The Financial Channel of Wage Rigidity

Benjamin Schoefer

UC Berkeley,
NBER, CEPR, CESifo, IZA, IWH Halle

Bundesbank Research Seminar
May 31, 2023
Motivation and background:

○ Useful modeling tool for amplification: rigidity of marginal—i.e., new hires’—wages.

 Erceg, Henderson and Levin (2000); Shimer (2004); Hall (2005); Blanchard and Galí (2007); Elsby (2009); Gertler and Trigari (2009); Michaillat (2012); Christiano, Eichenbaum and Trabandt (2016); Schmitt-Grohé and Uribe (2016)

○ Ongoing empirical debate about new hires’ wage rigidity.

 Solon, Barsky and Parker (1994); Pissarides (2009); Hagedorn and Manovskii (2013); Galuscak, Keeney, Nicolitsas, Smets, Strzelecki and Vodopivec (2012); Gertler, Huckfeldt and Trigari (2020); Hazell and Taska (2020).

○ Average/incumbent workers’ wages are clearly rigid.

○ Theoretical paradigm: incumbents’ wages’ wages are, ex post, irrelevant for hiring.

 Shimer (2004); Pissarides (2009) and many others; other recent work breaking the paradigm through effort channel (Bils, Chang and Kim, forthcoming) and wage posting (Fukui, 2020)

This paper proposes and explores a financial channel of wage rigidity:

○ Rigid average/incumbents’ wages ⇒ more volatile financial resources of firms ⇒ more volatile hiring.

○ Wage rigidity may be crucial to financial amplification.
Outline

1. **Mechanism: simple model**

2. **Empirical evidence**
 - Aggregate: wage rigidity \Rightarrow cash flow fluctuations
 - Industry level: labor share amplifies fluctuations

3. **Search and matching (DMP) model w/ financial constraints & incumbents’ wage rigidity.**
 - Calibration: their interaction can provide substantial amplification.

4. **Policy application: stabilization from wage subsidies/payroll taxes**
 - Marginal subsidies for new hires’ vs. eligibility for incumbents too
Capital Expenditure and Vacancies (Help-Wanted Index)

Coefficient: 2.07 (SE: 0.122)
CapEx SD: 0.09, HWI SD: 0.24
Correlation: 0.77

In period \(t \),
- the firm chooses hires \(h_{t+1} \)
- ... who start producing and earning wages in period \(t + 1 \).

\(\delta \): per-period separation probability (after production/wages)
\(w_c \): cohort-specific wages
 - differentiated between hiring cohorts denoted by their first period of production \(c \)
 - constant while the cohort members remain on that job (relaxed later).

\(c(h_{t+1}) \): upfront hiring costs (training or (DMP) recruitment costs, or complementary capital, ...)
\(\beta \): discount factor (from the households)

Firm's period-\(t \) problem:

\[
\max_{h_{t+1}} \mathbb{E}_t \sum_{s \geq t} \beta^{s-t} (p_s n_s - \Phi_s - c(h_{s+1}))
\]

s.t.
\[
\begin{align*}
n_{s+1} &= h_{s+1} + (1 - \delta) n_s & \forall s \geq t \\
\Phi_{s+1} &= w_c(s+1) h_{s+1} + (1 - \delta) \Phi_s & \forall s \geq t
\end{align*}
\]

where
\(\Phi \): total wage bill
Standard: Hiring w/o Financial Constraints

Labor demand—hiring FOC:

\[c'(h^*_{t+1}) = \mathbb{E}_t \sum_{s>t} \beta^{s-t} (1 - \delta)^{s-(t+1)} (p_s - w_{c=t+1}) \quad (4) \]

\[\iff c'(h^*_{t+1}) + \mathbb{E}_t \sum_{s>t} \beta^{s-t} (1 - \delta)^{s-(t+1)} w_{c=t+1} = \mathbb{E}_t \sum_{s>t} \beta^{s-t} (1 - \delta)^{s-(t+1)} p_s \quad (5) \]

Fluctuations take derivative of FOC (4):

\[\frac{d}{d \ln p} \frac{d \ln h^*_{t+1}}{d \ln p} = \frac{1}{hc''} \cdot \frac{p}{p - w_{c=t+1}} \cdot (1 - \frac{dw_{c=t+1}}{dp}) \quad (6) \]

Key insights:

- Standard amplification of hiring depends on the sensitivity of new hires’ wages, \(\frac{dw_{c=t+1}}{dp} \).
- Incumbent workers’ wages \(w_c = \bar{w}_{c \leq t} \forall c \leq t \) do not show up — inframarginal fixed cost!

... Macro-labor paradigm (Shimer, 2004; Hall, 2005; Mortensen and Nagypal, 2007; Hall and Milgrom, 2008; Elsby, 2009; Pissarides, 2009; Michaillat, 2012; Haefke et al., 2013; Kudlyak, 2014; Christiano et al., 2016; Hazell and Taska, 2020; Grigsby et al., 2021)
Twist: Hiring with Financial Constraints

- Implicit assumption in standard hiring: firms have sufficient internal funds or can raise enough external financing (e.g., debt at interest rate $r = 1/\beta - 1$) to cover the hiring costs.
- Opposite extreme case (relaxed later): no external finance (nor internal savings)
 \[\Rightarrow \text{Firms must finance investment out of current cash flow} \] — adding a constraint:

\[
c(h_{t+1}) \leq p_t n_t - \Phi_t.
\] \hspace{1cm} (7)

New FOC reflecting constraint in the form of Lagrange multiplier τ on constraint (7):
\[
(1 + \tau_t) \cdot c'(h^*_{t+1}) = \mathbb{E}_t \sum_{s > t} \beta^{s-t}(1 + \tau_s)(1 - \delta)^{s-(t+1)}(p_s - w_{c=t+1}).
\] \hspace{1cm} (8)

For fluctuations, get clearer intuitions from direct comparative static on constraint (7):
\[
c(h^*_{t+1}) = p_t n_t - \Phi_t
\]
\[
= (p_t - \bar{w}_{c \leq t}) \cdot n_t
\] \hspace{1cm} (9)
\hspace{1cm} (10)
\[
\Rightarrow \frac{d \ln h^*_{t+1}}{d \ln p} = \frac{1}{hc'} \cdot \frac{p}{p - \bar{w}_{c \leq t}} \cdot \left(1 - \frac{d \bar{w}_{c \leq t}}{dp}\right). \hspace{1cm} (11)
\]
Outline

1. Mechanism: simple model

2. Empirical evidence
 - Aggregate: Wage rigidity \Rightarrow cash flow fluctuations
 - Industry level: labor share amplifies fluctuations

3. Search and matching (DMP) model w/ financial constraints & incumbents’ wage rigidity.
 - Calibration: their interaction can provide substantial amplification.

4. Policy application: stabilization from wage subsidies/payroll taxes
 - Marginal subsidies for new hires’ vs. eligibility for incumbents too
Aggregate Cash Flow Statement (2019) for the United States

Gross value added 10,458
Payroll 6,301
Taxes (prod.) 915
Cash flow 3,243
Equity raised -454
Debt raised 474
Dividends paid -637
Interest paid 223
External finance -839
Capital expenditure 2,148

Source: quarterly FRB Flow of Funds data, US nonfinancial corporate sector (incl subseq slides)
Capital Expenditure and Liquidity Against Cash Flow

Source: quarterly FRB Flow of Funds data, US nonfinancial corporate sector
Capital Expenditure and Vacancies (Help-Wanted Index)

Coeff.: 2.07 (SE: 0.122)
CapEx SD: 0.09, HWI SD: 0.24
Correlation: 0.77

Counterfactual: Cash-Flow-Stabilizing Additional Wage Fluctuations

Empirical (\tilde{x}) dev’ns from trend: total derivative of cash flow CF and its components value added y and payroll $\Phi = wn$ (product of average wage w and employment n):

$$\left(\frac{dCF}{CF} \right) = \left(\frac{dy}{y} \right) \cdot \left(\frac{y}{CF} \right) - \left(\frac{d\Phi}{\Phi} \right) \cdot \left(\frac{\Phi}{CF} \right). \tag{12}$$

Counterfactual cash flow movement (\tilde{x}) is empirical movement plus counterfactual, incremental wage change Δw:

$$\left(\frac{dCF}{CF} \right) = \left(\frac{dCF}{CF} \right) - \left(\Delta \frac{dw}{w} \right) \cdot \left(\frac{\Phi}{CF} \right) \tag{13}$$

And hence, the add. wage change required to stabilize a given cash flow fluctuation is:

$$\Rightarrow \left. \left(\Delta \frac{dw}{w} \right) \right|_{\frac{dCF}{CF}=0} = \left(\frac{dCF}{CF} \right) \cdot \left(\frac{CF}{\Phi} \right) \tag{14}$$

US 1951-2019: 0.463
Aggregate Cash Flow Statement (2019) for the United States

Source: quarterly FRB Flow of Funds data, US nonfinancial corporate sector
Cash Flow and Cash-Flow-Stabilizing Additional Wage Fluctuations: Time Series
Distribution of Cash-Flow-Stabilizing Incremental Wage Movements

Just a moderate volatility boost!

- Compare to idiosyncratic wage and earnings changes found in the micro data at similar frequencies (Guvenen, Karahan, Ozkan and Song, 2020)
In Math: Zeroing Out the Okun’s Law of Cash Flow

\[
\left(\Delta \frac{dw}{w} \right) \bigg|_{\left(\frac{dCF}{CF} \right) = 0} = \left(\frac{dCF}{CF} \right) \cdot \left(\frac{CF}{\Phi} \right)
\]

(15)

Construct semi-elasticity w/ unemployment rate (“Okun's laws”):

\[
\Rightarrow \left(\Delta \frac{dw}{w} \right) \bigg|_{\left(\frac{dCF}{CF} \right) = 0} = \left(\frac{dCF}{du} \right) \cdot \left(\frac{CF}{\Phi} \right)
\]

\[
= -3.28 \cdot 0.463 = -1.52
\]

(16)

Just a moderate procyclical boost!

○ -1.52 corresponds to the empirical wage cyclicality differential of about -1.75. estimated b/w new hires and incumbent workers estimated as semi-elasticities of wages to UR (Pissarides, 2009)
 ○ -1.25 for average/incumbents’ wages
 ○ -3.00 for new hires
Cash Flow and Cash-Flow-Stabilizing Additional Wage Fluctuations: Okun’s Laws

Unemployment rate (deviations from trend)
Cash flow (log deviations from trend)
Cash-flow-stabilizing wage fluctuations

Coeff.: -3.28 (SE: 0.317)
Coeff.: -1.49 (SE: 0.146)
Robustness Checks in Paper

- Profits rather than cash flow
- Smoothing parameter
- Annual data
- Alternative sources: dividends, interest expenditures
Robustness Check: Profits

-0.4 -0.2 0.0 0.2 0.4
1950q1 1960q1 1970q1 1980q1 1990q1 2000q1 2010q1 2020q1
Pre-tax profits (log deviations from trend)
Cash-flow-stabilizing wage fluctuations

Unemployment rate (deviations from trend)
Coeff.: -6.87 (SE: 0.804)
Cash-flow-stabilizing wage fluctuations
Coeff.: -1.40 (SE: 0.168)

Pre-tax profits to payroll trend ratio
Average trend ratio: 0.206

Density
mean: 0.0006, sd: 0.022
p10: -0.028, p25: -0.011, p75: 0.016, p90: 0.025
Outline

1. Mechanism: simple model

2. Empirical evidence
 - Aggregate: Wage rigidity \Rightarrow cash flow fluctuations
 - Industry level: labor share amplifies fluctuations

3. Search and matching (DMP) model w/ financial constraints & incumbents’ wage rigidity.
 - Calibration: their interaction can provide substantial amplification.

4. Policy application: stabilization from wage subsidies/payroll taxes
 - Marginal subsidies for new hires’ vs. eligibility for incumbents too
Industry-Level Test: Cross Section

Idea, example of shift in labor productivity p:

$$ CF = \frac{y}{pn} - \Phi $$

(17)

$$ \frac{d \ln CF}{d \ln p} = \frac{1 - \frac{dw}{dp}}{1 - \frac{\Phi}{\gamma}} $$

(18)

= labor share!

Data: US NBER-CES Manufacturing Productivity Database (1958 to 2016 for 457 industries), annual

Additional outcome variables: employment, investment.
Industry Labor Shares, 1958-2016 Averages

Density

mean: 0.4023, sd: 0.100
p10: 0.254, p25: 0.343, p75: 0.474, p90: 0.516
Industry-Level Evidence: Okun’s Laws of Cash Flow and Inputs

Semi-elasticity w.r.t. unemployment rate

Cash flow
Coeff.: -10.34 (SE: 1.667)

Employment
Coeff.: -9.30 (SE: 0.831)

Capital expenditure
Coeff.: -21.73 (SE: 2.213)

Density

mean: -0.1105, sd: 0.049
p10: -0.170, p25: -0.140, p75: -0.078, p90: -0.055
Industry-Level Evidence: Long-Run Changes

- Change in semi-elasticities
- Change in labor share

Cash flow: Coeff. = -16.19 (SE: 5.689)
Employment: Coeff. = -8.54 (SE: 2.929)
Capital expenditure: Coeff. = -9.94 (SE: 8.007)
Alternative Labor Share Measure: Labor Costs Over Revenue

Semi-elasticity w.r.t. unemployment rate

- Cash flow: \(\text{Coeff.: } -7.29 \text{ (SE: 2.397)} \)
- Employment: \(\text{Coeff.: } -8.32 \text{ (SE: 1.205)} \)
- Capital expenditure: \(\text{Coeff.: } -25.34 \text{ (SE: 3.028)} \)
Industry-Level Test: Cross Section

Idea, example of shift in labor productivity p:

$$CF = \frac{y}{pn} - \Phi$$

$$\frac{d \ln CF}{d \ln p} = \frac{1 - \frac{\Phi}{y}}{1 - \frac{\Phi}{y}}$$

= labor share!

Data: US NBER-CES Manufacturing Productivity Database (1958 to 2016 for 457 industries), annual

Additional outcome variables: employment, investment.
Industry-Level Elasticities to Industry “Shocks:” Labor Productivity

Elasticities w.r.t. labor productivity

- Cash flow: Coeff. 2.33 (SE: 0.158)
- Employment: Coeff. 0.53 (SE: 0.136)
- Capital expenditure: Coeff. 2.19 (SE: 0.312)
Industry-Level Elasticities to Industry “Shocks:” TFP

Elasticities w.r.t. TFP

- Cash flow: Coeff.: 4.42 (SE: 0.393)
- Employment: Coeff.: 1.81 (SE: 0.198)
- Capital expenditure: Coeff.: 3.83 (SE: 0.448)
Outline

1. Mechanism: simple model

2. Empirical evidence
 - Aggregate: Wage rigidity ⇒ cash flow fluctuations
 - Industry level: labor share amplifies fluctuations

3. Search and matching (DMP) model w/ financial constraints & incumbents’ wage rigidity.
 - Calibration: their interaction can provide substantial amplification.

4. Policy application: stabilization from wage subsidies/payroll taxes
 - Marginal subsidies for new hires’ vs. eligibility for incumbents too
Capital Expenditure and Vacancies (Help-Wanted Index)

Coeff.: 2.07 (SE: 0.122)
CapEx SD: 0.09, HWI SD: 0.24
Correlation: 0.77
Equilibrium Model

- DMP search and matching model
- Calibrate DMP block following Shimer (2005)
- Ex-post wage rigidity for incumbent workers — ax ante, new hires’ wages flexibly set at match formation
 - Calibrate incumbents’ wage rigidity following empirical meta analysis of Pissarides (2009)
- Firm faces financial constraints a la Jermann and Quadrini (2012)
 - Neutrality of incumbents’ wage rigidity due to flexible bargaining of new hires’ entry wages to leave the present value of wages unaffected! (Shimer, 2004; Pissarides, 2009)
- With financial constraints: interaction w/ incumbents’ wage rigidity is crucial!
DMP Aspects

○ Similar setup as simple model, but endogenous wages, (potentially frictional) access to external finance, and intermediate degrees of wage rigidity for incumbent workers

○ Long-term jobs – separate with probability δ

○ Matching function $M(u, v)$, gives aggregate hiring (worker flows from unemployment into employment), using inputs vacancies v and unemployed job seekers u

○ $M(u, v)$ is constant returns (Cobb Douglas), random search

○ ...and so labor market tightness $\theta = v/u$ determines the vacancy filling rate

\[q(\theta) = M(u, v)/v = M(1/\theta, 1) \]

and job finding rate

\[f(\theta) = M(u, v)/u = M(1, \theta) = \theta q(\theta). \]

○ Unemployment LoM:

\[u_{t+1} = u_t + \delta(1 - u_t) - f(\theta_t)u_t \]

(21)

○ Constant labor force of size one, so employment is $n = 1 - u$.

○ Vacancy posting cost k per period — investment expenditure is in recruitment, vk

○ (No capital)
Incumbent-Only Wage Rigidity

The period-t wage of an incumbent worker that started employment in period $c < t$:

$$w_{t,c} = \rho \cdot w_{t,t}^{1-\rho},$$

(22)

...with commentary:

$$W_{t,c} = W_{c,c} \cdot W_{t,t}^{\rho} \cdot W_{t,t}^{1-\rho}.$$

(23)

Incumbents’ wage rigidity parameter $\rho \in [0, 1]$:

- weight on the cohort’s entry wage $w_{c,c}$
- controls the relative wage cyclical comovement (comovement) of incumbents vis-à-vis new hires (as $\frac{d \ln w_{t,c}}{d \ln w_{t,t}} = 1 - \rho \ \forall \ c < t$)
Recursive Formulation

Wage rule $w_{t,c} = w_{c,c}^\rho \cdot w_{t,t}^{1-\rho}$ renders the LoM for payroll Φ recursive:

$$\Phi_t = \sum_{c \leq t} w_{t,c} n_{t,c} \tag{24}$$

$$= \sum_{c \leq t} w_{t,t}^{1-\rho} w_{c,c}^\rho \cdot (1 - \delta)^{t-c} h_c \tag{25}$$

$$= w_{t,t} h_t + (1 - \delta) \left(\frac{w_{t,t}}{w_{t-1,t-1}} \right)^{1-\rho} \Phi_{t-1}. \tag{26}$$

(where $n_{t,c} = (1 - \delta)^{t-c} h_c$: workers of the initial $h_c = n_{c,c}$ hires of cohort c still employed in t)

Recursive Notation:

- x^-, x, x^+ and x^{++} for x_{t-1}, x_t, x_{t+1} and x_{t+2}, respectively.
- New hires’ entry wages: $w = w_{t,t}$
- ... flexibly bargained over at match formation (discussed soon)
Firm’s Problem

Max EPV of dividends d:

$$V (n^-, \Phi^-, h, B^-; s) = \max_{v, d, B} \left\{ d - \frac{\kappa_d}{2} (d - d^{ss})^2 - \frac{\kappa_B}{2} (B - B^{ss})^2 + E \beta V (n, \Phi, h^+, B; s^+) \right\}$$ \hspace{1cm} (27)

s.t.:

$$\Phi = w h + (1 - \delta) \left(\frac{w}{w^-} \right)^{1-\rho} \Phi^-$$ \hspace{1cm} (28)

$$n = (1 - \delta) \ n^- + h$$ \hspace{1cm} (29)

$$h^+ = v q (\theta)$$ \hspace{1cm} (30)

$$k v = p n - \Phi - d + (\Delta B - r (1 - t^B) B^- - r t^B \bar{B}^-)$$ \hspace{1cm} (31)

$$B \leq \bar{B},$$ \hspace{1cm} (32)

v: vacancies, of which share q give hires, giving employment n, separating with prob δ

d: dividends, can adjust with adjustment cost cost guided by κ_d

B: one-period debt, interest rate r

v: vacancies, at cost k per period

Φ: total payroll, with follows wage rule $w_{t,c} = w_{c,c}^\rho \cdot w_{t,t}^{1-\rho}$

\bar{B}: debt limit

t^B: tax subsidy of interest expenditure (refunded as lump sum)
Firm’s Financing

Recall firm’s budget constraint:

\[kv = pn - \Phi - d + \left(\Delta B - r \left(1 - t^B \right) B^\sim - rt^B \widetilde{B}^\sim \right) \]

(33)

Rewrite to highlight demand for external finance:

\[
\begin{align*}
\text{Financing gap} &= \left(\frac{kv}{\text{Investment (Rec. Exp.)}} \right) - \left(\frac{pn - \Phi}{\text{Cash flow}} \right) = -d + \left(\Delta B - r \left(1 - t \right) B^\sim - rt \widetilde{B}^\sim \right) \\
\text{External finance}
\end{align*}
\]

(34)

Suppose the borrowing constraint binds and \(B^\sim = B = \bar{B} \):

\[kv + d = pn - \Phi \]

(35)

Either adjust dividends \(d \) or recruitment expenditures \(kv \)!

If “dividends” cannot adjust easily, real effects of cash flow shocks on hiring investment (consistent w/ corp fin (CapEx) evidence, akin to rep firm and RBC in Jermann and Quadrini (2012)
Main Implication: Hiring

A. Standard “zero profit condition:” w/o financial constraints and w/o wage rigidity

\[
\frac{k}{q(\theta_t)} = \mathbb{E}_t \sum_{s > t} \left(\beta (1 - r (1 - tB)) \right)^{s-t} (1 - \delta)^{s-(t+1)} (p_s - w_s)
\]

(36)

B. Interim case: ... w/o financial constraints and w/ wage rigidity – wages depend on hiring cohort (here: cohort hired today, productive tomorrow, indexed by \(t + 1 \):

\[
\frac{k}{q(\theta_t)} = \mathbb{E}_t \sum_{s > t} \left(\beta (1 - r (1 - tB)) \right)^{s-t} (1 - \delta)^{s-(t+1)} (p_s - w_{s, t+1})
\]

(37)

C. Interim case: ... w/ financial constraints and w/o wage rigidity – cash valuation \(\tau_t \):

\[
\tau_t \frac{k}{q(\theta_t)} = \mathbb{E}_t \sum_{s > t} \left(\beta (1 - r (1 - tB)) \right)^{s-t} (1 - \delta)^{s-(t+1)} \tau_s (p_s - w_s)
\]

(38)

\[
\leftrightarrow \frac{k}{q(\theta_t)} = \mathbb{E}_t \sum_{s > t} \left(\beta (1 - r (1 - tB)) \right)^{s-t} (1 - \delta)^{s-(t+1)} \frac{\tau_s}{\tau_t} (p_s - w_s)
\]

(39)

D. Financial channel of wage rigidity: ... w/ financial constraints and w/ wage rigidity:

\[
\frac{k}{q(\theta)} = \mathbb{E}_t \sum_{s > t} \beta^{s-t} (1 - \delta)^{s-(t+1)} \frac{\tau_s}{\tau_t} (p_s - w_{s, t+1})
\]

(40)
Intuitions for Financial Channel of Wage Rigidity

○ Same as in simple model in essence!
○ Productivity shocks affect firms’ inframarginal cash flow—depending on ρ!
○ Effect on liquidity and hiring is guided by κ^d: external finance (dividend) adjustment cost.
○ If no FC ($\kappa^d = 0$), standard DMP equilibrium irrespective of ρ.
 ○ Recover present-value neutrality of incumbent’ wages—canonical macro-labor paradigm.
○ When $\kappa^d > 0$ and $B = \overline{B}$, firms’ hiring is financially constrained:

$$kv = pn - [\Phi] - d - r \overline{B}$$ \hspace{1cm} (41)

○ Manifests itself through τ, the firm’s internal value of cash, or equivalently through distortions in the stochastic discount factor $\beta \frac{\tau^\tau}{\tau}$.

⇒ FCs break the neutrality of incumbent workers’ wages/wage rigidity!
⇒ (Incumbents’) wage rigidity mediates financial amplification.
Details: First-order/Envelope Conditions

\[V_d = 0 : \quad \tau = 1 - \kappa^d (d^* - d^{ss}) \quad (42) \]

\[V_B = 0 : \quad \tau = (1 + r (1 - t^B)) \mathbb{E} [\beta \tau^+] + \kappa^B (B^* - B^{ss}) + \nu \quad (43) \]

\[V_\Phi = 0 : \quad \lambda = -\tau + \mathbb{E} \left[\beta (1 - \delta) \left(\frac{w^+}{w} \right)^{1-\rho} \lambda^+ \right] \quad (44) \]

\[V_n = 0 : \quad \mu = p \tau + \mathbb{E} [\beta (1 - \delta) \mu^+] \quad (45) \]

\[V_{h^+} = 0 : \quad \eta = \mathbb{E} [\beta (\mu^+ + \lambda^+ w^+)] \quad (46) \]

\[V_v = 0 : \quad \eta = \tau \frac{k}{q (\theta)}. \quad (47) \]

⇒ Hiring, or “zero profit condition:”

\[\frac{k}{q (\theta)} = \mathbb{E} \left[\beta \tau^{-1} (\mu^+ + \lambda^+ w^+) \right] \]

\[= \mathbb{E} \left[\beta \frac{\tau^+}{\tau} \left(p^+ - w^+ \right) + (1 - \delta) \frac{k}{q (\theta^+)} + \beta (1 - \delta) \frac{\lambda^{++}}{\tau^+} (w^+ \rho w^{++1-\rho} - w^{++}) \right] \quad (49) \]
Details: Household’s Problem: Analogous

\[V^H(n^-, \Phi^-, h, B^-; s) = \max_{B} \{ \Phi + d - zn + rB^- - \Delta B + \mathbb{E} \beta V^H(n, \Phi, h^+, B; s^+) \} \]
\hspace{1cm} (50)

\text{s.t.:} \quad \Phi = wh + (1 - \delta) \left(\frac{w}{w^-} \right)^{1-\rho} \Phi^-
\hspace{1cm} (51)

\[n = (1 - \delta)n^- + h
\hspace{1cm} (52)\]

\[h^+ = f(\theta)(1 - n)
\hspace{1cm} (53)\]

One new parameter: \(z \), payoff from nonemployment (UI, leisure,...)

FOCs/Env Con’s:

\[V^H_B = 0 : \quad 1 = \mathbb{E} [\beta (1 + r)] \]
\hspace{1cm} (54)

\[V^H_\Phi = 0 : \quad \lambda^H = 1 + \mathbb{E} \left[\beta (1 - \delta) \left(\frac{w^+}{w^-} \right)^{1-\rho} \lambda^{H^+} \right] \]
\hspace{1cm} (55)

\[V^H_n = 0 : \quad \mu^H = -z - f(\theta)\eta^H + \mathbb{E} [\beta (1 - \delta) \mu^{H^+}]
\hspace{1cm} (56)\]

\[V^H_{h^+} = 0 : \quad \eta^H = \mathbb{E} \left[\beta (\lambda^{H^+} w^+ + \mu^{H^+}) \right] \]
\hspace{1cm} (57)
Details: Nash Bargaining Over New Hires’ Entry Wage w

Value of a new worker—hired at an arbitrary entry wage \tilde{w}—for the firm and for the household:

$$V_n^F(\tilde{w}) = \lambda^F \tilde{w} + \mu^F$$ \hspace{1cm} (58)

$$V_n^H(\tilde{w}) = \lambda^H \tilde{w} + \mu^H$$ \hspace{1cm} (59)

Nash bargained wage w/ worker bargaining power ϕ:

$$w = \arg\max_{\tilde{w}} \{ V_n^F(\tilde{w})^\phi V_n^H(\tilde{w})^{1-\phi} \}$$ \hspace{1cm} (60)

$$\Rightarrow \phi \frac{V_n^H'(w)}{V_n^H(w)} + (1-\phi) \frac{V_n^F'(w)}{V_n^F(w)} = 0$$ \hspace{1cm} (61)

$$\Leftrightarrow \lambda^H w = (1-\phi)(-\mu^H) + \phi \psi \mu^F$$ \hspace{1cm} (62)

where $\psi = V_n^H(\tilde{w})/V_n^F(\tilde{w}) = \lambda^H/\lambda^F$
Maximize comparability with standard DMP wage:

\[
w = (1 - \tilde{\phi})z + \tilde{\phi}(p + k\theta) - \mathbb{E}\left\{ \beta(1 - \delta)w^+(1 - \rho)(w^\rho - w^{+\rho})\left[(1 - \tilde{\phi})\lambda^H + \tilde{\phi}(-\lambda^{+F}) \right] \right\} + \gamma, \quad (63)
\]

where \(\tilde{\phi} = \frac{\tau\psi\phi}{\tau\psi\phi + (1 - \phi)} \), \(\psi = \frac{\lambda^H}{\lambda^F} \), \(\gamma = \mathbb{E}\left\{ \tilde{\phi}(1 - \frac{\psi^+}{\psi})(1 - \delta)\beta V^F_n(\tilde{w})^+ \right\} \).

When \(\tau = 1 \) and \(\rho = 0 \), the wage bargain gives the standard DMP wage:

\[
w_{DMP} = w_{\rho=0} = \phi(p + \theta k) + (1 - \phi)z
\]

If \(\tau = 0 \) but \(\rho = 1 \), nest perfectly rigid incumbent wages considered in Shimer (2004).
Calibration

- Follow Shimer (2005) for standard DMP parameters
- Set ρ to match incumbent/new hires’ wage cyclicality targeting values proposed by meta analysis in Pissarides (2009)
- Explore various calibrations of κ^d (see next)
Parameter Values – Tiny Print, Clarify As We Go Along!

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Source/Strategy</th>
<th>Target</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>β Discount factor</td>
<td>0.996</td>
<td>Annual interest rate</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>ζ Matching elasticity</td>
<td>0.72</td>
<td>Shimer (2005)</td>
<td>0.72</td>
<td>0.72</td>
</tr>
<tr>
<td>m Matching efficiency</td>
<td>0.45</td>
<td>Job finding probability (s.s.)</td>
<td>0.45</td>
<td>0.45</td>
</tr>
<tr>
<td>δ Separation rate</td>
<td>0.0237</td>
<td>Unemployment rate (s.s.)</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>ϕ Bargaining power</td>
<td>0.72</td>
<td>Hosios condition</td>
<td>0.72</td>
<td>0.72</td>
</tr>
<tr>
<td>z Unemployment flow payoff</td>
<td>0.4</td>
<td>Avg. replacement rate</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>k Vacancy posting cost</td>
<td>0.2149</td>
<td>Normalization $\theta^{55} = 1$</td>
<td>– 1.00</td>
<td></td>
</tr>
<tr>
<td>\bar{z} Productivity, mean</td>
<td>1</td>
<td>Normalization</td>
<td>– 1.00</td>
<td></td>
</tr>
<tr>
<td>σ^P_ϵ Productivity innovation, SD</td>
<td>0.0064</td>
<td>SD of ALP (quarterly)</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>ρ^P Productivity, autocorrelation</td>
<td>0.98</td>
<td>Persistence of ALP (quarterly)</td>
<td>0.892</td>
<td>0.901</td>
</tr>
<tr>
<td>ρ (One minus) indexation of incumbents' wages to new hires' entry wages</td>
<td>No Wage Rigidity 0</td>
<td>Wage Rigidity for Incumbent Workers 0.8</td>
<td>Relative cyclicality of new to average wages (see figure) 2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>t^B Tax benefit of debt</td>
<td>0.3</td>
<td>Fraction of periods constraint binding (see figure)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B Borrowing limit</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>κ^B Debt adjustment cost</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>κ^d Dividend adjustment cost</td>
<td>No Constraints 0</td>
<td>Financial Constraints 20</td>
<td>Judge by hiring-cash flow sensitivity (see figure)</td>
<td></td>
</tr>
</tbody>
</table>

Note: Parameter values and targets are the same across all model variants, except for κ^d and ρ.
<table>
<thead>
<tr>
<th>Panel</th>
<th>(\log u)</th>
<th>(\log \nu)</th>
<th>(\log \theta)</th>
<th>(\log f)</th>
<th>(\log p)</th>
<th>(\log w)</th>
<th>(\log \bar{w})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.203</td>
<td>0.206</td>
<td>0.400</td>
<td>0.139</td>
<td>0.020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autocorrelation</td>
<td>0.946</td>
<td>0.941</td>
<td>0.947</td>
<td>0.928</td>
<td>0.892</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correlation with (u)</td>
<td>0.977</td>
<td>-0.904</td>
<td>0.960</td>
<td>-0.956</td>
<td>-0.239</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panel B: Neither Financial Constraints Nor Incumbents’ Wage Rigidity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.009</td>
<td>0.025</td>
<td>0.033</td>
<td>0.009</td>
<td>0.020</td>
<td>0.020</td>
<td>0.020</td>
</tr>
<tr>
<td>Autocorrelation</td>
<td>0.924</td>
<td>0.860</td>
<td>0.895</td>
<td>0.894</td>
<td>0.894</td>
<td>0.894</td>
<td>0.894</td>
</tr>
<tr>
<td>Correlation with (u)</td>
<td>1.000</td>
<td>-0.926</td>
<td>-0.958</td>
<td>-0.958</td>
<td>-0.958</td>
<td>-0.958</td>
<td>-0.958</td>
</tr>
<tr>
<td>Panel C: No Financial Constraints but Incumbents’ Wage Rigidity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.009</td>
<td>0.025</td>
<td>0.033</td>
<td>0.009</td>
<td>0.020</td>
<td>0.013</td>
<td>0.006</td>
</tr>
<tr>
<td>Autocorrelation</td>
<td>0.924</td>
<td>0.860</td>
<td>0.895</td>
<td>0.894</td>
<td>0.894</td>
<td>0.894</td>
<td>0.967</td>
</tr>
<tr>
<td>Correlation with (u)</td>
<td>1.000</td>
<td>-0.926</td>
<td>-0.958</td>
<td>-0.958</td>
<td>-0.958</td>
<td>-0.958</td>
<td>-0.822</td>
</tr>
<tr>
<td>Panel D: Both Financial Constraints and Incumbents’ Wage Rigidity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.052</td>
<td>0.159</td>
<td>0.225</td>
<td>0.056</td>
<td>0.020</td>
<td>0.013</td>
<td>0.007</td>
</tr>
<tr>
<td>Autocorrelation</td>
<td>0.915</td>
<td>0.847</td>
<td>0.880</td>
<td>0.885</td>
<td>0.894</td>
<td>0.893</td>
<td>0.966</td>
</tr>
<tr>
<td>Correlation with (u)</td>
<td>0.999</td>
<td>-0.906</td>
<td>-0.925</td>
<td>-0.953</td>
<td>-0.954</td>
<td>-0.955</td>
<td>-0.718</td>
</tr>
<tr>
<td>Panel E: Financial Constraints, but no Incumbents’ Wage Rigidity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.009</td>
<td>0.027</td>
<td>0.035</td>
<td>0.010</td>
<td>0.020</td>
<td>0.020</td>
<td>0.020</td>
</tr>
<tr>
<td>Autocorrelation</td>
<td>0.925</td>
<td>0.865</td>
<td>0.898</td>
<td>0.897</td>
<td>0.894</td>
<td>0.894</td>
<td>0.894</td>
</tr>
<tr>
<td>Correlation with (u)</td>
<td>1.000</td>
<td>-0.927</td>
<td>-0.959</td>
<td>-0.959</td>
<td>-0.956</td>
<td>-0.956</td>
<td>-0.956</td>
</tr>
</tbody>
</table>
Calibrating Incumbent Workers’ Wage Rigidity ρ to ρ on Relative Semi-Elasticity of New Hires’ vs. Average Wages
Sensitivity: Effect of ρ on the SD of Labor Market Tightness

Wage rigidity parameter;

Calibration

Cost of dividend adjustment $\kappa^d = 0$

$\kappa^d = 20$ (benchmark calibration)

$\kappa^d = 100$

Standard deviation of labor market tightness θ
Sensitivity: Dividend Adjustment Cost Parameter κ^d

- SD of labor market tightness θ
- Hiring-cash flow sensitivity $k \cdot \frac{dv}{dCF}$
- Propensity to retain cash flow shocks $1 - \frac{dd}{dCF}$
- SD of labor market tightness θ when $\rho = 0$

Benchmark calibration

Cost of dividend adjustment κ^d
<table>
<thead>
<tr>
<th>Panel</th>
<th>Data</th>
<th>Standard deviation</th>
<th>Autocorrelation</th>
<th>Correlation with u</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Data</td>
<td></td>
<td>0.203 0.206 0.400 0.139 0.020</td>
<td>0.946 0.941 0.947 0.928 0.892</td>
<td>0.977 -0.904 0.960 -0.956 -0.239</td>
</tr>
<tr>
<td>Panel B: Neither Financial Constraints Nor Incumbents' Wage Rigidity</td>
<td></td>
<td>0.009 0.025 0.033 0.009 0.020</td>
<td>0.924 0.860 0.895 0.894 0.894</td>
<td>1.000 -0.926 -0.958 -0.958 -0.958</td>
</tr>
<tr>
<td>Panel C: No Financial Constraints but Incumbents' Wage Rigidity</td>
<td></td>
<td>0.009 0.025 0.033 0.009 0.013</td>
<td>0.924 0.860 0.895 0.894 0.967</td>
<td>1.000 -0.926 -0.958 -0.958 -0.958</td>
</tr>
<tr>
<td>Panel D: Both Financial Constraints and Incumbents' Wage Rigidity</td>
<td></td>
<td>0.052 0.159 0.225 0.056</td>
<td>0.915 0.847 0.880 0.893</td>
<td>0.999 -0.906 -0.925 -0.954 -0.955</td>
</tr>
<tr>
<td>Panel E: Financial Constraints, but no Incumbents' Wage Rigidity</td>
<td></td>
<td>0.009 0.027 0.035 0.010</td>
<td>0.925 0.865 0.898 0.894</td>
<td>1.000 -0.927 -0.959 -0.956 -0.956</td>
</tr>
</tbody>
</table>
Outline

1. Mechanism: simple model

2. Empirical evidence
 - Aggregate: Wage rigidity \Rightarrow cash flow fluctuations
 - Industry level: labor share amplifies fluctuations

3. Search and matching (DMP) model w/ financial constraints & incumbents’ wage rigidity.
 - Calibration: their interaction can provide substantial amplification.

4. Policy application: stabilization from wage subsidies/payroll taxes
 - Marginal subsidies for new hires’ vs. eligibility for incumbents too
Fiscal Policy Application: Wage Subsidies and Payroll Taxes As Stabilization Tools

Introduce payroll tax rate “x” on firm side:

\[kv = zn - (1 + x(s))\Phi - T^x(s) - d + (\Delta B - r(1 - t^B)B^r - rt^B\tilde{B}^r), \] \hspace{1cm} (65)

Payroll tax indexed to labor market tightness deviations from SS—procyclicality parameter \(\alpha \):

\[x(s) = \left(\frac{\theta_t}{\theta_{ss}} \right)^\alpha - 1. \] \hspace{1cm} (66)

Three cases (see paper for details):

- **Case I: Cash Flow and Marginal Channels**: baseline.

- **Case II: Marginal Channel Only**: shut off cash flow channel (via tax rebate the firm takes as given).

- **Case III: Inframarginal, Financial Channel Only**: shut off effects on new hires’ net of tax wages (lump sum taxes only).
$SD(\theta)$ by Countercyclicality of Wage Subsidy α w/ Financial Constraints (Left Axis) and w/o (Right Axis)
Outline

1. Mechanism: simple model

2. Empirical evidence
 - Aggregate: Wage rigidity \Rightarrow cash flow fluctuations
 - Industry level: labor share amplifies fluctuations

3. DMP model w/ financial constraints & incumbents’ wage rigidity.
 - Calibration: their interaction can provide substantial amplification.

4. Policy application: stabilization from wage subsidies/payroll taxes
 - Marginal subsidies for new hires’ vs. eligibility for incumbents too
Conclusion: The Interaction of Wage Rigidity & Financial Constraints

Many open questions and limitations!
- Quantitative role of financial factors in BCs and hence scope for the channel
- Heterogeneity
- Other investment margins
- Alternative driving forces than “productivity”
- Financial channel of wages in labor demand & investment – “Slutsky identity”:

\[
\varepsilon_{n,w}^{\text{Total}} = \varepsilon_{n,w}^{\text{Marginal}} \bigg|_{d\text{Liquidity}=0} - \frac{wdn}{dCF}
\] (67)
Sensitivity Analysis: Average and New Hires’ Wage Cyclicality (Semi-elasticity w.r.t. the Unemployment Rate) by ρ and for Models with and without Financial Constraints

(a) Average Wages

(b) New Hires’ Wages
Sensitivity Analysis: On-Impact Responses to Perfectly Transitory Cash Flow Shocks

(c) Responses as Fraction of the Shock (+1% of Steady State GDP)

(d) Responses (Normalized by Steady State GDP) to Cash Flow Shocks of Different Sizes (as Fraction of Steady State GDP)
Cash Flow and Balance Sheet Components (Divided by Trend Gross Value Added)

Normalized Cash Flow Statement Components

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Gross Value Added</th>
<th>Payroll</th>
<th>Taxes (prod.)</th>
<th>Cash Flow</th>
<th>Equity Raised</th>
<th>Debt Raised</th>
<th>Dividends Paid</th>
<th>Interest Paid</th>
<th>CapEx</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950q1</td>
<td>0.00</td>
<td>0.75</td>
<td>0.25</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1960q1</td>
<td>0.208</td>
<td>0.314</td>
<td>0.610</td>
<td>0.046</td>
<td>1.013</td>
<td>0.062</td>
<td>0.022</td>
<td>0.089</td>
<td>-0.044</td>
</tr>
<tr>
<td>1970q1</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>1980q1</td>
<td>0.60</td>
<td>0.60</td>
<td>0.60</td>
<td>0.60</td>
<td>0.60</td>
<td>0.60</td>
<td>0.60</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>1990q1</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
</tr>
<tr>
<td>2000q1</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>2010q1</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>2020q1</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Average of Normalized Cash Flow Statement Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Value Added</td>
<td>0.610</td>
</tr>
<tr>
<td>Payroll</td>
<td>0.314</td>
</tr>
<tr>
<td>Taxes (prod.)</td>
<td>0.610</td>
</tr>
<tr>
<td>Cash Flow</td>
<td>0.046</td>
</tr>
<tr>
<td>Equity Raised</td>
<td>1.013</td>
</tr>
<tr>
<td>Debt Raised</td>
<td>0.062</td>
</tr>
<tr>
<td>Dividends Paid</td>
<td>-0.044</td>
</tr>
<tr>
<td>Interest Paid</td>
<td>0.022</td>
</tr>
<tr>
<td>External Finance</td>
<td>-0.081</td>
</tr>
</tbody>
</table>

Graphical Representation

- **Gross value added**
- **Payroll**
- **Taxes (prod.)**
- **Cash flow**
- **Equity raised**
- **Debt raised**
- **Dividends paid**
- **Interest paid**
- **Capital expenditure**

The graph shows the trends for each component over time, with a focus on the average values across different quarters.
The Cyclical Comovement of U.S. Capital Expenditure, Hiring, Job Openings, and the Help-Wanted Index
Cash Flow and Investment: Accounting for Heterogeneity/Financial Intermediation
Robustness Check: Pre-tax Profits

-0.15 -0.10 -0.05 0.00 0.05 0.10 -0.02 -0.01 0.00 0.01 0.02

Unemployment rate (deviations from trend)
Pre-tax profits (log deviations from trend)

Coeff.: -6.87 (SE: 0.804)

Cash-flow-stabilizing wage fluctuations
Coeff.: -1.40 (SE: 0.168)

Average trend ratio: 0.206

Pre-tax profits to payroll trend ratio
1950q1 1960q1 1970q1 1980q1 1990q1 2000q1 2010q1 2020q1
Additional Facts: Cash-Flow-Stabilizing Incremental Wage Movements

(e) Cash Flow to Payroll Trend Ratios

(f) Distribution of Cash-Flow-Stabilizing Incremental Wage Movements
Robustness Checks: Total Liquidity rather than Cash Flow, and Other Sources of Stabilization than Cash Flow (Dividends and Interest)

(g) Fluctuations of Total Liquidity and Total-Liquidity-Stabilizing Incremental Wage Movements

(h) Okun’s Laws for Total Liquidity and Total-Liquidity-Stabilizing Incremental Wage Movements
(i) Fluctuations of Total Liquidity and Total-Liquidity-Stabilizing Incremental Dividend Movements

(j) Okun’s Laws for Total Liquidity and Total-Liquidity-Stabilizing Incremental Dividend Movements

(k) Fluctuations of Total Liquidity and Total-Liquidity-Stabilizing Incremental Interest Expenditure Movements

(l) Okun’s Laws for Total Liquidity and Total-Liquidity-Stabilizing Incremental Interest Expenditure Movements
The Orthogonality of Fundamental Surplus Proxy vs. Standard Labor Income Share

![Graph showing the relationship between DMP fundamental surplus amplification factor (proxy) and Labor share. The graph includes a linear regression line with a coefficient of 5.82 (SE: 84.093).]
Industry-Level Recession Case Studies: Cash Flow

Recessions:
- 1970 vs. 1968
- 1975 vs. 1972
- 1982 vs. 1980
- 2002 vs. 2001
- 2009 vs. 2007
Industry-Level Recession Case Studies: Investment

- 1970 vs. 1968
- 1975 vs. 1972
- 1982 vs. 1980
- 2002 vs. 2001
- 2009 vs. 2007

[Graph showing the relationship between labor share and capital expenditure change for different recession periods.]
Industry-Level Recession Case Studies: Employment

Recessions:
- 1970 vs. 1968
- 1975 vs. 1972
- 1982 vs. 1980
- 2002 vs. 2001
- 2009 vs. 2007

% Employment change vs. Labor share

Graph showing the relationship between % Employment change and Labor share for different recession periods.
References I

References II

References III

