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This article proposes a theory of optimal public expenditure when unemployment is inefficient.
The theory is based on a matching model. Optimal public expenditure deviates from the Samuelson
rule to reduce the unemployment gap (the difference between current and efficient unemployment rates).
Such optimal “stimulus spending” is described by a formula expressed with three sufficient statistics: the
unemployment gap, the unemployment multiplier (the decrease in unemployment achieved by increasing
public expenditure), and the elasticity of substitution between public and private consumption. When
unemployment is inefficiently high and the multiplier is positive, the formula yields the following results.
(1) Optimal stimulus spending is positive and increasing in the unemployment gap. (2) Optimal stimulus
spending is zero for a zero multiplier, increasing in the multiplier for small multipliers, largest for a
moderate multiplier, and decreasing in the multiplier beyond that. (3) Optimal stimulus spending is zero
if extra public goods have no value, it becomes larger as the elasticity of substitution increases, and it
completely fills the unemployment gap if extra public goods are as valuable as extra private goods.
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1. INTRODUCTION

The theory of optimal public expenditure developed by Samuelson (1954) is a cornerstone of
public economics. This theory shows that public goods should be provided to the point where
the marginal rate of substitution between public and private consumption equals their marginal
rate of transformation. While the theory has been expanded in numerous directions since its
inception, one question has not been answered: how is the theory modified in the presence of
unemployment, especially when unemployment is inefficient? This question is relevant because
public expenditure is one of the main tools used by governments to tackle high unemployment.1

1. See Kreiner and Verdelin (2012) for a survey of the public-economic literature on optimal public expenditure.
In macroeconomics, many papers estimate or simulate the effect of public expenditure on output, but only a handful
(discussed in Section 3) study optimal public expenditure. These papers, however, do not feature unemployment.

The editor in charge of this paper was Botond Koszegi.
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2 REVIEW OF ECONOMIC STUDIES

In this article, we expand Samuelson’s theory to situations with inefficient unemployment.
We begin in Section 2 by embedding Samuelson’s theory into a matching model of the economy.
This allows us to introduce inefficient unemployment into the analysis. Indeed, in a matching
model, there is always some unemployment: not all labour services on offer are sold. Furthermore,
productive efficiency usually fails: unemployment may be inefficiently high, when the price of
labour services is too high, or inefficiently low, when the price is too low. When unemployment is
inefficiently high, too many workers are idle; when unemployment is inefficiently low, too much
labour is devoted to recruiting instead of producing.

In Section 3, we find that when unemployment is efficient, the Samuelson rule remains
valid; but when unemployment is inefficient, optimal public expenditure deviates from the
Samuelson rule to bring unemployment closer to its efficient level. We denote the deviation
of public expenditure from the Samuelson rule as “stimulus spending”. We describe optimal
stimulus spending with a formula expressed in terms of three sufficient statistics: (1) the
unemployment gap, which is the difference between current and efficient unemployment rates;
(2) the unemployment multiplier, which measures the reduction in unemployment achieved by
increasing public expenditure; and (3) the elasticity of substitution between public and private
consumption, which describes the utility derived from additional public consumption.2

Being expressed with sufficient statistics, our formula applies to a broad range of matching
models, irrespective of the specification of the utility function, aggregate demand, and price
mechanism. Furthermore, our formula addresses a common problem of sufficient-statistic
formulas. The sufficient statistics usually are implicit functions of policy, so the formulas cannot
explicitly characterize the optimal policy. We resolve this issue in two steps. First, we express
our statistics as explicit functions of stimulus spending. Then, we back out optimal stimulus
spending as a function of statistics independent of policy. The resulting explicit formula yields
several results. (Here we discuss the case with positive unemployment multiplier and positive
unemployment gap, but the article considers all the cases.)

The first result is that when unemployment multiplier and unemployment gap are positive,
optimal stimulus spending is positive. This result is simple to understand. By construction, at
the Samuelson rule, an increase in public expenditure has no first-order effect on welfare when
we ignore its effect on unemployment. Now, when the unemployment multiplier is positive,
an increase in public expenditure lowers unemployment; and when the unemployment gap is
positive, unemployment is inefficiently high, so lowering unemployment raises welfare. Hence,
overall, an increase in public expenditure generates a positive first-order effect on welfare. It is
therefore optimal to increase public expenditure above the Samuelson rule. Further, since the
unemployment gap measures the welfare gain from reducing unemployment, optimal stimulus
spending is increasing in the unemployment gap.

The second result is that optimal stimulus spending is zero for a zero multiplier, increasing
in the multiplier for small multipliers, maximized for a moderate multiplier, and decreasing
in the multiplier for larger multipliers. The intuition is the following. When the multiplier is
small, optimal stimulus spending is determined by how much public expenditure reduces the
unemployment gap. A larger multiplier means a larger reduction, so it warrants more stimulus
spending. When the multiplier is large, this logic breaks down: it becomes optimal to fill the
unemployment gap nearly entirely. As less spending is required to fill the gap when the multiplier
is larger, optimal stimulus spending is decreasing in the multiplier.

The third result is that optimal stimulus spending is increasing in the elasticity of substitution
between public and private consumption. This result is natural: a higher elasticity of substitution
means that extra public goods are more valuable, making stimulus spending more desirable. There

2. See Chetty (2009) for an overview of the sufficient-statistic approach to optimal policy analysis.
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are two interesting limit cases: zero elasticity and infinite elasticity. With zero elasticity, extra
public goods are useless. As public consumption always crowds out private consumption, it is
never optimal to provide public goods beyond the Samuelson rule. With infinite elasticity, public
and private goods are interchangeable. It is therefore optimal to maximize the sum of public and
private consumption. This is achieved by filling the unemployment gap entirely.

In addition, we establish that our formula remains the same whether the taxes used to finance
public expenditure are distortionary or not. Nevertheless, distortionary taxation alters the design of
stimulus spending. When taxes are non-distortionary, the unemployment multiplier and the output
multiplier (the increase in output achieved by increasing public expenditure) are equal, so they
can be used interchangeably in our formula. But with distortionary taxation, the unemployment
and output multipliers are no longer the same, so the output multiplier cannot be used in our
formula. Indeed, with distortionary taxation, raising taxes reduces labour supply, which reduces
output but not unemployment. Hence, the output multiplier is smaller than the unemployment
multiplier. With a strong labour-supply response, it is even possible for the output multiplier to be
negative when the unemployment multiplier is positive. Accordingly, neither the size nor the sign
of the output multiplier are useful to design stimulus spending. This point is important because
the output multiplier plays a prominent role in the stimulus debate.

Since our sufficient statistics are estimable, we can use the formula to generate policy
recommendations. As an illustration, in Section 4, we apply the formula to the Great Recession
in the U.S. Estimates of the unemployment multiplier fall between 0.2 and 1, and according to
research on state-dependent multipliers, they could be larger in bad times. (An unemployment
multiplier of x means that raising public expenditure by 1% of GDP reduces unemployment
by x percentage points). Estimates of the elasticity of substitution between public and private
consumption fall between 0.5 and 2. Given this uncertainty, we compute optimal stimulus
spending for a range of multipliers and elasticities of substitution. For example, with an elasticity
of substitution of 1 (Cobb–Douglas utility), we obtain the following results. Optimal stimulus
spending is large even with a small multiplier of 0.2: about 2.8 percentage points of GDP. It
is largest for a modest multiplier of 0.4: about 3.7 points of GDP. It then decreases for larger
multipliers. It falls to about 1.9 points of GDP when the multiplier reaches 1.5. Of course, optimal
stimulus spending has a different impact on unemployment with small and large multipliers: it has
almost no effect on unemployment with a multiplier of 0.2, but it almost fills the unemployment
gap with a multiplier of 1.5.

Finally, in Section 5, we calibrate and simulate a specific matching model. This exercise
suggests that the matching model describes business cycles well: in response to aggregate-
demand shocks, the model generates countercyclical fluctuations in unemployment rate and
unemployment multiplier. We also find that although our formula is obtained using several
first-order approximations, it remains accurate for sizable business-cycle fluctuations.

2. A MATCHING MODEL OF INEFFICIENT UNEMPLOYMENT

We present the model used for the analysis. The model combines the public-expenditure
framework of Samuelson (1954) with the matching framework of Michaillat and Saez (2015).
Because of the matching structure, the model features unemployment, and the rate of
unemployment is generally inefficient.

2.1. Informal description

The model is not standard, so to help readers understand its properties, we begin by describing
it informally. In the analysis the demand side of the model is completely generic; here for
concreteness we use a specific demand side.
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In the model, there are people and a government. People perform services for pay: they garden,
cook, clean, educate children, cut hair, do administrative work, and so on. People are very much
like P.G. Wodehouse’s butler, Jeeves: they can do everything. Since nobody can be their own
butler, however, people work as butlers for others and use the income to hire their butlers. This
assumption captures the fact that a modern economy is based on market exchange rather than
home production.

Beside purchasing services, people buy land, which provides utility and is a vehicle for saving.
As land is in fixed supply, the trade-off between services and land determines aggregate demand
for services. The relevant price is the price of services in terms of land.

People are hired by other people and the government. The people hired by other people produce
private services (cleaning or cooking) while those hired by the government produce public services
(tending public spaces or policing the streets). People value both public and private services. The
government finances its expenditure by levying a tax.

People are hired on a matching market. This means that while people are available to work for
forty hours a week, they are not working the whole time. For simplicity, we assume that everybody
is idle for the same number of hours each week. Since unemployment is equally spread over the
population, everybody has the same consumption, and insurance is not an issue.

This also means that people and the government need to post help-wanted ads to hire services.
Posting ads requires labour: workers have to create the ads, read applications, and interview
applicants. The time devoted to recruiting by these human-resource workers depends on the
number of positions to be filled and the time spent filling each position. The services supplied by
human-resource workers are not consumed—in the sense that they do not provide utility—but
they are necessary to hire other workers whose services are consumed (provide utility).

Once hired, everyone is paid the same price for their services. People work for an employer
for a while, until the relationship stops. As services are sold by the hour, people usually work for
several employers at the same time.

The state of the services market is described by a tightness variable—the ratio of help-wanted
ads to unemployment. When tightness is higher, it is easier to find work but harder to recruit
workers. Consequently, the unemployment rate is lower, and employers devote a larger share of
their workforce to recruiting.

There is an efficient tightness, which maximizes the amount of services that are consumed
(provide utility). When tightness is inefficiently low, workers are unemployed for too many hours,
so the amount of services consumed is too low. When tightness is inefficiently high, too many
hours are devoted to human-resource tasks, so the amount of services consumed is too low as
well.

In this economy, two variables—tightness and price—equalize demand and supply. If the
price is high, demand for services is low (as land is relatively more attractive). If tightness were
high, people would find work easily and the supply of services would be high. But then demand
could not equal supply. Hence, tightness must be low in equilibrium. If instead the price is
low, demand is high, and tightness must be high. Effectively, for any price, tightness adjusts to
equalize demand and supply. The price can be determined in many ways—bargained between
employer and worker, fixed by a social norm, or set by government regulation—but once the price
mechanism is specified, the equilibrium is unique. There is no guarantee, however, that the price
ensures efficiency.

What happens then when the government hires more workers? In the simple situation where
public hiring affects neither private demand nor price, public hiring mechanically stimulates
aggregate demand, which raises tightness. In good times, tightness is too high, so raising
tightness further reduces total consumption. Consequently, public consumption crowds out private
consumption more than one-for-one. If tightness is efficient, raising tightness has no effect on
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total consumption, so crowding out is exactly one-for-one. Finally, in bad times, tightness is too
low, so raising tightness increases total consumption, and crowding out is less than one-for-one.
In this simple case, therefore, public expenditure is more desirable in bad times than in good
times.

2.2. Supply side

We now formally describe the model. We start with the supply side.
The model is dynamic and set in continuous time. The economy consists of a government and

a measure one of identical households. Households are self-employed: they produce services and
sell them on a matching market.3 There are two types of services: private services, purchased by
households, and public services, purchased by the government and provided to all households.
Public and private services are bought on the same matching market at the same price p.

Each household has a productive capacity k >0; the capacity indicates the maximum amount
of services that could be sold at any point in time. (Here k is exogenous, but in Section 3.3 we
show that the results are unchanged when k is chosen by households to maximize utility.) Since
there is a measure one of households, the aggregate capacity in the economy is k.

Because of the matching process, not all available services are sold at any point in time, so
there is always some unemployment. At time t, households sell C(t) services to other households
and G(t) services to the government. Output Y (t) is the sum of all sales:

Y (t)=C(t)+G(t).

As households cannot sell their entire capacity, Y (t)<k. The unemployment rate is the share of
aggregate capacity that is idle: u(t)= [k−Y (t)]/k.

Services are sold through long-term relationships. Once a seller and a buyer have matched,
the seller serves the buyer at each instant until the relationship ends. Relationships separate at
rate s>0, for exogenous reasons. Since Y (t) services are committed to existing relationships at
time t, the amount of services available for purchase at time t is k−Y (t).

To buy new services, households and the government advertise a total of v(t) vacancies. (In
Section 2.3, we explain how households and the government form their demand for services.)
A Cobb–Douglas matching function taking as arguments available services and vacancies
determines the rate h(t) at which new long-term relationships are formed:

h(t)=ωv(t)1−η [k−Y (t)]η ,

where η∈ (0,1) is the matching elasticity, and ω>0 is the matching efficacy.
With constant returns to scale in matching, the rates at which sellers and buyers form new

relationships is determined by the market tightness, x(t). The market tightness is the ratio of the
matching function’s two arguments: x(t)=v(t)/[k−Y (t)]. Each of the k−Y (t) available services
is sold at rate f (x(t))=h(t)/[k−Y (t)]=ωx(t)1−η, and each of the v(t) vacancies is filled at rate
q(x(t))=h(t)/v(t)=ωx(t)−η. The selling rate f (x) is increasing in x, and the buying rate q(x) is
decreasing in x. Hence, when tightness is higher, it is easier to sell services but harder to buy
them.

In such a model, output follows the law of motion Ẏ (t)= f (x(t))[k−Y (t)]−sY (t). The term
f (x(t))[k−Y (t)] is the number of new relationships forming at time t; the term sY (t) is the number

3. The model can easily be modified to introduce firms hiring their workers on a matching market and selling their
production on another matching market (see Michaillat and Saez, 2015, sec. 3).

Downloaded from https://academic.oup.com/restud/advance-article-abstract/doi/10.1093/restud/rdy030/5034183
by University of California, Berkeley/LBL user
on 05 July 2018



Copyedited by: ES MANUSCRIPT CATEGORY: Article

[20:37 27/6/2018 OP-REST180051.tex] RESTUD: The Review of Economic Studies Page: 6 1–31

6 REVIEW OF ECONOMIC STUDIES

of existing relationships separating at time t. If f (x) and s are constant over time, output converges
to the steady-state level

Y (x,k)= f (x)

f (x)+s
k. (1)

The unemployment rate is u=1−Y/k, so the steady-state unemployment rate is

u(x)= s

s+f (x)
. (2)

The function Y (x,k) is positive and increasing in x and k, and its elasticity with respect to x is
(1−η)u(x). The function u(x) is positive and decreasing in x, and its elasticity with respect to x is
−(1−η)[1−u(x)]. Hence, when tightness is higher, output is higher and unemployment is lower.

In the U.S., labour market flows are large, so unemployment reaches its steady-state level
quickly. In fact, Hall (2005, fig. 1) shows that the unemployment rate obtained from (2) is
indistinguishable from the actual employment rate. Thus, as Hall does, we ignore the transitional
dynamics of output and unemployment and assume that the two variables satisfy (1) and (2) at all
times. To simplify the analysis further, we abstract from transitional dynamics and randomness at
the seller’s level: we assume that at all times a seller exactly sells a share 1−u(x) of her capacity
k; the remaining share u(x) is idle.

Posting a vacancy costs ρ >0 services per unit of time. These services are devoted to
matching with appropriate suppliers of services. Matching services do not directly provide utility
to households, so we distinguish between services purchased and services providing utility.
Households purchase C(t) services and the government purchases G(t) services. We refer to
C(t) as private expenditure and to G(t) as public expenditure. But households only derive utility
from c(t)<C(t) private services and g(t)<G(t) public services; c(t) and g(t) are computed by
subtracting the matching services used by the households and the government from C(t) and G(t).
We refer to c(t) as private consumption, to g(t) as public consumption, and to y(t)=c(t)+g(t) as
total consumption.

The wedge between expenditure and consumption is determined by tightness. As we did
with sellers, we abstract from transitional dynamics and randomness at the buyer’s level. This
means that by posting v0 vacancies, a buyer establishes exactly v0q(x) new matches at any
point in time. It also means that a buyer is always in a situation where the same number of
relationships form and separate. So if a buyer wants to continuously purchase Y0 services, sY0 new
matches must be continuously created to replace the matches that have separated. This requires
v0 =sY0/q(x) vacancies andρv0 =ρsY0/q(x) matching services. Hence, only y0 =Y0 −ρsY0/q(x)
of the services purchased are actually consumed. This relation can be rewritten Y0 = [1+τ (x)]y0,
where

τ (x)= ρs

q(x)−ρs
, (3)

is the wedge between consumption and expenditure caused by matching. The matching wedge τ (x)
is positive and increasing for x∈[0,xm), where xm >0 is defined by q(xm)=ρs and limx→xm τ (x)=
+∞. The elasticity of τ (x) with respect to x is [1+τ (x)]η. Hence, when tightness is higher, the
matching wedge is larger.

The reasoning holds for any consumption y0. Thus, if a household or the government desire
to consume one service, they need to purchase 1+τ (x) services—one service for consumption
plus τ (x) services for matching. Hence, private consumption is related to private expenditure by
c=C/[1+τ (x)] and public consumption to public expenditure by g=G/[1+τ (x)]. Accordingly,
total consumption is a function of tightness and capacity:

y(x,k)= 1−u(x)

1+τ (x)
k. (4)
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The function y(x,k) is positive for x∈[0,xm) and k >0. We refer to y(x,k) as aggregate supply; it
plays a central role in the analysis because it gives the amount of services consumed for a given
tightness. Equation (4) shows that aggregate supply is less than aggregate capacity because some
services are not sold (u(x)>0) and some are used for matching instead of consumption (τ (x)>0).

In such a matching model the rate of unemployment is generally inefficient—because prices
generally fail to maintain productive efficiency (Michaillat and Saez, 2015, pp. 525–529). The
formal definition of efficiency is the following:

Definition 1. Tightness and unemployment are efficient if they maximize total consumption for
a given aggregate productive capacity. The efficient tightness is denoted by x∗ and the efficient
unemployment rate by u∗.

Equation (4) implies that the elasticity of y(x,k) with respect to x is (1−η)u(x)−ητ (x). This
elasticity is 1−η>0 for x=0, strictly decreasing in x, and −∞ at x=xm. Thus, there is a unique
x∗ where the elasticity is zero. Since the partial derivative of y(x,k) with respect to x is positive for
x<x∗, zero at x∗, and negative for x∗, the tightness x∗ maximizes y(x,k) for a given k. Efficient
tightness and unemployment are therefore characterized as follows:

Lemma 1. The efficient tightness x∗ is implicitly defined by

(1−η)u(x∗)−ητ (x∗)=0. (5)

The efficient unemployment rate is given by u∗ =u(x∗).

An increase in tightness has two opposite effects on consumption: it increases consumption
by reducing the amount of unsold services; and it decreases consumption by raising the
amount of services devoted to matching. When (5) is satisfied, the increase in tightness reduces
unsold services as much as it increases matching services, which indicates that consumption is
maximized.

To measure how far from productive efficiency the economy operates, we introduce a first
sufficient statistic:

Definition 2. The unemployment gap is u−u∗.

The unemployment gap is positive when unemployment is inefficiently high and negative
when unemployment is inefficiently low. Equation (5) is useful to determine the sign of the
unemployment gap: when the unemployment rate u is high relative to the matching wedge τ ,
such that u/τ >η/(1−η), tightness is inefficiently low, so the unemployment gap is positive.

Figure 1 summarizes the supply side of the model. It depicts how total consumption and
output depend on tightness. It also depicts the efficient tightness and positive, zero, and negative
unemployment gaps.

2.3. Demand side and equilibrium: general case

We turn to the demand side and equilibrium of the model. While it is necessary to specify the
supply side to compute social welfare and study optimal policy, the sufficient-statistic approach
makes it unnecessary to specify demand side and equilibrium. We therefore keep them generic
and look for sufficient statistics to summarize their relevant features.

The representative household derives instantaneous utility U (c,g) from public and private
consumption, where the function U is strictly increasing in c and g and concave. The marginal
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Figure 1

Supply side and unemployment gap (u−u∗).

Notes: The curve Y (x,k) represents output supplied as a function of tightness x; it is given by (1). The curve y(x,k) represents total
consumption supplied as a function of tightness; it is given by (4). The unemployment rate is given by u=1−Y (x,k)/k. Efficient tightness
x∗ and efficient unemployment rate u∗ maximize total consumption.

rate of substitution between public and private consumption is

MRSgc = ∂U/∂g

∂U/∂c
>0.

We assume that U is such that MRSgc is a decreasing function of g/c; for example, U could be a
constant-elasticity-of-substitution utility function. We also assume that MRSgc(0)>1.

To measure how the marginal rate of substitution varies with g/c, we introduce a second
sufficient statistic:

Definition 3. The elasticity of substitution between public and private consumption, denoted ε,
is given by

1

ε
=−d ln(MRSgc)

d ln(g/c)
.

The elasticity of substitution is positive because MRSgc is decreasing in g/c. When ε<1 public and
private services are gross complements; when ε=1 public and private services are independent;
and when ε>1 public and private services are gross substitutes.4

The elasticity of substitution has two interesting limits: ε→0 and ε→+∞. When ε→0,
public and private consumption are perfect complements. A certain number of public services are
needed for a given level of private consumption, but beyond that, additional public services have
zero value and the marginal rate of substitution falls to zero. At this point, public workers dig
and fill holes. When ε→+∞, the public and private consumption are perfect substitutes. The
marginal rate of substitution is constant at 1, such that households are equally happy to consume
private or public services.5

4. The Cobb–Douglas function U (c,g)=c1−γ gγ has ε=1.
5. The Leontief function U (c,g)=min{c,g} has ε=0. The linear function U (c,g)=c+g has ε→+∞.
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We assume that households save what they do not spend. We also assume that the asset used
for saving is in fixed supply. Consequently, there are no predetermined variables in the model,
and the equilibrium immediately converges to its steady-state position.6 Since the equilibrium is
always in steady state, the social welfare associated with the equilibrium is simply U(c,g).

Having introduced a second good in the economy—the asset—we can be more precise about
the price p: it is the price of services relative to the asset.

The household chooses how much to spend and save to maximize utility. As a result, the
household demands a quantity c(x,p,g) of consumption. The demand depends negatively on the
price p because a higher price makes consumption of services more costly relative to saving.
The demand depends negatively on tightness x because a higher tightness makes purchasing
services more difficult. Finally, the demand depends on public consumption g because public
consumption may affect the marginal utility of private consumption. To consume c(x,p,g)
services, the household purchases a total of C(x,p,g)= [1+τ (x)]c(x,p,g) services; the extra
τ (x)c(x,p,g) services are used for matching.7

Next, the government demands an amount g of consumption. This requires the purchase of
G= [1+τ (x)]g services.8 The government balances its budget at all time with a lump-sum tax
T =G. The total demand for consumption then is g+c(x,p,g). We refer to c(x,p,g) as private
demand and to g+c(x,p,g) as aggregate demand.9

Finally, we specify a price mechanism: p=p(x,g). The price of services appears as a function
of tightness x and public consumption g; but since x and g determine all other variables in a feasible
allocation, the price could be any function of any variable—it is as generic as possible. The price
mechanism generally fails to maintain efficiency. Hence, policies correcting prices could be useful
to bring unemployment closer to its efficient level.10 To capture this possibility, we assume that
the function p(x,g) embeds all such policies. If price policies ensure that unemployment is always
efficient, our analysis trivially applies. Our analysis is more interesting when price policies cannot
keep unemployment at its efficient level; it explores how public expenditure can improve welfare,
taking all price policies as given.

Given the price mechanism and public expenditure, tightness adjusts to equalize aggregate
supply and aggregate demand:

y(x,k)=c(x,p(x,g),g)+g. (6)

This equation implicitly defines equilibrium tightness as a function x(g) of public consumption.
Figure 2 shows how x(g) is given by the intersection of the aggregate-demand and aggregate-
supply curves. The information about x(g) relevant to the policy analysis is conveyed by a third
sufficient statistic:

Definition 4. The unemployment multiplier is given by

m=−y
du

dg
. (7)

6. Technically, for the equilibrium to immediately converge to steady state, the dynamical system representing
the equilibrium must be a source. The dynamical systems of the model in Section 2.4 and the other models in Online
Appendix B have this property. This is a common requirement: it is equivalent to requiring that the equilibrium is
determinate, which is done in any welfare analysis.

7. To purchase C(x,p,g) services, households post sC(x,p,g)/q(x) vacancies.
8. To purchase G services, the government posts sG/q(x) vacancies.
9. We express demand in terms of consumption because consumption matters for welfare and aggregate supply (4)

is expressed with consumption. We could equivalently describe demand in terms of expenditure.
10. In some contexts, monetary policy could be such a policy (see Online Appendix B).
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m > 0

y,Y

x

0 k

y(x,k) Y(x,k)

Figure 2

Equilibrium and unemployment multiplier (m).

Notes: The curves Y (x,k) and y(x,k) are the same as in Figure 1. The curve c(x,p(x,g),g)+g represents total consumption demanded as a
function of tightness x, for a public consumption g; and c(x,p(x,g′),g′)+g′ is the same curve after an increase in public consumption from
g to g′ >g. Equilibrium tightness x(g) equalizes aggregate demand and supply: when x=x(g), then c(x,p(x,g),g)+g=y(x,k). Equilibrium
unemployment rate u(g) is given by u(g)=1−Y (x(g),k)/k. The unemployment multiplier m is defined by (7).

The unemployment multiplier measures the percentage-point decrease in unemployment rate
observed when public consumption increases by 1% of total consumption.

As unemployment is determined by tightness (through (2)), the unemployment multiplier is
determined by the response of tightness to public consumption. As showed in Figure 2, public
consumption affects tightness by shifting the aggregate-demand curve. This shift occurs through
a mechanical channel, as public consumption directly contributes to aggregate demand; a private-
demand channel, as public consumption may affect private demand in various ways (for instance,
by altering the marginal utility of private consumption); and a price channel, as public consumption
may affect the price of services and thus private demand. Depending on the relative strength of
these channels, the multiplier may be negative, positive, below one, or above one.

2.4. Demand side and equilibrium: an example with land

To provide an example of demand side, we describe a model in which households save using
land, as in Iacoviello (2005) and Liu et al. (2013). This example illustrates how demand-side
parameters influence the sufficient statistics. Online Appendix A contains the derivations, and
Online Appendix B provides other examples.

The representative household purchases a quantity l(t) of land. Land is traded on a perfectly
competitive market and is in fixed supply, l0. In equilibrium the land market clears so l(t)= l0.

The household derives utility from holding land, for instance from the housing services it
provides. The household’s instantaneous utility function is U (c(t),g(t))+V(l(t)), where V is
strictly increasing and concave. We use a constant-elasticity-of-substitution specification for U :

U(c,g)=
[
(1−γ )

1
ε c

ε−1
ε +γ

1
ε g

ε−1
ε

] ε
ε−1

. (8)

The parameter γ ∈ (0,1) indicates the value of public services relative to private services, and
the parameter ε>0 gives the elasticity of substitution between public and private consumption.
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The household’s utility at time 0 is

∫ +∞

0
e−δt [U (c(t),g(t))+V(l(t))

]
dt, (9)

where δ>0 is the time discount rate. The law of motion of the household’s land holding is

l̇(t)=p(t)[1−u(x(t))]k−p(t)[1+τ (x(t))]c(t)−T (t). (10)

In the law of motion, p(t)[1−u(x(t))]k is the household’s labour income, p(t)[1+τ (x(t))]c(t) is
its spending on services, and T (t) is the lump-sum tax financing public expenditure.

The household takes l(0) and the paths of x(t), g(t), p(t), and T (t) as given. It chooses the
paths of c(t) and l(t) to maximize (9) subject to (10). Setting up an Hamiltonian, we obtain the
following optimality conditions:

∂U
∂c

(c(t),g(t))=λ(t)p(t)[1+τ (x(t))] (11)

V ′(l(t))=δλ(t)− λ̇(t), (12)

where λ(t) is the costate variable associated with land.
Given public consumption g, an equilibrium consists of paths for x(t), c(t), l(t), p(t), and λ(t)

that satisfy five equations: (11), (12), p(t)=p(x(t),g), l(t)= l0, and y(x(t))=c(t)+g. The fifth
equation imposes that supply equals demand on the services market. All the variables can be
recovered from the costate variable λ(t), so the equilibrium reduces to a dynamical system of
dimension one, with variable λ(t). As λ(t) is non-predetermined and the dynamical system is a
source, the equilibrium jumps to its steady-state position at t =0. Hence, the equilibrium is always
in steady state.

In Section 2.3, we introduce a generic private demand, c(x,p,g), and a generic price
mechanism, p(x,g). Here, we compute private demand in the model with land and propose a
possible price mechanism. To compute the equilibrium, we would then plug private demand and
price mechanism into (6), which would allow us to compute equilibrium tightness. Next, we
would use tightness and various supply-side relationships to compute the other variables.

To compute private demand, we combine (11) and (12):

∂U
∂c

(c,g)= [1+τ (x)]p
V ′(l0)

δ
. (13)

The equation says that the household is indifferent between purchasing one private service, which
costs [1+τ (x)]p units of land and yields utility ∂U/∂c, and purchasing [1+τ (x)]p units of land,
which costs the same amount and yields utility V ′(l0)/δ over a lifetime. We then combine (13)
with (8) and find that private demand c is implicitly defined by

{
(1−γ )+γ

1
ε

[
(1−γ )

g

c

] ε−1
ε

} 1
ε−1

= [1+τ (x)]p
V ′(l0)

δ
. (14)

If the marginal utility of land goes up or the time discount rate goes down, households desire to
save more and consume less, which depresses private demand. With price rigidity, such a negative
demand shock leads to lower tightness and higher unemployment.

Downloaded from https://academic.oup.com/restud/advance-article-abstract/doi/10.1093/restud/rdy030/5034183
by University of California, Berkeley/LBL user
on 05 July 2018



Copyedited by: ES MANUSCRIPT CATEGORY: Article

[20:37 27/6/2018 OP-REST180051.tex] RESTUD: The Review of Economic Studies Page: 12 1–31
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The price mechanism that we propose is rigid—in the sense that it does not respond to demand
shocks—and yields a simple expression for the multiplier:

p(g)=p0 ·
{

(1−γ )+γ
1
ε

[
(1−γ )

g

y∗−g

] ε−1
ε

} 1−r
ε−1

, (15)

where p0 >0 governs the price level, y∗ is the efficient level of total consumption, and r determines
the effect of public consumption on prices. If r <1, the price is increasing in g; if r =1, the price
is fixed; and if r >1, the price is decreasing in g (which seems less realistic).

The parameter r is the main determinant of the unemployment multiplier:

m= (1−u∗)r

(1−γ )ε
. (16)

The multiplier is positive, except if r <0—in that case, an increase in public consumption raises
the price of services so much that it reduces private demand more than one-for-one.11 Besides,
the multiplier depends on ε and γ because these parameters affect the shape of the aggregate-
demand curve. In particular, when ε→∞, the multiplier is zero. The reason is that the utility
function (8) is linear in c and g when ε→∞, so the marginal utility ∂U/∂c is constant. Given
that p(g)=p0 ·(∂U/∂c)1−r , the price is also constant. Hence, according to the demand equation
(13), tightness is not affected by public consumption. (In the diagram of Figure 2, the aggregate-
demand curve would be horizontal and independent of g.) As a result, public consumption does
not affect unemployment.

2.5. Comparison with the Diamond–Mortensen–Pissarides model

Our model shares many features with the standard matching model—the Diamond–Mortensen–
Pissarides (DMP) model. Such features include the matching function, random search, long-term
relationships, hiring through vacancies, fixed productive capacity, and the central role of market
tightness. But it also differs from the DMP model on various aspects. Here we describe the
differences and explain how they make our model more suited to the analysis of optimal public
expenditure. Our reference is the textbook version of the DMP model, developed by Pissarides
(2000).

First, our model is more general than the DMP model, making it more suited to the sufficient-
statistic approach. The price mechanism is more general: it is not restricted to Nash bargaining.
This generalization allows for a broader range of multipliers and unemployment gaps. Functional
forms are also more general, allowing for a downward-sloping demand curve in the (y,x) plan.
With such a demand curve, public spending usually affects tightness, and public consumption does
not usually crowd out private consumption one-for-one. In contrast, in the DMP model, the demand
curve is horizontal in the (y,x) plan. Hence, public spending does not usually affect tightness,
and public consumption usually crowds out private consumption one-for-one (Michaillat, 2014).

Second, our formulation of the efficiency condition is more general. In the DMP model the
Hosios (1990) condition says that unemployment is efficient when workers’ bargaining power
equals the matching elasticity. Our efficiency condition, given by (5), is more general than the
Hosios condition because it is not tied to Nash bargaining: it applies to any price mechanism.

11. Expression (16) is valid when unemployment is efficient and public expenditure is optimal. Otherwise the
multiplier admits another expression, slightly more complicated but with the same properties.
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Instead of giving the bargaining power leading to efficiency, our condition gives the relationship
satisfied by observable variables (unemployment and matching wedge) when unemployment is
efficient.

Several additional, cosmetic differences make our matching model closer to the Walrasian
model—the workhorse model in public economics. These differences make it easier to use public-
economic tools and to compare our findings with canonical public-economic results.

First, we model a service economy instead of a labour market: services are traded instead of
labour; the trading price is the price of services instead of the real wage; buyers are households (and
the government) instead of firms; and sellers are self-employed workers instead of jobseekers.

Second, the Beveridge curve is recast as an aggregate-supply curve and the job-creation
condition as an aggregate-demand curve.12 The aggregate-supply curve is mathematically
equivalent to the Beveridge curve, and the aggregate-demand curve to the job-creation condition,
but our curves are closer to the Walrasian concepts of supply and demand.

Third, the condition determining equilibrium tightness is recast as a supply-equals-demand
condition. In fact, it is useful to think of tightness as another price: in equilibrium both actual
price and tightness ensure that supply equals demand (Michaillat and Saez, 2015, pp. 526–529).
The matching framework can thus be seen as a generalization of the Walrasian framework—
where only the price equalizes supply and demand. But unlike in the Walrasian model, where
productive efficiency is respected whenever supply equals demand, equilibria in the matching
model are generally inefficient.

Fourth, since we use the supply-demand formalism, the graphical representation of the
equilibrium is different. In the DMP model, the equilibrium is the intersection of the Beveridge
and job-creation curves in an (unemployment, vacancy) plan. In our model the equilibrium is the
intersection of the aggregate-supply and aggregate-demand curves in a (output, tightness) plan.13

Fifth, the recruiting cost takes a different form. In the DMP model, the vacancy-posting cost
is measured in terms of final good, so there are effectively two goods in the economy—labour and
final good. This complicates the welfare analysis. Here the cost is measured in terms of services,
so there is a single good in the economy. This simplifies the welfare analysis: once consumption
is defined as output net of recruiting services, welfare solely depends on consumption.

Sixth, while the DMP model focuses on atomistic workers and vacancies, our model studies
households selling and buying many services. This brings the model closer to the Walrasian
framework, in which agents buy and sell many goods. Furthermore, since households buy and
sell many services, we can avoid heterogeneity across households and hence purge the welfare
analysis from insurance problems.

3. A SUFFICIENT-STATISTIC FORMULA FOR OPTIMAL PUBLIC EXPENDITURE

We use our matching model to derive a sufficient-statistic formula for optimal public expenditure.
The main implication of the formula is that whenever unemployment is inefficient, optimal public
expenditure deviates from the Samuelson rule to reduce the unemployment gap.

3.1. Derivation

We determine the public consumption g that maximizes welfare U(c,g). In equilibrium, c=
y(x,k)−g and x=x(g). Thus, the optimal g maximizes U (y(x(g),k)−g,g). The first-order

12. In Pissarides (2000), the Beveridge curve is equation (1.5) and the job-creation condition is equation (1.9). In
this article, the aggregate-supply curve is (4) and in the example with land the aggregate-demand curve is (14).

13. In Pissarides (2000), the equilibrium is depicted in Figure 1.2. Here, the equilibrium is depicted in Figure 2.
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condition of the maximization is

0= ∂U
∂g

− ∂U
∂c

+ ∂U
∂c

· ∂y

∂x
· dx

dg
. (17)

We assume that the maximization problem is well behaved: the function g �→U(y(x(g),k)−g,g)
admits a unique extremum, and the extremum is an interior maximum. Under this assumption,
(17) is a necessary and sufficient condition for optimality. Equation (17) shows that an increase in
public consumption affects welfare through three channels: it mechanically raises welfare (first
right-hand-side term); for a given level of total consumption, it reduces private consumption one-
for-one, which lowers welfare (second right-hand-side term); and it affects tightness and thus
total consumption, which further changes private consumption (third right-hand-side term).

Dividing (17) by ∂U/∂c, we obtain the following lemma:

Lemma 2. Optimal public expenditure satisfies

1=MRSgc︸ ︷︷ ︸
Samuelson rule

+ ∂y

∂x
· dx

dg︸ ︷︷ ︸
correction

. (18)

Equation (18) shows that in a matching model the Samuelson rule needs to be corrected.
The correction term is the effect of public consumption on tightness, dx/dg, times the effect of
tightness on total consumption, ∂y/∂x, so it measures the effect of public consumption on total
consumption, dy/dg. The correction term is positive whenever an increase in public consumption
leads to an increase in total consumption.14

A first insight from (18) is that at the optimum, public consumption must be crowding out
private consumption (dc/dg<0). Indeed, since MRSgc >0, (18) imposes that dy/dg<1 and
dc/dg=dy/dg−1<0. Our theory allows for either crowding in or crowding out of private
consumption by public consumption; but if there is crowding in (dc/dg>0), public consumption
cannot be optimal. From a situation of crowding in, the government can improve welfare by
increasing public consumption until it starts crowding out private consumption. Crowding out
necessarily happens at some point because once unemployment is efficient, total consumption is
maximized and crowding out is one-for-one.

A second insight from (18) is that the Samuelson rule, which was originally derived in a
neoclassical model, remains valid in a model with unemployment as long as unemployment is
efficient. Indeed, when unemployment is efficient, consumption is maximized (∂y/∂x=0), so the
correction term is zero.

When unemployment is inefficient, consumption is below its maximum (∂y/∂x �=0), and
optimal public spending may deviate from the Samuelson rule. To describe such deviation, we
decompose public spending in two components:

Definition 5. Samuelson spending (g/c)∗ is given by the Samuelson rule: MRSgc((g/c)∗)=1.
Stimulus spending is given by g/c−(g/c)∗.

Since MRSgc(0)>1 and MRSgc is decreasing in g/c, Samuelson spending is well defined.

14. Formula (18) is closely related to the optimal unemployment-insurance formula in Landais et al. (2018b,
eq. (23)). The two formulas show that in matching models standard optimal policy formulas need to be corrected with a
term that is positive whenever the policy improves welfare through tightness.

Downloaded from https://academic.oup.com/restud/advance-article-abstract/doi/10.1093/restud/rdy030/5034183
by University of California, Berkeley/LBL user
on 05 July 2018



Copyedited by: ES MANUSCRIPT CATEGORY: Article

[20:37 27/6/2018 OP-REST180051.tex] RESTUD: The Review of Economic Studies Page: 15 1–31

MICHAILLAT & SAEZ OPTIMAL PUBLIC EXPENDITURE 15

Next, we express the elements of (18) with our three sufficient statistics: the elasticity of
substitution between public and private consumption ε, the unemployment gap u−u∗, and the
unemployment multiplier m.

Lemma 3. The term 1−MRSgc can be approximated as follows:

1−MRSgc ≈ 1

ε
· g/c−(g/c)∗

(g/c)∗ , (19)

where ε is evaluated at g/c. The approximation is valid up to a remainder that is

O
([

g/c−(g/c)∗
]2

)
. The term ∂y/∂x can be approximated as follows:

x

y
· ∂y

∂x
≈ u−u∗

1−u∗ . (20)

The approximation is valid up to a remainder that is O
([

u−u∗]2
)

. Last, the term dx/dg satisfies

y

x
· dx

dg
= m

(1−η)(1−u)u
. (21)

The proof of the lemma is relegated to Online Appendix C. Equations (19) and (21)
immediately follow from the definitions of the elasticity of substitution and the unemployment
multiplier, but the derivation of equation (20) is more complex.

Using Lemma 3, we prove in Online Appendix C that (18) can be rewritten as follows:

Lemma 4. Optimal stimulus spending satisfies

g/c−(g/c)∗
(g/c)∗ ≈z0εm

u−u∗
u∗ , (22)

where ε and m are evaluated at
[
g/c,u

]
and

z0 = 1

(1−η)(1−u∗)2
.

The approximation is valid up to a remainder that is O
([

u−u∗]2 +[
g/c−(g/c)∗

]2
)

.

If the current values of stimulus spending and our three sufficient statistics satisfy (22), then
stimulus spending is optimal. Thus (22) is useful to assess whether current stimulus spending is
optimal or not. But (22) cannot be used to compute optimal stimulus spending. The root of the
problem is that the sufficient statistics (especially the unemployment gap) are implicit functions
of stimulus spending. To understand this problem, imagine that we plug the current values of
the statistics in (22); the formula indicates some stimulus spending. The government could then
adjust current public spending to achieve the indicated stimulus spending. As public spending
changes, however, the sufficient statistics also change. Once the indicated stimulus spending is
reached, it is very likely that (22) does not hold any longer. Hence, the stimulus spending initially
indicated by (22) is not optimal. This is a typical limitation of the sufficient-statistic approach
(Chetty, 2009), which we now address by developing a new sort of sufficient-statistic formula.
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We assume that public expenditure is at the Samuelson level (g/c)∗ and unemployment is at
an inefficient rate u0 �=u∗. We have in mind the following scenario. Initially everything is going
well: unemployment is efficient, and public expenditure satisfies the Samuelson rule. Then a
shock occurs, pushing unemployment to u0. The shock could be anything: aggregate-demand
shock, aggregate-supply shock, shock to the price of services, shock to the matching function, or
shock to the separation rate.

Given the initial unemployment gap u0 −u∗, we aim to compute optimal stimulus spending
g/c−(g/c)∗. As g/c deviates from (g/c)∗, unemployment responds, so as we have just discussed,
we cannot plug u0 −u∗ into (22) to compute the optimal policy. Instead, we take the response of
unemployment into account, and we transform (22) into an explicit formula—a formula expressed
with sufficient statistics independent of policy.

Proposition 1. Suppose that the economy is initially at an equilibrium
[
(g/c)∗,u0

]
. Then

optimal stimulus spending satisfies

g/c−(g/c)∗
(g/c)∗ ≈ z0εm

1+z1z0εm2
· u0 −u∗

u∗ , (23)

where ε and m are evaluated at
[
(g/c)∗,u0

]
, and

z1 = (g/y)∗(c/y)∗
u∗ .

Under the optimal policy, the unemployment rate is

u≈u∗+ u0 −u∗
1+z1z0εm2

. (24)

The approximations (23) and (24) are valid up to a remainder that is

O
([

u0 −u∗]2 +[
g/c−(g/c)∗

]2
)

.

The formal proof, presented in Online Appendix C, builds on a simple argument: since the
unemployment multiplier m is proportional to du/dg, a first-order Taylor expansion of u at u0
yields

u≈u0 −constant·m · g/c−(g/c)∗
(g/c)∗ .

Substituting u by this expression in (22) yields (23).
Formula (23) is the main formula of the article. It expresses optimal stimulus spending g/c−

(g/c)∗ as a function of three sufficient statistics: initial elasticity of substitution between public
and private consumption (ε), initial unemployment multiplier (m), and initial unemployment gap
(u0 −u∗). Formula (24) expresses the unemployment rate under optimal public expenditure as a
function of the same statistics. The advantage of (23) over (22) is that its sufficient statistics are
independent of policy. Thus, we can compute optimal stimulus spending by plugging the current
values of the statistics into (23).

The policy debate on stimulus spending often revolves around unemployment gaps and
multipliers (e.g., Romer and Bernstein, 2009). Formula (23) confirms that optimal stimulus
spending is indeed a function of the unemployment gap and a multiplier—the unemployment
multiplier. Yet, these statistics are not sufficient to measure the effect of public expenditure on
welfare because an increase in public expenditure also modifies the composition of households’
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consumption. Consequently, optimal stimulus spending also depends on the elasticity of
substitution between public and private consumption; this statistic should probably play a more
prominent role in the policy debate.

Finally, since the output multiplier often enters the policy debate, we reformulate our results
in terms of that multiplier. We start by introducing a new unemployment multiplier.

Definition 6. The empirical unemployment multiplier is

M =− Y

1−u
· du

dG
. (25)

The empirical unemployment multiplier measures the percent increase in employment rate
observed when public expenditure increases by 1% of GDP. In practice 1−u≈1, so the multiplier
approximately measures the percentage-point decrease in unemployment rate observed when
public expenditure increases by 1% of GDP.

The empirical unemployment multiplier acts as a bridge between the unemployment multiplier
in our formula and the output multiplier.

Lemma 5. The unemployment multiplier in our formula (m), the empirical unemployment
multiplier (M), and the output multiplier (dY/dG) are related by

m= (1−u)·M
1− G

Y · η
1−η

· τ
u ·M (26)

M = dY

dG
. (27)

The proof is in Online Appendix C. Intuitively, empirical unemployment multiplier and output
multiplier are equal because employment rate and output are proportional (Y = (1−u)k).

We could use (26) and (27) to rewrite formula (23) in terms of the output multiplier instead
of the unemployment multiplier m. As (26) and (27) imply that m and the output multiplier have
the same sign, and that m is larger when the output multiplier is larger, all the results linking m
to optimal stimulus spending would also apply to the output multiplier.

A caveat is that the output multiplier is only useful when taxation is non-distortionary.
Section 3.3 shows that when taxation is distortionary, (27) does not hold, so the tight link
between unemployment multiplier and output multiplier breaks down. As a consequence, with
distortionary taxation, the output multiplier cannot be used to design stimulus spending.

Finally, we will also use the empirical unemployment multiplier in the numerical applications
of Sections 4 and 5. Indeed, the multiplier m in our formula is difficult to estimate because
it measures the response of unemployment to changes in public consumption—which is not
directly observable. The issue is that public expenditure on matching resources, which must
be subtracted from total public expenditure to obtain public consumption, is unobservable. The
empirical multiplier is much easier to estimate because it measures the response of unemployment
to changes in public expenditure—which is reported in national accounts. Hence, in numerical
work, we will use estimates of the empirical multiplier and (26) to calibrate m. In practice,
however, m and M will be broadly the same.15

15. Although public consumption g and private consumption c are not observable, the consumption ratio g/c in
our formula is measurable—and easily interpretable—because g/c=G/C and both public expenditure G and private
expenditure C are measured in national accounts.
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3.2. Implications

Using our sufficient-statistic formula, given by (23), we explore how the sign and amplitude
of optimal stimulus spending depend on the unemployment gap, unemployment multiplier, and
elasticity of substitution between public and private consumption. We also use formula (24) to
characterize the unemployment gap under optimal stimulus spending.

3.2.1. Sign of optimal stimulus spending. Formula (23) gives the sign of optimal
stimulus spending in various situations:

Proposition 2. If the unemployment multiplier is zero (m=0), or the unemployment gap is zero
(u0 =u∗), optimal stimulus spending is zero (g/c= (g/c)∗). Otherwise, optimal public expenditure
deviates from the Samuelson rule to partially fill the initial unemployment gap. Consider first a
positive unemployment multiplier (m>0). If the unemployment gap is positive (u0 >u∗), optimal
stimulus spending is positive (g/c> (g/c)∗) but does not completely fill the unemployment gap
(u>u∗). If the unemployment gap is negative (u0 <u∗), optimal stimulus spending is negative
(g/c< (g/c)∗) but does not completely eliminate the unemployment gap (u<u∗). Consider next a
negative unemployment multiplier (m<0). If the unemployment gap is positive (u0 >u∗), optimal
stimulus spending is negative but does not completely eliminate the unemployment gap (u>u∗).
If the unemployment gap is negative (u0 <u∗), optimal stimulus spending is positive but does not
completely eliminate the unemployment gap (u<u∗).

The proposition establishes that optimal public expenditure satisfies the Samuelson rule only
if the unemployment multiplier is zero or if the unemployment gap is zero. In all other situations,
optimal public expenditure deviates from the Samuelson rule.

The general pattern is that optimal public expenditure deviates from the Samuelson rule
to partially fill the initial unemployment gap. To understand these results, imagine that
public expenditure satisfies the Samuelson rule, the unemployment multiplier is positive, and
unemployment is inefficiently high. Keeping total consumption constant, increasing public
consumption reduces private consumption one-for-one. Since the marginal utilities of public and
private consumption are equal at the Samuelson rule, the increase in public consumption has no
first-order effect on welfare so far. Now, since the unemployment multiplier is positive, increasing
public consumption lowers unemployment; and since unemployment is inefficiently high,
reducing unemployment raises total consumption. Hence, through its effect on unemployment,
the increase in public consumption raises welfare. It is therefore optimal to increase public
consumption above the Samuelson rule, and thus reduce the unemployment gap.

Why is it not optimal to completely fill the unemployment gap? If the government did that,
we would reach a situation where increasing public consumption reduces private consumption
one-for-one (since crowding out is one-for-one when the unemployment gap is zero), but extra
public consumption is less valuable than extra private consumption (since public consumption
is above the Samuelson level). The situation is clearly suboptimal: welfare can be increased by
reducing public consumption.

These results have implications for the cyclicality of optimal public expenditure. Under the
presumption that the unemployment gap is positive in slumps and negative in booms, and that
the unemployment multiplier is non-zero with a constant sign, then optimal stimulus spending
changes sign over the business cycle. Accordingly, optimal public expenditure fluctuates around
the Samuelson level over the business cycle.

3.2.2. Role of the unemployment multiplier. Formula (23) also shows how optimal
stimulus spending depends on the unemployment multiplier.
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Proposition 3. Assume that the initial unemployment gap is positive (u0 >u∗). Then optimal
stimulus spending is a hump-shaped function of the unemployment multiplier: it is 0 when
m=0, increasing in m for m∈[

0,1
/√

z1z0ε
]
, decreasing in m for m∈[1/√

z1z0ε,+∞), and 0
for m→+∞. The maximum optimal stimulus spending, reached at m=1

/√
z1z0ε, is

g/c−(g/c)∗
(g/c)∗ = 1

2
·
√

z0ε

z1
· u0 −u∗

u∗ .

Furthermore, the unemployment gap under optimal stimulus spending is a decreasing function
of the unemployment multiplier: it falls from u0 −u∗ when m=0 to 0 when m→+∞.

For concreteness, this proposition and the next only consider positive unemployment
multipliers and unemployment gaps, but we could of course derive the same type of results
with negative multipliers or negative gaps.

What is the intuition behind the hump shape? When public expenditure is optimal, the marginal
social cost from consuming too many public services and too few private services equals the
marginal social value from reducing unemployment. This marginal social value is determined
by two factors: the current unemployment multiplier, which measures how much unemployment
can be reduced by additional expenditure, and the current unemployment gap, which measures
the social value from lower unemployment. For a given amount of stimulus spending and a
given initial unemployment gap, a larger initial multiplier has conflicting effects on the two
factors: it means a larger current multiplier (a higher marginal social value) but a smaller current
unemployment gap (a lower marginal social value). The first effect advocates for more spending,
the second for less spending. It turns out that for small multipliers, the first effect dominates,
so optimal stimulus spending is increasing in the multiplier; for large multipliers, the second
effect dominates, so optimal stimulus spending is decreasing in the multiplier. In fact, for very
large multipliers, it becomes optimal to nearly entirely fill the unemployment gap. Naturally, less
spending is required to fill the gap when the multiplier is larger, so optimal stimulus spending is
decreasing in the multiplier.

Our results qualify the view that a larger multiplier entails a larger stimulus spending—
the bang-for-the-buck logic often used in policy discussions (see Mankiw and Weinzierl, 2011,
p. 212). Stimulus sceptics usually believe in small multipliers and infer that stimulus spending
should be small in slumps. Similarly, stimulus advocates usually believe in large multipliers and
infer that stimulus spending should be large in slumps. Our theory shows that this bang-for-the-
buck logic holds for small multipliers but not for large ones; therefore, a large multiplier is not a
justification for a large stimulus. Instead, since the relationship between multiplier and optimal
stimulus spending is hump-shaped, optimal stimulus spending is similar for some small and large
multipliers.

3.2.3. Role of the elasticity of substitution between public and private consumption.
Formula (23) next shows how optimal stimulus spending depends on the elasticity of substitution
between public and private consumption.

Proposition 4. Assume that the unemployment multiplier and initial unemployment gap are
positive (m>0 and u0 −u∗ >0). Then optimal stimulus spending is an increasing function of the
elasticity of substitution between public and private consumption: it rises from 0 when ε=0 to

g/c−(g/c)∗
(g/c)∗ = 1

z1m
· u0 −u∗

u∗
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when ε→+∞. The unemployment gap under the optimal policy is a decreasing function of the
elasticity of substitution: it falls from u0 −u∗ when ε→0 to 0 when ε→+∞.

The proposition shows that both optimal stimulus spending and the share of the unemployment
gap filled under the optimal policy are increasing in the elasticity of substitution between public
and private consumption. The proposition also uncovers two interesting polar cases.

The first is ε→0. In this case, additional public services have zero value: additional public
workers dig and fill holes in the ground. Then, optimal stimulus spending is zero, irrespective of
the unemployment rate and multiplier. Intuitively, above the Samuelson level, public consumption
has no value, but it crowds out private consumption; therefore, it cannot be optimal to provide
more public consumption than the Samuelson level.16

The second polar case is ε→+∞. In this case, public consumption perfectly substitutes for
private consumption, and optimal stimulus spending completely fills the unemployment gap. This
result holds even if the multiplier is very small and public expenditure severely crowds out private
consumption. Intuitively, public and private consumptions are interchangeable, so it is optimal
to maximize total consumption, irrespective of its composition. This is achieved by completely
filling the unemployment gap.

Overall, Proposition 4 clarifies the link between usefulness of public expenditure and optimal
stimulus spending. A concern of stimulus sceptics is that additional public expenditure could be
wasteful. Our theory develops this argument. It is true that when the elasticity of substitution
between public and private consumption is zero, public expenditure should remain at the
Samuelson level. But in the more realistic case where the elasticity of substitution is positive,
some stimulus spending remains desirable in slumps.

3.3. Distortionary taxation

So far taxation has been non-distortionary because labour supply was fixed. We now introduce
endogenous labour supply: households supply a productive capacity k at utility cost W(k), where
the function W is strictly increasing and convex. We examine how distortionary taxation affects
optimal public expenditure. Here we present a summary of the results; Online Appendix D
contains the complete analysis.

The government uses a linear income tax τL to finance public expenditure. With such a tax, the
household’s labour income is (1−τL)Y (x,k)= (1−τL)[1−u(x)]k. To finance public expenditure
G, the tax rate must be τL =G/Y =g/y.

The household chooses k to maximize utility. The labour supply decision is distorted by the
income tax: a higher tax reduces the returns to supplying labour; it thus reduces the capacity
k supplied by the household (a substitution effect). Because of this distortion, the first-order
condition of the government’s problem becomes

1− d ln(k)

d ln(g)
=MRSgc︸ ︷︷ ︸

modified Samuelson rule

+ ∂y

∂x
· dx

dg︸ ︷︷ ︸
correction

.

16. The results in Proposition 4 are based on (23), which is a first-order approximation around
[
u∗,(g/c)∗

]
. When

u0 and g/c are far from u∗ and (g/c)∗, the equation may not be accurate and results may change. For instance, (23)
does not work well when ε→0 and public consumption crowds in private consumption (dc/dg>0). (Having dc/dg>0
requires a large deviation from u∗ because at u∗ total consumption is maximized so dc/dg=−1.) In that situation, (23)
suggests that stimulus spending should be zero. But going back to (18), we see that optimal stimulus spending is positive
when dc/dg>0, even if ε→0. Indeed, (18) can be written 0=MRSgc +dc/dg. Since MRSgc ≥0 and dc/dg>0 around
(g/c)∗, it is optimal to spend more than (g/c)∗, irrespective of ε.
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This condition differs from (18), but the two have the same structure once the Samuelson rule is
modified to account for distortionary taxation.17 The statistic 1−d ln(k)/d ln(g)>1 is the marginal
cost of funds; it is greater than one because the linear income tax distorts labour supply. Because
the marginal cost of funds is greater than one, the modified Samuelson rule recommends lower
public expenditure than the regular Samuelson rule.

While Samuelson spending is lower with the linear income tax, the correction to the Samuelson
rule remains the same. Accordingly, our sufficient-statistic formula remains valid: as long as the
statistic z1 is generalized to allow for supply-side responses, optimal stimulus spending satisfies
(23) and the unemployment rate reached under optimal stimulus spending satisfies (24).

There is one important difference with distortionary taxation, however: the output multiplier
is not useful to characterize optimal stimulus spending—only the unemployment multiplier is.
In Section 3.1, we showed that when taxes are non-distortionary, all our results would remain
the same if we replaced the unemployment multiplier by the output multiplier. Things are
different when taxes are distortionary. Higher taxes reduce labour supply, which reduces output
but not the employment rate. As a consequence, the output multiplier may be negative when
the unemployment multiplier is positive, which renders the output multiplier useless to design
stimulus spending.

Hence, our theory alleviates a common concern of stimulus sceptics. They worry that output
is too low in slumps, and that increasing public expenditure would further reduce output through
tax distortions.18 But our theory shows that if it is only because of tax distortions that public
spending reduces output, then stimulus spending should be positive in slumps. Indeed, since
Y = (1−u)k, public spending affects output through two channels: the unemployment channel
(public spending affects u) and the labour-supply channel (more public spending leads to higher
taxes, which reduces k). If it is only because of tax distortions that public spending reduces
output, then public spending lowers unemployment; but the associated tax increase depresses
labour supply so much that output falls. Then, starting from the modified Samuelson rule, a small
increase in public expenditure reduces unemployment, reduces labour supply, and increases public
consumption, which are all good for welfare; but it reduces output and thus private consumption,
which is bad for welfare. By construction, at the modified Samuelson rule, the cost of lower
private consumption offsets the benefits of higher public consumption and lower labour supply;
the only remaining effect on welfare is the positive effect from lower unemployment. Therefore,
increasing public expenditure above the modified Samuelson rule is desirable. The key is that the
modified Samuelson rule takes into account the negative welfare effect caused by the reduction
in output stemming from lower labour supply, but not the positive welfare effect caused by the
increase in output stemming from lower unemployment.19 This omitted positive welfare effect
justifies raising public expenditure above the modified Samuelson rule.

17. The modified Samuelson rule was developed by Stiglitz and Dasgupta (1971), Diamond and Mirrlees (1971),
and Atkinson and Stern (1974) to describe optimal public expenditure with a linear income tax. A large literature has
built on these papers (see Ballard and Fullerton, 1992; Kreiner and Verdelin, 2012).

18. Barro and Redlick (2011) find in U.S. data that the deficit-financed output multiplier is positive (around 0.5),
but because taxation significantly depresses supply, the balanced-budget output multiplier is negative (around −0.6).

19. In this section, we have considered the traditional approach to taxation: public spending is funded with a linear
income tax. In Online Appendix D, we also consider the modern approach to taxation, which follows the benefit principle.
This principle, introduced by Hylland and Zeckhauser (1979) and fully developed by Kaplow (1996, 1998), is an important
result in modern public-economic theory: it states that optimal public expenditure is disconnected from distortionary
taxation. Under the benefit principle, extra public expenditure is financed by a tax change leaving all individual utilities
unchanged—thus not altering labour supply. This is done by changing a non-linear income tax schedule to absorb the
benefits derived from extra public spending, individual by individual. Then, although capacity is endogenous, all the
formulas obtained with fixed capacity hold.
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3.4. Comparison with a Keynesian, fixprice model

We have shown that the Samuelson rule must be corrected when productive efficiency fails. We
have treated productive inefficiency using a matching model, but in macroeconomics productive
inefficiency is usually studied using fixprice models, in the tradition of Barro and Grossman
(1971) and Bénassy (1993).20 Here we apply our methodology to such a model and compare the
results of the matching and fixprice approaches.

The economy has the same structure as in our matching model, but services are traded on
a perfectly competitive market instead of a matching market. The price of services is fixed at a
level p, which may not clear the market. The private demand for services is given by a function
c(p,g), with ∂c/∂p<0. The aggregate demand for services is y(p,g)=c(p,g)+g. The aggregate
supply of services is fixed at k. There is no wedge between output and consumption, so y, c, and
g are both output and consumption of services. This fixprice model can be seen as the limit case
of our matching model when matching costs become vanishingly small (ρ →0). Hence, all the
equations from the matching model apply once we set τ (x)=0.

Since c=y−g, the optimal g maximizes U (y−g,g). As in the matching model, the first-order
condition of the maximization is

1=MRSgc + dy

dg
. (28)

When the price of services clears the market, aggregate demand equals aggregate supply
(y=k), which implies that the output multiplier is zero (dy/dg=0). Thus, the Samuelson rule
holds (1=MRSgc) when the market clears.

What happens when the price of services is fixed at a level that does not clear the market? We
first consider the excess-supply regime: the supply side of the market is rationed, and output is
determined by the demand side: y=y(p,g)<k. This regime represents a slack economy. In it, the
output multiplier dy/dg can be one, above one, or below one, depending on the effect of public
consumption on the marginal utility from private consumption; that is, depending on whether c
and g are complements or substitutes in the Edgeworth–Pareto sense.21

If the output multiplier is greater or equal to one, then for any public expenditure, MRSgc +
dy/dg>1. Thus, it is optimal for the government to spend until the output gap is filled, irrespective
of the usefulness of additional public expenditure. Intuitively, with such a large multiplier, public
consumption does not crowd out private consumption, so increasing public consumption raises
all inputs into the welfare function. Clearly, then, public consumption should increase until the
output gap is filled. As showed in Online Appendix E, up to a second-order remainder, the implied
optimal stimulus spending is

g/c−(g/c)∗
(g/c)∗ ≈z2 · 1−(g/y)∗(dy/dg)

dy/dg
· k−y0

y0
, (29)

where y0 is initial output, dy/dg is evaluated at
[
(g/c)∗,y0

]
, and z2 =1

/[
(c/y)∗(g/y)∗

]
.

20. New Keynesian models build upon this tradition, but replace fixed prices with slowly adjusting prices. Slow
price adjustments make the dynamics more interesting but the theoretical analysis more difficult. We focus on fixed prices
for tractability, and consistency with our earlier analysis.

21. To see this, consider the demand side with land described in Section 2.4. The output multiplier is dy/dg=
1+dc/dg, so we need to determine the sign of dc/dg. Since there is excess supply, private consumption is determined by
private demand, so we study the response of private demand to g. Private demand c(p,g) is defined by ∂U/∂c=pV ′(l0)/δ,
so dc/dg=−(∂2U/∂c∂g)/(∂2U/∂c2), and dy/dg=1−(∂2U/∂c∂g)/(∂2U/∂c2). We infer that the multiplier is one when c
and g are unrelated in the Edgeworth–Pareto sense (∂2U/∂c∂g=0). The multiplier is above one when c and g are substitutes
in the Edgeworth–Pareto sense (∂2U/∂c∂g<0). And the multiplier is below one when c and g are complements in the
Edgeworth–Pareto sense (∂2U/∂c∂g>0).
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This result has three implications. First, optimal stimulus spending grows in proportion to the
output gap (k−y0). Second, optimal stimulus spending is smaller when the output multiplier is
larger (because less spending is required to fill the output gap with a larger multiplier). Third, the
value of additional public spending is irrelevant: optimal stimulus spending is the same whether
public consumption substitutes well or not for private consumption.

This result is consistent with the results obtained in other fixprice models. For instance, using
a fixprice model with a multiplier of one, Mankiw and Weinzierl (2011, pp. 232–234) find that it
is optimal to completely fill the output gap.

If the output multiplier is lower than one, it may not be optimal to fill the output gap. At
the Samuelson level of spending, MRSgc =1 so MRSgc +dy/dg>1: it is optimal to increase
public expenditure to reduce the output gap. As public expenditure increases, MRSgc decreases.
If MRSgc +dy/dg is above 1 once the output gap is filled, then it is optimal to completely fill the
output gap. If MRSgc +dy/dg reaches 1 before the output gap is filled, however, optimal public
expenditure does not completely fill the output gap. In that case, optimal stimulus spending
satisfies

g/c−(g/c)∗
(g/c)∗ ≈ε

dy

dg
. (30)

This equation applies only when optimal stimulus spending is small enough that it does not
completely fill the output gap—so only when the output multiplier (dy/dg) and the elasticity of
substitution between public and private consumption (ε) are small enough. The equation implies
that as long as public consumption is valuable at the margin and the output multiplier is positive,
stimulus spending should be positive. Additionally, optimal stimulus spending grows in proportion
to the multiplier and to the elasticity of substitution, but it is independent of the output gap.

Overall, then, we reach similar qualitative insights with the fixprice and matching models
when the economy is slack. This is good news: irrespective of how productive inefficiency is
modelled, stimulus spending obeys similar principles in slumps. One difference between the two
models lies in the shape of optimal stimulus spending as a function of the sufficient statistics. In the
matching model, the function is smooth. In the fixprice model, the function has two different parts.
If the multiplier is large enough, stimulus spending should completely fill the output gap, so it is
strictly increasing in the output gap, strictly decreasing in the multiplier, and independent of the
elasticity of substitution. But when the multiplier is sufficiently small, optimal stimulus spending
is given by (30), so it is independent of the output gap, strictly increasing in the multiplier, and
strictly increasing in the elasticity of substitution.

When the economy is tight, however, fixprice and matching recommendations differ sharply.
In the fixprice model, a tight economy is represented by the excess-demand regime. In this
regime, the demand side of the market is rationed, and output is determined by the supply side:
y=k <y(p,g). Since y=k, dy/dg=0, so (28) implies that the Samuelson rule holds. Hence, the
fixprice model recommends to keep public spending at the Samuelson level in booms.22 The
recommendation emanating from the matching model is very different. Indeed, in the matching
model, it is optimal to deviate from the Samuelson rule in booms in order to reduce the (negative)
unemployment gap.

4. APPLICATION TO THE GREAT RECESSION IN THE U.S.

We now complement our theoretical results with a numerical application. We calibrate our
sufficient-statistic formula, given by (23), and compute optimal stimulus spending at the onset of

22. In Online Appendix E we analyse a fixprice model with endogenous capacity k. While it has other problems,
such a model treats the excess-demand and excess-supply regimes symmetrically, much like the matching model.
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the Great Recession in the U.S. This exercise illustrates how much optimal public expenditure
may deviate from the Samuelson rule. We also use formula (24) to compute the unemployment
rate reached under optimal stimulus spending. Since the formulas are valid whether taxes are
distortionary or not, the numerical results apply in both cases.

Our starting point is 2008:Q3 in the U.S.: the unemployment rate is u=6%, and public
expenditure is G/C =19.7%. For simplicity, we assume that in 2008:Q3 the unemployment rate
is efficient and public expenditure satisfies the Samuelson rule: u∗ =6% and (G/C)∗ =19.7%.
These assumptions seem reasonable: unemployment and public expenditure in 2008:Q3 are close
to their 25-year averages, and there is a presumption, going back at least to Okun (1963), that the
economy is efficient on average.23

In 2008, an adverse shock hits the U.S. economy, and unemployment starts rising towards an
inefficient level u0 >u∗.24 In our model unemployment immediately reaches the higher level u0,
but in reality unemployment slowly rises to u0. The challenge for policymakers is to forecast u0
in advance. In the winter 2008–2009, when the U.S. government designed the stimulus package,
they forecast u0 =9%, so we use u0 =9% (Romer and Bernstein, 2009, fig. 1). Then, to apply
formula (23), we collect estimates of the two main statistics: the elasticity of substitution between
public and private consumption (ε) and the unemployment multiplier (m).

A literature attempts to estimate the elasticity of substitution between public and private
consumption. The empirical strategy is to isolate variations in the ratio of public consumption price
to private consumption price and to assess their impact on the ratio of public consumption to private
consumption. For example, if the consumption ratio stays constant in spite of secular variations
in the price ratio, then the elasticity of substitution is about one.25 To tackle the challenging
identification problem, the modern literature uses the co-integration approach developed by
Ogaki (1992). Applying this approach to U.S. data, Amano and Wirjanto (1997, 1998) estimate
elasticities of 0.9 and 1.56 .26 Hence, to span the range of available estimates, we consider three
values for the elasticity of substitution: ε=0.5, ε=1, and ε=2.

Next, we determine plausible values for the unemployment multiplier m. Since m is not directly
observable, we report estimates for the empirical unemployment multiplier M and translate M
into m. For the translation, we calibrate (26) to U.S. data. We set G/Y and u to their values after the
shock but before the stimulus: G/Y = (G/C)/(1+G/C)=0.197/(1+0.197)=16.5% and u=9%.
Landais et al. (2018a, fig. 1) measure labour devoted to matching: when the unemployment rate
is 9%, as in 2009:Q2, they find τ =1.7%. We use this value. Finally, following Landais et al.
(2018a, p. 195), we set η=0.6. Overall, we find that m is almost identical to M: m=0.91×
M/(1−0.047×M).

The unemployment multiplier M is estimated by measuring the percentage-point
change in the unemployment rate when public expenditure increases by 1% of GDP.

23. We set u to the seasonally adjusted unemployment rate constructed by the Bureau of Labor Statistics from the
Current Population Survey. To construct G/C, we set G to the seasonally adjusted employment level in the government
industry and C to the seasonally adjusted employment level in the private industry. Both series constructed are by the
Bureau of Labor Statistics from the Current Employment Statistics survey. Over the 1990–2014 period, the average
unemployment rate is u=6.1%, and the average public expenditure satisfies G/C =19.7%.

24. Our formula accommodates any type of shock. But since we calibrate u∗ and (G/C)∗ using preshock
observations, the shock should not affect u∗ and (G/C)∗. So it could be a shock to aggregate demand, to aggregate
supply, or to prices, but not to the matching process (matching function, s, or ρ).

25. This is plausible in light of the fairly stable ratio of government consumption to GDP in OECD countries since
1980 (see https://data.worldbank.org/indicator/).

26. Similar estimates are obtained in other countries: Chiu (2001) estimate an elasticity of 1.1 for Taiwan; Okubo
(2003, pp. 79–80) estimate an elasticity of 1.39 for Japan; and Kwan (2007, p. 52) estimate an elasticity between 0.57
and 1.05 for a group of nine East Asian countries, depending on the specification and time period.

Downloaded from https://academic.oup.com/restud/advance-article-abstract/doi/10.1093/restud/rdy030/5034183
by University of California, Berkeley/LBL user
on 05 July 2018

https://data.worldbank.org/indicator/


Copyedited by: ES MANUSCRIPT CATEGORY: Article

[20:37 27/6/2018 OP-REST180051.tex] RESTUD: The Review of Economic Studies Page: 25 1–31

MICHAILLAT & SAEZ OPTIMAL PUBLIC EXPENDITURE 25

Monacelli et al. (2010, pp. 533–536) estimate a structural vector autoregression (SVAR) on
U.S. data and find unemployment multipliers between 0.2 and 0.6. Ramey (2013, pp. 40–42)
estimates SVARs on U.S. data with various identification schemes and sample periods. She finds
unemployment multipliers between 0.2 and 0.5, except in one specification where the multiplier
is 1. In sum, the average unemployment multiplier is estimated to be in the 0.2–1 range.

The multiplier entering our formula could be larger if multipliers are larger when
unemployment is higher, as suggested by recent research on state-dependent multipliers. For
instance, estimating regime-switching SVARs on U.S. data, Auerbach and Gorodnichenko (2012,
table 1) find that while the output multiplier is 0.6 in expansions and 1 on average, it is as high
as 2.5 in recessions. To account for the uncertainty about the exact value of the multiplier in
bad times, we compute optimal stimulus spending for a range of unemployment multipliers:
0<M <2.

The last step before using formulas (23) and (24) is calibrating the constants z0 and z1.
We calibrate them just as we calibrated (26): we set (g/c)∗ =19.7%, (g/y)∗ =16.5%, (c/y)∗ =
1−(g/y)∗ =83.5%, u∗ =6%, and η=0.6, which implies z0 =2.83 and z1 =2.30.

Figure 3 displays the results: optimal stimulus spending as a share of GPD (G/Y −(G/Y )∗),
and unemployment rate under optimal stimulus spending. (To obtain public spending as a share
of GPD from (23), we use the identity G/Y = (g/c)/(1+g/c).) Several observations stand out.

First, even with a small multiplier, optimal stimulus spending is significant. For example, take
M =0.2: if ε=0.5, optimal stimulus spending is 1.6 percentage points of GDP; if ε=1, it is 2.8
points of GDP; and if ε=2, it is 4.7 points of GDP.

Second, the multiplier warranting the largest stimulus is fairly modest. With ε=0.5, the largest
stimulus (2.6 points of GDP) occurs with M =0.6. With ε=1, the largest stimulus (3.7 points of
GDP) occurs with M =0.4. And with ε=2, the largest stimulus (5.1 points of GDP) occurs with
M =0.3.

Third, optimal stimulus spending is the same for small and large multipliers. For instance,
with ε=1, optimal stimulus spending is the same (1.9 points of GDP) for M =0.12 and M =1.5.
Of course the resulting unemployment rates are very different.

Fourth, for small multipliers, unemployment barely falls below 9% although optimal stimulus
spending is large. For example, with M =0.2, unemployment only falls to 8.7% if ε=0.5, 8.5%
if ε=1, and 8.1% if ε=2. This is because public expenditure has little effect on unemployment
when the multiplier is small.

Fifth, with a multiplier above one, optimal stimulus spending almost brings back
unemployment to its efficient level of 6%. Indeed, when M =1, the unemployment rate falls
below 6.8%, so the remaining unemployment gap is less than 0.8 percentage points. And when
M =2, the remaining unemployment gap is less than 0.2 percentage points.

Sixth, the elasticity of substitution between public and private consumption plays a significant
role for small to medium multipliers, but not for large multipliers. Consider first M =0.4: if ε=0.5,
optimal stimulus spending is 2.4 percentage points of GDP; if ε=1, it is 3.6 points of GDP; and
if ε=2, it is 4.8 points of GDP. Hence, ε significantly influences optimal stimulus spending. In
contrast, for M >1, the optimal levels of stimulus spending when ε=0.5, ε=1, and ε=2 are
nearly indistinguishable. This is because for large multipliers, the optimal policy is to fill the
unemployment gap, so it is not influenced by the elasticity of substitution.

Finally, we calculate optimal stimulus spending at the onset of the Great Recession using
midrange values for the unemployment multiplier and elasticity of substitution: M =0.5 and ε=1.
Under this calibration, optimal stimulus spending is 3.6 points of GDP; since U.S. GDP in 2008 is
$14,700 billion, optimal stimulus spending is $530 billion per year. How does this optimal stimulus
package compare to the actual stimulus package? According to the Congressional Budget Office
(CBO), the American Recovery and Reinvestment Act (ARRA), enacted into law in February
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Figure 3

Great Recession in the U.S.: optimal stimulus spending and resulting unemployment rate.

Notes: When the shock responsible for the Great Recession hit the U.S. economy in 2008, unemployment was projected to increase
from 6% to 9%. The figure displays optimal stimulus spending in response to the shock, and the unemployment rate that would be
reached after such spending. Optimal stimulus spending is measured as a share of GPD (G/Y −(G/Y )∗). Optimal stimulus spending
and the resulting unemployment rate are computed for various values of the empirical unemployment multiplier (M) and elasticity of
substitution between public and private consumption (ε). Optimal stimulus spending is computed using (23) with (g/c)∗ =19.7%, u∗ =6%,
u0 =9%, m=0.91×M/(1−0.047×M), z0 =2.83, and z1 =2.30. We also translate g/c into G/Y using G/Y = (g/c)/(1+g/c). The resulting
unemployment rate is computed using (24) with the same calibration.

2009, is estimated to cost $840 billion over ten years, with half of that amount spent in 2010.27

So at the peak of the Great Recession in 2010, stimulus spending was $420 billion. This is below
but of the same order of magnitude as our optimal stimulus package of $530 billion.

Yet, evaluating the adequacy of ARRA is more complicated than comparing these two
numbers. Our model focuses on one stabilization policy: government expenditure on goods and
services. ARRA was more complex; it was a blend of three policies: increase in government

27. See https://perma.cc/RJ6D-GZA8.
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expenditure, increase in government transfers, and increase in government deficit. According
to the CBO, only 30% of ARRA was devoted to government expenditure, so about 0.3×$420
billion = $130 billion.28 At the same time, government expenditure on goods and services was
combined with other stabilization policies, so optimal stimulus spending on goods and services
was less than $530 billion. Determining whether the optimal stimulus was above or below $130
billion would require a more sophisticated model describing jointly the effects of government
transfers, government deficit, and government expenditure on goods and services.

5. SIMULATIONS

This section simulates a fully specified, structural matching model. The simulations show that
the matching model provides a good description of the business cycle: in response to aggregate-
demand shocks the model generates realistic, countercyclical fluctuations in the unemployment
rate and unemployment multiplier. This realism suggests that the matching framework is adapted
to study optimal policy over the business cycle. The simulations also show that our sufficient-
statistic formula, obtained with first-order approximations, is accurate even for large business-
cycle fluctuations. Indeed, in our matching model, the sufficient-statistic formula and the exact
optimality condition deliver almost identical policies.29

5.1. Quantitative properties of the matching model

We simulate the matching model with land developed in Section 2.4. The model is calibrated to
U.S. data (see Online Appendix A). We represent the business cycle as a succession of unexpected
permanent aggregate-demand shocks. We use these shocks for two reasons: first, they generate
inefficient fluctuations in unemployment; second, they generate the negative comovements
between tightness and unemployment observed empirically (Michaillat and Saez, 2015).

We parameterize aggregate demand with α=δ/V ′(l0). Since the economy jumps to its new
steady-state equilibrium in response to a shock, we only need to compute a collection of steady
states parameterized by α∈[0.97,1.03]. We run two simulations: one in which G/Y is constant
at 16.5%, its average value in the U.S. for 1990–2014, and one in which G/Y is at its optimal
level, given by (18).

Figure 4 illustrates the simulations. The unemployment rate is countercyclical: when G/Y =
16.5%, it rises from 4.4% when aggregate demand is highest, to 6.1% (the average unemployment
rate in the U.S. for 1990–2014) when aggregate demand is average, and to 11.0% when aggregate
demand is lowest. Unemployment fluctuates in response to aggregate-demand shocks because
of price rigidity: when α goes up, the price of services does not adjust, which stimulates the
aggregate-demand curve (14) and reduces unemployment.

The unemployment multiplier is also countercyclical: it increases from 0.2 when unem-
ployment is 4.4%, to 0.5 (midrange U.S. estimate) when unemployment is 6.1%, to 1.4
when unemployment is 11.0%. This countercyclicality is consistent with the empirical
evidence: in the U.S., multipliers seem higher when unemployment is higher or output is
lower (Auerbach and Gorodnichenko, 2012; Candelon and Lieb, 2013; Fazzari et al., 2015). The
mechanism behind this countercyclicality is described in Michaillat (2014). When unemployment
is high, there is a lot of idle capacity so the matching process is congested by sellers of services.

28. A breakdown of ARRA’s funding is available at https://web.archive.org/web/20150905195457/http://www.
recovery.gov/arra/Transparency/fundingoverview/Pages/fundingbreakdown.aspx.

29. We keep the simulation model simple to illustrate the theoretical results as transparently as possible. It would
also be useful to simulate a richer model to obtain more precise quantitative results about optimal stimulus spending.
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Figure 4

Business-cycle simulations in the matching model with land.

Notes: The figure displays business cycles when public expenditure is G/Y =16.5% and when public expenditure is set optimally. The
business cycles are generated by aggregate-demand shocks. Condition (18) is used to determine the optimal level of public expenditure.
The results are obtained by simulating the matching model with land from Section 2.4 under the calibration in Online Appendix A. The
multiplier in the top-right panel is the empirical unemployment multiplier (M), also equal to the output multiplier (dY/dG). The bottom-right
panel compares the level of public expenditure given by sufficient-statistic formula (23) to the optimal level of public expenditure.

Hence, increased spending by the government has very little effect on other buyers of services.
Crowding out of private expenditure by public expenditure is therefore weak, and the multiplier
is large. When unemployment is low, the opposite occurs: matching is congested by buyers of
services, crowding out of private expenditure by public expenditure is sharp, and the multiplier
is small.

We also compute optimal public expenditure over the business cycle. We find that optimal
public spending is markedly countercyclical, decreasing from G/Y =20.4% to G/Y =13.7% as
aggregate demand increases. This is unsurprising. The unemployment rate is efficient when α=1,
inefficiently high when α<1, and inefficiently low when α>1; furthermore, the unemployment
multiplier is positive. Hence, public spending should be above Samuelson spending when α<1
and below it when α>1.

Finally, unemployment responds when public expenditure is adjusted from G/Y =16.5% to
its optimal level. When aggregate demand is low, optimal public expenditure is higher than G/Y =
16.5% so unemployment falls below its original level. For instance, at α=0.97, the unemployment
rate falls from 11.0% to 7.2%. When aggregate demand is high, optimal public expenditure is
below G/Y =16.5% so unemployment rises above its original level. For instance, at α=1.03, the
unemployment rate increases from 4.4% to 5.2%. The unemployment multiplier depends on the
unemployment rate, so it adjusts accordingly.
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5.2. Accuracy of the sufficient-statistic formula

The level of public expenditure given by sufficient-statistic formula (23) is a first-order
approximation to the optimal level of public expenditure, described by (18). Since unemployment
fluctuations are large, the second-order remainder in our formula could be large, and the
approximation could be inaccurate. In our simulations, however, this does not happen. Figure 4
shows that our formula is quite accurate: the level of public expenditure given by our formula never
deviate by more than one percentage point of GDP from the optimal level of public expenditure.
The largest deviations occur atα=0.97, where our formula gives G/Y =19.7% while the optimum
is G/Y =20.4%, and at α=1.03, where our formula gives G/Y =14.5% while the optimum is
G/Y =13.7%.

6. CONCLUSION

This article has developed a theory of optimal public expenditure in the presence of
unemployment. The theory shows that when unemployment is efficient, the Samuelson rule
remains valid; but when unemployment is inefficient, optimal public expenditure deviates from
the Samuelson rule to bring unemployment closer to its efficient level.

In the past few decades, monetary policy has been governments’ preferred stabilization policy.
Yet it has become clear that because of the zero lower bound—which was binding is Japan, the
U.S., and the eurozone after the Great Recession—governments cannot rely on monetary policy
alone to stabilize the economy. Our theory suggests that public expenditure could contribute to
stabilization whenever monetary policy is constrained.

In addition, public expenditure could be helpful to members of monetary unions, such as
eurozone countries or U.S. states. These governments have no control over monetary policy, so
they cannot use it to tackle unemployment. But they can adjust public expenditure. Furthermore,
since our theory focuses on budget-balanced spending, it applies both to U.S. states, which cannot
run budget deficits, and to eurozone countries, which face strict constraints on their public debt.

In this article, we have limited ourselves to static considerations. It would be useful to enrich
the analysis with dynamic elements. Several such elements seem potentially important: the use of
government debt to finance public spending (Barro, 1979); the distinction between temporary and
permanent public spending (Barro, 1981); public investment in infrastructure (Baxter and King,
1993); the effects of public spending in a liquidity trap (Woodford, 2011; Werning, 2011); and the
political process associated with the design of stimulus packages (Battaglini and Coate, 2016).
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Online Appendix A: The Model with Land

We derive several results pertaining to the model with land developed in section 2.4. We also
calibrate the model to US data; the calibrated model is simulated in section 5.

Household’s Problem and Equilibrium

We solve the household’s utility-maximization problem and analyze equilibrium dynamics.
The current-value Hamiltonian of the household’s problem is

H(t, c(t), l(t)) = U(c(t),g(t))+V(l(t))+λ(t) {p(t) [1 − u(x(t))] k − p(t) [1 + τ(x(t))] c(t) − T(t)} .

It has control variable c(t), state variable l(t), and current-value costate variable λ(t). The
necessary conditions for an interior solution to the maximization problem are ∂H/∂c = 0,
∂H/∂l = δλ(t) − Ûλ(t), and the appropriate transversality condition (see Acemoglu 2009,
theorem 7.13). The conditions ∂H/∂c = 0 and ∂H/∂l = δλ(t) − Ûλ(t) yield (11) and (12).

Since all the equilibrium variables can be recovered from the costate variable λ(t), the
equilibrium can be represented as a dynamical system of dimension one, with variable λ(t).
The variable λ(t) satisfies the differential equation Ûλ(t) = δλ(t) − V′(l0). The steady-state value
of λ(t) is λ = V′(l0)/δ > 0. Since δ > 0, the steady state is a source. And since λ(t) is a
nonpredetermined variable, the equilibrium jumps to its steady-state position at t = 0.

As a consequence, in equilibrium, the state variable is constant at l(t) = l0 and the costate
variable is constant at λ(t) = V′(l0)/δ. Since V is strictly concave, we conclude that the
equilibrium path of c(t) and l(t) is in fact the unique global maximum of the household’s problem
(see Acemoglu 2009, theorem 7.14).

Utility Function

We compute the derivatives of the utility function, given by (8). We use the derivatives to calculate
private demand (14). We will also use the derivatives to compute the unemployment multipliers
and to calibrate and simulate the model. We first compute first derivatives:
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Next, we compute second derivatives:

∂ ln(Uc)

∂ ln(c)
=

1
ε
·

(
∂ ln(U)
∂ ln(c)

− 1
)

∂ ln(Uc)

∂ ln(g)
=

1
ε
·
∂ ln(U)
∂ ln(g)

.

When the Samuelson rule holds, MRSgc = Ug/Uc = 1, so

(A1) (g/c)∗ =
γ

1 − γ
, (g/y)∗ = γ, (c/y)∗ = 1 − γ.

Hence, at the Samuelson rule, the derivatives simplify to

∂ ln(U)
∂ ln(c)

= 1 − γ,
∂ ln(U)
∂ ln(g)

= γ

Uc = 1, Ug = 1(A2)
∂ ln(Uc)

∂ ln(c)
= −

γ

ε
,

∂ ln(Uc)

∂ ln(g)
=
γ

ε
.(A3)

Unemployment Multipliers

We compute the unemployment multiplier m, defined by (7), and the empirical unemployment
multiplier M , defined by (25). In particular, we establish (16). The multipliers and some of the
intermediate results will also be helpful to simulate the model.

First, we compute the effect of public consumption on the price of services. The price is
given by (15), which can be written p(g) = p0Uc(y

∗ − g,g)1−r . The elasticity of the price with
respect to public consumption therefore is

(A4)
d ln(p)
d ln(g)

= (1 − r) ·
[
∂ ln(Uc)

∂ ln(g)
−

g

y∗ − g
·
∂ ln(Uc)

∂ ln(c)

]
.

When unemployment is efficient and public expenditure is at the Samuelson level, the elasticities
ofUc are given by (A3), so we obtain

(A5)
d ln(p)
d ln(g)

= (1 − r) ·
1
ε
·

γ

1 − γ
.

Second, we compute the effects of public consumption and tightness on private demand. Private
demand is implicitly defined by (13), which can be writtenUc(c,g) = p(g) [1 + τ(x)]V′(l0)/δ.
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The elasticities of private demand with respect to public consumption and tightness therefore are

∂ ln(c)
∂ ln(x)

=
ητ(x)

∂ ln(Uc)/∂ ln(c)
(A6)

∂ ln(c)
∂ ln(g)

=
∂ ln(p)/∂ ln(g) − ∂ ln(Uc)/∂ ln(g)

∂ ln(Uc)/∂ ln(c)
.(A7)

When unemployment is efficient and public expenditure is at the Samuelson level, we can use (5),
(A3), and (A5). Thus, the elasticities of private demand are

(A8)
∂ ln(c)
∂ ln(x)

= −(1 − η) u∗
ε

γ
and

∂ ln(c)
∂ ln(g)

=
r − γ
1 − γ

.

Next, we determine the effect of public consumption on equilibrium tightness. The equilibrium
condition determining tightness is (6): y(x, k) = g + c(x, p(g),g). Differentiating this equation
with respect to g, we obtain the elasticity of tightness with respect to public consumption:

∂ ln(y)
∂ ln(x)

·
d ln(x)
d ln(g)

=
g

y
+

c
y
·

[
∂ ln(c)
∂ ln(g)

+
∂ ln(c)
∂ ln(x)

·
d ln(x)
d ln(g)

]
so that

(A9)
d ln(x)
d ln(g)

=
(g/y) + (c/y) (∂ ln(c)/∂ ln(g))

∂ ln(y)/∂ ln(x) − (c/y) (∂ ln(c)/∂ ln(x))
.

(In the differentiation, we have assumed that k is fixed; this assumption holds both in section 2.4
and in the simulations.) When unemployment is efficient and public expenditure is at the
Samuelson level, we can use (A8), (A1), and ∂ ln(y)/∂ ln(x) = 0. Hence, the elasticity of
tightness with respect to public consumption is

(A10)
d ln(x)
d ln(g)

=
1

(1 − η) u∗
·

r
ε
·

γ

1 − γ
.

Finally, we can compute the unemployment multipliers m and M. Equations (21) and (26)
imply that m and M are given by

(A11) m = (1 − η) · (1 − u) · u ·
y

g
·

d ln(x)
d ln(g)

and M =
m

1 − u + g
y ·

η
1−η ·

τ
u · m

.

Combining (A11) with (A10) and (A1), we obtain the values of m and M when unemployment
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Table A1. Parameter Values in Simulations

Description Source

ε = 1 Elasticity of substitution between g and c Amano and Wirjanto (1997, 1998)
γ = 0.16 Parameter of utility function Matches (G/C)∗ = 19.7%
s = 2.8% Monthly separation rate Landais, Michaillat, and Saez (2018)
η = 0.6 Matching elasticity Landais, Michaillat, and Saez (2018)
ω = 0.60 Matching efficacy Landais, Michaillat, and Saez (2018)
ρ = 1.4 Matching cost Matches u∗ = 6.1%
r = 0.46 Price rigidity Matches M = 0.5 at α = 1
p0 = 0.96 Price level Matches u = u∗ at α = 1

is efficient and public expenditure is at the Samuelson level:

m =
(1 − u∗) r
(1 − γ) ε

and M =
r

γr + (1 − γ) ε
.

Calibration

We calibrate the model using evidence from the United States. The calibration is summarized in
table A1. In section 5, we simulate the calibrated model over the business cycle.

We begin by calibrating the utility function (8). We set the elasticity of substitution between
public and private consumption to a plausible midrange estimate: ε = 1 (section 4). The utility
function is therefore Cobb-Douglas:

U(c,g) =
c1−γgγ

(1 − γ)1−γγγ
.

Next, we assume that Samuelson spending is the average level of public expenditure in the
United States for 1990–2014: (G/C)∗ = 19.7% (section 4). Since (A1) implies that γ =
(G/C)∗/[1 + (G/C)∗], we set γ = 0.16.

We then calibrate matching parameters. The calibration relies on the descriptive statistics
provided by Landais, Michaillat, and Saez (2018) for the US labor market between 1990 and
2014. They find a separation rate of s = 2.8% (online appendix B), a matching elasticity of
η = 0.6 (online appendix D), and a matching efficacy of ω = 0.60 (online appendix G). We use
these values. They also find average unemployment rate and tightness of u = 6.1% and x = 0.43
(online appendix G). We assume that these averages are efficient: u∗ = 6.1% and x∗ = 0.43.
Then, to set the matching cost, we use (3), which implies ρ = ωx−ητ/[(1 + τ)s]. This relation
holds for any τ and x, in particular when tightness is efficient. But when tightness is efficient,
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τ∗ = (1 − η)u∗/η, so τ∗ = 4.1%. Plugging x∗ = 0.43 and τ∗ = 4.1% in the expression for ρ
yields ρ = 1.4.

Last, we calibrate the price mechanism (15), which can be written p(g) = p0Uc(y
∗ − g,g)1−r .

On average in the United States the unemployment multiplier is M = 0.5 (section 4). Since we
assume that on average unemployment is efficient and the Samuelson rule holds, M satisfies (16);
hence, to match M = 0.5, we set r = 0.46. Finally, we calibrate the price level such that when the
demand parameter α ≡ δ/V′(l0) = 1, unemployment is indeed efficient. We also assume that the
Samuelson rule holds when α = 1. We infer from (A2) that when unemployment is efficient and
the Samuelson rule holds, (13) becomes 1 = (1 + τ∗)p0α. This condition must be satisfied when
α = 1; as τ∗ = 4.1%, we need to set p0 = 0.96.
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Online Appendix B: Other Examples of Demand Side

In section 2.4 we describe a demand side with land. Here we present two other examples of
demand side: one with money and another one with government bonds. We find that they both
yield an equilibrium with the same properties as the land equilibrium.

Money in the Utility Function

We replace land by money and assume that households derive utility from real money balances.
Introducing money in the utility function is a classical way to generate an aggregate demand:
following Sidrauski (1967), a large number of business-cycle models with money in the utility
function have been developed (for example, Barro and Grossman 1971; Blanchard and Kiyotaki
1987). The presence of money in the utility function is meant to capture the transaction services
provided by money.

The representative household holds D(t) units of money. The supply of money is fixed at D0.
In equilibrium, the money market clears: D(t) = D0. The price of services in terms of money
is p(t). We specify a mechanism for the price of services: p(t) = p(g(t)). Let d(t) ≡ D(t)/p(t)

be the household’s real money balances. The household’s instantaneous utility function is
U(c(t),g(t)) +V(d(t)). The law of motion of the household’s real money balances is

Ûd(t) = [1 − u(x(t))] k − [1 + τ(x(t))] c(t) − π(t)d(t) −
T(t)
p(t)

,

where π(t) ≡ Ûp(t)/p(t) is the inflation rate. Since the government maintains public consumption
at a constant level g, the price is also constant at p = p(g), and inflation is zero. Accordingly, the
household’s real money balances follow

Ûd(t) = [1 − u(x(t))] k − [1 + τ(x(t))] c(t) −
T(t)

p
,

and in equilibrium the household’s real money balances are fixed at D0/p.
The household’s problem has the same structure as in the model with land. Hence, as in the

model with land, the equilibrium immediately converges to steady state. Private demand c(x, p,g)

is implicitly defined by
∂U

∂c
= [1 + τ(x)]

V′(D0/p)
δ

,

which is almost the same expression as in the model with land. The only difference is that the
price of service p affects private demand through a different channel. With land, p is the price
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of services relative to land, so it affects private demand through a substitution effect. Here, the
price of services relative to real money is 1, but p determines the amount of real money held by
households (D0/p), so it affects private demand through an income effect.

Bonds in the Utility Function

We replace land by government bonds and assume that households derive utility from real bond
holdings. Assuming that bonds enter the utility function is a simple way to generate an aggregate
demand in a dynamic cashless economy. Several papers in macroeconomics and finance make this
assumption (for example, Poterba and Rotemberg 1987; Krishnamurthy and Vissing-Jorgensen
2012; Fisher 2015; Campbell et al. 2017; Del Negro et al. 2017; Michaillat and Saez 2018).
Compared to other assets, government bonds have special features: they are particularly safe
and liquid (Krishnamurthy and Vissing-Jorgensen 2012); they are also useful to satisfy legal
requirements or for “window dressing” (Fair and Malkiel 1971, sec. 2). The presence of bonds in
the utility function is meant to capture these features.

The price of services in terms of money is p(t) (here money is only a unit of account).
The inflation rate is π(t) = Ûp(t)/p(t). The inflation rate is determined by a price mechanism:
π(t) = π(g(t)). Given the inflation rate, the price of services moves according to Ûp(t) = π(t)p(t).
The initial price p(0) is given.

The representative household holds B(t) bonds. Bonds are in zero net supply. In equilibrium,
the bond market clears: B(t) = 0. The rate of return on bonds is the nominal interest rate i(t). The
nominal interest rate is determined by the central bank. We assume that the central bank potentially
responds to inflation and fiscal policy; therefore, it sets an interest rate i(t) = i(π(t),g(t)).

In the economy there are two goods—services and bonds—and hence one relative price (public
and private services have the same price). The price of bonds relative to services is determined by
the real interest rate, r(t) = i(t) − π(t). Given monetary policy and the price mechanism, the real
rate can be written as a function of public consumption: r(t) = r(g(t)) ≡ i(π(g(t)),g(t)) − π(g(t)).
We assume that r(t) < δ.

Let b(t) ≡ B(t)/p(t) be the household’s real bond holdings. The household’s instantaneous
utility function isU(c(t),g(t)) +V(b(t)), and the law of motion of its real bond holdings is

Ûb(t) = [1 − u(x(t))] k − [1 + τ(x(t))] c(t) + r(t)b(t) −
T(t)
p(t)

.

In equilibrium, the household’s real bond holdings are fixed at 0.
Since the government maintains public consumption at a constant level g, the real interest rate

is also constant at r = r(g). Consequently, the household’s problem has the same structure as in
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the model with land. Hence, the equilibrium immediately converges to steady state. Furthermore,
private demand c(x,r,g) is implicitly defined by

∂U

∂c
= [1 + τ(x)]

V′(0)
δ − r

.

This expression is almost the same as in the model with land; the difference is that real interest
rate r appears instead of the price of services p. This is because the price of services relative to
real bonds is determined by r , not by p.
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Online Appendix C: Proofs

Proof of Lemma 3

Since MRSgc is a function of g/c, the first-order Taylor expansion of MRSgc at (g/c)∗ is

(A12) MRSgc(g/c) = MRSgc((g/c)∗) +
dMRSgc

dg/c
· (g/c − (g/c)∗) +O([g/c − (g/c)∗]2).

In addition, MRSgc((g/c)∗) = 1 and

dMRSgc

d(g/c)
= −

1
ε
·

1
(g/c)∗

.

Hence, (A12) becomes

(A13) 1 − MRSgc(g/c) =
1
ε
·
g/c − (g/c)∗

(g/c)∗
+O([g/c − (g/c)∗]2).

The 1/ε in the Taylor expansion is evaluated at (g/c)∗. But we can replace it by 1/ε evaluated at
g/c because the difference between the two is proportional to g/c−(g/c)∗. So once the difference
is multiplied by g/c− (g/c)∗ in (A13), it is absorbed by the term O([g/c− (g/c)∗]2). Thus, (A13)
yields (19).

Next, we write ∂ ln(y)/∂ ln(x) as a function of u:

∂ ln(y)
∂ ln(x)

= (1 − η)u − ητ(u).

The function τ(u) is defined by τ(u) = τ(x(u)), where τ(x) is given by (3) and x(u) = u−1(u) is
the inverse of the function u(x) given by (2). We have

τ′(u) = τ′(x) · x′(u) =
τ′(x)

u′(x(u))
=

(1 + τ)ητ/x
−(1 − η)(1 − u)u/x

= −
(1 + τ)ητ

(1 − η)(1 − u)u
.

Equation (5) says that ητ(u∗) = (1 − η)u∗, which implies

τ′(u∗) = −
1 + τ(u∗)

1 − u∗
.

Using again ητ(u∗) = (1 − η)u∗, we obtain

−ητ′(u∗) =
η + ητ(u∗)

1 − u∗
=
η + (1 − η)u∗

1 − u∗
= η +

u∗

1 − u∗
.
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Hence, the derivative of ∂ ln(y)/∂ ln(x) with respect to u at u∗ is

(1 − η) − ητ′(u∗) =
1

1 − u∗
.

Furthermore, ∂ ln(y)/∂ ln(x) = 0 at u∗. Thus, a first-order Taylor expansion of ∂ ln(y)/∂ ln(x) at
u∗ yields (20).

Finally, since the elasticity of u(x) with respect to x is −(1 − η)(1 − u), we find that

m = −y ·
u
g
·

d ln(u)
d ln(g)

=
y

g
(1 − η) (1 − u) u

d ln(x)
d ln(g)

=
y

x
(1 − η) (1 − u) u

dx
dg
.

We obtain (21) by rearranging this equation.

Proof of Lemma 4

We start from (18). First, we approximate 1 − MRSgc with (19). Next, we rewrite dx/dg with
(21) and approximate ∂y/∂x with (20). These manipulations yield

(A14)
1
ε
·
g/c − (g/c)∗

(g/c)∗
=

m
1 − η

·
u − u∗

(1 − u)(1 − u∗)u
+O([g/c − (g/c)∗]2 + [u − u∗]2).

We can rewrite (A14) as

(A15)
1
ε
·
g/c − (g/c)∗

(g/c)∗
=

m
1 − η

·
u − u∗

(1 − u∗)2u∗
+O([g/c − (g/c)∗]2 + [u − u∗]2).

This is because the difference between 1/[(1 − u)(1 − u∗)u] and 1/
[
(1 − u∗)2u∗

]
is O(u − u∗).

Once this difference is multiplied by u−u∗ in (A14), it is absorbed by the term O([g/c − (g/c)∗]2+

[u − u∗]2). We obtain (22) from (A15).

Proof of Proposition 1

The economy starts at an equilibrium [(g/c)∗,u0], where the unemployment rate u0 is inefficient.
Since u0 , u∗, the optimal g/c departs from (g/c)∗. In (22), the multiplier m and unemployment
rate u are functions of g/c, so they respond as g/c moves away from (g/c)∗, and we cannot read
the optimal g/c off the formula. In this proof, we derive a formula giving the optimal g/c as a
function of fixed quantities.

First, we express the equilibrium values of all variables as functions of [u,g/c]. The proof of
lemma 3 showed that x and τ can be written as functions of u. Since y = (1− u)k/(1+ τ), we can
also write y as a function of u. Since g = y · (g/c)/[1 + g/c], g can be written as a function of u
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and g/c. As c = y − g, c can also be written as a function of u and g/c. Last, since C = (1 + τ)c,
G = (1 + τ)g, and Y = (1 + τ)y, we can write C, G, and Y as functions of u and g/c.

Among all pairs [u,g/c], the only pairs describing an equilibrium are those consistent with
the equilibrium condition u = u(x(g)), where g is the function of u and g/c described above, x(g)

is the function defined by (6), and u(x) is the function defined by (2). This equilibrium condition
defines the unemployment rate as an implicit function of g/c, denoted u(g/c). Then, the pairs
[u(g/c),g/c] for all g/c > 0 are the equilibria for all possible levels of public expenditure.

We start by linking u to u0 and g/c. We write a first-order Taylor expansion of u(g/c) around
u((g/c)∗) = u0, subtract u∗ on both sides, and divide both sides by u∗:

(A16)
u − u∗

u∗
=

u0 − u∗

u∗
+

1
u∗
·

du
d ln(g/c)

·
g/c − (g/c)∗

(g/c)∗
+O([g/c − (g/c)∗]2).

To compute du/d ln(g/c) at [u0, (g/c)∗], we decompose the derivative:

du
d ln(g/c)

=
du

d ln(g)
·

d ln(g)
d ln(g/c)

.

First, the definition of the unemployment multiplier implies that

du
d ln(g)

= −m · (g/y)∗,

where m is evaluated at [u0, (g/c)∗]. Second, we compute d ln(g)/d ln(g/c). We have

ln(g/c) = ln(g) − ln(y(x(g/c), k) − g).

Differentiating with respect to ln(g/c) yields

(A17) 1 =
d ln(g)

d ln(g/c)
−

y

c
·
∂ ln(y)
∂ ln(x)

·
d ln(x)

d ln(g/c)
+
g

c
·

d ln(g)
d ln(g/c)

.

Reshuffling the terms, we obtain

d ln(g)
d ln(g/c)

=
c
y
+
∂ ln(y)
∂ ln(x)

·
d ln(x)

d ln(g/c)
.

At u∗, ∂ ln(y)/∂ ln(x) = 0, so at u0, ∂ ln(y)/∂ ln(x) is O(u0 − u∗). Once this term is multiplied by
g/c − (g/c)∗ in (A16), it creates a term that is O([u0 − u∗]2 + [g/c − (g/c)∗]2). Thus, we omit
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the term (∂ ln(y)/∂ ln(x)) · (d ln(x)/d ln(g/c)) and set

d ln(g)
d ln(g/c)

= (c/y)∗.

So far, we have shown that

(A18)
u − u∗

u∗
=

u0 − u∗

u∗
− mz1

g/c − (g/c)∗

(g/c)∗
+O([u0 − u∗]2 + [g/c − (g/c)∗]2),

where
z1 =

(g/y)∗(c/y)∗

u∗
.

Equation (22) includes a remainder that is O([u − u∗]2 + [g/c − (g/c)∗]2). Equation (A18)
implies that (u − u∗)2 is O([u0 − u∗]2 + [g/c − (g/c)∗]2). Thus the remainder in formula (22) is
O([u0 − u∗]2 + [g/c − (g/c)∗]2). Combining (22) and (A18), we therefore obtain

(A19)
g/c−(g/c)∗

(g/c)∗
= z0εm

[
u0−u∗

u∗
−mz1

g/c−(g/c)∗

(g/c)∗

]
+O([u0−u∗]2+ [g/c−(g/c)∗]2).

In (A19), ε and m are evaluated at [u,g/c]. Instead we can use the values of ε and m evaluated at
[u0, (g/c)∗] because the difference between the two values of each statistic is O([u − u0] + [g/c −

(g/c)∗]). So once the differences are multiplied by g/c − (g/c)∗ and u0 − u∗ in (A19), they are
absorbed by O([u0 − u∗]2 + [g/c − (g/c)∗]2). Thus, (A19) yields (23).

To finish the proof, we derive (24). With the previous arguments, (22) can be written

g/c − (g/c)∗

(g/c)∗
= z0εm

u − u∗

u∗
+O([u0 − u∗]2 + [g/c − (g/c)∗]2),

where ε and m are evaluated at [u0, (g/c)∗]. Replacing the left-hand side of this equation by the
right-hand side of (23), and dividing everything by z0εm, we obtain (24).

Proof of Lemma 5

As G = [1 + τ(x(g))] g and the elasticity of 1 + τ(x) with respect to x is ητ, we have

(A20)
d ln(G)
d ln(g)

= 1 + ητ
d ln(x)
d ln(g)

= 1 +
g

y
·

η

1 − η
·

τ

(1 − u)u
· m,
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where the last equality is obtained from (21). Furthermore, the definitions of m and M imply

m = −y
du
dg
= −

Y
1 + τ(x)

·
du
dG
·

dG
dg
=

g

G
(1 − u)M

dG
dg
= (1 − u)M

d ln(G)
d ln(g)

.

We now plug into this equation the expression for d ln(G)/d ln(g) obtained in (A20):

m = (1 − u) · M +
g

y
·

η

1 − η
·
τ

u
· M · m.

We obtain (26) by rearranging this equation.
Next, consider a change in public expenditure dG. This change leads to a change du in

unemployment and, since Y = (1 − u) k, to a change dY = −k · du in output. Hence,

dY
dG
= −k

du
dG
= −

Y
1 − u

·
du
dG
= M .
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Online Appendix D: Distortionary Taxation

We introduce endogenous labor supply and a distortionary income tax to study how distortionary
taxation affects optimal public expenditure. We compare two approaches to taxation: the traditional
approach in public economics and macroeconomics, which uses a linear income tax; and the
modern approach in public economics, which uses a nonlinear income tax implemented following
the benefit principle. With either approach, the formula for optimal stimulus spending remains
the same as when labor supply is fixed. These results are summarized in section 3.3.

Traditional Approach

In the traditional approach to taxation, the government uses a linear income tax τL to finance public
expenditure. With the linear income tax, the household’s labor income becomes (1− τL)Y (x, k) =

(1 − τL) [1 − u(x)] k. To finance public expenditure G, the tax rate must be τL = G/Y = g/y.
The household chooses k to maximize utility. The marginal rate of substitution between labor

and private consumption is MRSkc =W
′(k)/(∂U/∂c). As usual, the household supplies labor

until the marginal rate of substitution between labor and consumption equals the post-tax real
wage:

(A21) MRSkc = (1 − τL)
1 − u(x)
1 + τ(x)

.

Indeed, one unit of labor is only sold with probability 1 − u(x). When it is sold, it only yields
1/[1 + τ(x)] units of consumption. Hence, the effective real wage is [1 − u(x)] /[1 + τ(x)], and
the post-tax real wage is (1 − τL) [1 − u(x)] /[1 + τ(x)].1

The supply decision is distorted by the income tax: a higher τL implies a lower k. In fact,
(A21) implicitly defines a function k(g) describing how productive capacity responds to a change
in public expenditure and the associated tax change. As the income tax is distortionary, the
function k(g) is decreasing in g.

The welfare of an equilibrium is U(c,g) − W(k). Given a tightness function x(g) and a
capacity function k(g), the government chooses g to maximizeU(y(x(g), k(g))−g,g)−W(k(g)).
The first-order condition of the government’s problem is

0 =
∂U

∂g
−
∂U

∂c
−W′(k)

dk
dg
+
∂U

∂c
·
∂y

∂k
·

dk
dg
+
∂U

∂c
·
∂y

∂x
·

dx
dg
.

1Formally, for all the models in section 2 and online appendix B, the first-order condition with respect to k
isW ′(k) = (1 − τL) [1 − u(x)] λ, where λ is the costate variable associated with real wealth in the household’s
Hamiltonian. We combine this equation and (11) to obtain (A21).

14



Dividing the condition by ∂U/∂c, we obtain

1 = MRSgc −

(
MRSkc −

∂y

∂k

)
·

dk
dg
+
∂y

∂x
·

dx
dg
.

Households’ optimal labor supply, given by (A21), implies that MRSkc = (1 − τL)(∂y/∂k).
The government’s budget constraint implies that τL = g/y. Last, equation (4) implies that
∂y/∂k = y/k. Hence, −(MRSkc − ∂y/∂k) = τLy/k = g/k, and we have proved the following:

LEMMA A1: With a linear income tax, optimal public expenditure satisfies

(A22) 1 −
d ln(k)
d ln(g)

= MRSgc︸                     ︷︷                     ︸
modified Samuelson rule

+
∂y

∂x
·

dx
dg︸   ︷︷   ︸

correction

.

Formula (A22) differs from formula (18), but the two have the same structure once the
Samuelson rule is modified to account for distortionary taxation. Indeed, formula (A22) can be
written as the modified Samuelson rule plus a correction equal to (∂y/∂x) · (dx/dg). The statistic
1 − d ln(k)/d ln(g) > 1 in the modified Samuelson rule is the marginal cost of funds; it is more
than one because the linear income tax distorts labor supply.

In a situation with distortionary taxation, the Samuelson rule is modified, so we also need to
modify the definition of Samuelson spending:

DEFINITION A1: With a linear income tax, Samuelson spending (g/c)∗ is given by the modified
Samuelson rule:

MRSgc((g/c)∗) = 1 −
d ln(k)
d ln(g)

.

The elasticity d ln(k)/d ln(g) < 0 is evaluated at optimal public expenditure.

Because the marginal cost of funds (1 − d ln(k)/d ln(g)) is greater than one, the modified
Samuelson rule recommends a lower level of public expenditure than the regular Samuelson
rule. Therefore, Samuelson spending is lower with a linear income tax. Nevertheless, since the
correction to the Samuelson rule is the same in formula (A22), our sufficient-statistic formula for
optimal stimulus spending remains the same:

PROPOSITION A1: Suppose that the economy is initially at an equilibrium [(g/c)∗,u0]. Then,
with a linear income tax, optimal stimulus spending is given by (23) and the unemployment
rate under the optimal policy is given by (24), where the statistic z1 is generalized to allow for
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supply-side responses:

z1 =
(g/y)∗(c/y)∗

u∗
·

1
1 − d ln(k)/d ln(g)

.

The elasticity d ln(k)/d ln(g) is evaluated at [(g/c)∗,u∗].

Proof: With a linear income tax, Samuelson spending satisfies

MRSgc(g/c∗) = 1 −
d ln(k)
d ln(g)

,

so formula (A22) implies that optimal public expenditure satisfies

MRSgc((g/c)∗) − MRSgc(g/c) =
∂y

∂x
·

dx
dg
.

As in lemma 3, we have

MRSgc((g/c)∗) − MRSgc(g/c) =
1
ε
·
g/c − (g/c)∗

(g/c)∗
.

Moreover, (20) and (21) remain valid. Combining these results, we obtain (22).
Since formula (22) remains valid, the proof follows the same steps as the proof of proposition 1.

The only difference occurs once we reach equation (A17). With a supply-side response to taxation,
the equation becomes

1 =
d ln(g)

d ln(g/c)
−

y

c
·
∂ ln(y)
∂ ln(x)

·
d ln(x)

d ln(g/c)
−

y

c
·
∂ ln(y)
∂ ln(k)

·
d ln(k)
d ln(g)

·
d ln(g)

d ln(g/c)
+
g

c
·

d ln(g)
d ln(g/c)

.

Using the same argument as in the proof of proposition 1, we can omit the term containing
the factor ∂ ln(y)/∂ ln(x). Since ∂ ln(y)/∂ ln(k) = 1, we therefore obtain d ln(g)/d ln(g/c) =
(c/y)∗/(1 − d ln(k)/d ln(g)). Using the new expression for d ln(g)/d ln(g/c), we conclude the
proof just like the proof of proposition 1. �

The unemployment multiplier in formulas (23) and (24) is a policy elasticity, in the sense of
Hendren (2016). It measures the change in unemployment for a change in public expenditure
accompanied by the change in taxes maintaining a balanced government budget. In section 3
taxes are not distortionary, so the unemployment multiplier should be measured using a policy
reform in which taxes are nondistortionary. Here taxes are distortionary, so the unemployment
multiplier should be measured using a policy reform in which the tax change distorts labor supply.

When taxation is nondistortionary, equation (26) shows that the unemployment multiplier m
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in our sufficient-statistic formula is closely related to the empirical unemployment multiplier
M. Furthermore, the output multiplier is equal to M, so all our results remain the same if we
reformulate them with the output multiplier instead of m. But when taxation is distortionary,
things are different, and the output multiplier cannot be used to design optimal public expenditure.
With distortionary taxation, (26) remains valid, but the link between the output multiplier and M

breaks down. Indeed, output is Y = (1 − u)k so

dY
dG
= −k

du
dG
+ (1 − u)

dk
dG
= −

Y
1 − u

·
du
dG
+

Y
k
·

dk
dG
= M +

Y
k
·

dk
dG

.

Since taxes are distortionary, dk/dG < 0 and

M =
dY
dG
−

Y
k
·

dk
dG

>
dY
dG

.

Thus, when a change in taxes distort the capacity supplied by households, the unemployment
multiplier M is the output multiplier net of the supply-side response (Y/k)(dk/dG). The supply-
side response measures the percent change in labor supply when public expenditure increases by
one percent of GDP. As taxation is distortionary, the supply-side response is negative and the
unemployment multiplier is larger than the output multiplier. The unemployment multiplier is the
correct sufficient statistic whether taxation is distortionary or not. With distortionary taxation,
there is a wedge between unemployment and output multipliers equal to the supply-side responses,
so the output multiplier is not useful to compute optimal stimulus spending.

Intuitively, an increase in public expenditure affects unemployment and the associated increase
in taxes reduces labor supply. The negative effect on labor supply determines the marginal cost of
fund and Samuelson spending but has nothing to do with the correction to the Samuelson rule
and stimulus spending. The effect on unemployment, on the other hand, determines the correction
to the Samuelson rule and stimulus spending. Since the output multiplier conveys information
about the effect of public spending on labor supply, it is not directly relevant to stimulus spending.
Since the unemployment multiplier measures the effect of public spending on unemployment, it
governs optimal stimulus spending.

Modern Approach

We turn to the modern approach to taxation in public economics, which uses a nonlinear income
tax implemented according to the benefit principle. The benefit principle, which was introduced
by Hylland and Zeckhauser (1979) and fully developed by Kaplow (1996, 1998), is an important
result in modern public-economic theory: it states that optimal public expenditure is disconnected
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from distortionary taxation.2 Hence, extra public expenditure should be financed by a change in
the nonlinear tax schedule that leaves all individual utilities unchanged, and thus that does not
distort further labor supply.

We assume that the government finances any increase in public expenditure by an increase in
nonlinear income tax following the benefit principle: the tax schedule is changed to offset the
extra benefit received by any individual from the extra public expenditure. Thus, changing public
expenditure does not affect individual utilities and does not alter labor supply.

More precisely, we assume that households choose capacity k to maximize utility, and
that public expenditure is funded by a distortionary, nonlinear income tax T(k). We start from
an equilibrium [c,g, x, k]. To ease notation, we define φ(x) = [1 − u(x)] /[1 + τ(x)]. With the
income tax, the household’s disposable income becomes [1 − u(x)] [k − T(k)]. In equilibrium,
households’ disposable income equals their expenses: [1 − u(x)] [k − T(k)] = [1 + τ(x)] c so
c = φ(x) [k − T(k)].

We implement a small change in public expenditure dg funded by a small tax change dT(k)

that satisfies the benefit principle. This change triggers a small change dx in tightness. By the
benefit principle, the tax change dT(k) is designed to keep the household’s utility constant for
any choice of k. For all k, dT(k) satisfies

(A23) U(φ(x) [k − T(k)] ,g) = U(φ(x + dx) [k − T(k) − dT(k)] ,g + dg).

The left-hand side and right-hand side of the equation define two identical functions of k. This
implies that the household does not change his choice of k after the reform: labor supply is
unaffected by a change dg funded by the benefit principle.

Taking a first-order expansion of the right-hand side of (A23), and subtracting the left-hand
side from the right-hand side, we obtain

∂U

∂c
· {φ′(x) [k − T(k)] dx − φ(x)dT(k)} +

∂U

∂g
· dg = 0.

Dividing by ∂U/∂c and re-arranging yields

φ′(x)T(k)dx + φ(x)dT(k) = MRSgcdg + φ′(x)kdx.

Accordingly, the effect of the reform on the government budget balance R = φ(x)T(k) − g is

dR = φ′(x)T(k)dx + φ(x)dT(k) − dg =
(
MRSgc − 1

)
dg +

∂y

∂x
dx.

2See Kaplow (2004) and Kreiner and Verdelin (2012) for a survey of the benefit-principle approach.
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(We used dk = 0 and φ′(x)k = ∂y/∂x.) At the optimum, dR = 0, so we have proved the
following:

LEMMA A2: Under the benefit principle, optimal public expenditure satisfies (18).

Under the benefit principle, (18) remains valid and capacity k is not affected by changes in
public expenditure. Thus, our sufficient-statistic formula remains valid:

PROPOSITION A2: Suppose that the economy is initially at an equilibrium [(g/c)∗,u0]. Then,
under the benefit principle, optimal stimulus spending is given by (23) and the unemployment
rate under the optimal policy is given by (24).

Under the benefit principle, although taxation is distortionary, we obtain the same results as
with a fixed labor supply. Furthermore, since there are no labor-supply distortions for a marginal
increase in public expenditure, output and unemployment multipliers are equal, and the output
multiplier can be used to design optimal stimulus spending.
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Online Appendix E: Fixprice Model

We compute the amount of stimulus spending required to fill the output gap in the fixprice model
developed in section 3.4. In addition, we present an extension of the fixprice model in which
productive capacity is endogenous, not fixed. We derive a sufficient-statistic formula for optimal
public expenditure in that extended model.

Stimulus Spending Required to Fill the Output Gap

We derive (29). The economy starts at an equilibrium [(g/c)∗, y0], where output y0 < k is
inefficiently low. We compute the stimulus spending g/c − (g/c)∗ required to fill the output gap
k − y0. To that end, we link y to g/c. We write a first-order Taylor expansion of y(g/c) around
y((g/c)∗) = y0, evaluate it at y(g/c) = k, and divide it by y0:

(A24)
k − y0
y0

=
d ln(y)

d ln(ln(g/c))
·
g/c − (g/c)∗

(g/c)∗
+O([g/c − (g/c)∗]2).

Next we compute d ln(y)/d ln(g/c) using the following decomposition:

(A25)
d ln(y)

d ln(g/c)
=

d ln(y)
d ln(g)

·
d ln(g)

d ln(g/c)
= (g/y)∗ ·

dy
dg
·

d ln(g)
d ln(g/c)

,

where dy/dg is evaluated at [(g/c)∗, y0].
The last step is to compute d ln(g)/d ln(g/c). We have ln(g/c) = ln(g) − ln(y − g). Differen-

tiating this equation with respect to ln(g/c) yields

1 =
d ln(g)

d ln(g/c)
− (y/c)∗

d ln(y)
d ln(g/c)

+ (g/c)∗
d ln(g)

d ln(g/c)
.

Using (A25) and reshuffling the terms, we obtain

(A26)
d ln(g)

d ln(g/c)
=

1
1 + (g/c)∗ − (g/c)∗(dy/dg)

.

Finally we combine all the results. Plugging (A26) into (A25), we find

(A27)
d ln(y)

d ln(g/c)
=

(g/y)∗(dy/dg)
1 + (g/c)∗ − (g/c)∗(dy/dg)

=
(c/y)∗(g/y)∗(dy/dg)
1 − (g/y)∗(dy/dg)

.
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Combining (A27) with (A24), we then obtain

g/c − (g/c)∗

(g/c)∗
=

1 − (g/y)∗(dy/dg)
(c/y)∗(g/y)∗(dy/dg)

·
k − y0
y0
+O([g/c − (g/c)∗]2),

where the output multiplier dy/dg is evaluated at [(g/c)∗, y0]. This equation yields (29).

Endogenous Productive Capacity

We extend the fixprice model by introducing endogenous productive capacity, and we describe
optimal public expenditure in that model. We could introduce endogenous capacity by assuming
that households are price-takers: they supply capacity k to maximize utility given the price of
services. This assumption has a downside, however: it introduces an internal inconsistency in
the model when there is excess supply. Indeed, aggregate supply would describe how much
households desire to work for a given price, assuming that they can sell all the services that they
supply to the market. In reality, households are unable to sell all their services because there is
excess supply. To be consistent, the model should allow households to revise their supply decision
given that the probability to sell a given service is less than one. But the fixprice model does not
allow for this.3

We address this issue as in the New Keynesian literature. We assume that households are
price-setters: they set the price of services to maximize profits and supply the amount of services
demanded at the profit-maximizing price. When the price is fixed, households simply supply as
many services as required to satisfy demand (for example, Nakamura and Steinsson 2014, p. 773).
Let y be aggregate output of services, which is demand-determined. Since households supply
exactly the amount of services required by demand, aggregate supply of services is k = y.

The government now chooses g to maximizeU(y − g,g) −W(y). The first-order condition
of the maximization is

(A28) 1 = MRSgc +
dy
dg
· (1 − MRSkc),

where MRSkc =W
′(k)/(∂U/∂c) is the marginal rate of substitution between labor and private

consumption. This equation is the same as (28), except that the output multiplier is multiplied
by the labor wedge 1 − MRSkc.4 This equation is also the same as equation (45) in Woodford
(2011)—this is not surprising since our fixprice model has the same ingredients as Woodford’s

3The matching model addresses this issue by introducing a matching function that gives the probability to sell
services, and by letting households take the probability into account when they make their supply decision.

4The labor wedge plays an important role in macroeconomics (see Shimer 2009).
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New Keynesian model.
The economy can be in three possible regimes, depending on the labor wedge : efficient

production when 1 − MRSkc = 0, insufficient production when 1 − MRSkc > 0 (a slump), and
excessive production 1 − MRSkc < 0 (a boom). When there is efficient production, MRSkc = 1
and the Samuelson rule remains valid. When there is excessive or insufficient production, things
change: MRSkc , 1 so the correction to the Samuelson rule is nonzero.

We assume that the economy starts at [(g/c)∗, y0], with a marginal rate of substitution
(MRSkc)0 , 1. Following the procedure developed in the matching model, we obtain a formula
expressed as a function of fixed (not endogenous) sufficient statistics:

PROPOSITION A3: Suppose that the economy is initially at an equilibrium [(g/c)∗, y0]. Then
optimal stimulus spending satisfies

(A29)
g/c − (g/c)∗

(g/c)∗
≈

ε · (dy/dg)

1 + z3ε
(dy/dg)2

1−(g/y)∗(dy/dg)

[1 − (MRSkc)0] .

The statistics ε and dy/dg are evaluated at [(g/c)∗, y0]. Further,

z3 =
(MRSkc)0 (c/y)∗(g/y)∗

κ
,

where κ is the Frisch elasticity of labor supply:

1
κ
=

d ln(W′(k))
d ln(k)

.

Under the optimal policy, the labor wedge is

(A30) 1 − MRSkc ≈
1

1 + z3ε
(dy/dg)2

1−(g/y)∗(dy/dg)

[1 − (MRSkc)0] .

The approximations (A29) and (A30) are valid up to a remainder that is O([g/c − (g/c)∗]2).

Proof: Optimal stimulus spending satisfies (A28), which can be rewritten using (19):

(A31)
g/c − (g/c)∗

(g/c)∗
= ε ·

dy
dg
· (1 − MRSkc) +O([g/c − (g/c)∗]2).

As in the matching model, MRSkc responds to g/c when it deviates from (g/c)∗, so we cannot
use (A31) to compute optimal stimulus spending. We follow the procedure developed in the
matching model and re-express (A31) as a function of fixed sufficient statistics.
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To that end, we analyze how MRSkc respond to g/c. In this demand-determined economy,
the aggregate-demand relationship always holds. Since the asset (land in our baseline model)
is in fixed supply and prices are fixed, the marginal utility of private consumption (∂U/∂c) is
fixed and does not change when public consumption changes.5 Hence, we only consider how the
marginal disutility of labor (W′(k)) reacts to public consumption. We find

d ln(MRSkc)

d ln(g/c)
=

d ln(W′(k))
d ln(g/c)

=
1
κ
·

d ln(y)
d ln(g/c)

,

where κ is the Frisch elasticity of labor supply. Using (A27), we obtain

d ln(MRSkc)

d ln(g/c)
=

1
κ
·
(c/y)∗(g/y)∗(dy/dg)
1 − (g/y)∗(dy/dg)

.

Accordingly, the first-order Taylor expansion of MRSkc(g/c) around (g/c)∗) is

MRSkc = (MRSkc)0 +
1
κ
·
(MRSkc)0 (c/y)∗(g/y)∗(dy/dg)

1 − (g/y)∗(dy/dg)
·
g/c − (g/c)∗

(g/c)∗
+O([g/c − (g/c)∗]2).

In the equation the multiplier dy/dg and elasticity κ are evaluated at [(g/c)∗, y0]. To obtain (A29),
we plug this expression for MRSkc into (A31) and reshuffle the terms. Finally, we obtain (A30)
by combining (A31) and (A29). �

Formula (A29) is similar to formula (23) in the matching model; the principal difference
is that the amount of inefficiency is measured by the labor wedge 1 − (MRSkc)0 instead of the
unemployment gap. Nonetheless the formula has similar implications. First, with a positive output
multiplier, optimal stimulus spending is positive in slumps but negative in booms. Second, optimal
stimulus spending is a hump-shaped function of the output multiplier. Third, optimal stimulus
spending is larger when public consumption substitutes more easily for private consumption.
Last, optimal stimulus spending only partially reduces the output gap: MRSkc is brought closer
to one, but remains below one.

Overall, the fixprice model with endogenous capacity leads to similar insights as the matching
model. This is reassuring: irrespective of how productive inefficiency is modeled, stimulus
spending obeys similar general principles. Compared to the fixprice model with fixed capacity,
three differences arise: (a) the model offers a symmetric treatment of excessive production and
insufficient production; (b) it is never optimal to completely fill the output gap; and (c) optimal
stimulus spending is a smooth function of the sufficient statistics.

5For example, in the demand side with land of section 2.4, aggregate demand is given by ∂U/∂c = pV ′(l0)/δ.
This relationship always holds since the economy is demand-determined. As l0 and p are fixed, ∂U/∂c does not
respond to g.
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Yet, for several reasons, the matching model seems more convenient than the fixprice model
with endogenous capacity to think about optimal public expenditure. A first limitation of the
fixprice model is that its description of booms is not fully satisfactory. When there is excessive
production, MRSkc > 1 which implies W′(k) > ∂U/∂c: people, constrained to supply the
amount of services demanded, are working more than they would like. If workers were not
bound to supply whatever is demanded, all of them would stop providing services, as the cost of
providing each service is higher than the income received. In the matching model, in contrast, all
relationships generate surplus for both buyer and seller.

Another limitation of the fixprice model is that the supply side is irrelevant, as the equilibrium
is demand-determined. An implication is that distortionary taxation has no effect at all. In contrast,
in the matching model, both supply and demand determine the equilibrium, so distortionary
taxation reduces output. The matching model is therefore well suited to study the effect of
distortionary taxation on optimal public expenditure—something we do in section 3.3.

A last limitation of the fixprice model is that the labor wedge 1−(MRSkc)0 is more challenging
to measure than the unemployment gap u0 − u∗. As a result, the fixprice formula (A29) is less
convenient to apply than the matching formula (23). Indeed, since u0 is observable, measuring
the unemployment gap only requires to measure the efficient unemployment u∗. This can be
done from (5), following the method developed by Landais, Michaillat, and Saez (2018). This
can also be done by using historical unemployment data, since u∗ does not respond to typical
macroeconomic shocks and is therefore stable over time (see section 4). In contrast, it is difficult
to measure the labor wedge because it is not possible to relate (MRSkc)0 to observable variables.6
One strategy to measure (MRSkc)0 would be to assume that output is efficient before the shocks
and that the utility functionsW andU are stable. Then we could recover (MRSkc)0 from the
observed change in output, the Frisch elasticity (to link the output change to the change in
W′(k)), and a coefficient of risk aversion (to link the output change to the change in ∂U/∂c).
This strategy could work with aggregate-demand shocks but not with aggregate-supply shocks,
as the disutility from laborW varies under such shocks. Hence, it is generally not possible to
measure the labor wedge.

6For the same reason, it is difficult to measure the New Keynesian output gap in the data (Gali 2008, pp. 80–81).
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