each case. We therefore proceed case by
case.

We start with the NK model in normal times and with active
monetary policy (figure 1A). Equation (4) becomes

ẏ

y
= (φ − 1)π,

5The properties are rederived using an algebraic approach in online
appendix D.

with φ > 1. The locus ẏ = 0, labeled “Euler,” is simply the
horizontal line π = 0. Since the Phillips and Euler lines only
intersect at the point [y = yn, π = 0], we conclude that the
Euler-Phillips system admits a unique steady state with zero
inflation and natural output. Next we examine the sign of
ẏ. As φ > 1, any point above the Euler line has ẏ > 0, and
any point below the line has ẏ < 0. Since all the trajectories
solving the Euler-Phillips system move away from the steady
state in the four quadrants delimited by the Phillips and Euler
lines, we conclude that the Euler-Phillips system is a source.

We then consider the WUNK model in normal times
with active monetary policy (figure 1B). Equation (4)
becomes

ẏ

y
= (φ − 1)π + u′(0)

(
y − yn

)
,

with φ > 1. We first use this Euler equation to compute the
Euler line (locus ẏ = 0):

π = − u′(0)

φ − 1
(y − yn).

The Euler line is linear, downward sloping (as φ > 1), and
goes through the point [y = yn, π = 0]. Since the Phillips
and Euler lines only intersect at the point [y = yn, π = 0],
we conclude that the Euler-Phillips system admits a unique
steady state, with zero inflation and output at its natural level.
Next, we use the Euler equation to determine the sign of
ẏ. As φ > 1, any point above the Euler line has ẏ > 0, and
any point below it has ẏ < 0. Hence, the solution trajectories
move away from the steady state in all four quadrants of the
phase diagram; we conclude that the Euler-Phillips system
is a source. In normal times with active monetary policy, the
Euler-Phillips system therefore behaves similarly in the NK
and WUNK models.

We next turn to the NK model at the ZLB (figure 1C).
Equation (4) becomes

ẏ

y
= −π − rn.

Thus, the Euler line (locus ẏ = 0) shifts up from π = 0 in
normal times to π = −rn > 0 at the ZLB. We infer that the
Euler-Phillips system admits a unique steady state, where
inflation is positive and output is above its natural level. Fur-
thermore, any point above the Euler line has ẏ < 0, and any
point below it has ẏ > 0. As a result, the solution trajectories
move toward the steady state in the southwest and northeast
quadrants of the phase diagram, whereas they move away
from it in the southeast and northwest quadrants. We infer
that the Euler-Phillips system is a saddle.

We finally move to the WUNK model at the ZLB (fig-
ure 1D). Equation (4) becomes

ẏ

y
= −π − rn + u′(0)

(
y − yn

)
.
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202 THE REVIEW OF ECONOMICS AND STATISTICS

FIGURE 1.—PHASE DIAGRAMS OF THE EULER-PHILLIPS SYSTEM IN THE NK AND WUNK MODELS

The Euler equation is given by equation (4) and the Phillips curve is given by equation (1). The variable y is output; π is inflation; yn is the natural level of output. The Euler line is the locus ẏ = 0; the Phillips line is
the locus π̇ = 0. The trajectories are solutions to the Euler-Phillips system linearized around its steady state, plotted for t going from −∞ to +∞. The NK model is the standard New Keynesian model. The WUNK
model is the same model, except that the marginal utility of wealth is not 0 but is sufficiently large to satisfy condition (9). In normal times, the natural rate of interest rn is positive, and the monetary-policy rate is
given by i = rn + φπ; when monetary policy is active, φ > 1. At the ZLB, the natural rate of interest is negative, and the monetary-policy rate is 0. The figure shows that in the NK model, the Euler-Phillips system is
a source in normal times with active monetary policy (A); but the system is a saddle at the ZLB (C). In the WUNK model, by contrast, the Euler-Phillips system is a source in normal times and at the ZLB (B, D).

First, this differential equation implies that the Euler line
(locus ẏ = 0) is given by

π = −rn + u′(0)(y − yn). (10)

So the Euler line is linear, upward sloping, and goes through
the point [y = yn + rn/u′(0), π = 0]. The Euler line has be-
come upward sloping because the real monetary-policy rate,
which was increasing with inflation when monetary pol-
icy was active, has become decreasing with inflation at the
ZLB (r = −π). Since rn ≤ 0, the Euler line has shifted in-
ward of the point [y = yn, π = 0], explaining why the cen-
tral bank is unable to achieve the natural steady state at
the ZLB. And since the slope of the Euler line is u′(0)
while that of the Phillips line is εκ/(δγa), condition (9) en-
sures that the Euler line is steeper than the Phillips line at
the ZLB. From the Euler and Phillips lines, we infer that

the Euler-Phillips system admits a unique steady state, in
which inflation is negative and output is below its natural
level.6

Second, the differential equation shows that any point
above the Euler line has ẏ < 0, and any point below it has
ẏ > 0. Hence, in all four quadrants of the phase diagram, the
trajectories move away from the steady state. We conclude
that the Euler-Phillips system is a source. At the ZLB, the
Euler-Phillips system therefore behaves very differently in
the NK and WUNK models.

With passive monetary policy in normal times, the phase
diagrams of the Euler-Phillips system would be similar to
the ZLB phase diagrams—except that the Euler and Phillips
lines would intersect at [y = yn, π = 0]. In particular, the

6We also check that the intersection of the Euler and Phillips lines has
positive output (online appendix D).
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Euler-Phillips system would be a saddle in the NK model
and a source in the WUNK model.

For completeness, we also plot sample solutions to the
Euler-Phillips system. The trajectories are obtained by lin-
earizing the Euler-Phillips system at its steady state.7 When
the system is a source, there are two unstable lines (trajecto-
ries that move away from the steady state in a straight line).
At t → −∞, all other trajectories are in the vicinity of the
steady state and move away tangentially to one of the unstable
lines. At t → +∞, the trajectories move to infinity parallel
to the other unstable line. When the system is a saddle, there
is one unstable line and one stable line (trajectory that goes to
the steady state in a straight line). All other trajectories come
from infinity parallel to the stable line when t → −∞ and
move to infinity parallel to the unstable line when t → +∞.

The next propositions summarize the results:

Proposition 1. Consider the Euler-Phillips system in normal
times. The system admits a unique steady state, where output
is at its natural level, inflation is 0, and the ZLB is not binding.
In the NK model, the system is a source when monetary policy
is active but a saddle when monetary policy is passive. In the
WUNK model, the system is a source whether monetary policy
is active or passive.

Proposition 2. Consider the Euler-Phillips system at the
ZLB. In the NK model, the system admits a unique steady
state, where output is above its natural level and inflation is
positive; furthermore, the system is a saddle. In the WUNK
model, the system admits a unique steady state, where output
is below its natural level and inflation is negative; further-
more, the system is a source.

The propositions give the key difference between the NK
and WUNK models: at the ZLB, the Euler-Phillips system
remains a source in the WUNK model, whereas it becomes a
saddle in the NK model. This difference will explain why the
WUNK model does not suffer from the anomalies plaguing
the NK model at the ZLB. The phase diagrams also illus-
trate the origin of condition (9). In the WUNK model, the
Euler-Phillips system remains a source at the ZLB as long
as the Euler line is steeper than the Phillips line (figure 1D).
The Euler line’s slope at the ZLB is the marginal utility of
wealth, so that marginal utility is required to be above a cer-
tain level—which is given by condition (9).

The propositions have implications for equilibrium deter-
minacy. When the Euler-Phillips system is a source, the equi-
librium is determinate: the only equilibrium trajectory in the
vicinity of the steady state is to jump to the steady state and
stay there; if the economy jumped somewhere else, output
or inflation would diverge following a trajectory similar to
those plotted in figures 1A, 1B, and 1D. When the system
is a saddle, the equilibrium is indeterminate: any trajectory
jumping somewhere on the saddle path and converging to the
steady state is an equilibrium (figure 1C). Hence, in the NK

7Technically the trajectories only approximate the exact solutions, but the
approximation is accurate in the neighborhood of the steady state.

model, the equilibrium is determinate when monetary policy
is active but indeterminate when monetary policy is passive
and at the ZLB. In the WUNK model, the equilibrium is al-
ways determinate, even when monetary policy is passive and
at the ZLB.

Accordingly, in the NK model, the Taylor principle holds:
the central bank must adhere to an active monetary policy
to avoid indeterminacy. From now on, we therefore assume
that the central bank in the NK model follows an active pol-
icy whenever it can (φ > 1 whenever rn > 0). In the WUNK
model, by contrast, indeterminacy is never a risk, so the cen-
tral bank does not need to worry about how strongly its policy
rate responds to inflation. The central bank could even follow
an interest-rate peg without creating indeterminacy.

The results that pertain to the NK model in propositions 1
and 2 are well known (Woodford, 2001). The results that
pertain to the WUNK model are close to those obtained by
Gabaix (2016, proposition 3.1), although he does not use
our phase-diagram representation. Gabaix finds that when
bounded rationality is strong enough, the Euler-Phillips sys-
tem is a source even at the ZLB. He also finds that when
prices are more flexible, more bounded rationality is required
to maintain the source property. The same is true here: when
the marginal utility of wealth is high enough, such that con-
dition (9) holds, the Euler-Phillips system is a source even
at the ZLB; and when the price-adjustment cost γ is lower,
condition (9) imposes a higher threshold on the marginal util-
ity of wealth. Our phase diagrams illustrate the logic behind
these results. The Euler-Phillips system remains a source at
the ZLB as long as the Euler line is steeper than the Phillips
line (figure 1D). As the slope of the Euler line is deter-
mined by bounded rationality in the Gabaix model and by
marginal utility of wealth in our model, these need to be
large enough. When prices are more flexible, the Phillips line
steepens, so the Euler line’s required steepness increases:
bounded rationality or marginal utility of wealth need to be
larger.

IV. Description and Resolution of the
New Keynesian Anomalies

We now describe the anomalous predictions of the NK
model at the ZLB: an implausibly large drop in output and
inflation and implausibly strong effects of forward guidance
and government spending. We then show that these anomalies
are absent from the WUNK model.

A. Drop in Output and Inflation

We consider a temporary ZLB episode, as in Werning
(2011). Between times 0 and T > 0, the natural rate of in-
terest is negative. In response, the central bank maintains its
policy rate at 0. After time T , the natural rate is positive again,
and monetary policy returns to normal. This scenario is sum-
marized in table 1A. We analyze the ZLB episode using the
phase diagrams in figure 2.
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204 THE REVIEW OF ECONOMICS AND STATISTICS

TABLE 1.—ZLB SCENARIOS

Natural Rate Monetary Government
Timeline of Interest Policy Spending

A. ZLB episode
ZLB t ∈ (0, T ) rn < 0 i = 0 –
Normal times t > T rn > 0 i = rn + φπ –

B. ZLB episode with forward guidance
ZLB t ∈ (0, T ) rn < 0 i = 0 –
Forward t ∈ (T, T + �) rn > 0 i = 0 –

guidance
Normal times t > T + � rn > 0 i = rn + φπ –

C. ZLB episode with government spending
ZLB t ∈ (0, T ) rn < 0 i = 0 g > 0
Normal times t > T rn > 0 i = rn + φπ g = 0

This table describes the three scenarios analyzed in section IV: the ZLB episode, in section IVA; the
ZLB episode with forward guidance, in section IVB; and the ZLB episode with government spending, in
section IVC. The parameter T > 0 gives the duration of the ZLB episode; the parameter � > 0 gives the
duration of forward guidance. We assume that monetary policy is active (φ > 1) in normal times in the NK
model; this assumption is required to ensure equilibrium determinacy (Taylor principle). In the WUNK
model, monetary policy can be active or passive in normal times.

We start with the NK model. We analyze the ZLB episode
by going backward in time. After time T , monetary policy
maintains the economy at the natural steady state. Since equi-
librium trajectories are continuous, the economy also is at the
natural steady state at the end of the ZLB, when t = T .8

We then move back to the ZLB episode, when t < T . At
time 0, the economy jumps to the unique position leading
to [y = yn, π = 0] at time T . Hence, inflation and output ini-
tially jump down to π(0) < 0 and y(0) < yn, and then recover
following the unique trajectory leading to [y = yn, π = 0].
The ZLB therefore creates a slump, with below-natural out-
put and deflation (figure 2A).

Critically, the economy is always on the same trajectory
during the ZLB, irrespective of the ZLB duration T . A longer
ZLB only forces output and inflation to start from a lower
position on the trajectory at time 0. Thus, as the ZLB lasts
longer, initial output and inflation collapse to unboundedly
low levels (figure 2C).

Next, we examine the WUNK model. Output and inflation
never collapse during the ZLB. Initially inflation and output
jump down toward the ZLB steady state, denoted [yz, πz], so
πz < π(0) < 0 and yz < y(0) < yn. They then recover fol-
lowing the trajectory going through [y = yn, π = 0]. Conse-
quently the ZLB episode creates a slump (figure 2B), which
is deeper when the ZLB lasts longer (figure 2D). But un-
like in the NK model, the slump is bounded below by the
ZLB steady state: irrespective of the duration of the ZLB,
output and inflation remain above yz and πz, respectively, so
they never collapse. Moreover, if the natural rate of interest
is negative but close to 0, such that πz is close to 0 and yz to
yn, output and inflation will barely deviate from the natural
steady state during the ZLB—even if the ZLB lasts a very
long time.

8The trajectories are continuous in output and inflation because house-
holds have concave preferences over the two arguments. If consumption
had an expected discrete jump, for example, households would be able to
increase their utility by reducing the size of the discontinuity.

The following proposition records these results:9

Proposition 3. Consider a ZLB episode between times 0 and
T . The economy enters a slump: y(t ) < yn and π(t ) < 0
for all t ∈ (0, T ). In the NK model, the slump becomes
infinitely severe as the ZLB duration approaches infinity:
limT →∞ y(0) = limT →∞ π(0) = −∞. In the WUNK model,
in contrast, the slump is bounded below by the ZLB steady
state [yz, πz]: y(t ) > yz and π(t ) > πz for all t ∈ (0, T ).
In fact, the slump approaches the ZLB steady state as the
ZLB duration approaches infinity: limT →∞ y(0) = yz and
limT →∞ π(0) = πz.

In the NK model, output and inflation collapse when the
ZLB is long-lasting, which is well known (Eggertsson &
Woodford, 2004, fig. 1; Eggertsson, 2011, fig. 1; Werning,
2011, proposition 1). This collapse is difficult to reconcile
with real-world observations. The ZLB episode that started
in 1995 in Japan lasted for more than twenty years without
sustained deflation. The ZLB episode that started in 2009 in
the euro area lasted for more than ten years; it did not yield
sustained deflation either. The same is true of the ZLB episode
that occurred in the United States between 2008 and 2015.

In the WUNK model, in contrast, inflation and output never
collapse. Instead, as the duration of the ZLB increases, the
economy converges to the ZLB steady state. That ZLB steady
state may not be far from the natural steady state: if the nat-
ural rate of interest is only slightly negative, inflation is only
slightly below 0 and output only slightly below its natural
level. Gabaix (2016, proposition 3.2) obtains a closely re-
lated result: in his model, output and inflation also converge
to the ZLB steady state when the ZLB is arbitrarily long.

B. Forward Guidance

We turn to the effects of forward guidance at the ZLB. We
consider a three-stage scenario, as in Cochrane (2017). Be-
tween times 0 and T , there is a ZLB episode. To alleviate the
situation, the central bank makes a forward-guidance promise
at time 0: that it will maintain the policy rate at 0 for a dura-
tion � once the ZLB is over. After time T , the natural rate of
interest is positive again. Between times T and T + �, the
central bank fulfills its forward-guidance promise and keeps
the policy rate at 0. After time T + �, monetary policy re-
turns to normal. This scenario is summarized in table 1B.

We analyze the ZLB episode with forward guidance using
the phase diagrams in figures 3 and 4. The forward-guidance
diagrams are based on the ZLB diagrams in figure 1. In the
NK model (figure 3A), the diagram is the same as in figure 1C,
except that the Euler line, given by π = −rn, is lower because
rn > 0 instead of rn < 0. In the WUNK model (figure 4A),
the diagram is the same as in figure 1D, except that the Euler

9The result that in the NK model output becomes infinitely negative when
the ZLB becomes infinitely long should not be interpreted literally. It is
obtained because we omitted the constraint that output must remain positive.
The proper interpretation is that output falls much, much below its natural
level—in fact, it converges to 0.
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FIGURE 2.—ZLB EPISODES IN THE NK AND WUNK MODELS

The timeline of a ZLB episode is presented in table 1A. The phase diagram of the NK model comes from figure 1C. The phase diagram of the WUNK model comes from figure 1D. The equilibrium trajectories are the
unique trajectories reaching the natural steady state (where π = 0 and y = yn) at time T . The figure shows that the economy slumps during the ZLB: inflation is negative, and output is below its natural level (A, B). In
the NK model, the initial slump becomes unboundedly severe as the ZLB lasts longer (C). In the WUNK model, there is no such collapse: output and inflation are bounded below by the ZLB steady state (D).

line, given by equation (10), is shifted outward because rn >

0 instead of rn < 0.
We begin with the NK model. We go backward in time.

After time T + �, monetary policy maintains the economy
at the natural steady state. Between times T and T + �, the
economy is in forward guidance (figure 3A). Following the
logic of figure 2, we find that at time T , inflation is posi-
tive and output above its natural level. They subsequently
decrease over time, following the unique trajectory leading
to the natural steady state at time T + �. Accordingly, the
economy booms during forward guidance. Furthermore, as
forward guidance lengthens, inflation and output at time T
become higher.

We look next at the ZLB episode, between times 0 and T .
Since equilibrium trajectories are continuous, the economy
is at the same point at the end of the ZLB and the beginning
of forward guidance. The boom engineered during forward
guidance therefore improves the situation at the ZLB. Instead

of reaching the natural steady state at time T , the economy
reaches a point with positive inflation and above-natural out-
put, so at any time before T , inflation and output tend to be
higher than without forward guidance (figure 3B).

Forward guidance can actually have tremendously strong
effects in the NK model. For small durations of forward guid-
ance, the position at time T is below the ZLB unstable line. It
is therefore connected to trajectories coming from the south-
west quadrant of the phase diagram (figure 3B). As the ZLB
lasts longer, initial output and inflation collapse. When the
duration of forward guidance is such that the position at time
T is exactly on the unstable line, the position at time 0 is
on the unstable line as well (figure 3C). As the ZLB lasts
longer, the initial position inches closer to the ZLB steady
state. For even longer forward guidance, the position at time
T is above the unstable line, so it is connected to trajectories
coming from the northeast quadrant (figure 3D). Then, as the
ZLB lasts longer, initial output and inflation become higher
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206 THE REVIEW OF ECONOMICS AND STATISTICS

FIGURE 3.—NK MODEL: ZLB EPISODES WITH FORWARD GUIDANCE

The timeline of ZLB episodes with forward guidance is presented in table 1B. (A) The phase diagram of the NK model during forward guidance is similar to the diagram in figure 1C, but with rn > 0. The equilibrium
trajectory during forward guidance is the unique trajectory reaching the natural steady state at time T + �. (B–D) The phase diagram of the NK model at the ZLB comes from figure 1C. The equilibrium trajectory at the
ZLB is the unique trajectory reaching the point determined by forward guidance at time T . The figure shows that the NK model suffers from an anomaly: when forward guidance lasts sufficiently to bring [y(T ), π(T )]
above the unstable line, any ZLB episode—however long—triggers a boom (D). On the other hand, if forward guidance is short enough to keep [y(T ), π(T )] below the unstable line, long-enough ZLB episodes are
slumps (B). In the knife-edge case where [y(T ), π(T )] falls just on the unstable line, arbitrarily long ZLB episodes converge to the ZLB steady state (C).

and higher. As a result, if the duration of forward guidance is
long enough, a deep slump can be transformed into a roaring
boom. Moreover, the forward-guidance duration threshold is
independent of the ZLB duration.

In comparison, the power of forward guidance is subdued
in the WUNK model. Between times T and T + �, forward
guidance operates (figure 4A). Inflation is positive, and output
is above its natural level at time T . They then decrease over
time, following the trajectory leading to the natural steady
state at time T + �. The economy booms during forward
guidance, but unlike in the NK model, output and inflation
are bounded above by the forward-guidance steady state.

Before forward guidance comes the ZLB episode (fig-
ures 4B and 4C). Thanks to the boom engineered by for-
ward guidance, the situation is improved at the ZLB: in-
flation and output tend to be higher than without forward

guidance. Yet, unlike in the NK model, output during the
ZLB episode is always below its level at time T , so forward
guidance cannot generate unbounded booms (figure 4D). The
ZLB cannot generate unbounded slumps either, since output
and inflation are bounded below by the ZLB steady state
(figure 4D). Actually, for any forward-guidance duration, as
the ZLB lasts longer, the economy converges to the ZLB
steady state at time 0. The implication is that forward guid-
ance can never prevent a slump when the ZLB lasts long
enough.

Based on these dynamics, we identify an anomaly in the
NK model, which is resolved in the WUNK model (proof
details in online appendix D):

Proposition 4. Consider a ZLB episode during (0, T ) fol-
lowed by forward guidance during (T, T + �):
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FIGURE 4.—WUNK MODEL: ZLB EPISODES WITH FORWARD GUIDANCE

The timeline of ZLB episodes with forward guidance is presented in table 1B. (A) The phase diagram of the WUNK model during forward guidance is similar to the diagram in figure 1D, but with rn > 0. The
equilibrium trajectory during forward guidance is the unique trajectory reaching the natural steady state at time T + �. (B, C) The phase diagram of the WUNK model at the ZLB comes from figure 1D. The equilibrium
trajectory at the ZLB is the unique trajectory reaching the point determined by forward guidance at time T . The figure shows that the NK model’s anomaly disappears in the WUNK model: a long-enough ZLB episode
prompts a slump irrespective of the duration of forward guidance.

• In the NK model, there exists a threshold �∗ such
that a forward guidance longer than �∗ transforms a
ZLB episode of any duration into a boom: let � >

�∗; for any T and for all t ∈ (0, T + �), y(t ) > yn

and π(t ) > 0. In addition, when forward guidance is
longer than �∗, a long-enough forward guidance or ZLB
episode generates an arbitrarily large boom: for any
T , lim�→∞ y(0) = lim�→∞ π(0) = +∞; and for any
� > �∗, limT →∞ y(0) = limT →∞ π(0) = +∞.

• In the WUNK model, in contrast, there exists a thresh-
old T ∗ such that a ZLB episode longer than T ∗ prompts
a slump, irrespective of the duration of forward guid-
ance: let T > T ∗; for any �, y(0) < yn and π(0) < 0.
Furthermore, the slump approaches the ZLB steady state
as the ZLB duration approaches infinity: for any �,
limT →∞ y(0) = yz and limT →∞ π(0) = πz. In addition,
the economy is bounded above by the forward-guidance

steady state [y f , π f ]: for any T and �, and for all
t ∈ (0, T + �), y(t ) < y f and π(t ) < π f .

The anomaly identified in the proposition corresponds to
the forward-guidance puzzle described by Carlstrom, Fuerst,
and Paustian (2015, fig. 1) and Cochrane (2017, fig. 6).10

These papers also find that a long-enough forward guidance
transforms a ZLB slump into a boom.

In the WUNK model, this anomalous pattern vanishes.
In the New Keynesian models by Gabaix (2016), Diba
and Loisel (2019), Acharya and Dogra (2019), and Bilbiie
(2019), forward guidance also has more subdued effects
than in the standard model. Besides, New Keynesian mod-
els have been developed with the sole goal of solving the

10In the literature, the forward-guidance puzzle takes several forms. The
common element is that future monetary policy has an implausibly strong
effect on current output and inflation.
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forward-guidance puzzle. Among these, ours belongs to the
group that uses discounted Euler equations.11 For example,
Del Negro, Giannoni, and Patterson (2015) generate dis-
counting from overlapping generations; McKay, Nakamura,
and Steinsson (2016) from heterogeneous agents facing bor-
rowing constraints and cyclical income risk; Angeletos and
Lian (2018) from incomplete information; and Campbell
et al. (2017) from government bonds in the utility function
(which is closely related to our approach).

C. Government Spending

Finally, we consider the effects of government spending
at the ZLB. We first extend the model by assuming that the
government purchases goods from all households, which are
aggregated into public consumption g(t ). To ensure that gov-
ernment spending affects inflation and private consumption,
we also assume that the disutility of labor is convex: house-
hold j incurs disutility κ1+ηh j (t )1+η/(1 + η) from working,
where η > 0 is the inverse of the Frisch elasticity. The com-
plete extended model, derivations, and results are presented
in online appendix E.

In this model, the Euler equation is unchanged, but the
Phillips curve is modified because the marginal disutility of
labor is not constant and because households produce goods
for the government. The modification of the Phillips curve
alters the analysis in three ways.

First, the steady-state Phillips curve becomes nonlinear,
which may introduce additional steady states. We handle
this issue as in the literature: we linearize the Euler-Phillips
system around the natural steady state without government
spending and concentrate on the dynamics of the linearized
system. These dynamics are described by phase diagrams
similar to those in the basic model.

Second, the slope of the steady-state Phillips curve is mod-
ified, so the WUNK assumption needs to be adjusted. Instead
of equation (3), the linearized steady-state Phillips curve is

π = − εκ

δγa

(
ε − 1

ε

)η/(1+η) [
(1 + η)(c − cn) + ηg

]
. (11)

The WUNK assumption guarantees that at the ZLB, the
steady-state Euler equation, with slope u′(0), is steeper than
the steady-state Phillips curve, now given by equation (11).
Hence, we need to replace condition (9) by

u′(0) > (1 + η)
εκ

δγa

(
ε − 1

ε

)η/(1+η)

. (12)

Naturally, for η = 0, this condition reduces to (9).

11Other approaches to solve the forward-guidance puzzle include mod-
ifying the Phillips curve (Carlstrom, Fuerst, & Paustian, 2015), combin-
ing reflective expectations and temporary equilibrium (Garcia-Schmidt &
Woodford, 2019), combining bounded rationality and incomplete markets
(Farhi & Werning, 2019), and introducing an endogenous liquidity premium
(Bredemeier, Kaufmann, & Schabert, 2018).

Third, public consumption enters the Phillips curve, so
government spending operates through that curve. Indeed,
since η > 0 in equation (11), government spending shifts
the steady-state Phillips curve upward. Intuitively, given pri-
vate consumption, an increase in government spending raises
production and thus marginal costs. Facing higher marginal
costs, producers augment inflation.

We now study a ZLB episode during which the government
increases spending in an effort to stimulate the economy, as
in Cochrane (2017). Between times 0 and T , there is a ZLB
episode. To alleviate the situation, the government provides
an amount g > 0 of public consumption. After time T , the
natural rate of interest is positive again, government spending
stops, and monetary policy returns to normal. This scenario
is summarized in table 1C.

We start with the NK model (see figure 5).12 We construct
the equilibrium path by going backward in time. At time T ,
monetary policy brings the economy to the natural steady
state. At the ZLB, government spending helps, but through a
different mechanism from forward guidance. Forward guid-
ance improves the situation at the end of the ZLB, which pulls
up the economy during the entire ZLB. Government spending
leaves the end of the ZLB unchanged: the economy reaches
the natural steady state. Instead, government spending shifts
the Phillips line upward and, with it, the field of trajectories.
As a result, the natural steady state is connected to trajecto-
ries with higher consumption and inflation, which improves
the situation during the entire ZLB.

Just like forward guidance, government spending can have
very strong effects in the NK model. When spending is low,
the natural steady state is below the ZLB unstable line (fig-
ure 5B). It is therefore connected to trajectories coming from
the southwest quadrant of the phase diagram—just as without
government (figure 5A). Then, if the ZLB lasts longer, initial
consumption and inflation fall lower. When spending is high
enough that the unstable line crosses the natural steady state,
the economy is also on the unstable line at time 0 (figure 5C).
Finally, when spending is even higher, the natural steady state
moves above the unstable line, so it is connected to trajec-
tories coming from the northeast quadrant (figure 5D). As a
result, initial output and inflation are higher than previously.
And as the ZLB lasts longer, initial output and inflation be-
come even higher, without bound.

The power of government spending at the ZLB is much
weaker in the WUNK model (see figure 6). Government
spending does improves the situation at the ZLB, as infla-
tion and consumption tend to be higher than without spend-
ing. But as the ZLB lasts longer, the position at the begin-
ning of the ZLB converges to the ZLB steady state; unlike
in the NK model, it does not go to infinity. So equilibrium

12There is a small difference with the phase diagrams of the basic model:
private consumption c is on the horizontal axis instead of output y. But
y = c in the basic model (government spending is 0), so the phase diagrams
with private consumption on the horizontal axis would be the same as those
with output.
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FIGURE 5.—NK MODEL: ZLB EPISODES WITH GOVERNMENT SPENDING

The timeline of ZLB episodes with government spending is presented in table 1C. The figure displays the phase diagrams of the linearized Euler-Phillips system for the NK model with government spending and convex
disutility of labor at the ZLB: c is private consumption; π is inflation; cn is the natural level of private consumption; the Euler line is the locus ċ = 0; the Phillips line is the locus π̇ = 0. The phase diagrams have the
same properties as that in figure 1C, except that the Phillips line shifts upward when government spending increases (see equation (11)). The equilibrium trajectory at the ZLB is the unique trajectory reaching the
natural steady state at time T . The figure shows that the NK model suffers from an anomaly. When government spending brings down the unstable line from above to below the natural steady state, an arbitrarily long
ZLB episode sees an arbitrarily large increase in output, which triggers an unboundedly large boom (from B to D). On the other hand, if government spending is low enough to keep the unstable line above the natural
steady state, long-enough ZLB episodes are slumps (B). In the knife-edge case where the natural steady state falls just on the unstable line, arbitrarily long ZLB episodes converge to the ZLB steady state (C).

trajectories are bounded, and government spending cannot
generate unbounded booms.

Based on these dynamics, we isolate another anomaly in
the NK model, which is resolved in the WUNK model (proof
details in online appendix F):

Proposition 5. Consider a ZLB episode during (0, T ), ac-
companied by government spending g > 0. Let c(t; g) and
y(t; g) be private consumption and output at time t; let s > 0
be some incremental government spending; and let

m(g, s) = y(0; g + s/2) − y(0; g − s/2)

s

= 1 + c(0; g + s/2) − c(0; g − s/2)

s

be the government-spending multiplier.

• In the NK model, there exists a government spending g∗
such that the government-spending multiplier becomes
infinitely large when the ZLB duration approaches infin-
ity: for any s > 0, limT →∞ m(g∗, s) = +∞. In addition,
when government spending is above g∗, a long-enough
ZLB episode generates an arbitrarily large boom: for any
g > g∗, limT →∞ c(0; g) = +∞.

• In the WUNK model, in contrast, the multiplier has a finite
limit when the ZLB duration approaches infinity: for any
g and s, when T → ∞, m(g, s) converges to

1 + η

u′(0)δγa
εκ

· (
ε

ε−1

)η/(1+η) − (1 + η)
. (13)
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210 THE REVIEW OF ECONOMICS AND STATISTICS

FIGURE 6.—WUNK MODEL: ZLB EPISODES WITH GOVERNMENT SPENDING

The timeline of ZLB episodes with government spending is presented in table 1C. The figure displays the phase diagrams of the linearized Euler-Phillips system for the WUNK model with government spending and
convex disutility of labor at the ZLB: c is private consumption; π is inflation; cn is the natural level of private consumption; the Euler line is the locus ċ = 0; the Phillips line is the locus π̇ = 0. The phase diagrams
have the same properties as that in figure 1D, except that the Phillips line shifts upward when government spending increases (see equation (11)). The equilibrium trajectory at the ZLB is the unique trajectory reaching
the natural steady state at time T . The figure shows that the NK model’s anomaly disappears in the WUNK model: the government-spending multiplier is finite when the ZLB becomes arbitrarily long-lasting, and
equilibrium trajectories are bounded irrespective of the duration of the ZLB.

Moreover, the economy is bounded above for any ZLB
duration: let cg be private consumption in the ZLB steady
state with government spending g; for any T and for all
t ∈ (0, T ), c(t; g) < max(cg, cn).

The anomaly that a finite amount of government spend-
ing may generate an infinitely large boom as the ZLB be-
comes arbitrarily long-lasting is reminiscent of the findings
by Christiano, Eichenbaum, and Rebelo (2011, fig. 2), Wood-
ford (2011, fig. 2), and Cochrane (2017, fig. 5). They find that
in the NK model, government spending is exceedingly pow-
erful when the ZLB is long-lasting.

In the WUNK model, this anomaly vanishes. Diba and
Loisel (2019) and Acharya and Dogra (2019) also obtain
more realistic effects of government spending at the ZLB. In
addition, Bredemeier, Juessen, and Schabert (2018) obtain

moderate multipliers at the ZLB by introducing an endoge-
nous liquidity premium in the New Keynesian model.

V. Other New Keynesian Properties at the ZLB

Beside the anomalous properties described in section IV,
the New Keynesian model has several other intriguing prop-
erties at the ZLB: the paradoxes of thrift, toil, and flexibility
and a government-spending multiplier greater than 1. We now
show that the WUNK model shares these properties.

In the NK model these properties are studied in the context
of a temporary ZLB episode. An advantage of the WUNK
model is that we can simply work with a permanent ZLB
episode. We assume that the natural rate of interest is perma-
nently negative and the central bank keeps the policy rate at
0 forever. The only equilibrium is at the ZLB steady state,
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FIGURE 7.—WUNK MODEL: OTHER PROPERTIES AT THE ZLB

The figure displays comparative-static results. The Euler and Phillips lines come from figure 1D (A–C) and from figure 6 (D). The ZLB equilibrium is at the intersection of the Euler and Phillips lines: output/consumption
is below its natural level and inflation is negative. (A) Increasing the marginal utility of wealth steepens the Euler line, which depresses output and inflation without changing relative wealth. (B) Reducing the disutility
of labor moves the Phillips line outward, which depresses output, inflation, and hours worked. (C) Decreasing the price-adjustment cost rotates the Phillips line counterclockwise around the natural steady state, which
depresses output and inflation. (D) Increasing government spending shifts the Phillips line upward, which raises private consumption and therefore increases output more than one-for-one.

where the economy is in a slump: inflation is negative and
output is below its natural level. The ZLB equilibrium is rep-
resented in figure 7: it is the intersection of a Phillips line,
describing the steady-state Phillips curve, and a Euler line,
describing the steady-state Euler equation. When an unex-
pected and permanent shock occurs, the economy jumps to a
new ZLB steady state; we use the graphs to study such jumps.

A. Paradox of Thrift

We first study an increase in the marginal utility of wealth
(u′(0)). The steady-state Phillips curve is unaffected, but the
steady-state Euler equation changes. Using equation (5), we
rewrite the steady-state Euler equation, given by equation
(10):

π = −δ + σ + u′(0)y.

Increasing the marginal utility of wealth steepens the Euler
line, which moves the economy inward along the Phillips
line. Output and inflation therefore decrease (figure 7A). The
following proposition gives the results:

Proposition 6. At the ZLB in the WUNK model, the paradox
of thrift holds: an unexpected and permanent increase in the
marginal utility of wealth reduces output and inflation but
does not affect relative wealth.

The paradox of thrift was first discussed by Keynes, but
it also appears in the New Keynesian model (Eggertsson,
2010, 16; Eggertsson & Krugman, 2012, 1486). When the
marginal utility of wealth is higher, people want to increase
their wealth holdings relative to their peers, so they fa-
vor saving over consumption. But in equilibrium, relative
wealth is fixed at 0 because everybody is the same; the
only way to increase saving relative to consumption is to
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212 THE REVIEW OF ECONOMICS AND STATISTICS

reduce consumption. In normal times, the central bank would
offset this drop in aggregate demand by reducing nominal
interest rates. This is not an option at the ZLB, so output
falls.

B. Paradox of Toil

Next we consider a reduction in the disutility of labor (κ).
In this case, the steady-state Phillips curve changes while the
steady-state Euler equation does not. Using equation (2), we
rewrite the steady-state Phillips curve, given by equation (3):

π = εκ

δγa
y − ε − 1

δγ
.

Reducing the disutility of labor flattens the Phillips line,
which moves the economy inward along the Euler line. Thus,
both output and inflation decrease (figure 7B). Since hours
worked and output are related by h = y/a, hours fall as well.
The following proposition states the results:

Proposition 7. At the ZLB in the WUNK model, the paradox
of toil holds: an unexpected and permanent reduction in the
disutility of labor reduces output, inflation, and hours worked.

The paradox of toil was discovered by Eggertsson (2010,
15) and Eggertsson and Krugman (2012, 1487). It operates
as follows. With lower disutility of labor, real marginal costs
are lower, and the natural level of output is higher: producers
would like to sell more. To increase sales, they reduce their
prices by reducing inflation. At the ZLB, nominal interest
rates are fixed, so the decrease in inflation raises real inter-
est rates—which renders households more prone to save. In
equilibrium, this lowers output and hours worked.13

C. Paradox of Flexibility

We then examine a decrease in the price-adjustment cost
(γ). The steady-state Euler equation is not affected, but the
steady-state Phillips curve is. Equation (3) shows that de-
creasing the price-adjustment cost leads to a counterclock-
wise rotation of the Phillips line around the natural steady
state. This moves the economy downward along the Euler
line, so output and inflation decrease (figure 7C). The fol-
lowing proposition records the results:

Proposition 8. At the ZLB in the WUNK model, the paradox
of flexibility holds: an unexpected and permanent decrease
in price-adjustment cost reduces output and inflation.

The paradox of flexibility was discovered by Werning
(2011, 13–14) and Eggertsson and Krugman (2012, 1487–
1488). Intuitively, with a lower price-adjustment cost, pro-
ducers are eager to adjust their prices to bring production
closer to the natural level of output. Since production is be-
low the natural level at the ZLB, producers are eager to reduce

13An increase in technology (a) would have the same effect as a reduction
in the disutility of labor: it would lower output, inflation, and hours.

their prices to stimulate sales. This accentuates the existing
deflation, which translates into higher real interest rates. As
a result, households are more prone to save, which in equi-
librium depresses output.

D. Above-One Government-Spending Multiplier

We finally look at an increase in government spending
(g), using the model with government spending introduced
in section IVC. From equation (11) we see that increasing
government spending shifts the Phillips line upward, which
moves the economy upward along the Euler line: both private
consumption and inflation increase (figure 7D). Since pri-
vate consumption increases when public consumption does,
the government-spending multiplier dy/dg = 1 + dc/dg is
greater than one. The ensuing proposition gives the results
(proof details in online appendix F):

Proposition 9. At the ZLB in the WUNK model, an un-
expected and permanent increase in government spend-
ing raises private consumption and inflation. Hence the
government-spending multiplier dy/dg is above one; its
value is given by equation (13).

Christiano, Eichenbaum, and Rebelo (2011), Eggertsson
(2011), and Woodford (2011) also show that at the ZLB in the
New Keynesian model, the government-spending multiplier
is above 1. The intuition is the following. With higher gov-
ernment spending, real marginal costs are higher for a given
level of sales to households. Producers pass the cost increase
through into prices, which raises inflation. At the ZLB, the
increase in inflation lowers real interest rates—as nominal in-
terest rates are fixed—which deters households from saving.
In equilibrium, this leads to higher private consumption and
a multiplier above one.

VI. Empirical Assessment of the WUNK Assumption

In the WUNK model, the marginal utility of wealth is as-
sumed to be high enough that the steady-state Euler equation
is steeper than the steady-state Phillips curve at the ZLB. We
assess this assumption using US evidence.

As a first step, we reexpress the WUNK assumption in
terms of estimable statistics. We obtain the following condi-
tion (derivations in online appendix G):

δ − rn >
λ

δ
, (14)

where δ is the time discount rate, rn is the average natural
rate of interest, and λ is the coefficient on output gap in a
New Keynesian Phillips curve. The term δ − rn measures the
marginal rate of substitution between wealth and consump-
tion, u′(0)yn. It indicates how high the marginal utility of
wealth is and thus how steep the steady-state Euler equation
is at the ZLB. The term λ/δ indicates how steep the steady-
state Phillips curve is. The δ comes from the denominator
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RESOLVING NEW KEYNESIAN ANOMALIES WITH WEALTH IN THE UTILITY FUNCTION 213

of the slopes of the Phillips curves, given by equations (3)
and (11); the λ measures the rest of the slope coefficients.
Condition (14) is expressed in terms of sufficient statistics,
so it applies when the disutility of labor is linear (in which
case it is equivalent to condition (9)) and when the disutility
of labor is convex (in which case it is equivalent to condition
(12)). We now survey the literature to obtain estimates of rn,
λ, and δ.

A. Natural Rate of Interest

A large number of macroeconometric studies have esti-
mated the natural rate of interest, using different statistical
models, methodologies, and data. Recent studies obtain com-
parable estimates of the natural rate for the United States:
around 2% per annum on average between 1985 and 2015
(Williams, 2017, fig. 1). Accordingly, we use rn = 2% as our
estimate.

B. Output-Gap Coefficient in the New Keynesian
Phillips Curve

Many studies have estimated New Keynesian Phillips
curves. Mavroeidis, Plagborg-Moller, and Stock (2014,
sec. 5) offer a synthesis for the United States. They generate
estimates of the New Keynesian Phillips curve using an array
of US data, methods, and specifications found in the litera-
ture. They find significant uncertainty around the estimates,
but in many cases, the output-gap coefficient is positive and
very small. Overall, their median estimate of the output-gap
coefficient is λ = 0.004 (table 5, row 1), which we use as our
estimate.

C. Time Discount Rate

Since the 1970s, many studies have estimated time dis-
count rates using field and laboratory experiments and real-
world behavior. Frederick, Loewenstein, and O’Donoghue
(2002, table 1) survey 43 such studies. The estimates are
quite dispersed, but the majority of them point to high dis-
count rates, much higher than prevailing market interest rates.
We compute the mean estimate in each of the studies covered
by the survey and then compute the median value of these
means. We obtain an annual discount rate of δ = 35%.

There is one immediate limitation with the studies dis-
cussed by Frederick, Loewenstein, and O’Donoghue: they
use a single rate to exponentially discount future utility.
But exponential discounting does not describe reality well
because people seem to choose more impatiently for the
present than for the future—they exhibit present-focused
preferences (Ericson & Laibson, 2019). Recent studies have
moved away from exponential discounting and allowed for
present-focused preferences, including quasi-hyperbolic (β-
δ) discounting. Andersen et al. (2014, table 3) survey 16 such
studies, concentrating on experimental studies with real in-
centives. We compute the mean estimate in each study and

then the median value of these means; we obtain an annual
discount rate of δ = 43%. Accordingly, even after account-
ing for present focus, time discounting remains high. We use
δ = 43% as our estimate.14

D. Assessment

We now combine our estimates of rn, λ, and δ to assess
the WUNK assumption. Since λ is estimated using the quar-
ter as the unit of time, we reexpress rn and δ as quarterly
rates: rn = 2%/4 = 0.5% per quarter, and δ = 43%/4 =
10.8% per quarter. We conclude that condition (14) comfort-
ably holds: δ − rn = 0.108 − 0.005 = 0.103, which is much
larger than λ/δ = 0.004/0.108 = 0.037. Hence, the WUNK
assumption holds in US data.

The discount rate used here (43% per annum) is much
higher than discount rates used in macroeconomic models
(typically less than 5% per annum). This is because our dis-
count rate is calibrated from microevidence, while the dis-
count rate in macroeconomic models is calibrated to match
observed real interest rates.

This discrepancy occasions two remarks. First, the wealth-
in-the-utility assumption is advantageous because it accords
with the fact that people exhibit double-digit discount rates
and yet are willing to save at single-digit interest rates. In the
standard model, by contrast, the discount rate equals the real
interest rate in steady state, so the model cannot accommodate
double-digit discount rates.

Second, the WUNK assumption would also be satis-
fied with annual discount rates below 43%. Indeed, condi-
tion (14) holds for discount rates as low as 27% because
δ − rn = (0.27/4) − 0.005 = 0.062 is greater than λ/δ =
0.004/(0.27/4) = 0.059. An annual discount rate of 27% is
at the low end of available microestimates: in 11 of the 16
studies in Andersen et al. (2014, table 3), the bottom of the
estimate range is above 27%, and in 13 of the 16 studies, the
mean estimate is above 27%.

14There are two potential issues with the experiments discussed in An-
dersen et al. (2014). First, many are run with university students instead of
subjects representative of the general population. There do not seem to be
systematic differences in discounting between student and nonstudent sub-
jects, however (Cohen et al., 2020, 334). Hence, using students is unlikely
to bias the estimates reported by Andersen et al. Second, all the experiments
elicit discount rates using financial flows, not consumption flows. As the
goal is to elicit the discount rate on consumption, this could be problematic;
the problems could be exacerbated if subjects derive utility from wealth.
To assess this potential issue, suppose first (as in most of the literature) that
monetary payments are consumed at the time of receipt and that the utility
function is locally linear. Then the experiments deliver estimates of the rel-
evant discount rate (Cohen et al., 2020, 323–325). If these conditions do not
hold, the experimental findings are more difficult to interpret. For instance,
if subjects optimally smooth their consumption over time by borrowing and
saving, then the experiments only elicit the interest rate faced by subjects
and reveal nothing about their discount rate (Cohen et al., 2020, 322–323).
In that case, we should rely on experiments using time-dated consumption
rewards instead of monetary rewards. Such experiments directly deliver es-
timates of the discount rate. Many such experiments have been conducted;
a robust finding is that discount rates are higher for consumption rewards
than for monetary rewards (Cohen et al., 2020, 312–315). Hence, the esti-
mates presented in Andersen et al. are, if anything, lower bounds on actual
discount rates.
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214 THE REVIEW OF ECONOMICS AND STATISTICS

Finally, while our model omits firms and assumes that
households are both producers and consumers, in reality firms
and households are often separate entities that could have dif-
ferent discount rates. With different discount rates, condition
(14) would become

δh − rn >
λ

δ f
,

where δh is households’ discount rate and δ f is firms’ dis-
count rate. Clearly, if firms have a low discount rate, the
WUNK assumption is less likely to be satisfied. If we use
δh = 43%, rn = 2%, and λ = 0.004, the condition holds as
long as firms have an annual discount rate above 16% be-
cause δh − rn = (0.43/4) − 0.005 = 0.103 is greater than
λ/δ f = 0.004/(0.16/4) = 0.100. A discount rate of 16% is
only slightly above that reported by large US firms: in a survey
of 228 CEOs, Poterba and Summers (1995) find an average
annual real discount rate of 12.2%, and in a survey of 86
CFOs, Jagannathan et al. (2016, 447) find an average annual
real discount rate of 12.7%.

VII. Conclusion

This paper proposes an extension of the New Keynesian
model that is immune to the anomalies that plague the stan-
dard model at the ZLB. The extended model deviates only
minimally from the standard model: relative wealth enters the
utility function, which adds an extra term only in the Euler
equation. Yet when the marginal utility of wealth is suffi-
ciently high, the model behaves well at the ZLB: even when
the ZLB is long-lasting, there is no collapse of inflation and
output, and both forward guidance and government spend-
ing have limited, plausible effects. The extended model also
retains other properties of the standard model at the ZLB:
the paradoxes of thrift, toil, and flexibility and a government-
spending multiplier greater than 1.

Our analysis would apply more generally to any New Key-
nesian model representable by a discounted Euler equation
and a Phillips curve (Del Negro, Giannoni, & Patterson, 2015;
Gabaix, 2016; McKay, Nakamura, & Steinsson, 2017; Camp-
bell et al., 2017; Beaudry & Portier, 2018; Angeletos & Lian,
2018). Wealth in the utility function is a simple way to gener-
ate discounting; but any model with discounting would have
similar phase diagrams and properties. Hence, for such mod-
els to behave well at the ZLB, there is only one requirement:
that discounting is strong enough to make the steady-state
Euler equation steeper than the steady-state Phillips curve at
the ZLB; the source of discounting is unimportant. In the real
world, several discounting mechanisms might operate at the
same time and reinforce each other. A model blending these
mechanisms would be even more likely to behave well at the
ZLB.
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Appendix A. Formal derivation of Euler equation & Phillips curve

We derive the two differential equations that describe the equilibrium of the New Keynesian
model with wealth in the utility function: the Phillips curve, given by (1); and the Euler equation,
given by (4).

A.1. Household’s problem

We begin by solving household 𝑗 ’s problem. The current-value Hamiltonian of the problem is

H𝑗 =
𝜖

𝜖 − 1
ln
(∫ 1

0
𝑐 𝑗𝑘 (𝑡) (𝜖−1)/𝜖 𝑑𝑘

)
+ 𝑢

(
𝑏 𝑗 (𝑡) − 𝑏 (𝑡)

𝑝 (𝑡)

)
− 𝜅

𝑎
𝑦𝑑𝑗 (𝑝 𝑗 (𝑡), 𝑡) −

𝛾

2
𝜋 𝑗 (𝑡)2

+ A 𝑗 (𝑡)
[
𝑖ℎ (𝑡)𝑏 𝑗 (𝑡) + 𝑝 𝑗 (𝑡)𝑦𝑑𝑗 (𝑝 𝑗 (𝑡), 𝑡) −

∫ 1

0
𝑝𝑘 (𝑡)𝑐 𝑗𝑘 (𝑡) 𝑑𝑘 − 𝜏 (𝑡)

]
+ B𝑗 (𝑡)𝜋 𝑗 (𝑡)𝑝 𝑗 (𝑡),

with control variables 𝑐 𝑗𝑘 (𝑡) for all𝑘 ∈ [0, 1] and𝜋 𝑗 (𝑡), state variables𝑏 𝑗 (𝑡) and𝑝 𝑗 (𝑡), and costate
variablesA 𝑗 (𝑡) and B𝑗 (𝑡). Note that we have used the production and demand constraints to
substitute 𝑦 𝑗 (𝑡) andℎ 𝑗 (𝑡) out of theHamiltonian. (To ease notationwe now drop the time index 𝑡 .)

We apply the necessary conditions for a maximum to the household’s problem given by Ace-
moglu (2009, theorem 7.9). These conditions form the basis of the model’s equilibrium conditions.

The first optimality conditions are 𝜕H𝑗/𝜕𝑐 𝑗𝑘 = 0 for all 𝑘 ∈ [0, 1]. They yield

(A1)
1
𝑐 𝑗

(
𝑐 𝑗𝑘

𝑐 𝑗

)−1/𝜖
= A 𝑗𝑝𝑘 .

Appropriately integrating (A1) over all 𝑘 ∈ [0, 1] and using the expressions for the consumption
and price indices,

𝑐 𝑗 (𝑡) =
[∫ 1

0
𝑐 𝑗𝑘 (𝑡) (𝜖−1)/𝜖 𝑑𝑘

]𝜖/(𝜖−1)
(A2)

𝑝 (𝑡) =
[∫ 1

0
𝑝 𝑗 (𝑡)1−𝜖 𝑑𝑖

] 1/(1−𝜖)
,(A3)

we find

(A4) A 𝑗 =
1
𝑝𝑐 𝑗

.
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Moreover, combining (A1) and (A4), we obtain

(A5) 𝑐 𝑗𝑘 =

(
𝑝𝑘

𝑝

)−𝜖
𝑐 𝑗 .

Integrating (A5) over all 𝑗 ∈ [0, 1], we get the usual demand for good 𝑘:

(A6) 𝑦𝑑
𝑘
(𝑝𝑘) =

∫ 1

0
𝑐 𝑗𝑘 𝑑 𝑗 =

(
𝑝𝑘

𝑝

)−𝜖
𝑐,

where 𝑐 =
∫ 1
0 𝑐 𝑗 𝑑 𝑗 is aggregate consumption. We use this expression for 𝑦𝑑𝑘 (𝑝𝑘) in household 𝑘 ’s

Hamiltonian. Equation (A5) also implies that∫ 1

0
𝑝𝑘𝑐 𝑗𝑘 𝑑𝑘 =

∫ 1

0
𝑝𝑘

(
𝑝𝑘

𝑝

)−𝜖
𝑐 𝑗 𝑑𝑘 = 𝑝𝑐 𝑗 .

This means that when consumption expenditure is allocated optimally across goods, the price of
one unit of consumption index is 𝑝.

The second optimality condition is 𝜕H𝑗/𝜕𝑏 𝑗 = 𝛿A 𝑗 − ¤A 𝑗 , which gives

−
¤A 𝑗

A 𝑗

= 𝑖ℎ + 1
𝑝A 𝑗

· 𝑢′
(
𝑏 𝑗 − 𝑏

𝑝

)
− 𝛿.

Using (A4) and 𝑖ℎ = 𝑖 + 𝜎, we obtain the household’s Euler equation:

(A7)
¤𝑐 𝑗
𝑐 𝑗

= 𝑖 + 𝜎 − 𝜋 + 𝑐 𝑗𝑢′
(
𝑏 𝑗 − 𝑏

𝑝

)
− 𝛿.

This equation describes the optimal path for household 𝑗 ’s consumption.
The third optimality condition is 𝜕H𝑗/𝜕𝜋 𝑗 = 0, which yields

(A8) B𝑗𝑝 𝑗 = 𝛾𝜋 𝑗 .

Differentiating (A8) with respect to time, we obtain

(A9)
¤B𝑗

B𝑗

=
¤𝜋 𝑗

𝜋 𝑗

− 𝜋 𝑗 .

The last optimality condition is 𝜕H𝑗/𝜕𝑝 𝑗 = 𝛿B𝑗 − ¤B𝑗 , which implies

𝜅

𝑎
·
𝜖𝑦 𝑗

𝑝 𝑗

− (𝜖 − 1)A 𝑗𝑦 𝑗 + B𝑗𝜋 𝑗 = 𝛿B𝑗 − ¤B𝑗 .
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Reshuffling the terms then yields

𝜋 𝑗 −
(𝜖 − 1)𝑦 𝑗A 𝑗

B𝑗𝑝 𝑗

(
𝑝 𝑗 −

𝜖

𝜖 − 1
· 𝜅

𝑎A 𝑗

)
= 𝛿 −

¤B𝑗

B𝑗

.

Finally, incorporating (A4), (A8), and (A9), we obtain the household’s Phillips curve:

(A10)
¤𝜋 𝑗

𝜋 𝑗

= 𝛿 +
(𝜖 − 1)𝑦 𝑗
𝛾𝑐 𝑗𝜋 𝑗

(
𝑝 𝑗

𝑝
− 𝜖

𝜖 − 1
·
𝜅𝑐 𝑗

𝑎

)
.

This equation describes the optimal path for the price set by household 𝑗 .

A.2. Equilibrium

We now describe the equilibrium of the model. Since all households face the same initial condi-
tions, they all behave the same. We therefore drop the subscripts 𝑗 and 𝑘 on all the variables. In
particular, all households hold the same wealth, so relative wealth is zero: 𝑏 𝑗 = 𝑏. In addition,
production and consumption are equal in equilibrium: 𝑦 = 𝑐.

Accordingly, the household’s Phillips curve, given by (A10), simplifies to

¤𝜋 = 𝛿𝜋 − 𝜖𝜅

𝛾𝑎
(𝑦 − 𝑦𝑛) ,

where

(A11) 𝑦𝑛 =
𝜖 − 1
𝜖

· 𝑎
𝜅
.

And the household’s Euler equation, given by (A7), simplifies to

¤𝑦
𝑦
= 𝑟 − 𝑟𝑛 + 𝑢′(0) (𝑦 − 𝑦𝑛),

where 𝑟 = 𝑖 − 𝜋 and

(A12) 𝑟𝑛 = 𝛿 − 𝜎 − 𝑢′(0)𝑦𝑛 .

These differential equations are the Phillips curve (1) and Euler equation (4).
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Appendix B. Heuristic derivation of Euler equation & Phillips curve

To better understand and interpret the continuous-time Euler equation and Phillips curve, we
complement the formal derivations of online appendix A with heuristic derivations, as in Blan-
chard and Fischer (1989, pp. 40–42).

B.1. Euler equation

The Euler equation says that households save in an optimal fashion: they cannot improve their
situation by shifting consumption a little bit across time.

Consider a household delaying consumption of one unit of output from time 𝑡 to time 𝑡 + 𝑑𝑡 .
The unit of output, invested at a real interest rate 𝑟ℎ (𝑡), becomes 1 + 𝑟ℎ (𝑡)𝑑𝑡 at time 𝑡 + 𝑑𝑡 . Given
log consumption utility, the marginal utility from consumption at any time 𝑡 is 𝑒−𝛿𝑡/𝑦 (𝑡). Hence,
the household forgoes 𝑒−𝛿𝑡/𝑦 (𝑡) utils at time 𝑡 and gains

[1 + 𝑟ℎ (𝑡)𝑑𝑡] 𝑒
−𝛿 (𝑡+𝑑𝑡)

𝑦 (𝑡 + 𝑑𝑡)

utils at time 𝑡 + 𝑑𝑡 .
Since people enjoy holding wealth, the one unit of output saved between 𝑡 and 𝑡 +𝑑𝑡 provides

hedonic returns in addition to financial returns. The marginal utility from real wealth at time 𝑡 is
𝑒−𝛿𝑡𝑢′(0). Hence, by holding an extra unit of real wealth for a duration 𝑑𝑡 , the household gains
𝑒−𝛿𝑡𝑢′(0)𝑑𝑡 utils.

At the optimum, reallocating consumption over time does not affect utility, so the following
holds:

0 = − 𝑒−𝛿𝑡

𝑦 (𝑡) +
[
1 + 𝑟ℎ (𝑡)𝑑𝑡

] 𝑒−𝛿 (𝑡+𝑑𝑡)

𝑦 (𝑡 + 𝑑𝑡) + 𝑒−𝛿𝑡𝑢′(0)𝑑𝑡 .

Divided by 𝑒−𝛿𝑡/𝑦 (𝑡), this condition becomes

1 = [1 + 𝑟ℎ (𝑡)𝑑𝑡]𝑒−𝛿𝑑𝑡 𝑦 (𝑡)
𝑦 (𝑡 + 𝑑𝑡) + 𝑢

′(0)𝑦 (𝑡)𝑑𝑡 .

Furthermore, up to second-order terms, the following approximations are valid:

𝑒−𝛿𝑑𝑡 = 1 − 𝛿𝑑𝑡

𝑦 (𝑡 + 𝑑𝑡)
𝑦 (𝑡) = 1 + ¤𝑦 (𝑡)

𝑦 (𝑡)𝑑𝑡

1
1 + 𝑥𝑑𝑡

= 1 − 𝑥𝑑𝑡, for any 𝑥 .
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Hence, up to second-order terms, the previous condition gives

1 =
[
1 + 𝑟ℎ (𝑡)𝑑𝑡

]
(1 − 𝛿𝑑𝑡)

[
1 − ¤𝑦 (𝑡)

𝑦 (𝑡)𝑑𝑡
]
+ 𝑢′(0)𝑦 (𝑡)𝑑𝑡 .

Keeping only first-order terms, we obtain

1 = 1 − 𝛿𝑑𝑡 + 𝑟ℎ (𝑡)𝑑𝑡 − ¤𝑦 (𝑡)
𝑦 (𝑡)𝑑𝑡 + 𝑢

′(0)𝑦 (𝑡)𝑑𝑡 .

Reshuffling the terms and dividing by 𝑑𝑡 , we conclude that

¤𝑦 (𝑡)
𝑦 (𝑡) = 𝑟ℎ (𝑡) − 𝛿 + 𝑢′(0)𝑦 (𝑡).

We obtain the Euler equation (4) from here by noting that 𝑟ℎ (𝑡) = 𝑟 (𝑡) + 𝜎 and introducing the
natural rate of interest 𝑟𝑛 given by (A12).

B.2. Phillips curve

The Phillips curve says that households price in an optimal fashion: they cannot improve their
situation by shifting inflation a little bit across time.

Consider a household delaying one percentage point of inflation from time 𝑡 to time 𝑡 + 𝑑𝑡 .
Given the quadratic price-change disutility, the marginal disutility from inflation at any time 𝑡 is
𝑒−𝛿𝑡𝛾𝜋 (𝑡). Hence, at time 𝑡 , the household avoids a disutility of

𝑒−𝛿𝑡𝛾𝜋 (𝑡) × 1%.

And, at time 𝑡 + 𝑑𝑡 , the household incurs an extra disutility of

𝑒−𝛿 (𝑡+𝑑𝑡)𝛾𝜋 (𝑡 + 𝑑𝑡) × 1%.

Delaying inflation by one percentage point reduces the household’s price between times 𝑡
and 𝑡 + 𝑑𝑡 by 𝑑𝑝 (𝑡) = −1% × 𝑝 (𝑡). The price drop then affects sales. Since the price elasticity of
demand is −𝜖, sales increase by

𝑑𝑦 (𝑡) = −𝜖𝑦 (𝑡) × −1% = 𝜖𝑦 (𝑡) × 1%.
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Accordingly, the household’s revenue grows by

𝑑 (𝑝 (𝑡)𝑦 (𝑡)) = 𝑝 (𝑡)𝑑𝑦 (𝑡) + 𝑦 (𝑡)𝑑𝑝 (𝑡) = (𝜖 − 1)𝑦 (𝑡)𝑝 (𝑡) × 1%.

With a higher revenue, the household can afford to consume more. Since in equilibrium all
prices are the same, equal to 𝑝 (𝑡), the increase in revenue raises consumption by

𝑑𝑐 (𝑡) = 𝑑 (𝑝 (𝑡)𝑦 (𝑡))
𝑝 (𝑡) = (𝜖 − 1)𝑦 (𝑡) × 1%.

Hence, between times 𝑡 and 𝑡 + 𝑑𝑡 , the utility of consumption increases by

𝑒−𝛿𝑡

𝑦 (𝑡)𝑑𝑐 (𝑡) = 𝑒−𝛿𝑡 (𝜖 − 1) × 1%.

At the same time, because production is higher, the householdmust workmore. Hours worked
are extended by

𝑑ℎ(𝑡) = 𝑑𝑦 (𝑡)
𝑎

=
𝜖𝑦 (𝑡)
𝑎

× 1%.

As a result, between times 𝑡 and 𝑡 + 𝑑𝑡 , the disutility of labor is elevated by

𝑒−𝛿𝑡𝜅𝑑ℎ(𝑡) = 𝑒−𝛿𝑡
𝜅𝜖𝑦 (𝑡)

𝑎
× 1%.

At the optimum, shifting inflation across time does not affect utility, so the following holds:

0 = 𝑒−𝛿𝑡𝛾𝜋 (𝑡) × 1% − 𝑒−𝛿 (𝑡+𝑑𝑡)𝛾𝜋 (𝑡 + 𝑑𝑡) × 1% + 𝑒−𝛿𝑡 (𝜖 − 1) × 1% × 𝑑𝑡 − 𝑒−𝛿𝑡𝜅𝜖
𝑦 (𝑡)
𝑎

× 1% × 𝑑𝑡 .

Divided by 𝑒−𝛿𝑡 × 1%, this condition yields

0 = 𝛾𝜋 (𝑡) − 𝑒−𝛿𝑑𝑡𝛾𝜋 (𝑡 + 𝑑𝑡) + (𝜖 − 1) × 𝑑𝑡 − 𝜅𝜖
𝑦 (𝑡)
𝑎

× 𝑑𝑡 .

Furthermore, up to second-order terms, the following approximations hold:

𝑒−𝛿𝑑𝑡 = 1 − 𝛿𝑑𝑡

𝜋 (𝑡 + 𝑑𝑡) = 𝜋 (𝑡) + ¤𝜋 (𝑡)𝑑𝑡 .

Therefore, up to second-order terms, the previous condition gives

0 = 𝛾𝜋 (𝑡) − (1 − 𝛿𝑑𝑡)𝛾 [𝜋 (𝑡) + ¤𝜋 (𝑡)𝑑𝑡] − 𝜅𝜖
𝑦 (𝑡)
𝑎

𝑑𝑡 + (𝜖 − 1)𝑑𝑡 .
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Then, keeping only first-order terms, we obtain

0 = 𝛿𝛾𝜋 (𝑡)𝑑𝑡 − 𝛾 ¤𝜋 (𝑡)𝑑𝑡 − 𝜅𝜖
𝑦 (𝑡)
𝑎

𝑑𝑡 + (𝜖 − 1)𝑑𝑡 .

Rearranging the terms and dividing by 𝛾𝑑𝑡 , we conclude that

¤𝜋 (𝑡) = 𝛿𝜋 (𝑡) − 𝜖𝜅

𝛾𝑎

[
𝑦 (𝑡) − 𝜖 − 1

𝜖
· 𝑎
𝜅

]
.

Once we introduce the natural level of output 𝑦𝑛 given by (A11), we obtain the Phillips curve (1).
The Phillips curve implies that without price-adjustment cost (𝛾 = 0), households would

produce at the natural level of output. This result comes from the monopolistic nature of com-
petition. Without price-adjustment cost, it is optimal to charge a relative price that is a markup
𝜖/(𝜖 − 1) over the real marginal cost. In turn, the real marginal cost is the marginal rate of substi-
tution between labor and consumption divided by the marginal product of labor. In equilibrium,
all relative prices are 1, the marginal rate of substitution between labor and consumption is
𝜅/(1/𝑦) = 𝜅𝑦, and the marginal product of labor is 𝑎. Hence, optimal pricing requires

1 =
𝜖

𝜖 − 1
· 𝜅𝑦
𝑎
.

Combined with (A11), this condition implies 𝑦 = 𝑦𝑛.
The derivation also elucidates why in steady state, inflation is positive whenever output is

above its natural level. When inflation is positive, a household can reduce its price-adjustment
cost by lowering its inflation. Since pricing is optimal, however, there cannot exist any profitable
deviation from the equilibrium. This means that the household must also incur a cost when it
lowers inflation. A consequence of lowering inflation is that the price charged by the household
drops, which stimulates its sales and production. The absence of profitable deviation imposes
that the household incurs a cost when production increases. In other words, production must be
excessive: output must be above its natural level.
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Appendix C. Euler equation & Phillips curve in discrete time

We recast the model of section 3 in discrete time, and we rederive the Euler equation and Phillips
curve. This reformulation might be helpful to compare our model to the textbook New Keynesian
model, which is presented in discrete time (Woodford 2003; Gali 2008). The reformulation also
shows that introducing wealth in the utility function yields a discounted Euler equation.

C.1. Assumptions

The assumptions are the same in the discrete-timemodel as in the continuous-timemodel, except
for government bonds. In discrete time, households trade one-period government bonds. Bonds
purchased in period 𝑡 have a price 𝑞(𝑡) and pay one unit of money in period 𝑡 + 1. The nominal
interest rate on government bonds is defined as 𝑖ℎ (𝑡) = − ln(𝑞(𝑡)).

C.2. Household’s problem

Household 𝑗 chooses sequences
{
𝑦 𝑗 (𝑡), 𝑝 𝑗 (𝑡), ℎ 𝑗 (𝑡),

[
𝑐 𝑗𝑘 (𝑡)

] 1
𝑘=0 , 𝑏 𝑗 (𝑡)

}∞
𝑡=0

to maximize the dis-
counted sum of instantaneous utilities

∞∑︁
𝑡=0

𝛽𝑡

{
𝜖

𝜖 − 1
ln
(∫ 1

0
𝑐 𝑗𝑘 (𝑡) (𝜖−1)/𝜖 𝑑𝑘

)
+ 𝑢

(
𝑏 𝑗 (𝑡) − 𝑏 (𝑡)

𝑝 (𝑡)

)
− 𝜅ℎ 𝑗 (𝑡) −

𝛾

2

[
𝑝 𝑗 (𝑡)

𝑝 𝑗 (𝑡 − 1) − 1
]2}

𝑑𝑡,

where 𝛽 < 1 is the time discount factor. The maximization is subject to three constraints. First,
there is a production function: 𝑦 𝑗 (𝑡) = 𝑎ℎ 𝑗 (𝑡). Second, there is the demand for good 𝑗 :

𝑦 𝑗 (𝑡) =
[
𝑝 𝑗 (𝑡)
𝑝 (𝑡)

]−𝜖
𝑐 (𝑡) ≡ 𝑦𝑑𝑗 (𝑝 𝑗 (𝑡), 𝑡).

The demand for good 𝑗 is the same as in continuous time because the allocation of consumption
expenditure across goods is a static decision, so it is unaffected by the representation of time.
And third, there is a budget constraint:∫ 1

0
𝑝𝑘 (𝑡)𝑐 𝑗𝑘 (𝑡) 𝑑𝑘 + 𝑞(𝑡)𝑏 𝑗 (𝑡) + 𝜏 (𝑡) = 𝑝 𝑗 (𝑡)𝑦 𝑗 (𝑡) + 𝑏 𝑗 (𝑡 − 1).

Household 𝑗 is also subject to a solvency constraint preventing Ponzi schemes. Lastly, household 𝑗
takes as given the initial conditions 𝑏 𝑗 (−1) and 𝑝 𝑗 (−1), as well as the sequences of aggregate
variables {𝑝 (𝑡), 𝑞(𝑡), 𝑐 (𝑡)}∞𝑡=0.
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The Lagrangian of the household’s problem is

L 𝑗 =

∞∑︁
𝑡=0

𝛽𝑡
{

𝜖

𝜖 − 1
ln
(∫ 1

0
𝑐 𝑗𝑘 (𝑡) (𝜖−1)/𝜖 𝑑𝑘

)
+ 𝑢

(
𝑏 𝑗 (𝑡) − 𝑏 (𝑡)

𝑝 (𝑡)

)
− 𝜅

𝑎
𝑦𝑑𝑗 (𝑝 𝑗 (𝑡), 𝑡) −

𝛾

2

[
𝑝 𝑗 (𝑡)

𝑝 𝑗 (𝑡 − 1) − 1
]2

+ A 𝑗 (𝑡)
[
𝑝 𝑗 (𝑡)𝑦𝑑𝑗 (𝑝 𝑗 (𝑡), 𝑡) + 𝑏 𝑗 (𝑡 − 1) −

∫ 1

0
𝑝𝑘 (𝑡)𝑐 𝑗𝑘 (𝑡) 𝑑𝑘 − 𝑞(𝑡)𝑏 𝑗 (𝑡) − 𝜏 (𝑡)

] }
,

whereA 𝑗 (𝑡) is a Lagrange multiplier. We have used the production and demand constraints to
substitute ℎ 𝑗 (𝑡) and 𝑦 𝑗 (𝑡) out of the Lagrangian.

The necessary conditions for a maximum to the household’s problem are standard first-order
conditions. The first optimality conditions are 𝜕L 𝑗/𝜕𝑐 𝑗𝑘 (𝑡) = 0 for all 𝑘 ∈ [0, 1] and all 𝑡 . As in
continuous time, these conditions yield

(A13) A 𝑗 (𝑡) =
1

𝑝 (𝑡)𝑐 𝑗 (𝑡)
.

The second optimality condition is 𝜕L 𝑗/𝜕𝑏 𝑗 (𝑡) = 0 for all 𝑡 , which gives

𝑞(𝑡)A 𝑗 (𝑡) =
1

𝑝 (𝑡)𝑢
′
(
𝑏 𝑗 (𝑡) − 𝑏 (𝑡)

𝑝 (𝑡)

)
+ 𝛽A 𝑗 (𝑡 + 1).

Using (A13), we obtain the household’s Euler equation:

(A14) 𝑞(𝑡) = 𝑐 𝑗 (𝑡)𝑢′
(
𝑏 𝑗 (𝑡) − 𝑏 (𝑡)

𝑝 (𝑡)

)
+ 𝛽

𝑝 (𝑡)𝑐 𝑗 (𝑡)
𝑝 (𝑡 + 1)𝑐 𝑗 (𝑡 + 1)

.

The third optimality condition is 𝜕L 𝑗/𝜕𝑝 𝑗 (𝑡) = 0 for all 𝑡 , which yields

0 =
𝜅

𝑎
·
𝜖𝑦 𝑗 (𝑡)
𝑝 𝑗 (𝑡)

− 𝛾

𝑝 𝑗 (𝑡 − 1)

[
𝑝 𝑗 (𝑡)

𝑝 𝑗 (𝑡 − 1) − 1
]
+ (1 − 𝜖)A 𝑗 (𝑡)𝑦 𝑗 (𝑡) + 𝛽𝛾

𝑝 𝑗 (𝑡 + 1)
𝑝 𝑗 (𝑡)2

[
𝑝 𝑗 (𝑡 + 1)
𝑝 𝑗 (𝑡)

− 1
]
.

Multiplying this equation by 𝑝 𝑗 (𝑡)/𝛾 and using (A13), we obtain the household’s Phillips curve:

(A15)
𝑝 𝑗 (𝑡)

𝑝 𝑗 (𝑡 − 1)

[
𝑝 𝑗 (𝑡)

𝑝 𝑗 (𝑡 − 1) − 1
]
= 𝛽

𝑝 𝑗 (𝑡 + 1)
𝑝 𝑗 (𝑡)

[
𝑝 𝑗 (𝑡 + 1)
𝑝 𝑗 (𝑡)

− 1
]
+ 𝜖𝜅

𝛾𝑎
𝑦 𝑗 (𝑡) −

𝜖 − 1
𝛾

·
𝑝 𝑗 (𝑡)𝑦 𝑗 (𝑡)
𝑝 (𝑡)𝑐 𝑗 (𝑡)

.

C.3. Equilibrium

We now describe the equilibrium. Since all households face the same initial conditions, they
all behave the same, so we drop the subscripts 𝑗 and 𝑘 on all the variables. In particular, all
households hold the same wealth, so relative wealth is zero: 𝑏 𝑗 (𝑡) = 𝑏 (𝑡). In addition, production
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and consumption are equal in equilibrium: 𝑦 (𝑡) = 𝑐 (𝑡).
Accordingly, from (A14) we obtain the Euler equation

(A16) 𝑞(𝑡) = 𝑢′(0)𝑦 (𝑡) + 𝛽
𝑝 (𝑡)𝑦 (𝑡)

𝑝 (𝑡 + 1)𝑦 (𝑡 + 1) .

Moreover, combining (A15) and (A11), we obtain the Phillips curve

(A17)
𝑝 (𝑡)

𝑝 (𝑡 − 1)

[
𝑝 (𝑡)

𝑝 (𝑡 − 1) − 1
]
= 𝛽

𝑝 (𝑡 + 1)
𝑝 (𝑡)

[
𝑝 (𝑡 + 1)
𝑝 (𝑡) − 1

]
+ 𝜖 − 1

𝛾

[
𝑦 (𝑡)
𝑦𝑛

− 1
]
.

C.4. Log-linearization

To obtain the standard expressions of the Euler equation and Phillips curve, we log-linearize
(A16) and (A17) around the natural steady state: where 𝑦 = 𝑦𝑛, 𝜋 = 0, and 𝑖 = 𝑟𝑛. To that end, we
introduce the log-deviation of output from its steady-state level: 𝑦 (𝑡) = ln(𝑦 (𝑡)) − ln(𝑦𝑛). We
also introduce the inflation rate between periods 𝑡 and 𝑡 + 1: 𝜋 (𝑡 + 1) = ln(𝑝 (𝑡 + 1)) − ln(𝑝 (𝑡)).

Euler equation. We start by log-linearizing the Euler equation (A16).
We first take the log of the left-hand side of (A16). Using the discrete-time definition of the

nominal interest rate faced by households, 𝑖ℎ (𝑡), we obtain ln(𝑞(𝑡)) = −𝑖ℎ (𝑡). At the natural
steady state, the monetary-policy rate is 𝑖 = 𝑟𝑛, so the interest rate faced by households is
𝑖ℎ = 𝑟𝑛 + 𝜎, and ln(𝑞(𝑡)) = −𝑟𝑛 − 𝜎.

Next we take the log of the right-hand side of (A16). We obtain 𝛬 ≡ ln(𝛬1 + 𝛬2), where

𝛬1 ≡ 𝑢′(0)𝑦 (𝑡), 𝛬2 ≡ 𝛽
𝑝 (𝑡)𝑦 (𝑡)

𝑝 (𝑡 + 1)𝑦 (𝑡 + 1) .

For future reference, we compute the values of 𝛬, 𝛬1, and 𝛬2 at the natural steady state. At the
natural steady state, the log of the left-hand side of (A16) equals −𝑟𝑛 − 𝜎, which implies that the
log of the right-hand side of (A16) must also equal −𝑟𝑛 − 𝜎. That is, at the natural steady state,
𝛬 = −𝑟𝑛 − 𝜎 . Moreover, at that steady state, 𝛬1 = 𝑢′(0)𝑦𝑛. And, since inflation is zero and output
is constant at that steady state, 𝛬2 = 𝛽.

Using these results, we obtain a first-order approximation of 𝛬(𝛬1, 𝛬2) around the natural
steady state:

𝛬 = −𝑟𝑛 − 𝜎 + 𝜕𝛬

𝜕𝛬1
[𝛬1 − 𝑢′(0)𝑦𝑛] + 𝜕𝛬

𝜕𝛬2
[𝛬2 − 𝛽] .
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Factoring out𝑢′(0)𝑦𝑛 and 𝛽, and using the definitions of 𝛬1 and 𝛬2, we obtain

(A18) 𝛬 = −𝑟𝑛 − 𝜎 + 𝑢′(0)𝑦𝑛 · 𝜕𝛬

𝜕𝛬1
·
[
𝑦 (𝑡)
𝑦𝑛

− 1
]
+ 𝛽 · 𝜕𝛬

𝜕𝛬2
·
[

𝑝 (𝑡)𝑦 (𝑡)
𝑝 (𝑡 + 1)𝑦 (𝑡 + 1) − 1

]
.

Since 𝛬 = ln(𝛬1 + 𝛬2), we obviously have

𝜕𝛬

𝜕𝛬1
=

𝜕𝛬

𝜕𝛬2
=

1
𝛬1 + 𝛬2

.

In (A18), the derivatives are evaluated at the natural state, so

𝜕𝛬

𝜕𝛬1
=

𝜕𝛬

𝜕𝛬2
=

1
𝑢′(0)𝑦𝑛 + 𝛽

.

Hence, (A18) becomes

(A19) 𝛬 = −𝑟𝑛 − 𝜎 + 𝑢′(0)𝑦𝑛
𝑢′(0)𝑦𝑛 + 𝛽

[
𝑦 (𝑡)
𝑦𝑛

− 1
]
+ 𝛽

𝑢′(0)𝑦𝑛 + 𝛽

[
𝑝 (𝑡)𝑦 (𝑡)

𝑝 (𝑡 + 1)𝑦 (𝑡 + 1) − 1
]
.

Last, up to second-order terms, we have ln(𝑥) = 𝑥 − 1 around 𝑥 = 1. Thus, we have the
following first-order approximations around the natural steady state:

(A20)
𝑦 (𝑡)
𝑦𝑛

− 1 = ln
(
𝑦 (𝑡)
𝑦𝑛

)
= 𝑦 (𝑡)

and

𝑝 (𝑡)𝑦 (𝑡)
𝑝 (𝑡 + 1)𝑦 (𝑡 + 1) − 1 = ln

(
𝑝 (𝑡)𝑦 (𝑡)

𝑝 (𝑡 + 1)𝑦 (𝑡 + 1)

)
= ln

(
𝑦 (𝑡)
𝑦𝑛

)
− ln

(
𝑦 (𝑡 + 1)

𝑦𝑛

)
− ln

(
𝑝 (𝑡 + 1)
𝑝 (𝑡)

)
= 𝑦 (𝑡) − 𝑦 (𝑡 + 1) − 𝜋 (𝑡 + 1).

We therefore rewrite (A19) as

𝛬 = −𝑟𝑛 − 𝜎 + 𝑢′(0)𝑦𝑛
𝑢′(0)𝑦𝑛 + 𝛽

𝑦 (𝑡) + 𝛽

𝑢′(0)𝑦𝑛 + 𝛽
[𝑦 (𝑡) − 𝑦 (𝑡 + 1) − 𝜋 (𝑡 + 1)] .

Finally, introducing

𝛼 =
𝛽

𝛽 + 𝑢′(0)𝑦𝑛 ,
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we obtain
𝛬 = −𝑟𝑛 − 𝜎 + (1 − 𝛼)𝑦 (𝑡) + 𝛼 [𝑦 (𝑡) − 𝑦 (𝑡 + 1) − 𝜋 (𝑡 + 1)] .

In conclusion, taking the log of the Euler equation (A16) yields

−𝑖ℎ (𝑡) = −𝑟𝑛 − 𝜎 + (1 − 𝛼)𝑦 (𝑡) + 𝛼 [𝑦 (𝑡) − 𝑦 (𝑡 + 1) − 𝜋 (𝑡 + 1)] .

Reshuffling the terms and noting that 𝑖ℎ (𝑡) = 𝑖 (𝑡) +𝜎 , we obtain the log-linearized Euler equation:

(A21) 𝑦 (𝑡) = 𝛼𝑦 (𝑡 + 1) − [𝑖 (𝑡) − 𝑟𝑛 − 𝛼𝜋 (𝑡 + 1)] .

Discounting. Because𝑢′(0) > 0, we have

𝛼 =
𝛽

𝛽 + 𝑢′(0)𝑦𝑛 < 1.

Thus, because the marginal utility of wealth is positive, the Euler equation is discounted: future
output, 𝑦 (𝑡 + 1), appears discounted by the coefficient 𝛼 < 1 in (A21). Such discounting also
appears in the presence of overlapping generations (Del Negro, Giannoni, and Patterson 2015;
Eggertsson, Mehrotra, and Robbins 2019); heterogeneous agents facing borrowing constraints
and cyclical income risk (McKay, Nakamura, and Steinsson 2017; Acharya and Dogra 2020; Bilbiie
2019); consumers’ bounded rationality (Gabaix 2020); incomplete information (Angeletos and
Lian 2018); bonds in the utility function (Campbell et al. 2017); and borrowing costs increasing in
household debt (Beaudry and Portier 2018).

To make discounting more apparent, we solve the Euler equation forward:

𝑦 (𝑡) = −
+∞∑︁
𝑘=0

𝛼𝑘 [𝑖 (𝑡 + 𝑘) − 𝑟𝑛 − 𝛼𝜋 (𝑡 + 𝑘 + 1)] .

The effect on current output of interest rates 𝑘 periods in the future is discounted by 𝛼𝑘 < 1;
hence, discounting is stronger for interest rates further in the future (McKay, Nakamura, and
Steinsson 2017, p. 821).

Phillips curve. Next we log-linearize the Phillips curve (A17).
We start with the left-hand side of (A17). The first-order approximations of 𝑥 (𝑥 − 1) and ln(𝑥)

around 𝑥 = 1 both are 𝑥 − 1. This means that up to second-order terms, we have 𝑥 (𝑥 − 1) = ln(𝑥)
around 𝑥 = 1. Hence, up to second-order terms, the following approximation holds around the
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natural steady state:

𝑝 (𝑡)
𝑝 (𝑡 − 1)

[
𝑝 (𝑡)

𝑝 (𝑡 − 1) − 1
]
= ln

(
𝑝 (𝑡)

𝑝 (𝑡 − 1)

)
= 𝜋 (𝑡).

We turn to the right-hand side of (A17) and proceed similarly. We find that up to second-order
terms, the following approximation holds around the natural steady state:

𝛽
𝑝 (𝑡 + 1)
𝑝 (𝑡)

[
𝑝 (𝑡 + 1)
𝑝 (𝑡) − 1

]
= 𝛽 ln

(
𝑝 (𝑡 + 1)
𝑝 (𝑡)

)
= 𝛽𝜋 (𝑡 + 1).

Furthermore, (A20) implies that up to second-order terms, the ensuing approximation holds
around the natural steady state:

𝜖 − 1
𝛾

[
𝑦 (𝑡)
𝑦𝑛

− 1
]
=
𝜖 − 1
𝛾

𝑦 (𝑡).

Combining all these results, we obtain the log-linearized Phillips curve:

(A22) 𝜋 (𝑡) = 𝛽𝜋 (𝑡 + 1) + 𝜖 − 1
𝛾

𝑦 (𝑡) .
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Appendix D. Proofs

Weprovide alternative proofs of propositions 1 and 2. These proofs are not graphical but algebraic;
they are closer to the proofs found in the literature.We also complement the proof of proposition 4.

D.1. Alternative proof of proposition 1

We study the properties of the dynamical system generated by the Phillips curve (1) and Euler
equation (4) in normal times. The natural rate of interest is positive and monetary policy imposes
𝑟 (𝜋) = 𝑟𝑛 + (𝜙 − 1)𝜋 .

Steady state. A steady state [𝑦, 𝜋] must satisfy the steady-state Phillips curve (3) and steady-state
Euler equation (7). These equations form a linear system:

𝜋 =
𝜖𝜅

𝛿𝛾𝑎
(𝑦 − 𝑦𝑛)

(𝜙 − 1)𝜋 = −𝑢′(0) (𝑦 − 𝑦𝑛).

As [𝑦 = 𝑦𝑛, 𝜋 = 0] satisfies both equations, it is a steady state. Furthermore the steady state
is unique because the two equations are non-parallel. In the NK model, this is obvious since
𝑢′(0) = 0. In the WUNKmodel, the slope of the second equation is −𝑢′(0)/(𝜙 − 1). If 𝜙 > 1, the
slope is negative. If 𝜙 ∈ [0, 1), the slope is positive and strictly greater than𝑢′(0) and thus than
𝜖𝜅/(𝛿𝛾𝑎) (because (9) holds). In both cases, the two equations have different slopes.

Linearization. The Euler-Phillips system is nonlinear, so we determine its properties by lineariz-
ing it around its steady state. We first write the Euler equation and Phillips curve as

¤𝑦 (𝑡) = 𝐸 (𝑦 (𝑡), 𝜋 (𝑡)), where 𝐸 (𝑦, 𝜋) = 𝑦 [(𝜙 − 1)𝜋 + 𝑢′(0) (𝑦 − 𝑦𝑛)]

¤𝜋 (𝑡) = 𝑃 (𝑦 (𝑡), 𝜋 (𝑡)), where 𝑃 (𝑦, 𝜋) = 𝛿𝜋 − 𝜖𝜅

𝛾𝑎
(𝑦 − 𝑦𝑛).

Around the natural steady state, the linearized Euler-Phillips system is[
¤𝑦 (𝑡)
¤𝜋 (𝑡)

]
=


𝜕𝐸
𝜕𝑦

𝜕𝐸
𝜕𝜋

𝜕𝑃
𝜕𝑦

𝜕𝑃
𝜕𝜋


[
𝑦 (𝑡) − 𝑦𝑛

𝜋

]
,
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where the derivatives are evaluated at [𝑦 = 𝑦𝑛, 𝜋 = 0]. We have

𝜕𝐸

𝜕𝑦
= 𝑦𝑛𝑢′(0), 𝜕𝐸

𝜕𝜋
= 𝑦𝑛 (𝜙 − 1)

𝜕𝑃

𝜕𝑦
= −𝜖𝜅

𝛾𝑎
,

𝜕𝑃

𝜕𝜋
= 𝛿.

Accordingly the linearized Euler-Phillips system is

(A23)

[
¤𝑦 (𝑡)
¤𝜋 (𝑡)

]
=

[
𝑢′(0)𝑦𝑛 (𝜙 − 1)𝑦𝑛

−𝜖𝜅/(𝛾𝑎) 𝛿

] [
𝑦 (𝑡) − 𝑦𝑛

𝜋 (𝑡)

]
.

Wedenote by𝑴 thematrix in (A23), and by 𝜇1 ∈ ℂ and 𝜇2 ∈ ℂ the two eigenvalues of𝑴 , assumed
to be distinct.

Solution with two real eigenvalues. We begin by solving (A23) when 𝜇1 and 𝜇2 are real and nonzero.
Without loss of generality, we assume 𝜇1 < 𝜇2. Then the solution takes the form

(A24)

[
𝑦 (𝑡) − 𝑦𝑛

𝜋 (𝑡)

]
= 𝑥1𝑒

𝜇1𝑡𝒗1 + 𝑥2𝑒
𝜇2𝑡𝒗2,

where 𝒗1 ∈ ℝ2 and 𝒗2 ∈ ℝ2 are the linearly independent eigenvectors respectively associated
with the eigenvalues 𝜇1 and 𝜇2, and 𝑥1 ∈ ℝ and 𝑥2 ∈ ℝ are constants determined by the terminal
condition (Hirsch, Smale, and Devaney 2013, p. 35).

From (A24), we see that the Euler-Phillips system is a source when 𝜇1 > 0 and 𝜇2 > 0.
Moreover, the solutions are tangent to 𝒗1 when 𝑡 → −∞ and are parallel to 𝒗2 when 𝑡 → +∞.
The system is a saddle when 𝜇1 < 0 and 𝜇2 > 0; in that case, the vector 𝒗1 gives the direction of
the stable line (saddle path) while the vector 𝒗2 gives the direction of the unstable line. Lastly,
when 𝜇1 < 0 and 𝜇2 < 0, the system is a sink. (See Hirsch, Smale, and Devaney 2013, pp. 40–44.)

Solutionwith two complex eigenvalues. Nextwe solve (A23)when 𝜇1 and 𝜇2 are complex conjugates.
We write the eigenvalues as 𝜇1 = 𝜃 + 𝑖𝜍 and 𝜇2 = 𝜃 − 𝑖𝜍 . We also write the eigenvector associated
with 𝜇1 as 𝒗1 + 𝑖𝒗2, where the vectors 𝒗1 ∈ ℝ2 and 𝒗2 ∈ ℝ2 are linearly independent. Then the
solution takes a more complicated form:[

𝑦 (𝑡) − 𝑦𝑛

𝜋 (𝑡)

]
= 𝑒𝜃𝑡 [𝒗1, 𝒗2]

[
cos(𝜍𝑡) sin(𝜍𝑡)
− sin(𝜍𝑡) cos(𝜍𝑡)

] [
𝑥1

𝑥2

]
,
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where [𝒗1, 𝒗2] ∈ ℝ2×2 is a 2 × 2matrix, and 𝑥1 ∈ ℝ and 𝑥2 ∈ ℝ are constants determined by the
terminal condition (Hirsch, Smale, and Devaney 2013, pp. 44–55).

These solutions wind periodically around the steady state, either moving toward it (𝜃 < 0) or
away from it (𝜃 > 0). Hence, the Euler-Phillips system is a spiral source if 𝜃 > 0 and a spiral sink
if 𝜃 < 0. In the special case 𝜃 = 0, the solutions circle around the steady state: the Euler-Phillips
system is a center. (See Hirsch, Smale, and Devaney 2013, pp. 44–47.)

Classification. Weclassify the Euler-Phillips system from the trace and determinant of𝑴 (Hirsch,
Smale, and Devaney 2013, pp. 61–64). The classification relies on the property that tr(𝑴) = 𝜇1+ 𝜇2
and det(𝑴) = 𝜇1𝜇2. The following situations may occur in the NK and WUNKmodels:

• det(𝑴) < 0: Then the Euler-Phillips system is a saddle. This is because det(𝑴) < 0 indicates
that 𝜇1 and 𝜇2 are real, nonzero, and of opposite sign. Indeed, if 𝜇1 and 𝜇2 were real and of
the same sign, det(𝑴) = 𝜇1𝜇2 > 0; and if they were complex conjugates, det(𝑴) = 𝜇1𝜇1 =

Re(𝜇1)2 + Im(𝜇1)2 > 0.

• det(𝑴) > 0 and tr(𝑴) > 0: Then the Euler-Phillips system is a source. This is because
det(𝑴) > 0 indicates that 𝜇1 and 𝜇2 are either real, nonzero, and of the same sign; or complex
conjugates. Since in addition tr(𝑴) > 0, 𝜇1 and 𝜇2must be either real and positive, or complex
with a positive real part. Indeed, if 𝜇1 and 𝜇2 were real and negative, tr(𝑴) = 𝜇1 + 𝜇2 < 0; if
they were complex with a negative real part, tr(𝑴) = 𝜇1 + 𝜇1 = 2 Re(𝜇1) < 0.

Using (A23), we compute the trace and determinant of𝑴 :

tr(𝑴) = 𝛿 + 𝑢′(0)𝑦𝑛

det(𝑴) = 𝛿𝑢′(0)𝑦𝑛 + (𝜙 − 1)𝜖𝜅
𝛾𝑎

𝑦𝑛 .

In the NK model,𝑢′(0) = 0, so tr(𝑴) = 𝛿 > 0 and

det(𝑴) = (𝜙 − 1) 𝑦
𝑛𝜖𝜅

𝛾𝑎
.

If 𝜙 > 1, tr(𝑴) > 0 and det(𝑴) > 0, so the system is a source. If 𝜙 < 1, det(𝑴) < 0, so the
system is a saddle.

In the WUNKmodel, tr(𝑴) > 𝛿 > 0. Further, using 𝜙 − 1 ≥ −1 and (9), we have

det(𝑴) ≥ 𝛿𝑢′(0)𝑦𝑛 − 𝜖𝜅

𝛾𝑎
𝑦𝑛 = 𝛿𝑦𝑛

[
𝑢′(0) − 𝜖𝜅

𝛿𝛾𝑎

]
> 0.
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Since tr(𝑴) > 0 and det(𝑴) > 0, the system is a source.

D.2. Alternative proof of proposition 2

We study the properties of the dynamical system generated by the Phillips curve (1) and Euler
equation (4) at the ZLB. The natural rate of interest is negative and monetary policy imposes
𝑟 (𝜋) = −𝜋 .

Steady state. A steady state [𝑦, 𝜋] must satisfy the steady-state Phillips curve (3) and the steady-
state Euler equation (7). These equations form a linear system:

𝜋 =
𝜖𝜅

𝛿𝛾𝑎
(𝑦 − 𝑦𝑛)(A25)

𝜋 = −𝑟𝑛 + 𝑢′(0) (𝑦 − 𝑦𝑛).(A26)

A solution to this system with positive output is a steady state.
In the NK model,𝑢′(0) = 0, so the system admits a unique solution:

𝜋𝑧 = −𝑟𝑛

𝑦𝑧 = 𝑦𝑛 − 𝛿𝛾𝑎

𝜖𝜅
𝑟𝑛 .

Since 𝑟𝑛 < 0, the solution satisfies 𝑦𝑧 > 𝑦𝑛 > 0: the solution has positive output so it is a steady
state. Hence the NK model admits a unique steady state at the ZLB: [𝑦𝑧, 𝜋𝑧], where 𝜋𝑧 > 0 (since
𝑟𝑛 < 0) and 𝑦𝑧 > 𝑦𝑛.

In the WUNKmodel, since (9) holds, the equations (A25) and (A26) are non-parallel, so the
system admits a unique solution, denoted [𝑦𝑧, 𝜋𝑧]. Using (A25) to substitute 𝑦 − 𝑦𝑛 out of (A26),
we find that

(A27) 𝜋𝑧 =
𝑟𝑛

𝑢′(0)𝛿𝛾𝑎/(𝜖𝜅) − 1
.

Condition (9) implies that the denominator is positive. Since 𝑟𝑛 < 0, we conclude that 𝜋𝑧 < 0.
Next, combining (A25) and (A27), we obtain

(A28) 𝑦𝑧 = 𝑦𝑛 + 𝑟𝑛

𝑢′(0) − 𝜖𝜅/(𝛿𝛾𝑎) .

Since (9) holds, the denominator of the fraction is positive. As 𝑟𝑛 < 0, we conclude that 𝑦𝑧 < 𝑦𝑛.
Finally, to establish that [𝑦𝑧, 𝜋𝑧] is a steady state, we need to verify that 𝑦𝑧 > 0. According to
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(A28), we need

𝑦𝑛 >
−𝑟𝑛

𝑢′(0) − 𝜖𝜅/(𝛿𝛾𝑎) .

Equations (5) and (9) indicate that

−𝑟𝑛 = 𝑢′(0)𝑦𝑛 + 𝜎 − 𝛿 and 𝑢′(0) − 𝜖𝜅

𝛿𝛾𝑎
> 0.

The above inequality is therefore equivalent to[
𝑢′(0) − 𝜖𝜅

𝛿𝛾𝑎

]
𝑦𝑛 > 𝑢′(0)𝑦𝑛 + 𝜎 − 𝛿.

Reshuffling terms, we rewrite the inequality as

𝛿 > 𝜎 + 𝜖𝜅𝑦𝑛

𝛿𝛾𝑎
.

Equation (A11) implies that
𝜖𝜅𝑦𝑛

𝛾𝑎
=
𝜖 − 1
𝛾

.

So we need to verify that
𝛿 > 𝜎 + 𝜖 − 1

𝛿𝛾
.

But we have imposed this condition in the WUNKmodel, to accommodate positive natural rates
of interest. We therefore conclude that 𝑦𝑧 > 0 and that [𝑦𝑧, 𝜋𝑧] is a steady state.

Linearization. The Euler-Phillips system is nonlinear, so we determine its properties by lineariz-
ing it. Around the ZLB steady state, the linearized Euler-Phillips system is

(A29)

[
¤𝑦 (𝑡)
¤𝜋 (𝑡)

]
=

[
𝑢′(0)𝑦𝑧 −𝑦𝑧

−𝜖𝜅/(𝛾𝑎) 𝛿

] [
𝑦 (𝑡) − 𝑦𝑧

𝜋 (𝑡) − 𝜋𝑧

]
.

To obtain the matrix, denoted𝑴 , we set 𝜙 = 0 and replace 𝑦𝑛 by 𝑦𝑧 in the matrix from (A23).

Classification. We classify the Euler-Phillips system (A29) by computing the trace and determi-
nant of𝑴 , as in online appendix D.1. We have tr(𝑴) = 𝛿 + 𝑢′(0)𝑦𝑧 > 0 and

det(𝑴) = 𝛿𝑦𝑧
[
𝑢′(0) − 𝜖𝜅

𝛿𝛾𝑎

]
.
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In the NKmodel,𝑢′(0) = 0 so det(𝑴) < 0, which implies that the Euler-Phillips system is a saddle.
In the WUNKmodel, (9) implies that det(𝑴) > 0. Since in addition tr(𝑴) > 0, the Euler-Phillips
system is a source. In fact, in the WUNKmodel, the discriminant of the characteristic equation
of𝑴 is strictly positive:

tr(𝑴)2 − 4 det(𝑴) = 𝛿2 + [𝑢′(0)𝑦𝑛]2 + 2𝛿𝑢′(0)𝑦𝑛 − 4𝛿𝑢′(0)𝑦𝑛 + 4𝜖𝜅
𝛾𝑎

𝑦𝑛

= [𝛿 − 𝑢′(0)𝑦𝑛]2 + 4𝜖𝜅
𝛾𝑎

𝑦𝑛 > 0.

Hence the eigenvalues of𝑴 are real, not complex: the Euler-Phillips system is a nodal source,
not a spiral source.

D.3. Complement to the proof of proposition 4

We characterize the forward-guidance duration𝛥∗ for the NKmodel, and the ZLB duration𝑇 ∗ for
the WUNKmodel.

In the NK model, 𝛥∗ is the duration of forward guidance that brings the economy on the
unstable line of the ZLB phase diagram at time 𝑇 (figure 3C). With longer forward guidance
(𝛥 > 𝛥∗), the economy is above the unstable line at time𝑇 , and so it is connected to trajectories
that come from the northeast quadrant of the ZLB phase diagram (figure 3D). As a consequence,
during ZLB and forward guidance, inflation is positive and output is above its natural level.
Moreover, since the position of the economy at the end of the ZLB is unaffected by the duration
of the ZLB, initial output and inflation become arbitrarily high as the ZLB duration of the ZLB
approaches infinity.

In theWUNKmodel, for any forward-guidance duration, the economy at time𝑇 is bound to be
in the right-hand triangle of figure 4D. All the points in that triangle are connected to trajectories
that flow from the ZLB steady state, through the left-hand triangle of figure 4D. For any of these
trajectories, initial inflation 𝜋 (0) converges from above to the ZLB steady state’s inflation 𝜋𝑧 as
the ZLB duration𝑇 goes to infinity. Since 𝜋𝑧 < 0, we infer that for each trajectory, there is a ZLB
duration𝑇 , such that for any𝑇 > 𝑇 , 𝜋 (0) < 0. Furthermore, as showed in figure 4D, 𝑦 (0) < 𝑦𝑛

whenever 𝜋 (0) < 0. The ZLB duration𝑇 ∗ is constructed as𝑇 ∗ = max
{
𝑇
}
. The maximum exists

because the right-hand triangle is a closed and bounded subset ofℝ2, so the set
{
𝑇
}
is a closed

and bounded subset of ℝ, which admits a maximum. We know that the set
{
𝑇
}
is closed and

bounded because the function that maps a position at time𝑇 to a threshold𝑇 is continuous.
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Appendix E. Model with government spending

We introduce government spending into the model of section 3. We compute the model’s Euler
equation and Phillips curve, linearize them, and use the linearized equations to construct the
model’s phase diagrams.

E.1. Assumptions

We start from the model of section 3, and we assume that the government purchases a quantity
𝑔 𝑗 (𝑡) of each good 𝑗 ∈ [0, 1]. These quantities are aggregated into an index of public consumption

(A30) 𝑔(𝑡) ≡
[∫ 1

0
𝑔 𝑗 (𝑡) (𝜖−1)/𝜖 𝑑 𝑗

]𝜖/(𝜖−1)
.

Public consumption 𝑔(𝑡) enters separately into households’ utility functions. Government expen-
diture is financed with lump-sum taxation.

Additionally, we assume that the disutility of labor is not linear but convex. Household 𝑗

incurs disutility
𝜅1+𝜂

1 + 𝜂ℎ 𝑗 (𝑡)1+𝜂

from working, where 𝜂 > 0 is the inverse of the Frisch elasticity. The utility function is altered to
ensure that government spending affects inflation and private consumption.

E.2. Euler equation & Phillips curve

We derive the Euler equation and Phillips curve just as in online appendix A.
The only new step is to compute the government’s spending on each good. At any time 𝑡 , the

government chooses the amount 𝑔 𝑗 (𝑡) of each good 𝑗 ∈ [0, 1] to minimize the expenditure∫ 1

0
𝑝 𝑗 (𝑡)𝑔 𝑗 (𝑡) 𝑑 𝑗

subject to the constraint of providing an amount of public consumption 𝑔:[∫ 1

0
𝑔 𝑗 (𝑡) (𝜖−1)/𝜖 𝑑 𝑗

]𝜖/(𝜖−1)
= 𝑔(𝑡).
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To solve the government’s problem at time 𝑡 , we set up a Lagrangian:

L =

∫ 1

0
𝑝 𝑗 (𝑡)𝑔 𝑗 (𝑡) 𝑑 𝑗 + C ·

{
𝑔 −

[∫ 1

0
𝑔 𝑗 (𝑡) (𝜖−1)/𝜖 𝑑 𝑗

]𝜖/(𝜖−1)}
,

where C is a Lagrange multiplier. We then follow the same steps as in the derivation of (A6). The
first-order conditions with respect to 𝑔 𝑗 (𝑡) for all 𝑗 ∈ [0, 1] are 𝜕L/𝜕𝑔 𝑗 = 0. These conditions
imply

(A31) 𝑝 𝑗 (𝑡) = C ·
[
𝑔 𝑗 (𝑡)
𝑔(𝑡)

]−1/𝜖
.

Appropriately integrating (A31) over all 𝑗 ∈ [0, 1], and using (A3) and (A30), we find

(A32) C = 𝑝 (𝑡).

Lastly, combining (A31) and (A32), we obtain the government’s demand for good 𝑗 :

(A33) 𝑔 𝑗 (𝑡) =
[
𝑝 𝑗 (𝑡)
𝑝 (𝑡)

]−𝜖
𝑔(𝑡).

Next we solve household 𝑗 ’s problem. We set up the current-value Hamiltonian:

H𝑗 =
𝜖

𝜖 − 1
ln
(∫ 1

0
𝑐 𝑗𝑘 (𝑡) (𝜖−1)/𝜖 𝑑𝑘

)
+ 𝑢

(
𝑏 𝑗 (𝑡) − 𝑏 (𝑡)

𝑝 (𝑡)

)
− 1
1 + 𝜂

[𝜅
𝑎
𝑦𝑑𝑗 (𝑝 𝑗 (𝑡), 𝑡)

] 1+𝜂
− 𝛾

2
𝜋 𝑗 (𝑡)2

+ A 𝑗 (𝑡)
[
𝑖ℎ (𝑡)𝑏 𝑗 (𝑡) + 𝑝 𝑗 (𝑡)𝑦𝑑𝑗 (𝑝 𝑗 (𝑡), 𝑡) −

∫ 1

0
𝑝𝑘 (𝑡)𝑐 𝑗𝑘 (𝑡) 𝑑𝑘 − 𝜏 (𝑡)

]
+ B𝑗 (𝑡)𝜋 𝑗 (𝑡)𝑝 𝑗 (𝑡).

The terms featuring the consumption levels 𝑐 𝑗𝑘 (𝑡) in the Hamiltonian are the same as in
online appendix A.1, so the optimality conditions 𝜕H𝑗/𝜕𝑐 𝑗𝑘 = 0 remain the same. This implies that
(A1), (A4), and (A5) remain valid. Adding the government’s demand, given by (A33), to households’
demand, given by (A5), we obtain the total demand for good 𝑗 at time 𝑡 :

𝑦𝑑𝑗 (𝑝 𝑗 (𝑡), 𝑡) = 𝑔 𝑗 (𝑡) +
∫ 1

0
𝑐 𝑗𝑘 (𝑡) 𝑑𝑘 =

[
𝑝 𝑗 (𝑡)
𝑝 (𝑡)

]−𝜖
𝑦 (𝑡),

where 𝑦 (𝑡) ≡ 𝑔(𝑡) +
∫ 1
0 𝑐 𝑗 (𝑡) 𝑑 𝑗 measures total consumption. The expression for 𝑦𝑑𝑗 (𝑝 𝑗 (𝑡), 𝑡)

enters the HamiltonianH𝑗 .
The terms featuring the bond holdings 𝑏 𝑗 (𝑡) in the Hamiltonian are the same as in online

appendix A.1. Therefore, the optimality condition 𝜕H𝑗/𝜕𝑏 𝑗 = 𝛿A 𝑗 − ¤A 𝑗 remains the same, and
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the Euler equation (A7) remains valid. In equilibrium, the Euler equation simplifies to

(A34)
¤𝑐
𝑐
= 𝑟 − 𝛿 + 𝜎 + 𝑢′(0)𝑐.

The terms featuring inflation 𝜋 𝑗 (𝑡) in the Hamiltonian are also the same as in online ap-
pendix A.1. Thus, the optimality condition 𝜕H𝑗/𝜕𝜋 𝑗 = 0 is unchanged, and (A8) and (A9) hold.

Last, because the disutility from labor is convex, the optimality condition 𝜕H𝑗/𝜕𝑝 𝑗 = 𝛿B𝑗− ¤B𝑗

is modified. The condition now gives

𝜖

𝑝 𝑗

(𝜅
𝑎
𝑦 𝑗

)1+𝜂
+ (1 − 𝜖)A 𝑗𝑦 𝑗 + B𝑗𝜋 𝑗 = 𝛿B𝑗 − ¤B𝑗 ,

which we rewrite

𝜋 𝑗 −
(𝜖 − 1)𝑦 𝑗A 𝑗

B𝑗𝑝 𝑗

[
𝑝 𝑗 −

𝜖

𝜖 − 1

(𝜅
𝑎

)1+𝜂 𝑦
𝜂

𝑗

A 𝑗

]
= 𝛿 −

¤B𝑗

B𝑗

.

Combining this equation with (A4), (A8), and (A9), we obtain the household’s Phillips curve:

(A35)
¤𝜋 𝑗

𝜋 𝑗

= 𝛿 +
(𝜖 − 1)𝑦 𝑗
𝛾𝑐 𝑗𝜋 𝑗

[
𝑝 𝑗

𝑝
− 𝜖

𝜖 − 1

(𝜅
𝑎

)1+𝜂
𝑦
𝜂

𝑗
𝑐 𝑗

]
.

In equilibrium, the Phillips curve simplifies to

(A36) ¤𝜋 = 𝛿𝜋 + (𝜖 − 1) (𝑐 + 𝑔)
𝛾𝑐

[
1 − 𝜖

𝜖 − 1

(𝜅
𝑎

)1+𝜂
(𝑐 + 𝑔)𝜂𝑐

]
,

where 𝑐 + 𝑔 = 𝑦 is aggregate output.

E.3. Linearized Euler-Phillips system

We now linearize the Euler-Phillips system around the natural steady state, which has zero
inflation and no government spending. The analysis of the model with government spending is
based on this linearized system.

Since ¤𝜋 = 𝜋 = 𝑔 = 0 at the natural steady state, (A36) implies that the natural level of
consumption is

𝑐𝑛 =

(
𝜖 − 1
𝜖

)1/(1+𝜂)
𝑎

𝜅
.
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Since ¤𝑐 = 0 and 𝑐 = 𝑐𝑛 at the natural steady state, (A34) implies that the natural rate of interest is

𝑟𝑛 = 𝛿 − 𝜎 − 𝑢′(0)𝑐𝑛 .

Euler equation. We first linearize the Euler equation (A34) around the point [𝑐 = 𝑐𝑛, 𝜋 = 0]. We
consider two different monetary-policy rules. First, when monetary policy is normal, 𝑟 (𝜋) =
𝑟𝑛 + (𝜙 − 1) 𝜋 . Then the Euler equation is ¤𝑐 = 𝐸 (𝑐, 𝜋), where

𝐸 (𝑐, 𝜋) = 𝑐 [(𝜙 − 1)𝜋 + 𝑢′(0) (𝑐 − 𝑐𝑛)] .

The linearized version is
¤𝑐 = 𝐸 (𝑐𝑛, 0) + 𝜕𝐸

𝜕𝑐
(𝑐 − 𝑐𝑛) + 𝜕𝐸

𝜕𝜋
𝜋,

where the derivatives are evaluated at [𝑐 = 𝑐𝑛, 𝜋 = 0]. We have

𝐸 (𝑐𝑛, 0) = 0,
𝜕𝐸

𝜕𝑐
= 𝑐𝑛𝑢′(0), 𝜕𝐸

𝜕𝜋
= 𝑐𝑛 (𝜙 − 1).

So the linearized Euler equation with normal monetary policy is

(A37) ¤𝑐 = 𝑐𝑛 [(𝜙 − 1)𝜋 + 𝑢′(0) (𝑐 − 𝑐𝑛)] .

Second, when monetary policy is at the ZLB, 𝑟 (𝜋) = −𝜋 . Then the Euler equation becomes
¤𝑐 = 𝐸 (𝑐, 𝜋) where

𝐸 (𝑐, 𝜋) = 𝑐 [−𝑟𝑛 − 𝜋 + 𝑢′(0) (𝑐 − 𝑐𝑛)] .

The linearized version is
¤𝑐 = 𝐸 (𝑐𝑛, 0) + 𝜕𝐸

𝜕𝑐
(𝑐 − 𝑐𝑛) + 𝜕𝐸

𝜕𝜋
𝜋,

where the derivatives are evaluated at [𝑐 = 𝑐𝑛, 𝜋 = 0]. We have

𝐸 (𝑐𝑛, 0) = −𝑐𝑛𝑟𝑛, 𝜕𝐸

𝜕𝑐
= 𝑐𝑛𝑢′(0), 𝜕𝐸

𝜕𝜋
= −𝑐𝑛 .

So the linearized Euler equation at the ZLB is

(A38) ¤𝑐 = 𝑐𝑛 [−𝑟𝑛 − 𝜋 + 𝑢′(0) (𝑐 − 𝑐𝑛)] .

In steady state, at the ZLB, the linearized Euler equation becomes

(A39) 𝜋 = −𝑟𝑛 + 𝑢′(0) (𝑐 − 𝑐𝑛).
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Phillips curve. Next we linearize the Phillips curve (A36) around the point [𝑐 = 𝑐𝑛, 𝜋 = 0, 𝑔 = 0].
The Phillips curve can be written ¤𝜋 = 𝑃 (𝑐, 𝜋, 𝑔) where

𝑃 (𝑐, 𝜋, 𝑔) = 𝛿𝜋 + (𝜖 − 1) (𝑐 + 𝑔)
𝛾𝑐

[
1 − 𝜖

𝜖 − 1

(𝜅
𝑎

)1+𝜂
(𝑐 + 𝑔)𝜂𝑐

]
.

The linearized version is

¤𝜋 = 𝑃 (𝑐𝑛, 0, 0) + 𝜕𝑃

𝜕𝑐
(𝑐 − 𝑐𝑛) + 𝜕𝑃

𝜕𝜋
𝜋 + 𝜕𝑃

𝜕𝑔
𝑔,

where the derivatives are evaluated at [𝑐 = 𝑐𝑛, 𝜋 = 0, 𝑔 = 0]. We have

𝑃 (𝑐𝑛, 0, 0) = 0

𝜕𝑃

𝜕𝑐
= −𝜖

𝛾

(𝜅
𝑎

)1+𝜂
(1 + 𝜂) (𝑐𝑛)𝜂 = −(1 + 𝜂)𝜖𝜅

𝛾𝑎

(
𝜖 − 1
𝜖

)𝜂/(1+𝜂)
𝜕𝑃

𝜕𝜋
= 𝛿

𝜕𝑃

𝜕𝑔
= −𝜖

𝛾

(𝜅
𝑎

)1+𝜂
𝜂 (𝑐𝑛)𝜂 = −𝜂𝜖𝜅

𝛾𝑎

(
𝜖 − 1
𝜖

)𝜂/(1+𝜂)
.

Hence, the linearized Phillips curve is

(A40) ¤𝜋 = 𝛿𝜋 − 𝜖𝜅

𝛾𝑎

(
𝜖 − 1
𝜖

)𝜂/(1+𝜂)
[(1 + 𝜂) (𝑐 − 𝑐𝑛) + 𝜂𝑔] .

In steady state, the linearized Phillips curve becomes

(A41) 𝜋 = − 𝜖𝜅

𝛿𝛾𝑎

(
𝜖 − 1
𝜖

)𝜂/(1+𝜂)
[(1 + 𝜂) (𝑐 − 𝑐𝑛) + 𝜂𝑔] .

E.4. Phase diagrams

Using the linearized Euler-Phillips system, we construct the phase diagrams of the NK andWUNK
models with government spending.

Normal times. We first construct the phase diagrams for normal times with active monetary
policy. The linearized Euler-Phillips system is composed of (A37) with 𝜙 > 1 and (A40) with 𝑔 = 0.

We construct a phase diagramwith private consumption 𝑐 on the horizontal axis and inflation
𝜋 on the vertical axis. We follow the methodology developed in section 3: we plot the loci ¤𝜋 = 0
and ¤𝑐 = 0, and then determine the sign of ¤𝜋 and ¤𝑐 in the four quadrants of the plan delimited by

24



A. NK model: normal times, active monetary policy B. WUNKmodel: normal times, active monetary policy

C. NK model: ZLB D. WUNKmodel: ZLB

FIGURE A1. Phase diagrams of the linearized Euler-Phillips system in the NK and WUNKmodels
with government spending

The variable 𝑐 is private consumption; 𝜋 is inflation; 𝑐𝑛 is the natural level of consumption. The Euler line is the
locus ¤𝑐 = 0; the Phillips line is the locus ¤𝜋 = 0. The trajectories are solutions to the system, plotted for 𝑡 going from
−∞ to +∞. The NK model is the standard New Keynesian model. The WUNKmodel is the same model, except that
the marginal utility of wealth is not zero but is sufficiently large to satisfy condition (12). In normal times with active
monetary policy, the natural rate of interest 𝑟𝑛 is positive, the monetary-policy rate is given by 𝑖 = 𝑟𝑛 + 𝜙𝜋 with
𝜙 > 1, and government spending is zero; the Euler-Phillips system is composed of (A37) with 𝜙 > 1 and (A40) with
𝑔 = 0. At the ZLB, the natural rate of interest is negative, the monetary-policy rate is zero, and government spending
is positive; the Euler-Phillips system is composed of (A38) and (A40) with 𝑔 > 0. The figure shows that in the NK
model, the Euler-Phillips system is a source in normal times with active monetary policy (A); but the system is a
saddle at the ZLB (C). In the WUNKmodel, by contrast, the Euler-Phillips system is a source both in normal times
and at the ZLB (B, D).
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the two loci. The resulting phase diagrams are displayed in the top panels of figure A1. They are
similar to the phase diagrams in the basic model (figures 1A and 1B).1

The phase diagrams show that in normal times, with activemonetary policy, the Euler-Phillips
system is a source in the NK and WUNKmodels. An algebraic approach confirms this result. The
linearized Euler-Phillips system is[

¤𝑐
¤𝜋

]
=

[
𝑢′(0)𝑐𝑛 (𝜙 − 1)𝑐𝑛

−(1 + 𝜂) 𝜖𝜅
𝛾𝑎

(
𝜖−1
𝜖

)𝜂/(1+𝜂)
𝛿

] [
𝑐 − 𝑐𝑛

𝜋

]
.

We denote the above matrix by 𝑴. We classify the Euler-Phillips system using the trace and
determinant of𝑴, as in online appendix D.1:

tr(𝑴) = 𝛿 + 𝑢′(0)𝑐𝑛

det(𝑴) = 𝛿𝑐𝑛

[
𝑢′(0) + (𝜙 − 1) (1 + 𝜂) 𝜖𝜅

𝛿𝛾𝑎

(
𝜖 − 1
𝜖

)𝜂/(1+𝜂)]
.

In the NK model,𝑢′(0) = 0 so tr(𝑴) = 𝛿 > 0 and the sign of det(𝑴) is given by the sign of
𝜙 − 1. Accordingly when monetary policy is active (𝜙 > 1), det(𝑴) > 0: the Euler-Phillips system
is a source. In contrast, when monetary policy is passive (𝜙 < 1), det(𝑴) < 0: the Euler-Phillips
system is a saddle.

In the WUNKmodel, tr(𝑴) > 𝛿 > 0. Moreover, 𝜙 − 1 ≥ −1 for any 𝜙 ≥ 0, so we have

det(𝑴) ≥ 𝛿𝑐𝑛

[
𝑢′(0) − (1 + 𝜂) 𝜖𝜅

𝛿𝛾𝑎

(
𝜖 − 1
𝜖

)𝜂/(1+𝜂)]
.

The WUNK assumption (12) says that the term in square brackets is positive, so det(𝑴) > 0. We
conclude that the Euler-Phillips system is a source whether monetary policy is active or passive.

ZLB. We turn to the phase diagrams at the ZLB. The linearized Euler-Phillips system is composed
of (A38) and (A40) with 𝑔 > 0.

Once again, we follow themethodology developed in section 3 to construct the phase diagrams.
The resulting phase diagrams are displayed in the bottom panels of figure A1. The diagrams have
the same properties as in the basic model (figures 1C and 1D), but for one difference: the Phillips
line shifts upward because government spending is positive. Hence, the Phillips line lies above
the point [𝑐 = 𝑐𝑛, 𝜋 = 0]. While this shift does not affect the classification of the Euler-Phillips

1The phase diagrams of figure 1 have output 𝑦 on the horizontal axis instead of private consumption 𝑐. But 𝑦 = 𝑐

in the basic model (government spending is zero), so phase diagrams with 𝑐 on the horizontal axis would be identical.
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system (source or saddle), it changes the location of the steady state. In fact, by solving the system
given by (A39) and (A41), we find that private consumption and inflation at the ZLB steady state
are

𝑐𝑔 = 𝑐𝑛 +
𝑟𝑛 + 𝜖𝜅

𝛿𝛾𝑎

(
𝜖−1
𝜖

)𝜂/(1+𝜂)
𝜂𝑔

𝑢′(0) − (1 + 𝜂) 𝜖𝜅
𝛿𝛾𝑎

(
𝜖−1
𝜖

)𝜂/(1+𝜂)(A42)

𝜋𝑔 =
(1 + 𝜂)𝑟𝑛 + 𝑢′(0)𝜂𝑔

𝑢′(0) 𝛿𝛾𝑎
𝜖𝜅

(
𝜖

𝜖−1
)𝜂/(1+𝜂) − (1 + 𝜂)

.(A43)

Steady-state consumptionmay be above or below natural consumption, depending on the amount
of government spending. In the WUNKmodel, inflation may be positive or negative, depending
on the amount of government spending.

The phase diagrams show that at the ZLB, the Euler-Phillips system is a source in the WUNK
model but a saddle in the NKmodel. An algebraic approach confirms this classification. Rewritten
in canonical form, the linearized Euler-Phillips system becomes[

¤𝑐
¤𝜋

]
=

[
𝑢′(0)𝑐𝑛 −𝑐𝑛

−(1 + 𝜂) 𝜖𝜅
𝛾𝑎

(
𝜖−1
𝜖

)𝜂/(1+𝜂)
𝛿

] [
𝑐 − 𝑐𝑔

𝜋 − 𝜋𝑔

]
.

We denote the above matrix by 𝑴. We classify the Euler-Phillips system using the trace and
determinant of𝑴, as in online appendix D.1:

tr(𝑴) = 𝛿 + 𝑢′(0)𝑐𝑛

det(𝑴) = 𝛿𝑐𝑛

[
𝑢′(0) − (1 + 𝜂) 𝜖𝜅

𝛿𝛾𝑎

(
𝜖 − 1
𝜖

)𝜂/(1+𝜂)]
.

In the NKmodel,𝑢′(0) = 0 so det(𝑴) < 0, indicating that the Euler-Phillips system is a saddle.
In the WUNKmodel, condition (12) implies that det(𝑴) > 0; since we also have tr(𝑴) > 0, we
conclude that the Euler-Phillips system is a source. We can also show that tr(𝑴)2 − 4 det(𝑴) > 0,
which indicates that the system is a nodal source, not a spiral source.
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Appendix F. Proofs with government spending

We complement the proofs of propositions 5 and 9, which pertain to the model with government
spending.

F.1. Complement to the proof of proposition 5

We characterize the amount 𝑔∗ in the NKmodel, and we compute the limit of the government-
spending multiplier in the WUNKmodel.

In theNKmodel, the amount𝑔∗ of government spending is the amount thatmakes theunstable
line of the dynamical system go through the natural steady state. With less spending than 𝑔∗

(figure 5B), the natural steady state is below the unstable line and is connected to trajectories
coming from the southwest quadrant of the phase diagram. Hence, for 𝑔 < 𝑔∗, lim𝑇→∞ 𝑐 (0;𝑔) =
−∞. With more spending than 𝑔∗ (figure 5D), the natural steady state is above the unstable
line and is connected to trajectories coming from the northeast quadrant. Hence, for 𝑔 > 𝑔∗,
lim𝑇→∞ 𝑐 (0;𝑔) = +∞. Accordingly, for any 𝑠 > 0, lim𝑇→∞𝑚(𝑔∗, 𝑠) = +∞.

In the WUNKmodel, when the ZLB is infinitely long-lasting, the economy jumps to the ZLB
steady state at time 0: lim𝑇→∞ 𝑐 (0;𝑔) = 𝑐𝑔 (𝑔), where 𝑐𝑔 (𝑔) is given by (A42). The steady-state
consumption 𝑐𝑔 (𝑔) is linear in government spending 𝑔, with a coefficient in front of 𝑔 of

𝜂

𝑢′(0) 𝛿𝛾𝑎
𝜖𝜅

(
𝜖

𝜖−1
)𝜂/(1+𝜂) − (1 + 𝜂)

.

Accordingly, for any 𝑠 > 0, we have

lim
𝑇→∞

𝑚(𝑔, 𝑠) = 1 + lim𝑇→∞ 𝑐 (0;𝑔 + 𝑠/2) − lim𝑇→∞ 𝑐 (0;𝑔 − 𝑠/2)
𝑠

= 1 + 𝑐𝑔 (𝑔 + 𝑠/2) − 𝑐𝑔 (𝑔 − 𝑠/2)
𝑠

= 1 + 𝜂

𝑢′(0) 𝛿𝛾𝑎
𝜖𝜅

(
𝜖

𝜖−1
)𝜂/(1+𝜂) − (1 + 𝜂)

,

which corresponds to (13).

F.2. Complement to the proof of proposition 9

We compute the government-spending multiplier at the ZLB in the WUNKmodel. Private con-
sumption and inflation at the ZLB steady state are determined by (A42) and (A43). The coefficients
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in front of government spending 𝑔 in these expressions are

𝜂

𝑢′(0) 𝛿𝛾𝑎
𝜖𝜅

(
𝜖

𝜖−1
)𝜂/(1+𝜂) − (1 + 𝜂)

and
𝑢′(0)𝜂

𝑢′(0) 𝛿𝛾𝑎
𝜖𝜅

(
𝜖

𝜖−1
)𝜂/(1+𝜂) − (1 + 𝜂)

.

Since (12) holds, both coefficients are positive. Hence, an increase in𝑔 raises private consumption
and inflation. Moreover, 𝑑𝑐/𝑑𝑔 is given by the first of these coefficient, which immediately yields
the expression for the multiplier 𝑑𝑦/𝑑𝑔 = 1 + 𝑑𝑐/𝑑𝑔.
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Appendix G. WUNK assumption in terms of estimable statistics

We re-express the WUNK assumption in terms of estimable statistics. We first work on the model
with linear disutility of labor, in which the assumption is given by (9). We then turn to the model
with convex disutility of labor, in which the assumption is given by (12).

G.1. Linear disutility of labor

When the disutility of labor is linear, the WUNK assumption is given by (9). Multiplying (9) by 𝑦𝑛,
we obtain

𝑢′(0)𝑦𝑛 >
1
𝛿
· 𝑦

𝑛𝜖𝜅

𝛾𝑎
.

The time discount rate 𝛿 has been estimated in numerous studies. We therefore only need to
express𝑢′(0)𝑦𝑛 and 𝑦𝑛𝜖𝜅/(𝛾𝑎) in terms of estimable statistics.

First, the definition of the natural rate of interest, given by (5), implies that𝑢′(0)𝑦𝑛 = 𝛿−𝜎−𝑟𝑛.
Following the New Keynesian literature, we set the financial-intermediation spread to 𝜎 = 0 in
normal times (Woodford 2011, p. 20). Hence, in normal times,𝑢′(0)𝑦𝑛 = 𝛿 − 𝑟𝑛. Thus,𝑢′(0)𝑦𝑛

can bemeasured from the gap between the discount rate 𝛿 and the average natural rate of interest
𝑟𝑛—both of which have been estimated by many studies.

Second, we show that 𝑦𝑛𝜖𝜅/(𝛾𝑎) can be measured from estimates of the New Keynesian
Phillips curve. To establish this, we compute the discrete-time New Keynesian Phillips curve
arising from our continuous-time model. We start from the first-order approximation

𝜋 (𝑡) = 𝜋 (𝑡 + 𝑑𝑡) − ¤𝜋 (𝑡 + 𝑑𝑡)𝑑𝑡

and use (1) to measure ¤𝜋 (𝑡 + 𝑑𝑡). We obtain

𝜋 (𝑡) = 𝜋 (𝑡 + 𝑑𝑡) − 𝛿𝜋 (𝑡 + 𝑑𝑡)𝑑𝑡 + 𝑦𝑛𝜖𝜅

𝛾𝑎
· 𝑦 (𝑡) − 𝑦𝑛

𝑦𝑛
𝑑𝑡 .

(We have replaced 𝑦 (𝑡 +𝑑𝑡)𝑑𝑡 by 𝑦 (𝑡)𝑑𝑡 since the difference between the two is of second order.)
Setting the unit of time to one quarter (as in the empirical literature) and 𝑑𝑡 = 1, we obtain

(A44) 𝜋 (𝑡) = (1 − 𝛿)𝜋 (𝑡 + 1) + 𝑦𝑛𝜖𝜅

𝛾𝑎
𝑥 (𝑡),

where 𝜋 (𝑡) is quarterly inflation at time 𝑡 , 𝜋 (𝑡 + 1) is quarterly inflation at time 𝑡 + 1, and

𝑥 (𝑡) = 𝑦 (𝑡) − 𝑦𝑛

𝑦𝑛
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is the output gap at time 𝑡 . Equation (A44) is a typical New Keynesian Phillips curve, so we can
measure 𝑦𝑛𝜖𝜅/(𝛾𝑎) by estimating the coefficient on output gap in a standard New Keynesian
Phillips curve—which has been done many times.

To sum up, we rewrite the WUNK assumption as

𝛿 − 𝑟𝑛 >
𝜆

𝛿
,

where 𝛿 is the time discount rate, 𝑟𝑛 is the average natural interest rate, and 𝜆 is the output-gap
coefficient in a standard New Keynesian Phillips curve. This is just (14).

G.2. Convex disutility of labor

When the disutility of labor is convex, the WUNK assumption is given by (12):

𝑢′(0)𝑦𝑛 >
1
𝛿
· 𝑦

𝑛𝜖𝜅

𝛾𝑎

(
𝜖 − 1
𝜖

)𝜂/(1+𝜂)
(1 + 𝜂).

To rewrite this condition in terms of estimating statistics, we follow the previous method. The
only change occurs when computing the discrete-time New Keynesian Phillips curve arising from
the continuous-time model. To measure ¤𝜋 (𝑡 + 𝑑𝑡), we use (A40) with 𝑔 = 0 and 𝑐 = 𝑦. As a result,
(A44) becomes

𝜋 (𝑡) = (1 − 𝛿)𝜋 (𝑡 + 1) + 𝑦𝑛𝜖𝜅

𝛾𝑎

(
𝜖 − 1
𝜖

)𝜂/(1+𝜂)
(1 + 𝜂)𝑥 (𝑡),

where 𝜋 (𝑡) and 𝜋 (𝑡 + 1) are quarterly inflation rates and 𝑥 (𝑡) is the output gap. This is just a
typical New Keynesian Phillips curve. Hence, again, we can measure

𝑦𝑛𝜖𝜅

𝛾𝑎

(
𝜖 − 1
𝜖

)𝜂/(1+𝜂)
(1 + 𝜂)

by estimating the output-gap coefficient in a standard New Keynesian Phillips curve.
To conclude, just as with a linear disutility of labor, we can write the WUNK assumption as

𝛿 − 𝑟𝑛 >
𝜆

𝛿
,

where 𝛿 is the time discount rate, 𝑟𝑛 is the average natural rate of interest, and 𝜆 is the output-gap
coefficient in a standard New Keynesian Phillips curve.
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