Marginal Jobs and Job Surplus: A Test of the Efficiency of Separations

Simon Jäger
Benjamin Schoefer
Josef Zweimüller

2022 (Accepted Version)

Abstract

We present a test of Coasean theories of efficient separations. We study a cohort of jobs from the introduction through the repeal of a large age- and region-specific unemployment benefit extension in Austria. In the treatment group, 18.5% fewer jobs survive the program period. According to the Coasean view, the destroyed marginal jobs had low joint surplus. Hence, after the repeal, the treatment survivors should be more resilient than the ineligible control group survivors. Strikingly, the two groups instead exhibit identical post-repeal separation behavior. We provide, and find suggestive evidence consistent with, an alternative model in which wage rigidity drives the inefficient separation dynamics.
1 Introduction

Coasean theories of jobs assume that an employer and worker exploit all gains from trade and reach bilaterally efficient outcomes, splitting joint job surplus through unrestricted transferable-utility compensation arrangements. All job separations are mutually preferable, occurring if and only if joint surplus would otherwise turn negative. Due to its theoretical appeal, bilateral efficiency remains the dominant assumption in labor market models. Conversely, non-Coasean frictions such as wage rigidity that can cause inefficient separations are often dismissed \textit{a priori} exactly due to the plausibility of efficient bilateral contracting (starting with Barro, 1977; Becker, Landes, and Michael, 1977), although departures from bilateral efficiency can be microfounded (e.g., Hall and Lazear, 1984). The same properties that underlie the theoretical appeal of the Coasean hypothesis have shielded it from empirical tests. First, the abstract concept of surplus is not observable, let alone the counterfactual surplus of a terminated job. Second, the observable consequences of separations need not be informative about bilateral efficiency. For example, although layoffs leave workers dramatically worse off than quits, both labels can reflect efficient separations (McLaughlin, 1991). Third, even fixed flow wages can reflect efficient bargaining, which, in theory, can involve complicated, e.g., present value, payments, and only requires adjustment if the flow wage falls outside of the parties’ reservation wages (MacLeod and Malcomson, 1993; Hall, 2005; Cahuc, Postel-Vinay, and Robin, 2006).

We overcome these challenges with a revealed-preference test of group-level separations using a quasi-experimental research design. We study a transitory treatment that, while active, reduces joint job surplus and thereby causes separations of initially low-surplus jobs. The treatment is then sharply repealed. Post-repeal, the group of surviving, formerly treated jobs lacks a mass of marginal (low-surplus) matches. Under the Coasean view, this group of treatment survivors should subsequently exhibit resilience to \textit{any} kind of shock compared to a control group, in which this set of low-surplus jobs has remained.

Our treatment reducing joint job surplus is an unemployment insurance (UI) benefit extension, which boosted workers’ outside option (nonemployment). Specifically, the program raised potential benefit duration from originally one to four years in Austria in 1988. Since eligibility was determined by a sharp age cutoff (age 50 and up) and the program was region-specific, we implement a difference-in-differences design comparing age groups and regions in the universe of Austrian social security data. Crucially, the program was abruptly repealed in 1993, which permits our test: \textit{after the program repeal}, the group of formerly treated job survivors should be more resilient—i.e., have fewer

\footnote{Thus, although wages in Austria may appear insensitive to (nonemployment) outside options (Jäger, Schoeler, Young, and Zweimüller, 2020), such insensitivity need not be allocative for separations.}
separations—in response to any future shocks, compared to the control group.

Our first step documents that the program raised separations by 11.0ppt (27%) over its five-year period: 51.7% of jobs in the treatment group separated (largely into long-term nonemployment), compared to a counterfactual separation rate of 40.8% absent the reform. That is, 18.5% of the surviving jobs in the control group would have separated had the group also been exposed to the UI extension.

In our second step, we exploit the abrupt repeal of the policy in 1993. We track the jobs active both already at the onset of the program in 1988 and still active at the repeal (“survivors”). The repeal realigns the surplus distributions among survivors between the former treatment and control groups—except that the treatment group now features a missing mass of marginal matches, the additional separators, who are still present in the control group. By the Coasean view, these marginal jobs have joint surplus ranging between zero and a cutoff value (equal to that of the UI extension). They should be the first to separate in the control group, ahead of any inframarginal treatment group survivors.

Strikingly—and inconsistent with the Coasean prediction—the two groups exhibit identical post-repeal separation behavior in the data. The absence of resilience holds unconditionally as well as in response to negative labor demand events.

To quantify the gap between the Coasean prediction and the data, we construct benchmarks for post-repeal separations. Our simplest benchmark exploits the Coasean pecking order of jobs given by their ranking according to joint job surplus. For small post-repeal aggregate surplus shocks, separations should occur in the control group but not the former treatment group. There, separations should only start once the control group post-repeal separation rate crosses the threshold given by the treatment effect size of the initial UI extension. The treatment effect was large, so this Coasean benchmark predicts substantial resilience, which the data reject.

We also consider Coasean alternatives in which, after the repeal, idiosyncratic surplus shocks may partially replenish the mass of marginal jobs in the treatment group. In the most extreme theoretical case of “reshuffling,” no resilience emerges because these shocks fully realign surplus across both groups already within the first post-repeal year—an implausibly strong assumption. More realistic cases, such as large idiosyncratic shocks or processes calibrated to match control group separations, still predict substantial resilience.

To account for the observed separation dynamics, we propose a non-Coasean model

2Important existing work has documented the initial separations effect of the reform we study. Winter-Ebmer (2003) and Lalive and Zweimüller (2004) study inflow effects of the program. Lalive, Landais, and Zweimüller (2015), who primarily focus on job finding spillovers among the unemployed during the policy period, also include separations as an outcome (Table 3). However, the existing literature on Austrian UI has not documented our core new fact (the post-repeal resilience of surviving matches), or assessed the efficiency properties of the separations induced by the reform.
featuring wage rigidity, specifically, frictions that prevent wage differentiation between similar workers (above versus below the age threshold for policy eligibility). By preventing flexible transfers of utility, wage rigidity leads to separations when either worker or firm surplus would turn negative, rather than joint surplus (as in the Coasean world). Here, the UI reform would have destroyed matches with initially low worker surplus, while potentially leaving behind many matches with low firm surplus. The model rationalizes identical post-repeal separation dynamics in the treatment and control groups if, for example, post-repeal separations are largely driven by shocks to firm surplus and the correlation between worker and firm surplus is limited. This configuration of surplus is particularly plausible in our setting and sample of older workers, for example under models of compensation back-loading or employer competition (Lazear, 1979, 1981; Cahuc, Postel-Vinay, and Robin, 2006; Frimmel, Horvath, Schnalzenberger, and Winter-Ebmer, 2018), and given that Austria mandates generous severance payments for long-tenured workers that are foregone in unilateral quits, which raises workers’ inside job value.

Consistent with the model with wage rigidity, our key findings (the policy’s initial separation effects followed by non-resilience) stem from high wage rigidity pockets of the labor market (e.g., firms with homogeneous wage growth). That said, separation-relevant wage rigidity is hard to measure (which motivated our approach to begin with) and our proxies are correlated with other potentially relevant variables (e.g., tenure, blue collar). This analysis also highlights that our diagnosis of inefficient separations is limited both to our specific sample (i.e., older workers with high tenure) and to the compliers therein (e.g., with rigid wages), rather than extending to all separations in the Austrian labor market.

Section 2 reviews the institutional context, policy, and data. Section 3 presents our Coasean and non-Coasean benchmark models. Section 4 reports the large separation effects from the UI extension. Section 5 reports our core test comparing the post-repeal separations in the former treatment and control groups. Section 6 discusses alternative Coasean models. Section 7 explores wage rigidity as a resolution. Section 8 concludes.

2 Institutional Context, the Policy Variation, and Data

We review the UI reform, other aspects of the institutional context, and our data.

3 Models with wage posting or pay equity norms feature such frictions, consistent with empirical evidence (Albrecht and Axell, 1984; Card, Mas, Moretti, and Saez, 2012; Card, Cardoso, Heining, and Kline, 2018; Saez, Schoefer, and Seim, 2019; Flinn and Mullins, 2018; Dube, Giuliano, and Leonard, 2019; Di Addario, Kline, Saggio, and Solvsten, 2020; Drenik, Jäger, Plotkin, and Schoefer, 2020; Jäger, Schoefer, Young, and Zweimüller, 2020).

4 The associated prediction that smaller UI shifts should not trigger separations even among older workers during the 1980s in Austria is documented in Jäger, Schoefer, Young, and Zweimüller (2020).
2.1 The Austrian UI System and the UI Benefit Extension

In 1988, the Austrian government enacted a regional extended benefit program (REBP), a large region- and age-specific expansion of the potential benefit duration (PBD) of UI benefits. PBD increased from 20-30 weeks (pre-reform) to 209 weeks (post-reform) for affected workers. Since the gross (not taxed) replacement rate of UI benefits both before and after the reform was between 40 and 48% of salary for most employees (see Jäger, Schoefer, Young, and Zweimüller, 2020), we ballpark the cash present value of the extension to about 71% of a typical worker’s annual salary in Appendix A. Figure 1 Panel (a) summarizes the reform by plotting PBD by age group and region over time.

The Austrian UI system and the program make for a particularly suitable setting for our purposes. First, the program cleanly shifted the outside option of affected workers by substantially increasing PBD. Importantly, Austrian workers are fully eligible for UI benefits upon quitting after a four-week waiting period. The reform left other institutional features, such as UI payroll taxes, unchanged (and there is no experience rating).

Second, REBP’s eligibility criteria induced variation along two dimensions (age and region), permitting a difference-in-differences (DiD) design: workers had to (i) be age 50 or older (at the beginning of the unemployment spell); (ii) have worked at least 780 weeks during the 25 years prior to the spell; (iii) have resided in the REBP districts for at least 6 months prior to the claim; and (iv) start their new unemployment spell after June 1988 or have a spell in progress in June 1988. Our DiD design controls for unobservable confounders at the region and cohort level. We net out regional shocks (including market-level effects of the reform) by comparing workers narrowly above or below the age threshold in the same region. We net out age- or cohort-specific factors by comparing the same cohorts across REBP and non-REBP regions.

REBP aimed to mitigate the labor market consequences of a crisis in the steel sector (iron, steel, and other heavy industries), including the restructuring of the large, state-owned Oesterreichische Industrie AG (OeIAG). The REBP regions—depicted in Figure 1 Panel (b)—were selected due to their larger share of employment in the steel sector, about 17%, compared to around 5% in the non-REBP regions. Importantly, REBP eligibility did

5 The PDB during the 1980s was 30 weeks, provided the worker had been employed (and paid UI contributions) for at least three out of the last five years; otherwise, 20 weeks. After exhaustion of UI, both before and after the REBP reform, the unemployed could apply for unemployment assistance (UA, “Notstandshilfe”), capped at 92 percent of UI benefits (detailed in Appendix A).

6 The cross-regional difference also nets out a 1989 reform that nationally raised PBD to 39 (52) for workers aged 40 to 49 (50 and above) weeks and with 312 (468) weeks of employment in the last 10 (15) years. For job losers from August 1989 onward, REBP’s incremental effect on PBD was then 3 years (from a 52 week baseline) and before August 1989 it was 3.44 years (from 30 weeks). The reform also increased the replacement rate from 41 to 47% for monthly incomes 5,000 to 10,000 ATS (400 to 800 USD at the time).
not include any industry requirement. Nevertheless, to minimize UI policy endogeneity concerns, our empirical analysis excludes steel sector employees. Moreover, the second difference (between slightly younger, ineligible cohorts in the REBP versus non-REBP regions) nets out any potential spillovers from the steel sector decline, or other region-specific shocks or trends. We further evaluate potential spillovers in Section 6.2.

Repeal of the Program REBP was initially in effect until December 1991 before it was extended in January 1992. REBP was then repealed on August 1, 1993, stopping acceptance of new entrants yet also grandfathering in claimants in ongoing spells who had previously established eligibility. In addition, a grandfathering clause (§81) covered separations occurring post-repeal due to an advance notice period; empirically, we thus analyze post-repeal resilience starting in 1994q1. The repeal decision was formally announced in June 1993, and implemented only two months later. The program ended abruptly: as late as January 1993, the Austrian government had considered expanding the program to older workers in the entire country, along with changes in the eligibility requirements.

2.2 Other Institutional Features

Wage Setting While collective bargaining coverage in Austria is nearly universal, it leaves substantial room for decentralized, flexible wage setting. Bargaining agreements, often concluded at the industry-by-occupation level, regulate wage floors for worker categories, usually by experience or tenure (but not age). However, actually paid wages substantially exceed the wage floors, e.g., by more than 20% in manufacturing during our reform period (Leoni and Pollan, 2011). There is also substantial scope for wage differentiation between firms within an industry, as evidenced by individual firms sharing rents with workers and large pay dispersion between firms (Jäger, Schoefer, Young, and Zweimüller, 2020). At the individual worker level, downward nominal wage rigidity appears lower or similar compared to, e.g., Germany or the United States (Dickens, Goette, Groshen, Holden, Messina, Schweitzer, Turunen, and Ward, 2007; Elsby and Solon, 2019). In our empirical analysis, we include a heterogeneity analysis by wage flexibility proxies.

Interaction of UI with Other Social Policies By interacting with other policies, REBP
could serve as a bridge into permanent nonemployment. In the absence of REBP, unemployed men could effectively retire early at age 58 by claiming UI for one year, special income support (equivalent to UI but 25 percent higher and paid for at most 12 months) for another, and then drawing a regular public pension at age 60 (male workers with at least 35 years of contributions). Hence, since REBP extended UI PBD by three years, eligible workers 55 and older could permanently withdraw from the labor force.

Disability insurance (DI) can also interact with UI to influence labor supply (Staubli, 2011). During the study period, relaxed access to a DI pension from age 55 onward allowed job losers in REBP regions to retire at age 51 while being on some kind of benefit until claiming their public pension at age 60. (Employability also played a role, as DI applicants below (above) age 55 received a DI pension when a health impairment reduced the work capacity by more than 50 percent in all (their original) occupation(s).) Inderbitzin, Staubli, and Zweimüller (2016) study effects of the program on DI entry.

Advance Notice for Layoffs, Works Councils, and Severance Pay

While employment protection was not as stringent as in many other countries, layoffs were subject to a set of rules. At the time of REBP, the firm’s advance notice requirement was 5 (4, 3, 2, 1.5) months for workers with at least 25 (15, 5, 2, 0) years of tenure, and the firm had to inform and consult the works council (potentially present in establishments with 5 or more workers) about planned layoffs. Severance payments (further discussed in Section 6.2 and Appendix B) were mandated for all separation types except for dismissals for cause, unilateral worker quits, and quits into retirement with fewer than ten years of tenure. The amount was a step function of worker tenure: < 3 (3, 5, 10, 15, 20, 25) years of tenure mapped into 0 (2, 3, 4, 6, 9, 12) monthly salaries.

2.3 Data and Sample

Our main dataset is the Austrian Social Security Database (ASSD), matched employer-employee data covering the universe of private-sector, dependently employed and non-tenured public sector employees from 1972 onward (Zweimüller, Winter-Ebmer, Lalive, Kuhn, Wuellrich, Ruf, and Buchi, 2009; Austrian Social Security Database, 1972-2016). Our sample are workers born between 1933 and 1948, as older cohorts had already reached the regular retirement age at the repeal of REBP. Our slightly younger control cohorts are born between 1943 and 1948, and are younger than 50 at the repeal in 1993. We drop women, because their experience data (below) are unreliable, and they could already retire at age 55. Table 1 reports summary statistics.

We assign workers to REBP or control regions by the location of their establishment.
and, if missing, their residence (based on data from the Austrian employment agency). We drop the six regions where REBP was repealed early, in 1991 rather than 1993 (partial treatment regions in Figure 1 Panel (b)). We also drop the steel sector, which the reform targeted. To broadly rule out remaining concerns related to the steel sector, we show that our results extend to a variety of industries in Appendix Figure A.13, and study growing and shrinking industries separately in Appendix Figure A.14. Moreover, the difference-in-difference design compares slightly older and younger workers in the same region and thus nets out region-specific shocks. We further discuss potential spillovers in Section 6.2.

To measure worker experience with pre-1972 data, we draw on data from the Austrian Ministry of Social Affairs (AMS). The vast majority of our sample fulfilled the experience requirement (see the last two columns in Appendix Table A.1); since this sample restriction does not affect our estimates, we present the unconditional results.

3 Deriving the Test of the Coasean Model: Resilience from Missing Mass of Marginal Matches

We set up the Coasean framework and derive its key prediction: resilience to shocks following the repeal of the large, separation-inducing UI extension. We also sketch an alternative, non-Coasean model with wage rigidity that accommodates non-resilience.

3.1 Coasean Benchmark

We provide the setup and the main derivations here, with details in Appendix C.

3.1.1 Bilaterally Efficient Bargaining

Jobs and Surplus Jobs (worker-firm matches) carry worker surplus S^W and firm surplus S^F, each of which consists of the party $i \in \{W,F\}$’s inside job value V^i_{in} (amenities, productivity,...), plus/minus wage w (with which the parties transfer utility in terms of, e.g., present values), minus the outside value from separating V^i_{out} (unemployment, retirement, working for another firm, the value of a vacancy and hiring another worker,...):

$$S^W(w, V^W) = V^W_{in} + w - V^W_{out} \geq 0,$$
$$S^F(w, V^F) = V^F_{in} - w - V^F_{out} \geq 0,$$

where $V^i = (V^i_a)_{a \in \{in, out\}}$, and we also use $V = (V^i)_{i \in \{W,F\}}$.
At a given wage level, a job is feasible if both parties enjoy non-negative surplus. If worker surplus is negative while firm surplus is non-negative, the job will end in a quit; in the reverse case, the job will end in a layoff; and if both surpluses are negative the job will end in a mutual separation. Figure 2 illustrates these intuitions with various case studies (listed in the figure note) of jobs characterized by different worker surplus (x-axis) and firm surplus (y-axis) combinations. The solid circles (●) denote gross-of-wage surpluses, i.e., $V_W^{in} - V_W^{out}$ for the worker and $V_F^{in} - V_F^{out}$ for the firm. This term is the surplus combination these job “fundamentals” would carry before wage setting, or equivalently in the scenario of a zero wage. The empty circles (○) denote net-of-wage surpluses: for each gross job, we provide various examples of potential wages. Wages achieve transfers of utility that move net surpluses of the parties along 135-degree, iso-joint-surplus lines.

Figure 2 also partitions jobs into four regions: feasible jobs (top right, solid lines), quits (top left, dashed lines), layoffs (bottom right, dotted lines) and mutual separations (bottom left, dot-dash-patterned line). For a job to be viable net of the wage, it must be—at least after adjusting the wage—in the top right corner, providing positive surplus to both parties; separations occur in the other corners.

Coasean Bargaining The essence of the Coasean framework is bilateral efficiency through bargaining: all jobs with non-negative net surplus will be feasible because the parties can find a wage that transfers utility such that both worker and firm surplus end up non-negative. Formally, the parties choose a wage within the bargaining set of reservation wages $w \in [w_W, w_F]$, where w_W and w_F are such that $S_W(w_W, V_W^{in}) = 0$ and $S_F(w_F, V_F^{in}) = 0$. Such a choice is possible as long as joint surplus is non-negative (i.e., whenever $w_F \geq w_W$).

As a result, the two-dimensional surpluses that determine job viability and separations, Equations (1) and (2), collapse to a one-dimensional, single allocative concept of joint job surplus $S(V)$, defined as:

$$S(V) = \frac{S_W(w, V^{in}) + S_F(w, V^{in})}{w^{in} + V^{in} - V^{out} - V^{out}}. \quad (3)$$

Any and only jobs with non-negative joint surplus are feasible with efficient bargaining; the wage splits the surplus to satisfy both participation constraints. Figure 2 illustrates how

9For example, by Nash bargaining, the worker (firm) receives their outside option (or reservation wage), plus fraction ϕ [resp. $1 - \phi$], the party’s bargaining power, of the surplus (the reservation wage difference):

$$\max_w \left([V_W^{in} + w] - V_W^{out} \right)^{1-\phi} \cdot \left([V_F^{in} - w] - V_F^{out} \right)^{\phi} \Rightarrow w^N = \frac{[V_F^{in} - V_W^{in}]}{1-\phi} + \phi \cdot S = w_W + \phi \cdot [w_F - w_W].$$

8
such bargaining renders feasible all jobs born upwards or to the right of the marginal-jobs frontier, by moving jobs along the iso-joint-surplus curve.

Efficient Separations With Coasean bargaining, separations occur if and only if joint surplus becomes negative. To capture idiosyncratic shocks to specific matches, we assume job values evolve following a Markov process $k(V'|V)$, where, going forward, x' denotes the next-period value of x. Then, for a job of value vector V, the probability of separating next period is the probability of transitioning to job values V' that yield negative joint surplus. To consider aggregate (homogeneous) shocks (like the UI reform described below), we define $\tilde{S}(V')$ as the short-hand for the surplus level gross of some given aggregate surplus shifter $-\varepsilon' < 0$, such that, for an aggregate shock, $\tilde{S}(V', \varepsilon' = 0) = S(V', \varepsilon') - \varepsilon'$ and $\tilde{S}(V) < \varepsilon' \iff S(V', \varepsilon') < 0$. That is, a positive ε denotes a negative surplus shock, and separations occur if $\tilde{S}(V)$ falls short of ε---the separation cutoff. Due to Coasean bargaining, the incidence of shocks on the worker or firm does not matter, so we consider the sum of the shocks $\varepsilon' = \varepsilon^{W'} + \varepsilon^{F'}$. Hence, the job-level separation probability in the face of idiosyncratic shocks k and an aggregate shock ε' is:

$$\tilde{d}(V, \varepsilon') = \int_{V'} 1(\tilde{S}(V') < \varepsilon')k(V'|V)dV'.$$

(4)

Group-Level Separations Figure 3 Panel (a) plots an example distribution of joint surplus for intuition. Without loss of generality, we have normalized $\varepsilon' = 0$ for aggregate shocks absent REBP. Separations occur in the black portion, where jobs would yield negative surplus. Formally, the group-level separation rate is, for a given idiosyncratic shock distribution, a given aggregate shock and a given distribution of job attributes $f(.)$:

$$\delta = \int_{V} \tilde{d}(V, \varepsilon')f(V)dV.$$

(5)

3.1.2 The UI Extension (REBP)

Modeling UI Generosity We think of the REBP treatment as lowering joint surplus $\varepsilon^{W'}_b = V^{W'}_{Out}(b_0 + \Delta b) - V^{W'}_{Out}(b_0)$ primarily by improving the worker’s outside option $V^{W'}_{Out}(b)$, which is a function of UI generosity b. In the Austrian context described in Section 2, this approach is suitable as even quitting workers receive full benefits (after a brief waiting period), there is no experience rating, and UI take-up is high. We ballpark the cash value of extended benefits to 71% of a typical annual salary in Appendix A. In Section 6.2, we empirically evaluate whether heterogeneous valuations of UI could shroud resilience.
Treatment and Control Groups Our quasi-experimental study features a treatment (Z = 1) and a control (Z = 0) group, with UI generosity $b_Z = b_0 + Z \times \Delta b$ deviating from baseline b_0. Initial distributions of job values in each group, $f^Z(\cdot)$, are assumed to be the same for $Z = 1$ and $Z = 0$:

$$f^0(\cdot) = f^1(\cdot).$$

Netting Out Equilibrium Effects In fact, our empirical DiD design has multiple control groups: eligible cohorts in the control region, and slightly younger (ineligible) workers in both regions. The slightly younger, untreated control group in the same region permits us to net out any equilibrium effects of REBP. The treatment is the differential exposure to the program on the outside option of treated workers, net of market-level effects. In our notation, we therefore suppress market-level or spillover effects. Additionally, as discussed in Section 6.2, we can test for and reject such effects on our results.

Separation Effects The incremental separations caused by REBP should stem from jobs with joint surplus between zero and the size of the REBP surplus shift. Figure 3 Panel (a) illustrates this logic. During REBP, all jobs with negative joint surplus $\tilde{S}(V') < 0$ (in the left, black area) separate in both regions. The gray set of marginal jobs have surplus $0 \leq \tilde{S}(V') < \epsilon_W'$, and hence separate only if exposed to REBP. The remaining jobs—which survive in either group—have surplus $\tilde{S}(V') \geq \epsilon_W'$. The figure also references separation rates for the treatment and control groups (δ^1 and δ^0).

3.1.3 Post-Repeal Prediction: Resilience

The repeal of REBP restores each surviving, treated match’s surplus to the level of its peer in the control group. Except, the repeal does not bring back to life the previously destroyed jobs (since we track survivors only). We depict the surplus distributions of REBP survivors right after the repeal in Figure 3 Panels (d) and (g), separately for the former treatment and control groups. The former treatment group features a missing mass of marginal matches. By contrast, these low-surplus jobs remain in the former control group. This missing mass will persist until idiosyncratic shocks to joint surplus—discussed in Section 6.1—possibly replenish it by reshuffling the surplus distribution.

The testable prediction characterizing the Coasean view is that right after the REBP repeal, the formerly treated REBP survivors should exhibit fewer separations—relative resilience—in response to post-repeal shocks compared to the control group, where the marginal, low-surplus jobs have remained. Appendix Figure A.15 illustrates separations by group as a function of shock ϵ''. We denote post-repeal functions with capital letters:

10In our DiD design, this condition need not hold in levels but in between-cohort differences across regions. The original working paper featured an analysis of complier characteristics, empirically substantiating this assumption. See also Table 1 for summary statistics.
\(\Delta\) for \(\delta\), \(K\) for \(k\), and \(\hat{D}\) for \(\tilde{d}\). Post-repeal aggregate shocks and job values are denoted by ” rather than ’. Post-repeal separation rates in the treatment (control) group \(Z = 1(= 0)\) are:

\[
\Delta^Z = \int_{\mathbf{V}'} \int_{\mathbf{V}''} \mathbb{1}(\hat{S}(\mathbf{V}'') < \varepsilon'') K(\mathbf{V}'',|\mathbf{V}') d\mathbf{V}'' f^Z_{\text{post}}(\mathbf{V}') d\mathbf{V}',
\]

where \(\hat{D}(\mathbf{V}', \varepsilon'')\) denotes the post-repeal separation probability out of a job with attributes \(\mathbf{V}'\) and given aggregate post-repeal shock \(\varepsilon''\). Differential post-repeal separations reflect post-repeal distributional differences, \(f^Z_{\text{post}}\), induced by selective separations from REBP—the missing mass of low-surplus matches.

3.1.4 Coasean Benchmark Without Idiosyncratic Shocks

The Coasean resilience prediction is especially tractable under the assumption that jobs experience only common aggregate shocks and no idiosyncratic changes in surplus during the post-repeal period. Intuitively, in this setting, the treatment group is perfectly resilient (exhibits no separations) as long as the subsequent aggregate shock size \(\varepsilon''\) is smaller than the size of REBP, i.e., for \(\varepsilon'' \leq \varepsilon^W_b\). For larger shocks \(\varepsilon'' > \varepsilon^W_b\), separations start emerging even in the former treatment group, with the marginal REBP survivors carrying \(\hat{S}(\mathbf{V}') = \varepsilon^W_b\) being the first to separate. The leftmost panels of Figure 3 and Appendix Figure A.15 illustrate the intuitions. Appendix C details the derivations. In Section 6, we assess robustness to specific, plausible idiosyncratic shock processes.

Assumptions Formally, assuming no idiosyncratic shocks post-repeal means assuming the post-repeal surplus innovation process \(K(\cdot,\cdot)\) is an identity matrix. In practice, we study post-repeal horizons as short as a single year (1994-95). Aggregate shocks \(\varepsilon''\) drive post-repeal separations. Crucially, we place no restrictions on the idiosyncratic shock \(k(\cdot,\cdot)\) during the five-year REBP period (although this discrete time setup permits only one shock). We also assume equality of initial job distributions, discussed in Section 3.1.2.

Predicted Separation Rates If we directly observed the REBP shock size \(\varepsilon^W_b\) and the post-repeal aggregate (homogeneous) surplus shocks \(\varepsilon''\), we could simply compare realized post-repeal separations in the former treatment group against this Coasean benchmark. Yet, surplus and aggregate shocks are not directly observable. Instead, our empirical strategy draws inferences from the control group post-repeal separation rates, which encode the size of post-repeal shocks, and the (differential) during-REBP separation rates, which encode the size of the REBP surplus shock \(\varepsilon^W_b\).

In fact, for this case of no idiosyncratic shocks, we can express the post-repeal former
treatment group separation rates (Δ^1) as a kinked, piece-wise linear function of that of the former control group (Δ^0), with slopes and kink positions given by (δ^0, δ^1):

$$\Delta^1(\Delta^0(\varepsilon''), \delta^0, \delta^1) = \max\left\{0, \frac{1 - \delta^0}{1 - \delta^1} \left[\Delta^0(\varepsilon'') - \frac{\delta^1 - \delta^0}{1 - \delta^0}\right]\right\}. \quad (7)$$

The position of the kink is given by $\Delta^0 = \frac{\delta^1 - \delta^0}{1 - \delta^0}$. As long as the control group post-repeal separation rate Δ^0 is lower than the fraction of marginal matches among the survivors $\frac{\delta^1 - \delta^0}{1 - \delta^0}$, no separations should occur in the treatment group, because these matches are missing. Once control group separations cross that threshold, separations commence in the former treatment group (with a slope steeper than one, $\frac{1 - \delta^0}{1 - \delta^1}$, because the incremental separator count is over a smaller count of survivors there). Both groups will have, on average, indistinguishable separation rates if all control jobs dissolve or if the initial REBP treatment effect is zero. Hence, the design has power if the initial treatment effect during REBP is large—shifting the kink far away from zero—and if Δ^0 is smaller than one. Appendix Figure A.15 illustrates this relationship.

Comparing the Coasean benchmark given by Equation (7) with the actual post-repeal separation rates constitutes our revealed-preference test—the contribution of our paper.

3.1.5 Preview of Alternative Coasean Benchmarks

To rationalize our findings of non-resilience, in Section 6 we will consider—but the evidence will ultimately reject—extensions of the Coasean model that allow idiosyncratic shocks, which may replenish the marginal jobs in the former treatment group. Our preferred explanation, outlined below, studies inefficient bargaining, due to wage rigidly.

3.2 A Non-Coasean Model With Wage Rigidity

Resilience need not emerge in non-Coasean models. Here, frictions prevent the efficient (re-)bargaining. We consider perfectly rigid (fixed) wages. Intuitively, in Figure 2, wage rigidity prevents the parties from moving the wage of some of the positive joint surplus jobs towards the feasible-jobs frontier, thereby shrinking the set of feasible jobs to the upper right quadrant. We present key equations here, and draw on Figure 3 for intuition. We assume no post-repeal idiosyncratic shocks. The full model is in Appendix D.

Separations Separations occur if at least one of worker or firm surplus turns negative at the given wage, since due to fixed wages both participation constraints in Equations (1) and (2) matter. Hence, inefficient separations—i.e., terminations of jobs with positive
joint surplus—can emerge. We now think of wage \(w \) as one additional job attribute that can evolve or be fixed, such that jobs are now characterized by \((w, V)\). We define unilateral worker and firm surpluses net of the (fixed) wage and net of the aggregate shock \(S^W(w, V^W, \epsilon^W) \) and \(S^F(w, V^F, \epsilon^F) \), and their gross counterparts as \(\tilde{S}^W(w, V^W) \) and \(\tilde{S}^F(w, V^F) \). Formally, the job-level separation probability is given by:

\[
\tilde{d}(w, V; \epsilon^W, \epsilon^F) = \int_{(w', V')}(\tilde{S}^W(w', V^W) < \epsilon^W \lor \tilde{S}^F(w', V^F) < \epsilon^F)k((w', V')|(w, V))d(w', V'), \tag{8}
\]

where separations can be labeled as quits (negative worker surplus but positive firm surplus), layoffs (reversed), or mutual separations (both negative). Here, the initial incidence of a shock matters for separations, since worker and firm values are no longer “fungible” and we must separately track \(\epsilon^W \) and \(\epsilon^F \). Analogously to the Coasean case, group level separation rates are

\[
\delta = \int_{(w, V)}\tilde{d}(w, V; \epsilon^W, \epsilon^F)f(w, V)d(w, V).
\]

REBP Effects in a Non-Coasean Setting Since participation constraints cannot be collapsed into joint surplus, as in the left panels of Figure 3, we now plot example contour maps of the joint distribution of firm (y-axis) and worker (x-axis) surpluses net of wages and shifters, \(S^W(w, V^F, \epsilon^F) \) and \(S^W(w, V^W, \epsilon^W) \). We do so in the right panels of Figure 3. The axes are the participation constraints. Panel (c) illustrates how REBP improved workers’ outside options (i.e., lowered worker surplus), so the treated jobs shift left. For comparison, in the middle panels we also plot the Coasean analogs, in the form of contour maps of gross-of-wage surpluses, expanding one-dimensional joint surplus from the left panels; there, separations occur only for jobs that fall below the zero-joint-surplus diagonal.

Post-Repeal (Non-)Resilience After the repeal, Figure 3 Panel (f) depicts the former treatment group at the original position but with a missing mass of matches. This gray set of missing matches have low worker surplus—the dimension along which REBP selected them into separation—but not necessarily low firm surplus, compared to the control group (Panel (i)). This set is defined by \(\{(w', V') : 0 \leq \tilde{S}^W(w', V^W) < \epsilon^W \land \tilde{S}^F(w', V^F) \geq 0\} \). Thus, resilience does arise for shocks to worker surplus. Resilience need not arise to firm shocks, where separations can be very similar in both groups (e.g., if if worker and firm surpluses are independently distributed; see also Appendix Figure A.15 Panel (d)). Non-resilience can therefore arise even without strong assumptions about post-repeal idiosyncratic shocks, unlike in the Coasean model, as we discuss in Section 6.1.
4 Large Separation Effects of the UI Benefit Extension

In this section, we estimate that the REBP reform increased job separations by 11.0ppt among initial matches over the five year program horizon (relative to a 40.8% baseline separation rate among the peer cohorts in the control region). We obtain this estimate using a difference-in-differences design exploiting the reform’s sharp eligibility variation by region and age. Interpreted through the lens of our Coasean model,

\[
\frac{\delta^1 - \delta^0}{1 - \delta^0} = \frac{0.110}{1.0 - 0.408} = 18.5\%
\]

of surviving matches in the control group are marginal low-surplus matches that would not have survived the extension. Most of the excess separations went into long-term nonemployment, perhaps followed by early retirement.

Plotting Raw Data: Cohort Gradients of Separations We first present visual evidence using raw data in Figure 4 to assess the parallel trends assumption, before turning to regression estimates. Panel (a) plots the share of workers who separated from their 1998 job by 1993q3 (the first quarter after the repeal of REBP), sorted by month-of-birth cohort along the x-axis. We start with the right-hand section of the panel, representing younger workers (born before 1943) who turned 50 only after the repeal and were therefore never eligible for extended benefits. These cohorts exhibit homogeneous separation rates of roughly 40% in both regions, supporting our identification assumption that control cohorts exhibited parallel cohort trends (and even identical levels) across regions. Appendix Figure A.16 confirms this overlap among even younger cohorts.

The middle section of Panel (a) represents intermediate cohorts born between 1933 and 1943, who were exposed to the reform in REBP regions; exposure was maximal for workers born in 1938, who turned 50 at the onset of the reform and were still eligible at the repeal 5 years later. Among these cohorts, separations are markedly higher in REBP regions than in non-REBP regions. This vertical difference represents the treatment effect of REBP, and is about 20 percentage points at its peak, as displayed in Panel (b).

Finally, the left-hand section of Panel (a) represents older cohorts (born before 1933) who, while eligible for REBP, were older than 55 at its onset. Consequently, they already had access to more generous disability/early retirement benefits with relaxed entry conditions, as described in Section 2 and reached the retirement age of 60 before the repeal of REBP. A slight treatment effect emerges for these workers, who were eligible for extended benefits, but, regardless of region, had mostly retired by 1993 anyway.

By comparing slightly older and younger cohorts within the same region, our research design nets out any differences between regions that are constant across cohorts (including

11 Prior studies have documented separation effects of REBP [Winter-Ebmer, 2003; Lalive and Zweimüller, 2004; Lalive, Landais, and Zweimüller, 2015], but have not examined the post-repeal separation dynamics of surviving matches or their efficiency properties.
market-level effects of the program). Potential remaining confounders are shocks or unobservables varying at the region-by-age level. For instance, pathways to retirement could differ between regions as a consequence of different industry structures. To address this concern, we switch to separations among our cohorts during a fixed age window, 50 to 55, rather than between points in time (years 1988 to 1993). This robustness check is in Appendix Figure A.17, Panels (a) (levels) and (b) (differences), which show a similar treatment effect and similar support of the parallel trends assumption for this separation definition. By construction, this figure also eliminates the age trends.

Finally, Appendix Figure A.17 mirrors Figure 4 but studies quarters nonemployed (Panels (c) and (d)) and unemployed (UI/UA benefit receipt) (Panels (e) and (f)), between 1988q2 and 1993q3. Trends in control cohorts again lie on top of each other. Among the eligible cohorts, a treatment effect for both nonemployment and unemployment opens up. Similar results emerge for the 50-55 age horizon, in Appendix Figure A.18.

Regression Estimates In Table 2, we report the estimated average treatment effect from a difference-in-differences (DiD) regression specification among pre-reform, 1988 job holders, for various outcomes D_{rci}, for worker i in region r in birth cohort c:

$$
D_{rci} = \alpha + \beta \cdot \text{REBP Region}_r + \gamma \cdot \text{Treated Cohort}_c + \mu \cdot \text{REBP Region}_r \times \text{Treated Cohort}_c + \chi_{rci}.
$$

The coefficient of interest μ captures the effect of REBP eligibility Z_{rc}, defined by region and birth cohort. Interpreted through the lens of the model, μ captures the (subsequently, post-repeal missing) mass of marginal matches, $\delta^1 - \delta^0$. We set $Z_{rc} = 1$ for workers in the REBP region born before August 1943, such that they were older than 50 at some point during REBP, and zero for other workers (our control groups). Here and in subsequent regression analyses, we exclude workers born before August 1933 because an overwhelming majority had retired by August 1993 anyway. The model includes baseline effects for REBP region and eligible cohort. Our regression specification thus exploits within-region, within-cohort variation. We cluster standard errors at the level of administrative regions (groups of districts, Arbeitsamtsbezirke), but we have also assessed robustness for clustering at other levels. Table 2 reports results from the cohort-based design (1998-93 outcomes); we report the age-based estimates (50-55) in Appendix Table A.12, finding similar results. We keep the young control cohorts up to a five-year range. We also assess outcomes for even younger cohorts, which we discuss in Section 6.2.

12 We measure separations between the quarter before 50 (REBP eligibility), and the quarter before 55 (when disability and early retirement incentives change).
Table 2 Column (1) reports a treatment effect of 11.0 ppt on separations from the 1988q2 employer by 1993q3. This effect represents a 27% increase from a counterfactual separation share of 40.8% in the absence of REBP (regression constant plus the baseline effects for treatment region and old cohorts). The 95% confidence interval ranges from 3.0 to 18.9 ppt. In turn, our estimates imply that $\frac{0.110}{1.0-0.408} = 18.5\%$ of surviving matches in the control group are marginal, low-surplus matches that would not have survived the extension.

Column (2) shows that the REBP-induced separations are largely into persistent nonemployment, i.e., without another employer 1988-93 (12.1 ppt, SE 4.3 ppt). Column (3) reports a positive effect of 1.48 quarters (SE 0.38) on quarters nonemployed during 1988-93; quarters unemployed (UI/UA receipt) increased by 0.97 (SE 0.53) (Column (4)). Column (5) shows that these effects reflect a reduction of 1.06 quarters (SE 0.37) in continuous employment with the initial employer.

5 Puzzle for Coase: No Resilience After the Repeal

The sudden repeal of the reform in August 1993 (described in Section 2) allows us to test the core prediction of the Coasean model derived in Section 3.1.4: that REBP survivors—jobs that existed before the onset of the reform in 1988 through its repeal in 1993—should subsequently exhibit lower separation rates. This test has power thanks to the large missing mass of low-surplus jobs in the former treatment group: by the end of REBP, an additional 11.0 ppt of treated workers had separated. The older control group had a 40.8% separation rate, so among its survivors, $\frac{0.110}{1.0-0.408} = 18.5\%$ are marginal, low-surplus jobs. Intuitively, separations among REBP survivors should be low as long as the control group separation rates do not exceed 18.5%. Yet as we now show, the survivors exhibit exactly the same post-repeal separation behavior as the control group, both unconditionally and in response to negative labor demand shifts.

5.1 Empirical Post-Repeal Separation Behavior

Our sample consists of 1998-93 survivors in the former treatment and control regions: jobs already active right before the onset of REBP in 1988 that continued through its repeal in 1993. To account for potential cross-time REBP spillovers attributable to layoff notices and explicit grandfathering (as the law permitted for pre-scheduled layoffs, see Section 2), our cutoff survival date defining the post-repeal survivor sample is 1994q1. Barring this sample restriction, the strategy mirrors that in Section 4. Our outcome variable is the
fraction of 1998-93 survivors subsequently separating at various post-repeal horizons.

Plotting Raw Data: Post-Repeal Separation Rates by Cohort In Figure 5 (1994-96 horizon) and Appendix Figure A.19 (other horizons), we plot the post-repeal separation rates among the surviving jobs, for the former control region (blue solid line) and the former treatment region (red short-dashed line), for levels (Panel (a)) and differences between regions (Panel (b)), by cohort. These raw data convey nonparametric evidence for our main finding, the absence of resilience. There are no post-repeal separation differences between surviving jobs previously exposed to REBP and surviving control jobs, despite the policy’s large separation effects during 1988-93.

Quantifying the Differences in Separation Behavior Figure 5 Panel (b) also reports the average DiD estimate for the effect on post-separation behavior, analogous to specification (9) for the survivor sample. The 0.8ppt (SE 1.0ppt) estimate indicates that the former treatment group, if anything, had a slightly higher separation rate in the post-repeal period, rather than exhibiting resilience. The tight confidence intervals include zero and allow us to rule out effects more negative than -1.2ppt. Full results are in Table 3 Column (1), along with results for the other outcomes assessed last section (separations into non-employment, etc.) for 1994-96; Appendix Tables A.13-A.15 report on the other horizons.

In the other columns of Table 3 we continue to find no resilience on other margins (nonemployment, time in nonemployment, time on unemployment benefits or assistance, and continuous employment with the original employer). We also report a version dropping workers close to the retirement age, in Appendix Table A.16.

5.2 Coasean Benchmark for Post-Repeal Separations

Predicted Separation Rates By Cohort To gauge the gap between the former treatment group’s post-repeal separations in the data and the Coasean prediction, we compute the predicted separations according to a Coasean benchmark without post-repeal idiosyncratic shocks, as presented in Equation (7) above in Section 3.1.4. Specifically, for each (monthly) birth cohort c, we collect during-REBP separation rates in the control and REBP regions to proxy for (δ_0^c, δ_1^c) (the blue solid and red dashed lines respectively in Figure 4 Panel (a)). We feed in post-repeal cohort-specific separation rates from the peer cohorts in the control group Δ_0^c (blue solid line in Figure 5). Intuitively, this benchmark predicts smaller separation effects for larger initial treatment effects of REBP in a given cohort (Figure 4 Panel (b)), due to a larger mass of missing marginal matches.

We plot these predicted Coasean separation rates as a yellow dashed line in Figure 5. The gap between this Coasean prediction and the observed separation rates in the control
group is large, confirming that our test has power. For instance, by 1996, the benchmark predicts close to zero separations for most of the formerly treated cohorts, whereas the control group’s actual post-repeal separation rate is 20% or higher.

Even multiple years later, the design retains power but the differences shrink (since Δ^0 grows), as Appendix Figure A.19 clarifies. Yet, at those multi-year horizons such as from 1994 to 1998, the assumption underlying the benchmark, of no idiosyncratic post-repeal shocks replenishing the mass of marginal jobs, is less plausible.

Quantitative Benchmark We also calculate this Coasean benchmark for the DiD regression coefficient. We aggregate the yellow predicted line across cohorts, weighting cells by their 1994 employment. The predicted average DiD separation effect is -14.0ppt. This predicted resilience is clearly outside of the confidence interval of the actual DiD estimate of 0.8ppt (SE 1.0ppt) for the post-repeal differential separation rates.

5.3 Labor Demand Shocks

The absence of resilience persists even in response to negative aggregate shocks to job surplus (i.e., ϵ'' in our model). We construct empirical proxies in the form of negative industry and establishment employment shifts, which we interpret as primarily capturing labor demand (i.e., firm-side surplus) shifts.

Heterogeneity by Industry Growth We plot the differential post-repeal separation rates separately for the top, middle and bottom tercile of the industry employment growth distribution from 1994 to 1996 in Figure 6 Panel (a). Appendix Figure A.14 reports on the other horizons. Even in declining industries (bottom tercile), the formerly treated cohorts do not exhibit resilience compared to the control group.

Establishment-Level “Hockey Sticks” We construct establishment labor demand shocks by tracing out “hockey stick” graphs (Davis, Faberman, and Haltiwanger[2013]): separation rates sharply increase when firms shrink (largely driven by layoffs), feature a kink around zero employment growth, and grow slightly in growing firms (due to turnover associated with net hiring). We replicate the hockey stick pattern in the full population data for Austria in Figure 6 Panel (b), where we plot establishment-level annual separation rates for all male employees employed in q1, by bins of annual net employment growth. While this interpretation has not been definitively established, we interpret these shifts to reflect largely labor demand and hence firm surplus shocks (much like mass layoffs are frequently understood to reflect labor demand shocks).

Figure 6 Panel (c) plots cohort-region-specific separation rates through 1996 (other horizons in Appendix Figure A.14). We estimate linear slopes separately for shrinking and
growing establishments and for four separate groups: by birth cohort eligibility × region. The slopes for the former control and treatment workers essentially lie on top of each other. Lastly, in Figure 6 Panel (d) we report cohort-specific slopes of separations with respect to establishment employment growth. For each birth-year cohort and region cell, we regress an indicator for a 1994-96 separation on the worker’s establishment’s 1994-96 growth for shrinking establishments (other horizons in Appendix Figure A.14). Both regions exhibit a downward-sloping sensitivity gradient in birth date, indicating that older workers appear shielded from separations. For the younger cohorts, the lines track each other. For the older cohorts, if anything, we see a more negative slope in the treatment region. Hence, the massive extraction of marginal jobs does not attenuate exposure to firm shocks.

6 Alternative Coasean Rationalizations of Non-Resilience

Our finding of non-resilience is inconsistent with the simple Coasean model outlined in Section 3.1. We now ask whether Coasean models with alternative assumptions can plausibly rationalize non-resilience. Whereas our baseline model featured only aggregate post-repeal shocks, Section 6.1 studies the implications of permitting idiosyncratic post-repeal shocks, which can reshuffle the surplus distribution immediately after the repeal and hence may refill the missing mass of marginal matches. Section 6.2 evaluates other explanations.

6.1 The Role of Idiosyncratic Shocks

While our Coasean model accommodated idiosyncratic shocks during the program period, our Coasean benchmark for the post-repeal period assumed them away, making the resilience arising from the missing mass particularly stark. We now relax this assumption, and study three alternative idiosyncratic shock processes.

To understand how idiosyncratic shocks affect the prediction of post-repeal resilience, we extend Equation (7) (the kinked expression underlying our Coasean benchmark) to the case of arbitrary idiosyncratic shocks post-REBP, i.e., leaving $K(\cdot, \cdot)$ unrestricted. The resulting extended expression gives the post-repeal separation rate of the former treatment group as that of the control group, netting out the separations from the (missing) marginal jobs (the set $M' = \{V' : 0 \leq S(V') < \epsilon_b^W\}^*$):

$$
\Delta^1 = \frac{1 - \delta^0}{1 - \delta^1} \left[\Delta^0 - \int_{V' \in M'} \tilde{D}(V', \epsilon'') f^0_{\text{post}}(V') dV' \right].
$$

(10)
This expression draws on Equation (6) (the general expression for post-repeal separation rates before we restricted the model to no post-repeal idiosyncratic shocks). \(\tilde{D}(V', e'') = \int_{V'} 1(\tilde{S}(V'') < e'')K(V''|V')dV'' \) denotes the post-repeal separation probability out of a job with end-of-REBP attributes \(V' \) and given aggregate post-repeal shock \(e'' \). Here, Markov process \(K(V''|V') \) guides the post-repeal shock process, which we now study. As before, differences in \(f_{\text{post}}^Z \) across the treatment and control group due to the REBP separations will drive differential post-repeal separation rates. Unlike in the baseline model, we now permit post-repeal idiosyncratic shocks, i.e., \(K(.|.) \), to mediate the composition shift induced by REBP.

General Conditions for Absence of Resilience
Which conditions must the idiosyncratic shock process \(K(.|.) \) fulfill for the Coasean model to rationalize our findings—that post-repeal separation rates are identical across treatment and control groups, across cohorts and even following negative labor demand shock proxies (formally, \(\Delta^1(e'', \delta^0, \delta^1) = \Delta^0(e'', \delta^0, \delta^1) \) for the entire range of post-repeal aggregate shocks \(e'' \) and REBP separation rates):

\[
\int_{V' \in M'} \int_{V''} 1(\tilde{S}(V'') < e'')K(V''|V')dV'' \tilde{f}_M^0(V')dV' = \int_{V' \in (J' \setminus M')} \int_{V''} 1(\tilde{S}(V'') < e'')K(V''|V')dV'' \tilde{f}_I^0(V')dV',
\]

(11)

where \(\tilde{f}_M^0 = f_{\text{post}}^0(V') \left[\frac{1-\delta^0}{\delta^1-\delta^0} \right] \) is the density of the marginal jobs in the control group and \(\tilde{f}_I^0 = f_{\text{post}}^0(V') \left[\frac{1-\delta^1}{1-\delta^0} \right] \) is the density of the inframarginal jobs in the control group.

That is, perhaps unsurprisingly, identical post-REBP behavior, \(\Delta^1 = \Delta^0 \), arises if and only if the average post-repeal separation rate for the jobs in the marginal group \((V' \in M') \) is the same as that for the jobs in the inframarginal group \((V' \in (J' \setminus M')) \). In other words, resilience arises if and only if the marginal jobs destroyed by REBP would have exhibited the same post-REBP separation behavior as the inframarginal jobs that survived REBP. Below, we start with an extreme assumption about \(K(.|.) \) that achieves this condition: perfect reshuffling, which washes out compositional differences right after REBP is abolished. We then move to perhaps more plausible restricted processes, none of which perfectly generate the condition in Equation (11) but let the data quantify the amount of resilience they can generate under a Coasean model.

6.1.1 Idiosyncratic Shocks I: Perfect Reshuffling

The Shock Process
One specific Markov process generating equality of separation rates between marginal and inframarginal jobs is reshuffling of jobs into the same sur-
plus distribution—which, if occurring already within a year after the repeal (in our 1995 specification), would fill in the “hole” left by REBP. Full derivations are in Appendix C.

Interestingly, for a given single surplus shock ε'' and set of marginal jobs defined by (δ^1, δ^0), reshuffling is sufficient but not necessary for identical post-repeal separation rates. However, for the condition to hold globally—for all $(\varepsilon'', \delta^1, \delta^0)$ combinations—perfect reshuffling becomes necessary. The formal proof is in Appendix C. While our empirical variation indeed features large heterogeneity in REBP and post-repeal separation rates across cohort/industry cells, this variation may not sufficiently approximate this “global” condition, so we additionally consider less dramatic shock processes than full reshuffling below.

Mixed Model Neither the no-idiosyncratic-shocks assumption from Section 3.1 nor the perfect-reshuffling setting likely accurately describes the whole labor market. Using a simple “mixed model,” we estimate which fraction of labor market cells would need to follow each extreme model to rationalize our results in a Coasean framework. Let i index labor market (industry-occupation) cells and c cohorts. A given cohort-cell (c, i) is either of the perfect reshuffling or no-shocks type. Share κ (share $1 - \kappa$) of cells are of the full-reshuffling (no-shocks) type. Perfect reshuffling implies $\Delta^1_{ci} = \Delta^0_{ci}$ (formally shown in Appendix C) while no shocks implies that Δ^1_{ci} follows the piece-wise linear function (7). The latter depends on the policy-period separations (δ^0_c, δ^1_c), which we let vary by cohort as in Figure 4. We then estimate κ in the following econometric model:

$$\Delta^1_{ci} = \kappa \times \Delta^0_{ci} + (1 - \kappa) \times \sum_{c=1}^{C} \iota_c \max \left\{ 0, \frac{1 - \delta^0_c}{1 - \delta^1_c} \cdot \Delta^0_{ci} - \frac{\delta^1_c - \delta^0_c}{1 - \delta^1_c} \right\} + \nu_{ci},$$

where ι_c is a cohort indicator and the residual ν_{ci} captures cohort-cell-specific shocks and other model misspecification.

Estimation We estimate Equation (12) using weighted least squares, weighted by the number of REBP survivors in each cohort by cell (so κ gives the size-weighted share). Cells are 2-digit industry codes defined separately for blue and white collar occupations. We focus on cohorts defined using 5-year and 1-year birth year bins. As reflected in Equation (12), we allow (δ^0_c, δ^1_c) to vary at the cohort level, but assume they are constant across cells within a cohort, while measuring post-repeal separation rates $(\Delta^0_{ci}, \Delta^1_{ci})$ at the cohort by cell level. Intuitively, the model chooses the weighted average of the blue solid line (perfect reshuffling) and the yellow dashed line (no idiosyncratic shocks) in the cell-level analog of Figure 5 (and illustrated in Appendix Figure A.15 Panel (b)) that best fits the
data. Weight κ is identified through the non-linearity in the relationship between Δ^1_{ci} and Δ^0_{ci} predicted by the Coasean model with no idiosyncratic shocks that arises from the extraction of marginal jobs, as illustrated in Appendix Figure A.15 Panel (b).

Results Column (2) of Table 4 Panel A reports NLS estimates of Equation (12) using the treatment and control group separation rates Δ^0_{ci} and Δ^1_{ci}. The estimated κ implies an essentially unit weight on the perfect reshuffling scenario, as $\hat{\kappa} = 1.04$ (SE 0.044). That is, in a Coasean world, we would fully reject any stability of job surplus in any labor market cells whatsoever, even in the short run. The lower limit of the 95% confidence interval for κ at the 1994-96 horizon indicates that at least 95% of separations would have to come from full reshuffling of job surplus for the data to be consistent with the Coasean setting when offering these two types. The model continues to put unit weight on perfect reshuffling even at a shorter one-year separation horizon ($\hat{\kappa} = 0.978$, SE 0.035, Column (1)), and even more so three and four years out (Columns (3) and (4)). The last four columns replicate this exercise using the finer 1-year cohort definition, yielding similar estimates, with some gain in precision. The scatter plot in Appendix Figure A.4 visualizes the underlying reduced-form relationship between post-repeal (5-year cohort) separation rates across groups.

Discussion One path through which the Coasean model can therefore rationalize the data is under no stability whatsoever in job-level surplus in almost all labor market cells. We believe that this strong assumption, and hence this Coasean rationalization, is implausible. First, such full convergence would be required already at the one-year horizon. Second, the reform was very large (it raised separations by about 27%, and was worth 71% of the average annual salary), and the idiosyncratic shocks necessary for sufficient reshuffling would need to be accordingly large to replenish the mass of marginal matches. Third, our sample contains older workers with, if anything, more stable surplus.

6.1.2 Idiosyncratic Shocks II: “Exogenous” Separations

The two extreme models considered above either assumed away post-repeal surplus innovation, or imposed perfect reshuffling. We now show robustness of our main results to permitting intermediate degrees of idiosyncratic surplus shocks following the repeal of REBP. Specifically, we will ask whether more restricted, less extreme, and perhaps more plausible idiosyncratic shock processes can rationalize non-resilience in the Coasean model.

The Shock Process Our first intermediate scenario mimics the “exogenous” separ-
tions often assumed in search and matching models. With a certain probability x, a job separates \textit{irrespective of the initial surplus level}. While often called exogenous, such a separation can be rationalized as an endogenous and efficient separation if the shock is negative enough to yield a negative surplus level. This process can be nested by our Markov process $K(.|.)$ by having all jobs be hit with an idiosyncratic shock of size $y - \tilde{S}(V')$ with probability x, or keep their surplus level with probability $1 - x$. Formally, the shock process is:

$$
\tilde{S}(V'') = \begin{cases}
\tilde{S}(V') & \text{with probability } 1 - x \\
y < 0 & \text{with probability } x.
\end{cases}
$$

In this model, separations hence arise both from aggregate shocks ϵ'', and from idiosyncratic shocks (with probability x).

\textbf{Post-Repeal Separation Rates}
How may this process rationalize our findings? The shock process defined in Equation (13) can fulfill condition (11) of equality of post-repeal separation rates in the special case where all separations are idiosyncratic, i.e., $\Delta^1 = \Delta^0 = x$. However, as we later explain, this scenario of one homogeneous x is inconsistent with observed heterogeneity in the REBP treatment effect and in post-repeal separation rates across industry cells (formally shown in Appendix C.3). Below, we present empirical evidence that permitting such idiosyncratic shocks does not change our basic conclusions, in that we find substantial resilience even when permitting such shocks and estimating their relevance in the data.

To make progress, we build on the fact that this Coasean model again predicts a kinked relationship between Δ^1 and Δ^0 as in Equation (7) for the model without idiosyncratic shocks. While both the treated and control groups exhibit a \textit{baseline level} x of separations due to the idiosyncratic shocks, the additional, aggregate shocks ϵ'' induce separations only in the control group—unless the aggregate shock is sufficiently large as to induce otherwise very inframarginal jobs to separate even in the former treatment group. Hence, the augmented model still features the familiar missing-mass logic of the model without idiosyncratic shocks. Formally, in Appendix C.1 we derive the augmented kinked formula relating the predicted treatment group separations to the control group separations, which reduces to Equation (7) when $x = 0$ and otherwise swaps the origin of (0, 0) to (x, x).

\footnote{We thank an anonymous reviewer for encouraging us to assess this specific specification.}
capturing the baseline separations:

\[
\Delta^1(\Delta^0(\varepsilon''), \delta^0, \delta^1) = \max \left\{ x, \frac{1 - \delta^0}{1 - \delta^1} \left[\Delta^0(\varepsilon'') - \frac{\delta^1 - \delta^0}{1 - \delta^0} \right] \right\}. \tag{14}
\]

Another Mixed Model Since the model again delivers a kinked formula, we can estimate a mixed model as in Section 6.1.1. The only difference is that the model now additionally allows for large shocks with probability \(x\) (the model is nested when \(x = 0\)). As detailed below, we will either calibrate \(x\) or estimate it jointly with \(\kappa\), the weight on the reshuffling case. Our estimating equation for this model plugs Equation (14) into the previous estimating Equation (12), again letting \(i\) denote industries and \(c\) cohorts:

\[
\Delta^1_{ci} = \kappa \times \Delta^0_{ci} + (1 - \kappa) \times \sum_{c=1}^{C} \tau_c \max \left\{ x_{c'}, \frac{1 - \delta^0_c}{1 - \delta^1_c} \left[\Delta^0_{ci} - \frac{\delta^1_c - \delta^0_c}{1 - \delta^0_c} \right] \right\} + \nu_{ci}. \tag{15}
\]

The interpretation is analogous to that in Section 6.1.1 in that we run another horse race between two Coasean models: the case of perfect reshuffling that we know can (trivially but implausibly) rationalize no resilience, and an alternative in which the extraction of low-surplus jobs due to REBP has measurable consequences in the form of post-repeal resilience. As before, estimating a large weight on the former model (i.e., a high \(\kappa\)) suggests that the Coasean model can only rationalize the data under strong, arguably implausible assumptions. Compared to the exercise in Section 6.1.1, however, we now permit the competing Coasean model to feature a richer idiosyncratic shock process and gauge robustness of \(\kappa\) to this assumption.

Identification As before, \(\kappa\) is identified by the non-linearity in the Coasean prediction without idiosyncratic shocks. As the subscripts indicate, we permit the large-shock probability \(x_c\) and (as before) the during-REBP separations \(\delta^Z_c\) to vary by cohort. Hence, we estimate \(x_c\) on a cohort basis. Within a cohort, the variation in control group separation rates \(\Delta^0_{ci}\) that identifies the aggregate shocks stems from industry-occupation variation. Hence, the idiosyncratic shock probability \(x_c\) for each cohort \(c\) is identified by the kink position shift; intuitively, it captures the baseline separation rate in a cohort for industry-occupation cells with low aggregate shocks, i.e., low separation rates (cohort by cohort).

Estimation We jointly estimate the parameters \((\kappa, x_1, \ldots, x_c)\) using non-linear least

\[\text{Of course, letting the shock vary arbitrarily at the industry-occupation-cohort level would not permit identification of } \kappa. \text{ Given the strong age patterns in separations and the industry shocks plausibly approximating aggregate shocks, we find the current sorting more plausible than the reverse one.}\]
squares (NLS). The shock process in Equation (13) cannot rationalize the data if the parameters \(\hat{x}_c \) greatly exceed the empirical separation rates, so we restrict \(\hat{x}_c \) to be non-negative and weakly below the 10th percentile of \(\Delta^0_{ci} \) for each cohort. We relax the latter restriction and provide further estimation details in Appendix E.

Results We find that under the Coasean assumption, the mixed model continues to place negligible weight on the scenario with persistent surplus, even when accounting for the possibility of large idiosyncratic shocks. Again, the model can rationalize the data only with full weight on the—implausible—perfect reshuffling benchmark, i.e., \(\kappa \) near one. Panel B of Table 4 reports point estimates of our parameters \((\kappa, x_1, \ldots, x_c)\) for all post-repeal horizons and both cohort definitions, mirroring Panel A. The parameter of interest is again \(\kappa \), the weight on the reshuffling benchmark rather than the alternative model with persistence in idiosyncratic surplus except for aggregate shocks and the parametric large idiosyncratic shock. Column (2) again reports estimates for the 2-year post-REBP (1994-1996) separation horizon, using the 5-year cohort definition. We estimate \(\hat{\kappa} = 1.045 \) (SE 0.052) in this specification. Again, \(\hat{\kappa} \) is statistically indistinguishable from 1. (We also report estimates of \(x_c \), which are estimated to affect fewer than 8% of matches, and are less precise at longer horizons; we do not report standard errors for estimates on the boundary of the parameter space described above. Columns (5)-(8) corroborate these conclusions for the 1-year cohort definition, featuring additional degrees of freedom in \((x_c, \delta^0_{ci}, \delta^1_{ci})\). Even this model places near-unit weight on perfect reshuffling, with \(\kappa = 0.992 \) (SE 0.008) in Column (6) for the 1994-96 post-repeal horizon, similarly for the other horizons. Appendix Tables A.2-A.9 report the one-year cohorts’ \(\hat{x}_c \), and robustness to alternative specifications of \(x_c \): constant \(x_c \), ranging from 0 to 0.3, or set to percentiles of \(\Delta^0_{ci} \). Hence, this alternative shock process changes our conclusions neither qualitatively nor quantitatively, as the mixed Coasean model continues to put full weight on the full-reshuffling model to rationalize the absence of resilience in the data; put differently, the absence of resilience does not appear to be driven by large idiosyncratic shocks.

Visualization Figure 7 Panel (a) visualizes the results, plotting the average separation rate predicted by Equation (14) for each cohort, using the estimates of \(\hat{x}_c \) from the Column (6) specification of Table 4. This prediction closely tracks the no-idsosyncratic-shock benchmark discussed in Section 6.1.1, especially for the younger cohorts. As a result, treatment group separation rates should again have exhibited substantial resilience.

Discussion Our main results appear robust to permitting large idiosyncratic (“exoge-
nous”) shocks. Naturally, we restricted the level of idiosyncratic shocks to be cohort-but not cell-specific; trivially, with unrestricted flexibility, such shocks may rationalize any equality of separations. However, this reconciliation would require one to believe that aggregate shocks \(\varepsilon'' \) do not induce any separations, so that all separations occur idiosyncratically (shown formally in Appendix C.3), a strong assumption in light of the heterogeneity in separation rates across cells such as industries (see Figure 6). Our analysis also assumed perfect stability of surplus absent the shock (although we relax this assumption in Footnote 29 of C.3 and show robustness to shock processes preserving the relative ranking of matches).

Naturally, it is difficult to systematically assess the explanatory power of all alternatives in our mixed model. In the next section, we adopt a different strategy, and instead assess the plausibility of a shock process which preserves both the level and the rank of match surplus only imperfectly.

6.1.3 Idiosyncratic Shocks III: Continuous, Normal Shocks

Finally, we ask whether a continuously distributed idiosyncratic shock with realistic variance can rationalize the separation dynamics. Unlike in the model with only large idiosyncratic shocks, a model with a continuous idiosyncratic shock predicts resilience even without aggregate shocks—a given idiosyncratic shock of a certain size acts just as an aggregate shock of that size, and our continuous idiosyncratic shock model features a distribution of idiosyncratic shocks—such that some jobs separate everywhere, but still fewer jobs separate in the former treatment group. Rather than relying on another mixed model featuring aggregate shocks, we directly ask whether this type of idiosyncratic shock alone can predict resilience sizable enough to be rejected by the data.

To preview our strategy, we proceed as follows. First, we obtain an estimate of the control group surplus distribution, drawing on a custom survey. We then infer the treatment group distribution by truncating the control group distribution i.e., by dropping the bottom \(\frac{\delta_1 - \delta_0}{1 - \delta_0} \) of jobs, corresponding to the missing mass of marginal matches. We next introduce a parametric shock process—a normally distributed shock—to both surplus distributions. We calibrate the standard deviation of the shock \(\sigma_s^s \) (where superscript \(s \) stands for simulated, as described below) to match the empirically observed post-REBP separation rate in the control group, i.e. \(\Delta_0(\sigma_s^s) = \Delta_0 \). With the calibrated shock process in hand, we compare the predicted post-repeal separation rate in the treatment group \(\Delta_1(\sigma_s^s) \) to the empirical rate \(\Delta_1 \). We find that this procedure still predicts substantial resilience, such that \(\Delta_1(\sigma_s^s) \) is substantially below \(\Delta_1 \). We perform each of these steps for each of our cohorts, reporting results in Figure 7 Panel (b). We detail the strategy, model
and data in Appendix F, and highlight the results and key ingredients to our approach here.

The Shock Process We specify the post-repeal process to generate an additive shock:

\[\tilde{S}(V') = \tilde{S}(V''') + \nu, \tag{16} \]

where \(\nu \sim F(\nu) \) and has density \(f(\nu) \); the transition matrix is \(K(V'|V'') = f(\tilde{S}(V'') - \tilde{S}(V')). \)

Post-Repeal Separation Rates In Appendix C.1 we reformulate the general Equation (10) relating former treatment group post-repeal separations to control group separations to this model with idiosyncratic shocks only (without aggregate shocks, \(\varepsilon'' = 0 \)):

\[\Delta^1 = \frac{1 - \delta^0}{1 - \delta^1} \left[\Delta^0 - \frac{\delta^1 - \delta^0}{1 - \delta^0} \left(F(\varepsilon''_b W'') - \frac{1 - \delta^0}{\delta^1 - \delta^0} \int_{V' \in M'} f(\tilde{S}(V')) F_{post}(V') dV' \right) \right], \tag{17} \]

where \(\Delta^M \leq 1 \) is the post-repeal separation rate of marginal jobs in the control group. The kink point \(\Delta^0 = \frac{\delta^1 - \delta^0}{1 - \delta^0} \Delta^M \) is smaller compared to the case with no post-repeal idiosyncratic shocks and only aggregate shocks. Intuitively, if there are only small idiosyncratic shocks (\(F(\varepsilon''_b W'') = 0 \forall S' > \varepsilon''_b W') \), then all separations in the control group are driven by marginal matches and there are no separations in the treatment group. If shocks are sufficiently large to lead to separations irrespective of the initial surplus or sufficiently small to lead to no separations, then \(\Delta^0 = \Delta^1 \). For interim cases, separations in the treatment group are attenuated, although, unlike in the case without idiosyncratic shocks, need not be zero. Importantly, unlike in the previous case of large idiosyncratic shocks, the separations are now sensitive to the size and surplus composition of the marginal jobs.

To assess the resilience predicted by this Coasean model, we must, first, specify the control group surplus distribution and, second, parameterize the shock process.

Specifying the Initial Surplus Distribution The premise of our paper is that measuring joint surplus is difficult. To specify the distribution of the baseline surplus in the control group at the end of REBP, \(F_{post}^0(\tilde{S}(V')) \), we draw on a novel nonparametric measure of the surplus distribution derived from a custom survey in the 2019 German Socioeconomic Panel (GSOEP) \(\{ \text{Jäger et al., 2021} \} \). The custom survey elicits workers’ beliefs about their own reservation wages and those of their employers. As described in Footnote 9, these\(^{16}\) workers’ beliefs about outside options in the form of wages with other employers; they also construct worker rent distributions to study the counterfactual surplus distribution if workers had correct beliefs about outside options, for which they draw on the same question about workers’ reservation wages.
reservation wages give measures of worker \((S_W)\) and firm \((S_F)\) surpluses, and the sum of these surpluses gives joint surplus. The sample covers 924 employed workers and is representative of German workers. Survey details and summary statistics are described in Appendix F and in Jäger, Roth, Roussille, and Schoefer (2021). Our main surplus (and shock) measure is in percent of the worker’s (last month) salary; in Appendix F we show robustness to defining surplus levels and shocks in terms of Euros.

Figure 7 Panel (c) shows the empirical analog of the post-repeal control group surplus distribution from Figure 3 Panel (g) for the GSOEP sample. This distribution gives our estimate of the post-REBP density in the control group, \(f_{\text{post}}^{0}(S')\). To obtain the surplus distribution of the treatment group, we truncate the control group surplus distribution at the percentile in the CDF that corresponds to the size of the initial REBP treatment effect, given by \(f_{\text{post}}^{0}(\epsilon_{b}^{W'}) = \frac{\delta_{1} - \delta_{0}}{1 - \delta_{0}}\), indicated by the dashed red line in the histogram. This gives the treatment group distribution as \(f_{\text{post}}^{1}(\tilde{S}(V')) = f_{\text{post}}^{0}(\tilde{S}(V')) \frac{1 - \delta_{0}}{1 - \delta_{1}}\) for levels \(\tilde{S}(V') \geq \epsilon_{b}^{W'}\) (or equivalently, if above the treatment percentile), and zero otherwise.

Specifying a Shock Process We assume a normally distributed idiosyncratic shock. Given our focus on separations and to achieve separation rates above 50% without aggregate shocks, we let it take only nonpositive values, i.e., \(\nu \equiv -|\tilde{\nu}|\), with \(\tilde{\nu} \sim \mathcal{N}(0, \sigma)\). We calibrate its standard deviation \(\sigma_{0}^{s}\) (where we use superscript \(s\) to denote simulated or inferred rather than directly measured objects) to have the predicted control group separation rate match its empirical Austrian analog post-REBP, i.e., \(\Delta_{0}^{s}(\sigma_{0}^{s}) = \Delta^{0}\) (by cohort, see below).

Estimation We randomly assign the GSOEP observations into equally sized treatment and control groups, and bootstrap the predicted separation rates 20 times, reporting the means below; results with bootstrapped SEs in Appendix F are generally tightly estimated.

Results To recap, our strategy is to compare the empirical with the implied treatment group separation rate \(\Delta_{1}^{s}\). To illustrate the strategy, we start by pooling the birth cohorts by treatment and control group, reporting results in Figure 7 Panel (d), so that all cohorts have the same idiosyncratic shock variance. Feeding the dispersion implied by the control group’s average post-repeal separation rate into the truncated surplus distribution of the treatment group, the implied post-repeal separation rate would be about 20% for the 1994-96 horizon. These values are far below the empirical separation rate of about 30%. Appendix Figure A.5 replicates the result for the other post-repeal horizons.

This exercise aggregated cohorts into one coarse treatment and one control group.

17 As a complement, we invert groups, calibrating dispersion \(\sigma_{1}^{s}\) such that \(\Delta_{1}^{s}(\sigma_{1}^{s}) = \Delta^{1}\).

18 Similarly, the reverse exercise from Footnote 17 strongly overpredicts control group post-repeal separation rates, or/and implies an excess dispersion in the treatment group.
To account for cohort heterogeneity in separations, we replicate this analysis at the birth year level, calculating cohort-specific separation rates $\delta^1_c, \delta^0_c, \Delta^0_c$. On that basis, we obtain the predicted cohort-c-specific post-repeal separation rate in the treatment group, $\Delta^s_{1,c}$, by again feeding in $\sigma^s_{1,c} = \sigma^s_{0,c}$, in turn such that $\Delta^s_{0,c}(\sigma^s_{0,c}) = \Delta^0_c$ (details in Appendix F). Appendix Figure A.6 reports the implied control group dispersions σ^s_c for each cohort and year. Figure 7 Panel (b) plots the post-repeal separation rates (1994-96) together with the calibrated shock dispersion (depicted on the secondary y-axis). While these predicted separation rates for the treatment group are higher than in the Coasean benchmark without post-repeal idiosyncratic shocks, they are still significantly lower than the actual separation rates—in particular for birth cohorts 1935-1943, who have not yet entered retirement age. The DiD effect for this predicted separation rate is -8.5ppt, compared to the 0.8ppt effect we estimated in the data. The figures also recap the no idiosyncratic shock Coasean benchmark, from Figure 5 Panel (b), which yielded a predicted DiD effect of -0.140. Appendix F presents additional robustness checks, plotting results for other post-repeal horizons, as cohort differences across groups (rather than in levels), and for an alternative specification of the surplus and shocks, in Euros rather than as a multiple of a worker’s salary.

Discussion This analysis has shown that a Coasean model in which idiosyncratic shocks with a realistically calibrated variance generate all separations in the control group would predict considerable resilience in the former treatment group, too. A few caveats apply: first, we have calibrated the surplus distribution to another dataset, and do not have available direct estimates of the surplus distribution in our specific sample. Second, it remains possible that alternative shock processes would predict less resilience. That said, we have assumed away aggregate shocks entirely, making our investigation an extreme alternative benchmark (that, e.g., would not be able to account for industry heterogeneity, as in Section 6.1.2).

6.1.4 Overall Assessment

Overall, the Coasean models with post-repeal idiosyncratic shocks still predict considerable resilience, in contrast to empirical comovement. An idiosyncratic shock process that can fully account for the data must feature perfect reshuffling of idiosyncratic joint surplus already the year following the REBP repeal, an implausible assumption.

19 It also depicts the treatment group value for the reverse exercise from Footnote 17, which strongly overpredicts control group post-repeal separation rates, or/and implies an excess dispersion in the treatment group.
6.2 Alternative Coasean Explanations

We discuss alternative reconciliations with the Coasean view, beyond idiosyncratic shocks.

Market-and Firm-Level Spillovers on Control Workers REBP may have had persistent spillovers on the surplus distribution or shock process of the control cohorts in the treated regions. For instance, firms could have shifted training to younger workers, lowering their post-repeal separation rate, hence leading us to underestimate the resilience of treated cohorts when using that control group. However, such spillovers are not indicated by our second difference, between young cohorts across regions, in Figures 4 and 5; the corresponding coefficients on the REBP region indicator in Column (1) of Tables 2 and 3 are essentially zero (0.003 and -0.003). Appendix Figure A.16 confirms this zero result with a third difference for even younger control cohorts through 1958 (which are arguably less close substitutes or less prone to spillovers, as in Card and Lemieux, 2001; Lalive, Landais, and Zweimüller, 2015). Additionally, we provide an employer-level test of spillovers. We calculate industry- and firm-level treatment intensities: the share of workers in program-eligible cohorts (1933-43) pre-reform (1987). We divide our worker sample into quartiles by this measure, and plot the cross-region differences in post-repeal separations by cohort for top and bottom quartiles, in Appendix Figure A.20. We find no increased resilience among the younger control jobs in the heavily treated employers, nor among the slightly older treated cohorts, and hence no evidence for such spillovers.

REBP Period Shocks Literally interpreted, our theoretical framework features a discrete time setting with only one shock during REBP, in the form of Markov process \(k(.|.) \) linking pre- and end-of-REBP surplus levels. Multiple idiosyncratic shocks during REBP could, depending on their persistence, change the mapping from separation effects during REBP to the missing mass at the onset of the post-repeal period. Rather than attempting a calibration of the persistence of REBP-period idiosyncratic shocks, we gauge the relevance of this consideration empirically. We zoom into the younger cohorts that, in the REBP regions, became eligible more shortly before the repeal, for whom the one-shock scenario may apply more accurately. Figure 4 Panel (b) provides clear visual evidence that for the younger 1941 cohort, who were eligible for only two years (between 1991 and 1993), an initial treatment effect of about 5ppt emerges, which in Figure 5 Panel (b) still predicts considerable resilience, contrary to the identical observed separation rates (although power shrinks with the smaller REBP treatment effect). This visual evidence is even clearer in the annual birth cohort aggregation in Figure 7 Panel (a), where the cohort aggregation smooths out the volatile prediction lines of the monthly birth cohorts from Figure 5.

Heterogeneous Sensitivity to REBP Our model assumes that REBP induced homo-
geneous shifts in outside options, causing low-surplus jobs to separate. If, instead, it had removed high-surplus workers (e.g., due to heterogeneous valuation), the Coasean model could rationalize non-resilience. We empirically assess the broadest possible version of this concern: that the incremental separators would, absent REBP, have had lower separation rates than surviving treated jobs. Using complier analysis methods, we characterize the marginal jobs in terms of their separation-relevant attributes. First, we estimate a model regressing realized separations on pre-separation attributes in a separate, pre-reform sample. Second, using the resulting estimated coefficients, we create predicted separation scores for our 1988 worker sample. Third, we study the predicted rates among the actual separators in both regions. Appendix Table A.17 presents the results; its note details the prediction model. Reassuringly, these compliers had a higher predicted separation rate (0.67, SE 0.098) compared to the treated survivors (0.33, SE 0.078). In turn, the predicted separation rate of the treated survivors is lower than that of the control survivors (0.37, SE 0.080), a small, insignificant negative difference that, if anything, points in the opposite direction of the concern. A related concern, that most of the workers who value REBP separate, is difficult to assess; but evidence from Sweden suggests that least 86% of workers value UI sufficiently to pay for it, considerably larger than the REBP treatment effect (see Figure 4 in [Landais, Nekoei, Nilsson, Seim, and Spinnewijn, 2021]).

Homogeneity Our test relies on surplus heterogeneity to generate a pecking order of efficient extensive margin adjustment (as in Bils, Chang, and Kim, 2012; Mui and Schoefer, 2021). Conversely, surplus homogeneity absent REBP could, in principle, rationalize our findings in a Coasean setting. Then, REBP would lower surplus of treated jobs and trigger separations by homogeneously decreasing resilience to i.i.d. surplus shocks. But post-repeal, all cohorts will effectively have homogeneous surplus again, leaving no room for relative resilience. However, surplus homogeneity within age groups appears implausible in light of heterogeneous separation rates between firm and worker types, and the above evidence that predicted separation rates differ between compliers and non-separators. It is also inconsistent with evidence for heterogeneous rents (Mui and Schoefer, 2021; Jäger, Roth, Roussille, and Schoefer, 2021), see also Section 6.1.3.

Large Firms and Perfect Substitutes Another Coasean rationalization is a large-firm model with homogeneous workers (e.g., by types broader than age) and decreasing marginal products, in which old and young workers are perfect substitutes. Here, separations could occur because of firm-wide shocks to, e.g., productivity, which change the firm’s optimal employment level. REBP-eligible workers optimally separate first, shielding the young control group during REBP. But absent heterogeneity, the repeal of REBP restores the homogeneity of surplus, such that no post-repeal resilience emerges. However,
this model essentially involves a spillover effect on the separation rates of younger workers in treated regions, for which we did not find empirical evidence above.

Severance Pay In Appendix B we recap that severance pay is neutral in a Coasean setting, and show that the Coasean wage dynamics required to neutralize the Austrian tenure-severance pay schedule could be offset by small shifts in the wage-tenure gradient.

7 **Wage Rigidity as Source of Non-Coasean Job Dynamics**

We close by exploring wage rigidity as a source of the non-Coasean separation dynamics, clarifying the required theoretical conditions, and providing some empirical evidence.

7.1 **Conditions for a Non-Coasean Explanation with Wage Rigidity**

We discuss key ingredients that would enable a non-Coasean model with wage rigidity, as described in Section 3.2, to rationalize the evidence.

High Initial Worker Surplus With wage rigidity, post-repeal resilience arises in response to worker shocks but not to shocks to firm surplus. Hence, if firm shocks drive post-repeal separations—e.g., because baseline worker surplus is large and firm surplus is small and hence less insulated from shocks—the model can rationalize the findings. This configuration of surplus is particularly plausible for our sample of older and high-tenured workers, due to, e.g., implicit contract models with backloading of compensation and “overpayment” for older workers (Lazear 1979, 1981). Employer competition models (Cahuc, Postel-Vinay, and Robin 2006) also generate this joint distribution for high-tenured jobs (although they feature efficient (re-)bargaining and separations). In the Austrian institutional setting, works councils have consultation rights in layoffs, making such implicit contracts easier to enforce. Additionally, multiple months of severance payments are due in the case of layoffs or retirement, which are foregone for quitters, thus raising workers’ inside value (see Appendix B for a detailed discussion).

Large Worker Surplus Shift From REBP With initially high worker surplus, boosts to workers’ outside options must be large for otherwise inframarginal workers to separate. The exceptional size of the REBP UI treatment—three additional years of UI eligibility, hence also serving as a bridge into early retirement—plausibly achieved this. In Appendix A we benchmark that the average cash value is 71% of annual earnings. Indeed, smaller UI shifts or those applying to younger workers do not appear to trigger separations (as shown in Jäger, Schoefer, Young, and Zweimüller 2020 for the Austrian context).
Limited Correlation Between Baseline Firm and Worker Surpluses The final key ingredient is that the baseline correlation between firm and worker surplus is limited—such that the lower worker surplus jobs extracted by REBP are not necessarily marginal with respect to firm surplus. Wage frictions may help limit this correlation\(^{20}\) (By contrast, in the Coasean setting, the correlation of the fundamentals is irrelevant due to rebargaining.)

Another Mixed Model In fact, assuming no correlation, the non-Coasean framework interprets the mixed model in Equation (12) as putting weight \(\kappa\) on firm shocks (or perfect reshuffling) and \(1 - \kappa\) on worker shocks driving post-repeal separations.

7.2 Empirical Evidence

In a final step, we empirically investigate the plausibility of wage rigidity as a mediator of the inefficient separation dynamics. We analyze heterogeneity across cells sorted by proxies for wage rigidity. Indeed, the rigid cells experience higher initial separation effects, and nevertheless exhibit no post-repeal resilience. Our exercise is exploratory, as the wage rigidity proxies are not randomly assigned and hence may correlate with confounders.

Empirical Strategy We sort our 1988 job holder sample into quartiles based on proxies for wage rigidity, with the bottom quartile featuring more rigid wages. Our analysis proceeds in two steps. First, we analyze initial treatment effects on separations. We predict that more rigid cells will experience larger separation effects: wage rigidity may inhibit efficient renegotiation so that matches separate when worker surplus turns negative. Second, we study post-repeal resilience. We predict that—conditional on a given initial treatment effect—the flexible-wage cells will exhibit more resilience and thus accord more closely with the Coasean model (whereas the rigid cells need not exhibit resilience).

Proxies for Wage Rigidity The type of wage friction relevant for our cohort-specific treatment differs from standard downward nominal wage rigidity insofar as it must constrain firms’ differentiation of wages between similar workers, and as it requires rigidity both upward (in response to worker surplus reduction from REBP) and downward (in response to negative firm shocks post-repeal). With these qualities in mind, we construct four proxies for wage rigidity. First, we measure the standard deviation of log wages across male workers at the firm-year level, averaged at the firm level over the time period from 1982 to 1987. Second, to capture wage adjustment, we calculate the analogous standard deviation

\(^{20}\) The non-Coasean model could even generate higher separations among the former treatment group in response to firm shocks, e.g., under a “random” wage triggering a negative correlation between worker and firm surplus: REBP quitters would then be particularly valuable to firms. In contrast, Figure 6 Panels (c) and (d) documents similar slopes for the treatment group compared to, e.g., older cohorts in the control region.
of wage growth. Third, we consider a measure of deviation of wages from collective bargaining agreements (following [Jäger, Schoefer, Young, and Zweimüller] (2020), which set wage floors, e.g., at the industry, occupation, and experience level. To do so, we calculate the within-firm standard deviation of residuals from a regression of log wages on the interaction of year, industry, occupation, as well as tenure and experience cell fixed effects. Finally, we calculate the standard deviation of the residuals of an analogous regression with wage growth as outcome variable. Appendix G details the variable construction.

Summary Statistics and Correlations Appendix Table A.18 presents, by quartile, ranges, means and cross correlations of the four proxies. They are positively correlated, capturing some underlying similarities of the firms. But the correlations are far from perfect, with rank correlations as low as 0.35. Appendix Table A.19 reports firm characteristics by quartile. Across all measures, higher rigidity firms tend to have workers with more experience and tenure, and employ more blue-collar workers. Perhaps surprisingly, we find no clear correlation between wage levels and the wage rigidity proxies.

Empirical Results We show heterogeneity across quartiles of our four wage rigidity proxies in Figure 8. Initial REBP separation effects are indeed larger in cells with higher proxied wage rigidity. This evidence is consistent with wage rigidity mediating the initial separations, but might also reflect confounding factors such as a correlation with baseline surplus levels. As one check for such an alternative explanation, we also plot control-group separation rates during the policy period, finding a flat relationship.

Post-repeal, neither high- nor low-rigidity cells exhibit meaningful differences in separation rates comparing the former treatment and control regions. For the high-rigidity cells, this finding supports the predictions of the non-Coasean model with wage rigidity discussed in the previous section. For the low-rigidity cells, which plausibly may have exhibited more resilience in line with the Coasean prediction, we also do not find evidence for resilience. However, the absence of resilience does not invalidate the Coasean model in this case; as the low-rigidity (or high-flexibility) cells did not see REBP-induced separations to begin with, our resilience test does not have power.

Discussion While our evidence is consistent with wage rigidity as the source of non-Coasean dynamics, the proxies may partially reflect confounding factors—a challenge that motivated our paper to begin with. Our analysis also highlights that our main findings

21 Tenure $n(i, t)$ is made up of 5 three-year categories and a category for those with more than 15 years of tenure. Experience $e(i, t)$ is made up of 5 five-year categories and a category for those with more than 25 years experience. (Importantly, neither we nor collective bargaining agreements define wage groups based on age.) Occupation refers to white- vs. blue-collar.

22 We have also experimented with tracing wage effects of the REBP shock as in [Jäger, Schoefer, Young, and Zweimüller] (2020), but did not find strong patterns in any cell.
may be driven by rigid wage cells, and, more broadly, the REBP compliers. The type of wage rigidity relevant to our design is symmetric (upward and downward, mediating effects of an age-specific boost to workers’ outside option and subsequent negative shocks). It also captures constraints on differentiating wage setting between similar workers perhaps within the same firm. Such frictions may reflect collective bargaining or informal institutions, such as equity concerns (Card, Mas, Moretti, and Saez, 2012; Dube, Giuliano, and Leonard, 2019; Saez, Schoefer, and Seim, 2019; Drenik, Jäger, Plotkin, and Schoefer, 2020), and are inherent to workhorse models of wage posting and monopsony.

8 Conclusion

We have provided a revealed-preference test of the widely invoked, but empirically elusive, Coasean theory of bilaterally efficient separations. The test is based on a quasi-experiment that extracted marginal matches from a treated group but preserved them in a control group. Rejecting the Coasean view, after this treatment was removed, the survivors in the former treatment group exhibited no resilience compared to the control group. Wage rigidity emerges as the friction plausibly underlying the inefficient separations.

We close by highlighting three questions our study leaves open. First, our wage rigidity proxies are not (quasi-)randomly assigned, so that we cannot definitively establish wage rigidity as the source of the inefficient separation dynamics. Second, we leave open the deeper sources of that wage rigidity. Third, our test only assesses the bilateral efficiency of bargaining in the jobs that dissolved in response to REBP (the compliers). More generally, gauging the external validity of our findings beyond our variation and sample would require replicating our design in additional samples and settings.
References

Tables

Table 1: Summary Statistics

<table>
<thead>
<tr>
<th></th>
<th>Treatment Region</th>
<th>Control Region</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eligible Cohort</td>
<td>Ineligible Cohort</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Birth Year</td>
<td>1938.636</td>
<td>1945.704</td>
</tr>
<tr>
<td></td>
<td>(2.800)</td>
<td>(1.526)</td>
</tr>
<tr>
<td>Experience</td>
<td>22.138</td>
<td>20.536</td>
</tr>
<tr>
<td></td>
<td>(5.408)</td>
<td>(5.509)</td>
</tr>
<tr>
<td>Tenure</td>
<td>11.168</td>
<td>9.630</td>
</tr>
<tr>
<td></td>
<td>(5.885)</td>
<td>(6.027)</td>
</tr>
<tr>
<td>Annual Earnings (1,000 EUR)</td>
<td>36.332</td>
<td>35.747</td>
</tr>
<tr>
<td></td>
<td>(10.002)</td>
<td>(10.103)</td>
</tr>
<tr>
<td>White Collar</td>
<td>0.378</td>
<td>0.401</td>
</tr>
<tr>
<td></td>
<td>(0.485)</td>
<td>(0.490)</td>
</tr>
<tr>
<td>Observations</td>
<td>52,294</td>
<td>29,059</td>
</tr>
</tbody>
</table>

Note: This table reports summary statistics—means and standard deviations (in parentheses)—for our sample of workers employed at the onset of the reform (1988q2). Columns (1) and (2) do so for the treatment regions and Columns (3) and (4) for the control regions, described in Section 2. Columns (1) and (3) report on the eligible cohorts (cohorts born between 1933 and 1943 who were 50 or older at some point while REBP was active), Columns (2) and (4) on the ineligible control cohorts (cohorts born between 1943 and 1948 who did not turn 50 during the policy period). Details on the sample selection are in Section 2.3. Annual earnings (in logs) are based on 2018 EUR (in 1,000s).
Table 2: Initial Treatment Effect: Difference-in-Differences Effects on Separations (1988-93) Among Pre-Reform Job Holders

<table>
<thead>
<tr>
<th></th>
<th>(1) Separation Into Nonemployment</th>
<th>(2) Separation into Nonemployment (Quarters)</th>
<th>(3) Nonemployment (Quarters)</th>
<th>(4) Unemp. (Benefits) (Quarters)</th>
<th>(5) Cont. Empl. (Quarters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>REBP Region x Treated Cohort</td>
<td>0.110***</td>
<td>0.121***</td>
<td>1.483***</td>
<td>0.971*</td>
<td>-1.056***</td>
</tr>
<tr>
<td></td>
<td>(0.041)</td>
<td>(0.043)</td>
<td>(0.380)</td>
<td>(0.532)</td>
<td>(0.370)</td>
</tr>
<tr>
<td>REBP Region</td>
<td>0.003</td>
<td>-0.003</td>
<td>-0.235</td>
<td>-0.098</td>
<td>0.014</td>
</tr>
<tr>
<td></td>
<td>(0.044)</td>
<td>(0.008)</td>
<td>(0.276)</td>
<td>(0.182)</td>
<td>(0.677)</td>
</tr>
<tr>
<td>Treated Cohort</td>
<td>0.030</td>
<td>0.111***</td>
<td>0.817***</td>
<td>0.158***</td>
<td>0.154</td>
</tr>
<tr>
<td></td>
<td>(0.026)</td>
<td>(0.004)</td>
<td>(0.129)</td>
<td>(0.058)</td>
<td>(0.392)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.375***</td>
<td>0.058***</td>
<td>1.500**</td>
<td>0.682</td>
<td>15.956***</td>
</tr>
<tr>
<td></td>
<td>(0.100)</td>
<td>(0.017)</td>
<td>(0.664)</td>
<td>(0.450)</td>
<td>(1.846)</td>
</tr>
<tr>
<td>Observations</td>
<td>384,200</td>
<td>384,200</td>
<td>384,200</td>
<td>384,200</td>
<td>384,200</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.008</td>
<td>0.047</td>
<td>0.023</td>
<td>0.019</td>
<td>0.002</td>
</tr>
<tr>
<td>No of Clusters</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Note: This table reports results of the econometric specification in Equation (9). The coefficient of interest is that on REBP Region × Treated Cohort, which captures the effect of REBP eligibility on the outcomes listed in columns (1) through (5) on a sample of workers employed at the onset of the reform (1988q2). We exclude workers born before 1933 and after 1948. Separation denotes an indicator function that is 1 if a worker separated from their 1988-employer by the end of the REBP period (1988q2 to 1993q3). Separation into Nonemployment denotes an indicator for Separation from the initial employer interacted with an indicator for not taking up employment with another employer. Nonemployment (Quarters), Unemployment (Benefits) (Quarters), and Continuous Employment (Quarters) denote the quarters of nonemployment, unemployment benefits, and continuous employment with the initial employer between 1988q2 and 1993q3. Standard errors clustered at the administrative region level are reported in parentheses. Levels of significance: * 10%, ** 5%, and *** 1%.

<table>
<thead>
<tr>
<th></th>
<th>(1) Separation Into Nonemployment (Quarters)</th>
<th>(2) Separation Into Nonemployment (Quarters)</th>
<th>(3) Nonemployment (Quarters)</th>
<th>(4) Unemp. (Benefits) (Quarters)</th>
<th>(5) Cont. Empl. (Quarters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>REBP Region × Treated Cohort</td>
<td>0.008 (0.010)</td>
<td>0.008 (0.009)</td>
<td>0.041 (0.027)</td>
<td>-0.071 (0.045)</td>
<td>-0.079** (0.036)</td>
</tr>
<tr>
<td>REBP Region</td>
<td>-0.003 (0.019)</td>
<td>0.008 (0.011)</td>
<td>-0.007 (0.056)</td>
<td>0.006 (0.042)</td>
<td>0.108 (0.091)</td>
</tr>
<tr>
<td>Treated Cohort</td>
<td>0.135*** (0.008)</td>
<td>0.160*** (0.003)</td>
<td>0.715*** (0.008)</td>
<td>0.149** (0.071)</td>
<td>-0.581*** (0.048)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.152*** (0.052)</td>
<td>0.063** (0.030)</td>
<td>0.306** (0.144)</td>
<td>0.139 (0.108)</td>
<td>8.203*** (0.249)</td>
</tr>
</tbody>
</table>

Observations: 201,409 201,409 201,409 201,409 201,409

Adjusted R^2: 0.025 0.046 0.038 0.006 0.016

No of Clusters: 99 99 99 99 99

Note: This table reports results of the specification in Equation (9). Here, the sample is restricted to workers employed at the same establishment in May 1988 and February 1994, i.e., survivors. The coefficient of interest is REBP Region × Treated Cohort and captures the effect of REBP-eligibility on the outcomes listed in columns (1) through (5), with outcomes measured by February 1996. We exclude workers born before 1933 and after 1948. Separation denotes an indicator function that is 1 if a worker is not employed by their employer from February 1994 (and May 1988) in February 1996. Separation into Nonemployment denotes an indicator for Separation from the initial employer interacted with an indicator for not being employed in February 1996. Nonemployment (Quarters), Unemployment (Benefits) (Quarters), and Continuous Employment (Quarters) denote the quarters of nonemployment, unemployment benefits, and continuous employment with the initial employer between February 1994 and 1996. Standard errors clustered at the administrative region level are reported in parentheses. Levels of significance: * 10%, ** 5%, and *** 1%.
Table 4: Mixed Model Estimates of Share of Cells With Full Post-Repeal Surplus Reshuffling

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7)</td>
<td>(8)</td>
</tr>
<tr>
<td>Panel A: No Post-Repeal Idiosyncratic Shocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>κ</td>
<td>0.978</td>
<td>1.040</td>
<td>1.097</td>
<td>1.117</td>
<td>0.974</td>
<td>1.083</td>
<td>1.157</td>
<td>1.226</td>
</tr>
<tr>
<td></td>
<td>(0.035)</td>
<td>(0.044)</td>
<td>(0.057)</td>
<td>(0.077)</td>
<td>(0.032)</td>
<td>(0.035)</td>
<td>(0.043)</td>
<td>(0.059)</td>
</tr>
<tr>
<td>$1 - \kappa$</td>
<td>0.022</td>
<td>-0.040</td>
<td>-0.097</td>
<td>-0.117</td>
<td>0.026</td>
<td>-0.083</td>
<td>-0.157</td>
<td>-0.226</td>
</tr>
<tr>
<td></td>
<td>(0.035)</td>
<td>(0.044)</td>
<td>(0.057)</td>
<td>(0.077)</td>
<td>(0.032)</td>
<td>(0.035)</td>
<td>(0.043)</td>
<td>(0.059)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.792</td>
<td>0.910</td>
<td>0.935</td>
<td>0.952</td>
<td>0.803</td>
<td>0.883</td>
<td>0.915</td>
<td>0.930</td>
</tr>
<tr>
<td>N</td>
<td>182</td>
<td>182</td>
<td>182</td>
<td>182</td>
<td>513</td>
<td>513</td>
<td>513</td>
<td>513</td>
</tr>
<tr>
<td>Panel B: Idiosyncratic Shocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>κ</td>
<td>0.934</td>
<td>1.045</td>
<td>1.097</td>
<td>0.889</td>
<td>0.864</td>
<td>0.992</td>
<td>1.157</td>
<td>0.937</td>
</tr>
<tr>
<td></td>
<td>(0.053)</td>
<td>(0.052)</td>
<td>(0.057)</td>
<td>(0.096)</td>
<td>(0.051)</td>
<td>(0.008)</td>
<td>(0.043)</td>
<td>(0.047)</td>
</tr>
<tr>
<td>$1 - \kappa$</td>
<td>0.066</td>
<td>-0.045</td>
<td>-0.097</td>
<td>0.111</td>
<td>0.136</td>
<td>0.008</td>
<td>-0.157</td>
<td>0.063</td>
</tr>
<tr>
<td></td>
<td>(0.053)</td>
<td>(0.052)</td>
<td>(0.057)</td>
<td>(0.096)</td>
<td>(0.051)</td>
<td>(0.008)</td>
<td>(0.043)</td>
<td>(0.047)</td>
</tr>
<tr>
<td>$x_{1933-1938}$</td>
<td>0.080</td>
<td>0.265</td>
<td>0.001</td>
<td>0.233</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.089)</td>
<td>(0.210)</td>
<td>(0.220)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x_{1938-1943}$</td>
<td>0.039</td>
<td>0.000</td>
<td>0.000</td>
<td>0.263</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0.793</td>
<td>0.909</td>
<td>0.935</td>
<td>0.950</td>
<td>0.809</td>
<td>0.881</td>
<td>0.915</td>
<td>0.928</td>
</tr>
<tr>
<td>N</td>
<td>182</td>
<td>182</td>
<td>182</td>
<td>182</td>
<td>513</td>
<td>513</td>
<td>513</td>
<td>513</td>
</tr>
</tbody>
</table>

Note: This table reports NLS estimates of Equation (12) (Panel A) and Equation (15) (Panel B), assessing what fraction of (size-weighted) labor market cells would need to exhibit full post-repeal surplus reshuffling in order to rationalize our empirical control and treatment group separation rates. Panel A estimates the simple specification described in Section 6.1.1. Panel B augments the simple specification by additionally allowing for “large” idiosyncratic shocks of the type described in Section 6.1.2. In all specifications, we collapse the data at the cohort by industry by occupation (blue/white collar) level and weight each observation by the number of workers in each cell, dropping cells with fewer than ten workers who survived REBP. Post-repeal separation rates are measured in the year specified above the column heading, ranging from one year post-REBP in Column (1) to four years post-REBP in Column (4). Columns (1)-(4) use 5-year cohort definitions, while Columns (5)-(8) use 1-year cohort definitions. Standard errors are reported in parentheses for all specifications. The first four columns of Panel B additionally report estimates of the prevalence of the large idiosyncratic shocks for each cohort, with rate x_c. We restrict these estimates to be between 0 and the 10th percentile of the control group separation rates Δ_0^{ic}, omitting standard errors when estimates are on the boundary of the parameter space. Additional NLS estimation details are provided in Appendix E.
Figures

Figure 1: The Regional Extended Benefit Program (REBP)

(a) Timeline of Potential Benefit Duration During REBP

(b) Map of REBP Treatment and Control Regions

Note: Panel (a) shows the timeline of reform changes in potential benefit duration (PBD) for eligible workers in treatment (REBP) and control (non-REBP) regions. It first shows the PBD for individuals aged 50 or older in the REBP region, which increased from 30 to 209 weeks starting July 1988. Second, individuals 50 or older but in the control (non-REBP) region were ineligible. Lastly, individuals not meeting the age requirement were ineligible in either region. The figure also shows a smaller, nation-wide PBD reform in 1989, which our difference-in-differences design nets out. Section 2 summarizes further details on eligibility. Panel (b) depicts a map of Austrian municipalities categorized into REBP treatment and control regions. We drop the partially treated regions, where REBP was repealed in 1991. Source for map: Inderbitzin, Staubli, and Zweimüller (2016), Figure 1.
Figure 2: Case Studies of Jobs

Note: This figure plots job case studies in the two-dimensional space of worker and firm job surplus. The solid circles (●) denote gross-of-wage surpluses, i.e., $V_{W\,in} - V_{W\,out}$ for the worker and $V_{F\,in} - V_{F\,out}$ for the firm. The empty circles (○) denote net-of-wage surpluses, i.e., $V_{W\,in} + w - V_{W\,out}$ for the worker and $V_{F\,in} - w - V_{F\,out}$ for the firm. The 135-degree lines are iso-joint-surplus lines, along which wages reallocate surplus between the firm and the worker. The empty lines (||) at a right angle at the origin denote the participation constraints of the worker and the firm, namely positive net-of-wage surpluses. The bold diagonal line (I) represents the threshold for job viability on the basis of joint job surplus (which an appropriately set wage can in principle distribute to render each parties’ surplus positive). For a job to be viable net of the wage, it must be in the top right corner, providing positive surplus to both parties. Three kinds of separations are represented by the three remaining corners. Quits emerge with negative worker but positive firm surplus. Job A is “born” a quit but the positive wage transforms it into viable job A_1. The wage can also “overshoot” to job A_2, leading to a layoff due to negative firm surplus. Job B is born viable even with a zero wage, e.g., an internship or a high-amenity job. Here, too positive (negative) a wage, B_1 (B_2), leads to a layoff (quit). Job C is a layoff case with a zero wage, so viability requires a negative wage. Doomed jobs such as X are born with negative surplus for both parties. Job X provides negative joint surplus; no wage can render it viable, and both parties are better off outside this match (mutual separation). Finally, M is a marginal job, with zero joint surplus. Born a quit, a unique positive wage moves it to the origin with zero surplus for either party.
Figure 3: Separation Dynamics and Surplus Distributions: Coasean vs. Wage Rigidity Model

Coasean Model

Joint Job Surplus

(a) Initial Treatment

Worker Surplus Gross of Wage

Firm Surplus Gross of Wage

(0,0)

Unilateral Surpluses

(b) Feasible Jobs

Firm Surplus Gross of Wage

Mutual Separations

Worker Surplus Gross of Wage

(0,0)

Non-Coasean Model

With Wage Rigidity

(c) Feasible Jobs

Firm Surplus Net of Wage

Mutual Separations

Layoffs

Worker Surplus Net of Wage

(0,0)

(d) Post-Repeal Treatment Group

Worker Surplus Gross of Wage

Firm Surplus Gross of Wage

(0,0)

(e) Worker Surplus Net of Wage

Firm Surplus Net of Wage

(0,0)

(f) Post-Repeal Control Group

Worker Surplus Gross of Wage

Firm Surplus Net of Wage

(0,0)

Note: This figure plots example surplus distributions underlying the separation dynamics. The distributions are illustrative and do not correspond to a specific numerical case we will treat. The left column shows a Coasean case in a joint-surplus representation; the middle column shows the model in a two-dimensional representation in terms of unilateral gross-of-wage surpluses, building on Figure 2. The right column shows net-of-wage surpluses for a rigid-wage model. There, the empty lines (||) denote separation thresholds for net-of-wage unilateral surpluses. The bold diagonal line (I) does so for joint surplus in the middle column. The top row shows initial effects of REBP. The middle (bottom) row shows post-repeal surplus distributions among surviving matches in the former treatment (control) group. For the middle and right column, the two last rows also show responses to shocks. Panel (a) also includes separators unrelated to REBP but due to idiosyncratic shocks, indicated by the black mass of share δ^0. Throughout, the marginal jobs are gray, making up share $\delta^1 - \delta^0$. Infra marginal jobs surviving REBP are white and share $1 - \delta^1$. At the point of repeal, among survivors in the control group, $(\delta^1 - \delta^0)/(1 - \delta^0)$ are marginal, low-surplus jobs.
Figure 4: Initial Treatment Effect: Separations (1988-93) Among Pre-Reform Job Holders

(a) Levels

(b) Differences

Note: Panel (a) shows the share of workers who separated from their 1988q2-employer (right before the reform) by 1993q3 (when the reform had just ended). We plot rates by month of birth and within the treated (red, short dashes) and the control (blue, solid) regions. Panel (b) shows the difference between the treated and the control region by cohort. Cohorts born after 1943 were not covered by the policy as they turned 50 after the program was repealed 1993. Cohorts born before 1933 had all reached retirement age by 1993.
Figure 5: Resilience Test: Post-Repeal Separations (1994-96) Among Program Survivors

(a) Levels

![Graph showing the share of workers observed in the same establishment between 1988q2 and 1994q1 who separate from that employer by 1996q1. The sample is split into treated (red, short dashes) and control (blue, solid) regions. The yellow dashed line plots the Coasean benchmark using Equation (7) (no post-repeal idiosyncratic shocks case).](image)

(b) Differences

![Graph showing the difference in separation rates from Panel (a) between the treatment and control regions (red, solid), and between separations predicted based on the Coasean benchmark in the treated region and observed separations in the control region (yellow, dashed). The retirement age for Austrian men was 60 years in this period, which explains the spike in separations among older cohorts.](image)

Note: Panel (a) shows, by month of birth, the share of workers observed in the same establishment between 1988q2 and 1994q1 who separate from that employer by 1996q1. The sample is split into treated (red, short dashes) and control (blue, solid) regions. The yellow dashed line plots the Coasean benchmark using Equation (7) (no post-repeal idiosyncratic shocks case). Panel (b) shows, by month of birth, the difference in separation rates from Panel (a) between the treatment and control regions (red, solid), and between separations predicted based on the Coasean benchmark in the treated region and observed separations in the control region (yellow, dashed). The retirement age for Austrian men was 60 years in this period, which explains the spike in separations among older cohorts.
Figure 6: Resilience Tests: Post-Repeal Separation Responses to Negative Industry and Establishment-Level Growth Events (1994-96)

(a) Difference in Separation by Industry Growth

(b) Separations vs. Annual Establishment Growth

(c) Survivor Separations by Cohort and Region

(d) Birth Cohort-Specific Slopes

Note: Panel (a) splits the by-cohort regional difference from Figure 5 Panel (b) into terciles of industry growth, with the first tercile denoting the lowest and the third tercile denoting the highest industry growth. Specifically, we calculate employment growth between 1994q1 and 1996q1 for each industry (two-digit NACE), among all workers (not just stayers) born after 1938. Panels (b), (c) and (d) plot the results of an analysis focusing on labor demand shifts within establishments. We confirm the “hockey-stick” relationship between separations and employment growth at the establishment level (Davis, Faberman, and Haltiwanger, 2013) in Panel (b). It plots annual separation rates for male workers employed in a given year by bins of 1994q1-95q1 establishment employment growth. Panel (c) focuses on the four REBP groups (eligible and ineligible cohorts and regions), and plots their separations against total establishment employment growth. We ignore the cohorts born before 1936 since they have reached retirement age in 1996. Panel (d) plots the slope of the cohort-specific relationship between separations and establishment growth (1994-1996) among shrinking establishments by cohort and region. We adjust throughout for spurious layoffs due to mergers, take-overs, and administrative changes using the procedure in Fink, Kalkbrenner, Weber, and Zulehner (2010).
Figure 7: Predicted and Observed Post-Repeal Separations (1994-96) Among Program Survivors

(a) Mixed Model Predictions

(b) Continuous Normal Idiosyncratic Shock Predictions

(c) Joint Surplus Distribution

(d) Aggregate Separation Rates

Note: This figure reports robustness of our main results to permitting idiosyncratic shocks to surplus after the repeal of REBP, for the 1994-96 horizon. We explore two specifications, both of which yield predicted post-repeal separation rates in the former treatment group that remain substantially below the empirical one. Panel (a) shows robustness to permitting large idiosyncratic shocks that lead jobs to separate irrespective of their initial surplus, with a cohort-specific probability. It reports separation rates averaged across industry-occupation cells for 1-year birth year cohorts from 1933 to 1943. The average control group separation trend is plotted in solid blue, while the treatment group trend is plotted in dashed dark red. The yellow dashed line plots the treatment group separation rate implied by the Coasean model with no post-repeal idiosyncratic shocks according to Equation (7), again averaged over industry-occupation cells. The orange dashed line additionally accounts for the presence of large idiosyncratic shocks, predicting treatment cell separation rates using Equation (14), with \(\delta_b \) estimated in the Column (6) specification of Table 4. The estimates of \(\delta_b \) used are additionally plotted in dashed black, as well as reported in Column (8) of Appendix Table A. The other panels refer to the alternative specification of idiosyncratic shocks in the form of continuous, additive, normal shocks. Panel (b) shows, by year of birth, the share of workers observed in the same establishment between 1988q2 and 1994q1 who separate from that employer by 1996q1. The sample is split into treated (red) and control (blue) regions. The yellow dashed line plots the Coasean benchmark using Equation (7) (no post-repeal idiosyncratic shocks case) and the green line shows the predicted separation rate using a continuous normal idiosyncratic shock (but no aggregate shock) as described in Appendix F and in the main text. Panels (c) and (d) plot additional ingredients of this alternative specification. Panel (c) shows the joint surplus distribution based on the GSOEP survey described in Appendix F, together with the size of the REBP shock that is necessary to rationalize a fraction of marginal jobs \((\delta^1 - \delta^0)/(1 - \delta^0)\) (red, dashed). Panel (d) shows predicted post-repeal separation rates, \(\Delta Z \), as a function of the idiosyncratic shock dispersion \(\sigma \), separately for the treatment and control groups.
Figure 8: Separations (1994-96) by Wage Rigidity Proxies

(a) By SD of Log Wage

(b) By SD of Residuals of Log Wage

(c) By SD of ΔLog Wage

(d) By SD of Residuals of ΔLog Wage

Note: This figure plots several coefficients by quartiles of the within-firm standard deviation of log wages (Panel (a)), the within-firm standard deviation of Mincer residuals from a regression of log earnings on tenure-experience-occupation-industry-year fixed effects (Panel (b)), and analogous measures for changes in log wages over a 5-year horizon (Panels (c) and (d)). We measure wage rigidity at the firm level in the pre-reform period. Cells further to the right exhibit more between-worker dispersion and thus less rigidity. The blue vertical dashes display the control group separation rate during REBP. The red circles plot the treatment effect of REBP on separations among the sample of workers who held a job in 1988 right before the onset of the program. The blue hollow circles plot the effect on separations in the post-repeal period (separation by 1996) in the sample of those workers who were employed in 1988 and whose job survived until 1994. Finally, the yellow dashed lines plot the predicted effect based on the Coasean benchmark with aggregate shocks only, which also corresponds to the non-Coasean benchmark with worker shocks only. Appendix Figure A.21 replicates this figure for the post-repeal horizons other than 1994-96.
Online Appendix
Marginal Jobs and Job Surplus:
A Test of the Efficiency of Separations
Simon Jäger, Benjamin Schoefer, and Josef Zweimüller

Contents

A Quantifying Workers’ Value of the REBP UI Extension 4
B The Role of Severance Payments 6
C Theoretical Appendix: Full Coasean Model 13
 C.1 Separation Rates in Four Cases 17
 C.2 When is Perfect Reshuffling Necessary? 21
 C.3 Why Do “Large Shocks” Not Give a Successful Account of the Evidence? . 25
D Theoretical Appendix: Full Non-Coasean Model Featuring Wage Rigidity 28
E Estimation Details: Mixed Model 34
F GSOEP Surplus Calibration 45
G Variable Construction 59
H Additional Tables 61
I Additional Figures 69
Online Appendix References 78

List of Tables

A.1 Tenure Quartiles and Underlying Years of Tenure, Monthly Salaries of Severance Pay, and Experience 12
A.2 Mixed Model Estimates: 1994-95 Separations Window, 5-Year Cohorts 37
A.3 Mixed Model Estimates: 1994-95 Separations Window, 1-Year Cohorts 38
A.4 Mixed Model Estimates: 1994-96 Separations Window, 5-Year Cohorts 39
A.5 Mixed Model Estimates: 1994-96 Separations Window, 1-Year Cohorts 40
A.6 Mixed Model Estimates: 1994-97 Separations Window, 5-Year Cohorts 41
A.7 Mixed Model Estimates: 1994-97 Separations Window, 1-Year Cohorts 42
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.19 Resilience Test at Other Horizons: Post-Repeal Separations Among Program Survivors</td>
<td>75</td>
</tr>
<tr>
<td>A.20 No Evidence for Employer-Level Spillovers: Differences in Post-Repeal Separations by Firm and Industry Exposure to REBP (Share of Program-Eligible (Old) Workers)</td>
<td>76</td>
</tr>
<tr>
<td>A.21 Separations by Wage Rigidity Proxies (Other Horizons)</td>
<td>77</td>
</tr>
</tbody>
</table>
A Quantifying Workers’ Value of the REBP UI Extension

We calculate the cash value of extended benefits following the approach in Card, Chetty, and Weber (2007) and complement it with new data on unemployment assistance (UA, “Notstandshilfe” in German). Our estimate for the average cash value of the reform corresponds to about eight to nine months of pay or 71% of a worker’s annual salary.

REBP changed potential UI benefit duration from 30 or 52 weeks to 209 weeks for older workers (see Figure 1 Panel (a)).

To provide a conservative estimate of the value of the reform, we take 52 weeks as the alternative potential benefit duration. Under this assumption, REBP changed benefits by 157 weeks or 36.1315 months.

When benefits run out, many workers are eligible for lower UA benefits. UA benefits are means-tested and depend on other (spousal) sources of income as well as the number of dependents. They are capped at 0.92 of the worker’s UI benefits, according to the formula

\[
UA = \min\{0.92 \times UI, \max\{0, 0.95 \cdot UI - \text{Spousal Earnings + Dependent Allowances}\}\}.
\]

(A1)

To impute counterfactual UA payments, we draw on data from the AMS, the Austrian employment agency, on unemployment benefit and UA receipt. This allows us to observe actually paid out UI and UA benefits. We draw on data from a period when both UI and UA payments are observed in the AMS data (2001-2009), and zoom in on workers whose UI benefits ran out and who did not take up employment in the subsequent 60 days. We then calculate the average ratio of UA to UI benefits. We assign everyone zero UA benefits if they do not receive UA benefits in the 60 days after UI benefits ran out, even though they may have been eligible for non-zero UA benefits but did not take them up. In our sample, we find that the average UA benefit corresponds to 50.5% of previous UI benefits.

The average replacement rate between 1988 and 1993 was 40.0%. We calculate the average replacement rate for workers in eligible cohorts in the REBP region by simply assigning replacement rates to workers based on their earnings and averaging over workers from 1988 to 1993.

As a final input into our calculation, we account for the fact that benefits are not taxed. The average tax rate for personal income in Austria was 11.2% after a 1989 tax reform (OECD 1990). In addition, employee-borne payroll taxes of about 18% were levied on wages. We thus scale up UI and UA benefits relative to gross income by \(1/(1 - \tau_{\text{average}})(1 - \tau_{\text{Soc. Sec. average}})\) to account for non-taxation of benefits.

We can then calculate the cash value of the reform to the average worker according to

\[23\]For most of the treatment period, since 1989, the potential benefit duration for older workers was 52 weeks. Until 1989, the potential benefit duration was 30 weeks.

\[24\]Specifically, the total payroll taxes contribution rates for workers and firms were, in sum, 34.5% for blue- and 38.6% for white-collar workers (OECD 1990). In our sample, about 35.4% of workers among 1988 job holders were white-collar workers so that the average social security contribution rate is \(0.345 \cdot (1 - 0.354) + 0.386 \cdot 0.354 \approx 0.36\), leading to a worker contribution rate of 18%.
the formula:

\[
31.1315 \times 0.400 \times (1 - 0.505) \times ((1 - 0.115)(1 - 0.18))^{-1} \times w \approx 8.494 \cdot w, \quad (A2)
\]

where \(w \) denotes the average worker’s monthly gross wage and RR denotes replacement rates. According to this calculation, the average cash value of the REBP reform to workers was about eight to nine months of salary or 71% of an annual salary\(^{25}\).

\(^{25}\)Wages in Austria are paid based in 14, rather than 12, installments. The additional two installments are incorporated in the calculation of UI benefits. The monthly wage we mention above corresponds to an average wage corresponding to the annual salary divided by 12.
B The Role of Severance Payments

Here, we assess the role of severance pay in our analysis. We first analyze the case of flexible wages. With flexible wages, we show that our original takeaway for the Coasean case remains completely unchanged, following the neutrality results in Lazear (1986, 1990). We then reiterate that severance pay is no longer neutral with wage rigidity, as in Garibaldi and Violante (2005). Here, we clarify that the incremental consequence of severance pay under our non-Coasean model in Section 3.2 is simply to shift the baseline unilateral surplus distributions, but the intuitions of the fixed-wage setting (and hence its empirical implications) remain analogous.

B.1 Theoretical Assessment

We modify our basic setup in Equations (1) and (2) to include severance pay s paid upon any separation, regardless of whether the separation is a quit or a layoff.

The severance payment affects the outside value. The neutrality of the severance payment emerges already in the formulation of joint job surplus. To see this, we add the severance payment s into the definition of the values analogously to the wage payment w, whereby the values are defined gross of wages and severance payment now:

\[S^W = V^W_{In} + w - [V^W_{Out} + s] \]
\[S^F = V^F_{In} - w - [V^F_{Out} - s] \]

Joint surplus $S = V^W_{In} + V^F_{In} - V^W_{Out} - V^F_{Out}$ is independent of severance payment s. Hence, separation decisions in bilaterally efficient bargaining settings remain efficient, and specifically neutralize the severance payments. That is, separations in a setting with and without severance pay mandates are identical. This neutrality result is well-known (see, e.g., Lazear, 1986, 1990). We do not discuss dynamic or specific frictions that break the neutrality here (except for fixed wages below, which is our leading friction in the main part of the paper). We also do not derive strategic forms of the bargaining game, and do not differentiate quits and layoffs here, exactly because in this benchmark setting there is no notion of a one-sided separation.

Fixed Wages We now introduce wage rigidity in the form of fixed wages, as in Section 3.2. Here, severance pay will have an effect on separations, as in Garibaldi and Violante (2005).

We consider two variants. First, severance is paid no matter who initiates the separation. The participation constraints then become:

\[V^W_{In} + w \geq V^W_{Out} + s \]
\[V^F_{In} - w \geq V^F_{Out} - s \]

As the fixed-wage setting accommodates distinctions between quits and layoffs, we now model also a setting in which severance payments are due only upon a layoff, but not upon a quit (in Austria, severance payments are also due upon mutual separations, but this case...
does not have a clear mapping into our non-Coasean setting):
\[
V_{In} + w \geq V_{Out}^W \quad \text{(A7)}
\]
\[
V_{In}^F - w \geq V_{Out}^F - s \quad \text{(A8)}
\]

In both cases, the presence of a severance payment mandate therefore leaves the intuitions of our non-Coasean model in Section 3.2 intact, except that the severance payment may shift the surplus distributions. That is, one could redefine the firms’ outside option as \(V_{Out}^F = V_{Out}^F - s\) and apply the subsequent logic of our model with rigid wages. Importantly, the formation of matches could be affected if wages are completely rigid. However, our analysis takes a given cross-section of existing employment relationship and takes the initial formation process as given in the past.

Dynamics: Increasing Severance Payment by Staying, and Unconditional Severance Payment Upon Retirement We close with two important institutional features of Austrian severance pay. First, severance payments are an increasing step function of tenure. Second, and particularly relevant for our sample, severance payment is due upon retirement irrespective of the type of separation.

To assess the potential dynamic effects within a Coasean framework, it is useful to ask: how would the step function of severance payments affect the path of flexible (Coasean) wages? This perspective provides a tangible assessment of the severance payments in employment relationships. But it also gives a useful benchmark as to whether Austrian wage setting institutions can plausibly be flexible. In practice, basic bargaining theory implies that the required wage path need not be tilted noticeably.

We now think of the severance pay \(s = s_B - s_A\) as the *incremental* one when crossing the next tenure step. We have pre-step workers in group \(A\) and those across the step in group \(B\). The bargaining and surplus implications for the \(B\) workers are described above already: \(s\) does not affect the joint surplus (and hence not (efficient) separations either), and only boosts workers’ outside option (at the expense of that of the firm).

To now understand how this feature affects wage setting in group \(A\), we must assume a wage setting protocol within the class of bilaterally efficient models. We also must explicitly introduce dynamics with continuation values. Throughout, we will choose those assumptions that are most extreme in that they yield the maximal reduction of \(A\) wages from \(s\).

First, we assume that there is no separation risk between \(A\) and \(B\), and moreover workers do not discount the future. This assumption maximizes the effect of the continuation value on \(w_A\), the wage of group \(A\). It also allows us to think of a simple two-period model, consisting of the duration as worker type \(A\) as the first period and thereafter starting as type \(B\).

Second, we assume Nash bargaining with worker bargaining power \(\phi\). As will become clear below, this assumption will lead to a one-to-one effect of the severance payment onto the (present value of) wages paid out to \(A\) workers, \(w_A\).

We start by defining the value of employment for the \(A\) worker (so the index is \(WA\) for
worker of type A):

$$V_{in}^{WA} + w_A = \tilde{V}_{in}^{WA} + \tilde{w}_A + [V_{in}^{WB} + w_B], \quad (A9)$$

where \tilde{x} denotes a present value minus the continuation value after upgrading from A to B. That is, \tilde{V}_{in}^{WA} now denotes the value of the worker, gross of the wage, while of type A, for that period, and similarly \tilde{w}_A now denotes the present value of wages paid over the course of this tenure window (recall the absence of separations and discounting).

Assuming Nash wage bargaining in jobs of type A with worker bargaining power ϕ^A, the wage rule is:

$$\tilde{w}_A = \phi^A S_A + [V_{out}^{WA} - V_{in}^{WA} - w_A], \quad (A10)$$

$$= \phi^A S_A + [V_{out}^{WA} - \tilde{V}_{in}^{WA} + [V_{in}^{WB} + w_B]], \quad (A11)$$

where S_A is the joint surplus in jobs of type A.

The expression reveals two insights. First, s does not affect joint surplus at step A nor B (as we have shown above). Second, the expression makes clear that severance pay s affects wages of the pre-step worker A by affecting the continuation value V_{in}^{WB}. Through this channel, it can affect wage setting while in A. The effect is maximal as we assumed away discounting and separations.

Second, to quantify the effect of the severance payment on the job value and hence wages w_A, we specify the bargaining protocol for period B. We again assume Nash bargaining, which we show yields the maximal, i.e., one-to-one, wage effect, irrespective of the bargaining power.

That is, in period B, Nash wages are set such that

$$V_{in}^{WB} + w_B = \phi^B S_B + [V_{out}^{WB} + s]. \quad (A12)$$

Here, the joint surplus S_B is not affected by the severance payment, as discussed above. Yet, the worker’s outside option is affected. Since Nash bargaining has the net-of-wage inside value equal the outside option plus a share of the joint surplus, and since the joint surplus pie size is unaffected, this particular bargaining protocol implies the largest increase in the worker’s continuation value from A into B: a one-to-one pass-through. Importantly, other bilaterally efficient bargaining assumptions can feature smaller pass-through or nearly full neutrality, such as fixed wages with renegotiation only if a participation constraint is hit [MacLeod and Malcomson, 1993]. Hence, our Nash assumption for wages w_B yields the largest, i.e., one-to-one, effect of the severance payment into the continuation value.

Using backward induction, we now replace the continuation value of A workers in Equation (A11):

$$\tilde{w}_A = \phi^A S_A + [V_{out}^{WA} - [\tilde{V}_{in}^{WA} + \phi^B S_B + [V_{out}^{WB} + s]], \quad (A13)$$

That is, pre-step wages \tilde{w}_A fall in s one to one. Hence, in this case of the upper bound of the effect magnitude, in period A the worker and firm bargain away the boost from the severance payment, having the worker pay for it in advance. They anticipate that s will
lead the worker to extract higher wages tomorrow (in period B), but since she can do so only upon continuing, this boost is part of her inside value today (in period A). It therefore gets neutralized in period-A wages entirely. This result is simply a variant of the neutrality result in Lazear (1986, 1990); Garibaldi and Violante (2005) adapted to our setting.

Calibrating the Upper Bound on Wage Effects Recall that $	ilde{w}_A$ represents the present value of period A wages. A realistic jump of s in our sample is of 3 months when the worker adds 5 years of tenure, the usual step size for higher-tenured workers. Here, we would therefore amortize the 3 month wages over $5 \times 12 = 60$ monthly wage payments, for example with a decrease of monthly wages by $3/60 = 5\%$—compared to a benchmark of a counterfactual economy without that tenure step. Such wage effects can be smoothed out or alternatively be implemented with a tilt in the tenure gradient, as any present-value-preserving schedule implementing this wage adjustment would do. Institutionally, collective bargaining (typically occurring between employers and unions in industry-by-occupation-by-region cells and setting wages for experience and tenure groups) may incorporate such severance payment offsets as the severance pay-tenure schedule is widely known in advance.

Therefore, the reality of severance payments in Austrian setting is far from subject to the bonding critique of Lazear (1986, 1990), whereby wages would have to be dramatically lower, even turn negative, to neutralize the institution.

We close by reiterating two statements. First, wage gradients separately would not be indicative of Coasean and non-Coasean bilateral interactions, as the aforementioned alternative protocols (MacLeod and Malcomson, 1993) achieve bilateral efficiency despite wages being largely neutral to the kind of outside option boosts severance payments provides. Second, the ballparked wage adjustment are overestimates as we assume (i) no discounting, (ii) no separations between A and B, and (iii) implement the Nash wage protocol, whereby the outside option boost adds one to one into the continuation value in B as well as into the wage in A. Other bargaining protocols will yield smaller pass-through.

Extensions: Separations and Retirement Payouts Importantly, s could in principle affect the continuation value from A into B either through the improved payoff while employed, but also through the higher payoff in case of a separation from B. One way to think about this setup is that, e.g., due to Markov process $k(., .)$ in the job characteristics, separations may occur (or simply due to an ad-hoc “exogenous” separation). In case of separation while in B, the B worker’s actual continuation value, i.e., the same the outside option in Nash bargaining, will be augmented by the severance payment s. Therefore, in the separation states of the continuation term from A to such a “risky” B, the continuation value continues to be affected one to one. In the other states without a separation, while in B, the worker obtains the employment value of B through bargaining, which in our setting also yields a one to one boost from s due to bargaining. Therefore, permitting separations while in B turns out to leave the one-to-one effect on the continuation value intact. Hence, the bargaining of period-A wages inherits the same unit pass-through. (And again, separation before entering B will lead to attenuation.)

Interestingly, incorporating the institutional feature that s gets paid unconditionally at retirement does not change the insights. Yet, different mechanisms are at work, namely solely through the direct effect of increased inside continuation value (rather than increase
in outside option which leads to increased wages). This consideration may be particularly relevant to our sample of older workers. For example, Manoli and Weber (2016) present compelling intertemporal substitution evidence for retirement delays across the next step of tenure categories, which however operate at very short time windows. This evidence for the dynamic non-neutrality of severance payments is consistent with, for example, wage rigidity (by which workers for whom retiring right above the severance payment step could simply bargain for higher wages and retire at the otherwise optimal date). The authors interpret the evidence as Frischian labor supply behavior, due to the (reasonable) assumption that wages are unlikely to move at such narrow windows. However, the evidence is also consistent with the expected lump-sum payment being smoothed out over the tenure steps before the increase.

B.2 Empirical Evaluation

Empirical Tenure and Severance Pay Distribution in our Sample Appendix Table A.1 presents summary statistics (mean and range) of tenure and tenure-implied severance payment in monthly salaries of our sample of 1988 job holders, as well as the share meeting the experience requirement. We compute these values both for 1988—our lower bound and the number relevant for REBP separations—and extrapolating tenure to 1993 assuming no separation—which is the baseline for the post-repeal context and the upper bound for the REBP sample. These baseline values are our references because we cannot credibly condition on tenure at the point of separation, which is endogenous to the treatment. Finally, note that in 1988, tenure is left-censored at about 16 years since the ASSD begins in 1972. (The maximum tenure is 16.38 as the ASSD begins on January 1, 1972, and our pre-REBP 1988 cutoff date is May 15.) Foreshadowing our empirical analysis, we have split up the 1988 job holders into four quartiles by tenure.

The table clarifies that our sample has wide dispersion in tenure and implied severance payments, permitting us to study how the effects of REBP and its aftermath may be mediated by severance payments.

Strategy: Heterogeneity Analysis Our method splits up the sample into quartiles by tenure and estimates REBP treatment effects and post-repeal separation rates (and also constructs baseline control group separation rates), as in our heterogeneity analysis by wage rigidity in Section 7. Appendix Figure A.1 presents these results by tenure quartile and the various post-repeal horizons. Appendix Figure A.2 does so for the respective severance payments, where instead of sorting workers by quartiles, we sort workers into bins by the discrete set of policy-mandated severance steps. Again, we do so along baseline 1988 levels and extrapolated 1993 tenure, following the measures summarized in Appendix Table A.1.

Results We find that the REBP treatment effect is present in all categories. Interestingly, the effect is larger among higher-tenure workers, and, hence, those with more months of severance payment. This pattern supports the causal effect of REBP on separations for the workers that even upon unilateral quits may be at risk of losing severance payments (although the separations may well be mutual in practice). Hence, the degree of severance pay does not appear to play a dominant role in mediating the incremental separation
dynamics. The fact that the gradient slopes upward suggests that other factors, such as age composition and, relatedly, the ease of transitioning into retirement post-repeal, may dominate the sorting (although we do not dissect these possibilities here).
Table A.1: Tenure Quartiles and Underlying Years of Tenure, Monthly Salaries of Severance Pay, and Experience

<table>
<thead>
<tr>
<th>Tenure Quartile</th>
<th>Mean Years of Tenure</th>
<th>Range of Years of Tenure</th>
<th>Mean Severance Pay</th>
<th>Range of Severance Pay</th>
<th>Mean Experience</th>
<th>Share Meeting Experience Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988 (actual)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.60</td>
<td>0.00</td>
<td>4.01</td>
<td>0</td>
<td>2</td>
<td>19.11</td>
</tr>
<tr>
<td>2</td>
<td>7.30</td>
<td>4.01</td>
<td>10.79</td>
<td>2</td>
<td>4</td>
<td>20.94</td>
</tr>
<tr>
<td>3</td>
<td>14.11</td>
<td>10.79</td>
<td>16.36</td>
<td>4</td>
<td>6</td>
<td>22.37</td>
</tr>
<tr>
<td>4</td>
<td>16.37</td>
<td>16.36</td>
<td>16.38</td>
<td>6</td>
<td>6</td>
<td>24.21</td>
</tr>
<tr>
<td>1993 (extrapolated if no separation)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6.85</td>
<td>5.25</td>
<td>9.26</td>
<td>3</td>
<td>3</td>
<td>24.36</td>
</tr>
<tr>
<td>2</td>
<td>12.55</td>
<td>9.26</td>
<td>16.04</td>
<td>3</td>
<td>6</td>
<td>26.19</td>
</tr>
<tr>
<td>3</td>
<td>19.36</td>
<td>16.04</td>
<td>21.61</td>
<td>6</td>
<td>9</td>
<td>27.62</td>
</tr>
<tr>
<td>4</td>
<td>21.63</td>
<td>21.61</td>
<td>21.63</td>
<td>9</td>
<td>9</td>
<td>29.46</td>
</tr>
</tbody>
</table>

Note: This table reports two calculations of years of tenure, monthly salaries of severance pay, and experience for job holders in 1988. In the first panel, we compute the mean and range of each variable for job holders in 1988. In the second panel, we compute the mean and range of years of tenure and months of severance pay assuming each job holder in 1988 remains in their job until August 1993. We also show the mean experience (in years) and the share of workers in each quartile that satisfy the REBP experience requirement (at least 9 years during the past 15 years). Years of tenure are left-censored since the ASSD database begins on 1972. Thus, monthly salaries of severance pay for quartile 4 should be interpreted as lower bounds of actual monthly salaries of severance payment for both panels. All numbers expressed with no decimals reflect integers.
C Theoretical Appendix: Full Coasean Model

The full model below formalizes the effect of REBP and its repeal within the general Coasean model of jobs.

During-REBP Separation Behavior Separations (during [after] REBP denoted by δ [Δ]) occur if joint surplus were to turn negative, either due to aggregate shocks denoted by ε (e.g., ε_b^W from the shift in UI benefits) or idiosyncratic shocks (health, productivity, amenities,...). Denote by $k(V'\mid V)$ the Markov process governing the transition of job values into REBP and by $K(V''\mid V')$ the Markovian transition out of REBP, into the post-repeal period. We define $\tilde{S}(V')$ as the short-hand for the surplus level gross of a given aggregate surplus shifter, such that, for an aggregate shock $-\varepsilon' < 0$, $\tilde{S}(V', \varepsilon') = S(V', \varepsilon') - \varepsilon'$. For REBP, $\varepsilon' = \varepsilon_b^W$, and hence separations in the treatment [control] group $Z = 1[=0]$ are:

$$\delta^Z = \int_V \int_{V'} \mathbb{1}(\tilde{S}(V') < Z \times \varepsilon_b^W)k(V'\mid V)dV' f^Z(V)dV.$$

(A14)

where \tilde{d} is a slight modification of d to a gross-surplus concept with separate aggregate shocks, and $f^Z(.)$ denotes the distribution prevailing at the onset of REBP, where we will assume that initial distributions are the same across groups $f^0(.) = f^1(.)$. By contrast, $f_{\text{post}}^Z(.)$ will denote post-REBP distributions that will naturally diverge due to REBP, not only in terms of surplus, but also in terms of some direct observables.

In this framework, the treatment effect of REBP corresponds to:

$$\delta^1 - \delta^0 = \int_V \int_{V'} \mathbb{1}(0 \leq \tilde{S}(V') \leq \varepsilon_b^{W'})k(V'\mid V)dV' f^0(V)dV = \int_V \int_{V'\in M'} k(V'\mid V)dV' f^0(V)dV$$

$$= \int_V \left[d(V, \varepsilon_b^{W'}) - d(V, 0) \right] f^0(V)dV,$$

(A15)

where the last line clarifies that the difference in separation rates comes from different thresholds (the gross-of-REBP surplus in the treated regions needs to meet a higher bar) and not from different pre-REBP distributions between the treated and the control regions (which instead we assume to be the same). The *marginal jobs* extracted by REBP make up the set $M' = \{V' : 0 \leq \tilde{S}(V') < \varepsilon_b^{W'}\}$. Our model makes no assumption on the origin of the surplus-relevant factors’ distributions through surplus evolution $k(V'\mid V)$. The surplus distribution can be partitioned into: (i) jobs that separate even in the control group—fraction δ^0 of the total mass at the onset of REBP; (ii) marginal jobs that separate due to REBP—fraction $\delta^1 - \delta^0$; and (iii) infra-marginal jobs that don’t separate even with REBP—fraction $1 - \delta^1$.

REBP-Induced Truncation of the Surplus Distribution *After the repeal of REBP*, the program has truncated the treatment group’s joint-surplus distribution below $\varepsilon_b^{W'}$. Hence, while the wider set of surviving jobs in the control group is $J' = \{V' : \tilde{S}(V') \geq 0\}$, in the
Figure A.1: Results by Quartiles of Tenure (1994-96 Separations Horizon)

(a) Post-Repeal Resilience Through 1995

(b) Post-Repeal Resilience Through 1996

(c) Post-Repeal Resilience Through 1997

(d) Post-Repeal Resilience Through 1998

Note: This figure plots several coefficients by quartiles of worker tenure, over a one-, two-, three-, or four-year post-repeal time horizon (Panels (a), (b), (c), and (d), respectively). The blue vertical dashes display the control group separation rate during REBP. The red circles plot the treatment effect of REBP on separations among the sample of workers who held a job in 1988 right before the onset of the program. The blue hollow circles plot the effect on separations in the post-repeal period (separation by 1996) in the sample of those workers who were employed in 1988 and whose job survived until 1994. Finally, the yellow dashed lines plot the predicted effect based on the Coasean benchmark with aggregate shocks only, which also corresponds to the non-Coasean benchmark with worker shocks only.
Figure A.2: Results by Months of Severance Pay (1994-96 Separations Horizon)

(a) Calculation Based on 1988 Tenure

(b) Calculation Based on 1988 Tenure Extrapolated to 1993

Note: This figure plots several coefficients sorted by the number of months of severance pay a worker was entitled to, based on their tenure, as described in Appendix B above. The blue vertical dashes display the control group separation rate during REBP. The red circles plot the treatment effect of REBP on separations among the sample of workers who held a job in 1988 right before the onset of the program. The blue hollow circles plot the effect on separations in the post-repeal period (separation by 1996) in the sample of those workers who were employed in 1988 and whose job survived until 1994. Finally, the yellow dashed lines plot the predicted effect based on the Coasean benchmark with aggregate shocks only, which also corresponds to the non-Coasean benchmark with worker shocks only.
Post-Repeal Separation Behavior We denote post-repeal-of-REBP functions with capital letters, namely Δ for δ, \mathbb{D} for d, and K for k. Post-repeal aggregate shocks and job value factors are denoted by $''$ rather than $'$. The post-repeal separation behavior of the formerly treated and control groups can be formalized by considering aggregate (common to both groups) worker and firm surplus shocks $\varepsilon^{W''}$ and $\varepsilon^{F''}$, which we combine into a joint-surplus shock $\varepsilon'' = \varepsilon^{W''} + \varepsilon^{F''}$. Post-repeal, these shocks lead to the following separation rates in the treatment [control] group $Z = 1[= 0]$:

$$
\Delta^Z = \int_{V} \int_{V'} 1(\bar{S}(V'') < \varepsilon'')K(V''|V')dV'' f^Z_{\text{post}}(V')dV'.
$$

(A17)

Post-repeal, differences in separation rates will arise from differences in f^Z_{post}, the densities of job qualities between the treatment and the control groups, due to the selective separations induced by REBP (rather than from differences in aggregate shocks and thresholds $\varepsilon^{W''}$ and $\varepsilon^{F''}$, which in turn we here assume to the same across the groups, hence unlike during REBP, which shifted thresholds $Z \times \varepsilon^W_b$):

$$
\Delta^1 - \Delta^0 = \int_{V'} \mathbb{D}(V', \varepsilon'') \left[f^1_{\text{post}}(V') - f^0_{\text{post}}(V') \right] dV'.
$$

(A18)

We now derive the separation rate of the former treatment group by replacing its densities

$$
f^1_{\text{post}}(V') = \begin{cases}
0 & \text{if } V' \notin (J' \setminus M') \iff \bar{S}(V') < \varepsilon^W_b, \\
\frac{f^0_{\text{post}}(V')}{1 - \int_{V \notin J' \setminus M'} f^0_{\text{post}}(V')dV'} & \text{if } V' \in (J' \setminus M') \iff \bar{S}(V') \geq \varepsilon^W_b.
\end{cases}
$$

(A16)
as truncated versions of the control group’s, as following Equation (A16)\[27\]

\[
\Delta^1 = \int_{V'} \tilde{D}(V', \epsilon'') f^1_{\text{post}}(V') dV' = \\
= \int_{V' \in M'} \tilde{D}(V', \epsilon'') f^1_{\text{post}}(V') dV' + \int_{V' \notin M'} \tilde{D}(V', \epsilon'') f^1_{\text{post}}(V') dV'
\]

\[= 0 + \int_{V' \notin M'} \tilde{D}(V', \epsilon'') f^0_{\text{post}}(V') dV' + \int_{V' \in M'} \tilde{D}(V', \epsilon'') f^0_{\text{post}}(V') dV']

\[= 1 - \delta^0 \int_{V' \notin M'} \tilde{D}(V', \epsilon'') f^0_{\text{post}}(V') dV' + \int_{V' \in M'} \tilde{D}(V', \epsilon'') f^0_{\text{post}}(V') dV']

\[= \frac{1 - \delta^0}{1 - \delta^1} [\Delta^0 - \int_{V' \in M'} \tilde{D}(V', \epsilon'') f^0_{\text{post}}(V') dV'] .
\]

The intuition is straightforward: modulo re-scaling by \(\frac{1 - \delta^0}{1 - \delta^1}\) (since, post-repeal, the fraction of original jobs that remain in the treatment and in the control group is different), the separation behavior of the treatment group \(\Delta^1\) is the same as that of the control group \(\Delta^0\) except for the contribution of marginal matches \((V' \in M')\) to the separation behavior of the control group, which the expression nets out.

C.1 Separation Rates in Four Cases

Up until now we have not imposed any assumption on the processes underlying the evolution of job surplus, \(k(V'|V)\) and \(K(V''|V')\)—neither during REBP, nor for separations after the repeal. In order to map Equation (A20) into an empirically tangible object, we now put some structure on \(k(V''|V')\) and examine the implied relationships between \(\Delta^1\) and \(\Delta^0\).

We consider two extreme cases—no post-repeal idiosyncratic shocks whatsoever, and immediate reshuffling of idiosyncratic surplus—along with two intermediate cases that mix surplus stability with idiosyncratic surplus shocks. In each case, we leave the evolution of surplus during the five-year REBP period \(k(V'|V)\) fully general (while specifying one shock to hit during the REBP interval). We only specify the Markov process for right after REBP is repealed in 1993, namely \(K(V''|V')\), so that this assumption covers a shorter time horizon than the original REBP period.

Case I: No Post-Repeal Idiosyncratic Shocks This case permits fully general pre-repeal evolution \(k(V'|V)\). But it assumes that right after the repeal of REBP, specifically between the repeal period and the next period, the underlying job surplus is perfectly stable (i.e.,

\[
f^1_{\text{post}}(V') = \frac{f^0_{\text{post}}(V')}{1 - \int_{V' \in M'} f^0_{\text{post}}(V') dV'} = \frac{f^0_{\text{post}}(V')}{1 - \delta^0} = \frac{f^0_{\text{post}}(V') 1 - \delta^0}{1 - \delta^1} \quad \text{(A19)}
\]

where the second equality follows from the fact that the mass of marginal jobs (i.e., \(V' \in M'\)) in the control group is \(\frac{\delta_1 - \delta^0}{1 - \delta^0}\).
there are no idiosyncratic shocks). The sensibility of this assumption naturally depends on the given time interval from the repeal to the time we measure separations in the data; our most conservative horizon is one single year following the repeal. Formally, the post-repeal transition matrix is now the identity matrix: $K(V''|V') = 1$ if $V'' = V'$ and 0 otherwise; as a result, $\tilde{D}(V', e'') = \int_{V'} 1(\tilde{S}(V'') < e'')K(V''|V')dV'' = 1(\tilde{S}(V') < e'').$

It is useful to distinguish two cases: $e'' \leq \epsilon^W_b$, and $e'' > \epsilon^W_b$. In case $e'' \leq \epsilon^W_b$, it follows from the definition of Δ^1 in Equation (A17) that only marginal matches separate i.e., $\Delta^0 = \int_{V' \in M'} \tilde{D}(V', e'')f^0_{post}(V')dV'$, and therefore 28

$$\Delta^1_{\epsilon'' \leq \epsilon^W_b} = 0.$$

When $e'' > \epsilon^W_b$, all marginal matches separate in the control group and more, and so $\tilde{D}(V', e'') = 1 \forall V' \in M'$, and $\Delta^0 > \int_{V' \in M'} \tilde{D}(V', e'')f^0_{post}(V')dV'$. Hence, for this case, Equation (A20) becomes:

$$\Delta^1_{\epsilon'' > \epsilon^W_b} = \frac{1 - \delta^0}{1 - \delta^1} \left[\Delta^0 - \int_{V' \in M'} f^0_{post}(V')dV' \right]$$ \hspace{1cm} (A21)

$$\quad = \frac{1 - \delta^0}{1 - \delta^1} \left[\Delta^0 - \frac{\delta^1 - \delta^0}{1 - \delta^0} \right],$$ \hspace{1cm} (A22)

where $\frac{\delta^1 - \delta^0}{1 - \delta^0}$ is the fraction of marginal jobs in the control group, as discussed above.

Putting the two cases together, for the full range of aggregate shocks e''—which are unobserved but sufficiently revealed through realized control group post-repeal separation rate Δ^0—we obtain the model-predicted Δ^1 as a function of Δ^0, piece-wise linear with slopes and kink positions given by (δ^0, δ^1):

$$\Delta^1(\Delta^0(e''), \delta^0, \delta^1) = \max \left\{ 0, \frac{1 - \delta^0}{1 - \delta^1} \left[\Delta^0(e'') - \frac{\delta^1 - \delta^0}{1 - \delta^0} \right] \right\}.$$ \hspace{1cm} (A23)

As long as the control group post-repeal separation rate Δ^0 is lower than the fraction of marginal matches $\frac{\delta^1 - \delta^0}{1 - \delta^0}$, no separations should occur in the treatment group, simply because these matches are missing. Once control group separations cross that threshold, separations commence, and with a slope steeper than one, $\frac{1 - \delta^0}{1 - \delta^1}$, because the incremental separator count is over a smaller count of survivors in the formerly treated group, and both groups will have separation rates of 100% if all control jobs dissolve. Similarly, if the initial REBP treatment effect was zero, the curve would trace out a 45 degree line $\Delta^1 = \Delta^0$. In that sense, the design has power if the initial treatment effect during REBP was large—shifting the kink far to the right away from zero on the x-axis.

28To see this, note that under the assumption of no post-repeal idiosyncratic shocks, $\Delta^0 = \int_{V'} 1(\tilde{S}(V') < e'')f^0_{post}(V')dV'$. If $e'' \leq \epsilon^W_b$, all the separations come from V' such that $1(\tilde{S}(V') < \epsilon^W_b)$, which are $V' \in M'$; therefore $\Delta^0 = \int_{V'} 1(\tilde{S}(V') < e'')f^0_{post}(V')dV' = \int_{V' \in M'} 1(\tilde{S}(V') < e'')f^0_{post}(V')dV' = \int_{V' \in M'} \tilde{D}(V', e'')f^0_{post}(V')dV'$.

18
That is, the revealed-preference treatment/control group approach makes empirically and quantitatively tractable the Coasean benchmark (with no post-repeal idiosyncratic shocks) by reformulating the empirically elusive surplus concepts in the form of observables—Δ^1_1, Δ^0_0 and (δ^0_0, δ^1_1). These properties sufficiently encode the surplus concepts S as well as shocks e^W_b of REBP, and the post-repeal shocks $(e^{W''}_b, e^{F''})$.

Case II: Idiosyncratic Shocks As in Section 6.1.2 we consider a surplus innovation process that is perfectly stable post-repeal with idiosyncratic separations that occur at rate x. Specifically, we suppose surplus evolves according to a Markov process $K(\cdot|\cdot)$ such that

$\bar{S}(V') = \begin{cases} S(V') & \text{with probability } 1 - x \\ -y & \text{with probability } x. \end{cases}$ \hspace{1cm} (A24)

We again separately consider the cases $\varepsilon'' \leq e^{W'}_b$, and $\varepsilon'' > e^{W'}_b$. When $\varepsilon'' \leq e^{W'}_b$, all separations in the treatment group are idiosyncratic so that $\Delta^1 = x$.

On the other hand, when $\varepsilon'' > e^{W'}_b$, all marginal matches separate in the control group so that again $\bar{D}(V', \varepsilon'') = 1 \ \forall V' \in M'$. The derivation leading to Equation (A22) therefore continues to hold. Intuitively, idiosyncratic shocks do not change the relationship between Δ^1 and Δ^0 in this case because they affect treatment and control regions indiscriminately.

Putting the two cases together yields

$$\Delta^1(\Delta^0(\varepsilon''), \delta^0, \delta^1) = \max \left\{ x, \frac{1 - \delta^0}{1 - \delta^1} \left[\Delta^0(\varepsilon'') - \frac{\delta^1 - \delta^0}{1 - \delta^0} \right] \right\},$$ \hspace{1cm} (A25)

which reduces to Equation (A23) when $x = 0$. For arbitrary x, this function is kinked at

$$\Delta^0(\varepsilon'') = x + (1 - x) \frac{\delta^1 - \delta^0}{1 - \delta^0}.$$ \hspace{1cm} (A26)

Intuitively, the aggregate shock begins to induce separations in the treatment group once it has displaced a share $\frac{\delta^1 - \delta^0}{1 - \delta^0}$ of matches surviving the idiosyncratic shock in the control group.

Figure A.3 represents the predictions from the idiosyncratic shock scenario (A24) visually. The figure extends Panels (a) and (b) of Appendix Figure A.15, which plot the predicted separation rates as a function of the aggregate shock ε and the relationship (A25), respectively, for the case where $x = 0$. Panels (a) and (b) of Figure A.3 replicate these plots with $x > 0$. The depiction makes clear that the Coasean prediction under no idiosyncratic shocks to surplus continues to exhibit a “kinked” relationship, allowing us to distinguish reshuffling and no-shocks using the augmented mixed model of 6.1.2.

Case III: Continuous Shocks Next, we consider a continuous idiosyncratic shock as in Section 6.1.3. This can be viewed as an intermediate version of the three previous specifications: large, perfectly reshuffling, or not present at all. The micro separation
probability under Equation (A60) is, with aggregate shock ε'',

$$\mathbb{D}(\mathbf{V}', \varepsilon'') = \int_{\mathbb{R}} \mathbb{1}(\tilde{S}(\mathbf{V}') + v < \varepsilon'') f_v(v) \, dv = F_v(\varepsilon'' - \tilde{S}(\mathbf{V}')).$$ \hspace{1cm} (A27)

Hence, we can reformulate the general Equation (10), integrating by parts, as follows:

$$\Delta^1 = \frac{1 - \delta^0}{1 - \delta^1} \left[\Delta^0 - \int_{\mathbf{V}' \in \mathcal{M}'} \mathbb{D}(\mathbf{V}', \varepsilon'') f^0_{\text{post}}(\mathbf{V}') \, d\mathbf{V}' \right]$$ \hspace{1cm} (A28)

$$= \frac{1 - \delta^0}{1 - \delta^1} \left[\Delta^0 - \left(\frac{\delta^1 - \delta^0}{1 - \delta^0} F_v(\varepsilon'' - \varepsilon'_b) - \int_{\mathbf{V}' \in \mathcal{M}'} f_v(\varepsilon'' - \tilde{S}(\mathbf{V}')) F^0_{\text{post}}(\mathbf{V}') \, d\mathbf{V}' \right) \right]$$ \hspace{1cm} (A29)

Idiosyncratic Shocks Only Specifically, we assume that there are no aggregate shocks ($\varepsilon'' = 0$) at all, and only idiosyncratic shocks drive separations:

$$\Delta^1 = \frac{1 - \delta^0}{1 - \delta^1} \left[\Delta^0 - \delta^1 \Delta^M \right]$$

$$= \frac{1 - \delta^0}{1 - \delta^1} \left[\Delta^0 - \delta^1 \int_{\mathbf{V}' \in \mathcal{M}'} f_v(-\tilde{S}(\mathbf{V}')) F^0_{\text{post}}(\mathbf{V}') \, d\mathbf{V}' \right] \hspace{1cm} (A30)$$

where $\Delta^M < 1$. Hence, we have the another “kinked” formula with a kink point $\Delta^0 = \frac{\delta^1 - \delta^0}{1 - \delta^0} \Delta^M$. That kink point is smaller compared to the case with no idiosyncratic shocks and only aggregate shocks. Intuitively, if there are only small idiosyncratic shocks (more specifically, $F_v(-S') = 0 \forall S' > \varepsilon'_b$), then all separations in the control group are driven by marginal matches and there are no separations in the treatment group. In contrast, if shocks are sufficiently large to lead to separations irrespective of the initial surplus or else lead to no separation at all, then $\Delta^0 = \Delta^1$. For interim cases, separations in the treatment group are attenuated, although, unlike in the case of aggregate shocks only, need not be zero.

Case IV: Perfect Reshuffling The final case we consider is the scenario in which post-repeal surplus is completely independent of REBP-surplus, i.e., job surplus is perfectly reshuffled. In this case the rows of $K(\mathbf{V}''|\mathbf{V}')$ are identical so that the transition matrix does not depend on \mathbf{V}'. This implies $\mathbb{D}(\mathbf{V}', \varepsilon'') = \int_{\mathbf{V}''} \mathbb{1}(\tilde{S}(\mathbf{V}'') < \varepsilon'') K(\mathbf{V}''|\mathbf{V}') d\mathbf{V}''$ is
likewise independent of \(V' \). We again leave \(k(V'|V) \) unrestricted. It follows that

\[
\Delta^1 = \int_{V'} \tilde{D}(V', \varepsilon'') f_{\text{post}}^1(V') dV'
= \tilde{D}(\varepsilon'') \int_{V'} f_{\text{post}}^1(V') dV'
= \tilde{D}(\varepsilon'') \int_{V'} f_{\text{post}}^0(V') dV'
= \Delta^0,
\]

i.e., perfect reshuffling leads to treatment and control group separation rates that are equal.

C.2 When is Perfect Reshuffling Necessary?

Next, we characterize the surplus innovation processes required for the Coasean framework to rationalize equality of post-repeal separation rates,

\[
\Delta^1(\varepsilon'', \delta^0, \delta^1) = \Delta^0(\varepsilon'', \delta^0, \delta^1).
\]

We show that under certain conditions, perfect reshuffling is the only surplus innovation process consistent with the equality of separation rates we document across a range of cohorts and industries. More generally, observing the same post-repeal separation rate in the treatment and the control group requires the average post-repeal separation rate for jobs in the marginal group (\(V' \in M' \)) to be the same as that for jobs in the inframarginal group (\(V' \in (J' \setminus M') \)).

We start by showing the latter. Using the definitions provided in the previous section,

\[
\Delta^1(\varepsilon'', \delta^0, \delta^1) = \Delta^0(\varepsilon'', \delta^0, \delta^1)
\]

\[
\iff \int_{V' \in M'} \tilde{D}(V', \varepsilon'') f_{\text{post}}^1(V') dV' + \int_{V' \in (J' \setminus M')} \tilde{D}(V', \varepsilon'') f_{\text{post}}^1(V') dV' = \int_{V' \in M'} \tilde{D}(V', \varepsilon'') f_{\text{post}}^0(V') dV' + \int_{V' \in (J' \setminus M')} \tilde{D}(V', \varepsilon'') f_{\text{post}}^0(V') dV'
\]

\[
\iff \int_{V' \in M'} \tilde{D}(V', \varepsilon'') f_{\text{post}}^0(V') dV' = \int_{V' \in (J' \setminus M')} \tilde{D}(V', \varepsilon'') f_{\text{post}}^0(V') dV'
\]

\[
\iff \int_{V' \in M'} \tilde{D}(V', \varepsilon'') f_{\text{post}}^0(V') \left[\frac{1 - \delta^0}{\delta^1 - \delta^0} \right] dV' = \int_{V' \in (J' \setminus M')} \tilde{D}(V', \varepsilon'') f_{\text{post}}^0(V') \left[\frac{1 - \delta^0}{1 - \delta^1} \right] dV'
\]

\[
\iff \int_{V' \in M'} \int_{V''} \mathbb{1}(\tilde{S}(V'') < \varepsilon'') K(V''|V') dV'' f_M^0(V') dV' = \int_{V' \in (J' \setminus M')} \int_{V''} \mathbb{1}(\tilde{S}(V'') < \varepsilon'') K(V''|V') dV'' f_I^0(V') dV',
\]

(A32)

where \(f_M^0(V') \left[\frac{1 - \delta^0}{\delta^1 - \delta^0} \right] \) is the density of the marginal jobs in the control group and
\(f_I^0(V') \left[\frac{1 - \delta^0}{1 - \delta^0} \right] \) is the density of the inframarginal jobs in the control group.

Equation (A32) provides a formal condition for surplus innovation processes \(K(V''|V') \)
to be consistent with $\Delta^1(\epsilon'', \delta^0, \delta^1) = \Delta^0(\epsilon'', \delta^0, \delta^1)$. In particular, it implies that the average separation rate among REBP-marginal jobs induced by $K(V''|V')$ must equal the separation rate among REBP-inframarginal jobs. To see this in the simplest terms, we can rewrite Equation (A32) in terms of conditional expectations,

$$E[Pr(S'' < \epsilon'' | V') | M'] = E[Pr(S'' < \epsilon'' | V') | I']$$

where we adopt the shorthand notation $S'' := \tilde{S}(V'')$. We can simplify further by applying the LIE,

$$Pr(S'' < \epsilon'' | M') = Pr(S'' < \epsilon'' | I').$$

Letting $F_{S''|M'}(s)\text{ denote the CDF of the post-repeal surplus of jobs that were REBP-marginal and } F_{S''|I'}(s) \text{ denote the CDF for inframarginal jobs, this can be written as}

$$F_{S''|M'}(\epsilon'') = F_{S''|I'}(\epsilon''). \quad (A33)$$

Equation (A33) casts Equation (A32) in terms of the post-repeal surplus distributions of marginal and inframarginal jobs, providing a transparent characterization of the surplus innovation processes consistent with $\Delta^1(\epsilon'', \delta^0, \delta^1) = \Delta^0(\epsilon'', \delta^0, \delta^1)$. Specifically, separation rates can be equal if and only if jobs that are marginal and those that are inframarginal during REBP become worse than ϵ'' post-repeal with the same probability. The simplified expression also emphasizes that the restriction implied by equality of separation rates does not depend on specific job attributes V', other than through the definitions of marginality and inframarginality in Equation (A33).

As already discussed, one scenario which satisfies Equation (A33) is when S'' is independent of S', i.e., perfect reshuffling, which we can write as

$$F_{S''|S'}(s'' \mid s') = F_{S''}(s'') \forall s'', s'. \quad (A34)$$

Equation (A34) is a stronger condition than Equation (A33), making clear that perfect reshuffling is not necessary for equality of separation rates without stronger assumptions. Under the more general condition (A33), the evolution of surplus may freely depend on S' so long as the marginal distributions for M' and I' jobs coincide at ϵ''.

There are multiple possible explanations for equal separation rates that would satisfy Equation (A33) for a given aggregate shock ϵ'' without relying on perfect reshuffling. While we cannot definitively rule out all alternatives, heterogeneity in post-repeal separation rates across industries lend further support to perfect reshuffling as the most consistent explanation for equal separation rates. When the separation rate equality holds for any $\epsilon'' > 0$, Equation (A33) implies the CDFs must be equal everywhere instead of just at a particular point, i.e.,

$$F_{S''|M'}(s'') = F_{S''|I'}(s'') \forall s''. \quad (A33b)$$

This is a stronger condition than Equation (A33), ruling out any innovation process in which marginal and inframarginal jobs lead to different surplus distributions.
Perfect reshuffling satisfies Equation \((A33b)\) since \(F_{S''|S'}\) and \(F_{S''|I'}\) are simply weighted averages of \(F_{S''|S'}\) across \(S'\). However, Equation \((A33b)\) still does not imply perfect reshuffling by itself, since it allows the evolution of surplus to depend on \(S'\) so long as the marginal distributions for \(M'\) and \(I'\) jobs coincide. For instance, Equation \((A33b)\) does not rule out a scenario in which the bottom \(x\) percent of \(M'\) and \(I'\) jobs both separate exogenously, with no idiosyncratic shocks elsewhere.

However, Equation \((A33b)\) does imply perfect reshuffling in at least two cases. The first case is when jobs with higher REBP surplus are at least weakly more likely to survive the post-repeal transition for every \(\epsilon''\). In particular, assume the surplus innovation process is monotonic in the sense of first-order stochastic dominance, that is,

\[
F_{S''|S'}(s''|s') \leq F_{S''|S'}(s''|\tilde{s}') \quad \forall s'', s', \text{ and } \tilde{s}' \leq s'.
\]

Since the lowest surplus job in \(I'\) is weakly larger than the highest surplus job in \(M'\), Equation \((A35)\) applies to any \(s' \in I'\) and \(s' \in M'\). Equation \((A33b)\) can then hold only if \(F_{S''|S'}\) is constant across \(s'\), i.e., we have perfect reshuffling.

Second, equality of separation rates implies perfect reshuffling even without monotonicity when we observe variation in \(\epsilon'\) in addition to \(\epsilon''\). Intuitively, variation in \(\epsilon'\) requires Equation \((A33b)\) to hold for all two-part divisions of the initial surplus distribution. This is enough to imply that \(S''\) must be distributed independently of \(S'\). We view the fact that the UIB extension granted by REBP was likely more valuable for older workers (who were more likely to exhaust it) as a plausible source of variation in \(\epsilon'\). Though we cannot pin down this variation definitively, it is consistent with the empirical heterogeneity in separation rates we document across birth cohorts.

Proof Here we show that equality of separation rates implies perfect reshuffling when \((\epsilon', \epsilon'')\) jointly vary. First, recall the implication of equal separation rates when only \(\epsilon''\) varies given by Equation \((A33b)\),

\[
F_{S''|M'} = F_{S''|I'}
\]

which we can rewrite as

\[
\int_0^{\epsilon'} F_{S''|s''}(s''|x) \frac{f_{S'}(x)}{F_{S'}(\epsilon')} dx = \int_0^{\epsilon'} F_{S''|s''}(s''|x) \frac{f_{S'}(x)}{1 - F_{S'}(\epsilon')} dx \quad \forall s''
\]

(A36)

Now suppose Equation \((A36)\) also holds for any \(\epsilon'\). Consider two such shocks \(s'_1, s'_2\) \((s'_1 > s'_2)\)
WLOG). Then Equation (A36) evaluated at s'_1 implies

$$0 = \int_0^{s'_1} F_{S''|S'}(s''|x) \frac{f_S(x)}{F_S(s'_1)} dx - \int_{s'_1}^\infty F_{S''|S'}(s''|x) \frac{f_S(x)}{1 - F_S(s'_1)} dx$$

$$= \int_0^{s'_2} F_{S''|S'}(s''|x) \frac{f_S(x)}{F_S(s'_1)} dx - \int_{s'_2}^\infty F_{S''|S'}(s''|x) \frac{f_S(x)}{1 - F_S(s'_1)} dx + \int_{s'_2}^{s'_1} F_{S''|S'}(s''|x) \frac{f_S(x)}{F_S(s'_1)(1 - F_S(s'_1))} dx$$

$$= \frac{1}{F_S(s'_1)(1 - F_S(s'_1))} \left((F_S(s'_2) - F_S(s'_1)) \int_0^{s'_2} F_{S''|S'}(s''|x) f_S(x) dx + \int_{s'_2}^{s'_1} F_{S''|S'}(s''|x) f_S(x) dx \right)$$

with the last step following from Equation (A36) with $\varepsilon' = s'_2$. Rearranging and simplifying,

$$\left(F_S(s'_1) - F_S(s'_2) \right) \int_0^{s'_2} F_{S''|S'}(s''|x) f_S(x) dx = \int_{s'_2}^{s'_1} F_{S''|S'}(s''|x) f_S(x) dx$$

$$\int_0^{s'_2} F_{S''|S'}(s''|x) f_S(x) dx = \frac{\int_{s'_2}^{s'_1} F_{S''|S'}(s''|x) f_S(x) dx}{F_S(s'_1)}$$

Notice that the LHS of the last equation does not depend on s'_1. Since the equality holds for arbitrary s'_1, it follows that $F_{S''|S'}(s''|s')$ must be constant with respect to s'. Finally, because s'' is likewise arbitrary, we can write

$$F_{S''|S'}(\cdot|s') = F_{S''}(\cdot) \forall s'.$$

Wrap-Up The close connection between Equation (A33b) and the perfect reshuffling condition in Equation (A34) motivates our conclusion that perfect reshuffling is the leading rationalization for our empirical findings in a Coasean framework. However, our discussion has relied on the presumption that the heterogeneity in post-repeal separation rates we observe across industries reflects substantial variation in the aggregate shock ε''.

With limited variation in ε'' (or none at all), our evidence would support only condition (A33), and not condition (A33b), a statement that is further afield from perfect reshuffling. Under condition (A33), it is possible that $F_{S''|M'}$ differs from $F_{S''|I'}$ at points away from the particular value of ε'' that is realized post-repeal. At the same time, condition (A33) is itself a strong restriction, requiring that M' and I' jobs be assigned indiscriminately post-repeal into $M'' := \{ S'' < \varepsilon'' \}$ and $I'' := \{ S'' \geq \varepsilon'' \}$. So although condition (A33) is weaker than perfect reshuffling at the surplus level, it nonetheless implies a coarser form of reshuffling, perfectly mixing jobs between the ε' and ε'' definitions of job marginality.
C.3 Why Do “Large Shocks” Not Give a Successful Account of the Evidence?

An example of a non-reshuffling possibility satisfying Equation (A33) is an innovation process that induces idiosyncratic separations (e.g., due to dramatic health or other large shocks). Specifically, consider a scenario in which match surplus is perfectly stable, but matches separate idiosyncratically at rate x:

$$S'' = \begin{cases} S' & \text{with probability } 1-x \\ -y & \text{with probability } x \end{cases}$$

where $-y$ is a state of negative surplus that is interpreted as an exogenous separation. Separations now occur either because of the aggregate or idiosyncratic shocks. When there is no aggregate shock, i.e., $\epsilon'' = 0$, all separations are idiosyncratic. This mechanically leads to equality of separation rates in a setting very different from perfect reshuffling.

However, explanations relying on idiosyncratic shocks of this kind are unlikely to be robust to $\epsilon'' > 0$. To show this explicitly, we can again cast the surplus innovation process in terms of surplus CDFs. For an arbitrary REBP surplus distribution $F_{S'}(s)$, the post-repeal distribution in this scenario is given by:

$$F_{S''}(s) = \begin{cases} 0 & \text{if } s < -y \\ x + (1-x)F_{S'}(s) & \text{if } s \geq -y. \end{cases}$$

Applying this to the set of REBP-marginal and REBP-inframarginal jobs (and using the definitions of marginality and inframarginality) yields

$$F_{S''|M'}(s) = \begin{cases} 0 & \text{if } s < -y \\ x & \text{if } s \in [-y, 0) \\ x + (1-x)\left(\frac{1-\delta_0}{\delta_1-\delta_0}\right)F_{S'}^0(s) & \text{if } s \in [0, \epsilon'] \\ 1 & \text{if } s > \epsilon' \end{cases}$$

$$F_{S''|I'}(s) = \begin{cases} 0 & \text{if } s < -y \\ x & \text{if } s \in [-y, \epsilon'] \\ x + (1-x)\left(\frac{1-\delta_0}{1-\delta_1}\right)F_{S'}^0(s) & \text{if } s > \epsilon' \end{cases}$$

where $F_{S'}^0(s)$ denotes the CDF of surplus in the control group during REBP.

As we just noted, these CDFs satisfy Equation (A33) when $\epsilon'' = 0$ since

$$F_{S''|M'}(0) = x + (1-x)\left(\frac{1-\delta_0}{\delta_1-\delta_0}\right)F_{S'}^0(0) = x = F_{S''|I'}(0).$$

The second equality follows from the fact that surplus at existing jobs is always positive,
i.e., $F_0^S(0) = 0$. However, for $\varepsilon'' > 0$,

$$F_{S''|M'}(\varepsilon'') = x + (1 - x) \left(\frac{1 - \delta_0}{\delta_1 - \delta_0} \right) F_0^S(\varepsilon'')$$

$$> x = F_{S''|\nu'}(\varepsilon''),$$

whenever $F_0^S(\varepsilon'') > 0$, i.e., there are jobs with initial surplus less than ε'' (i.e., marginal jobs exist). Intuitively, when the surplus of surviving jobs is perfectly stable, any positive aggregate shock ε'' will break up marginal jobs in the control group. Because these jobs are missing from the treatment group, separation rates cannot be equal.

Although explanations that rely only on idiosyncratic separations seem unlikely on these grounds, there are many other possible explanations for equal separation rates that would satisfy Equation (A33) for a given aggregate shock ε'', and in the previous Section C.2 we have shown when reshuffling is necessary.

29Strictly speaking, one way to make the idiosyncratic shocks scenario consistent with $\varepsilon'' > 0$ is to require only that the surplus evolution of surviving jobs is rank-preserving. In particular, suppose surplus evolves according to

$$S'' = \begin{cases} g(S') & \text{with probability } 1 - x \\ -y & \text{with probability } x \end{cases}$$

where $g(\cdot)$ is a strictly increasing function. By a similar line of reasoning as above, it can be shown that separation rates are equal in this case when

$$F_{S''|M'}(\varepsilon'') = x + (1 - x) \left(\frac{1 - \delta_0}{\delta_1 - \delta_0} \right) F_0^S(g^{-1}(\varepsilon'')) = x = F_{S''|\nu'}(\varepsilon''),$$

which holds only when $F_0^S(g^{-1}(\varepsilon'')) = 0$. So long as marginal jobs exist, i.e., $F_0^S(s) > 0$ for any $s > 0$, this holds only when $g(0) \geq \varepsilon''$. In addition, because $g(\cdot)$ is strictly increasing, $g(s) \geq \varepsilon''$ for any surplus level s. Intuitively, separation rates can be equal only when all separations are idiosyncratic (as in the baseline case). The only $g(\cdot)$ which do not admit any separations due to ε'' are those which map the surplus of every surviving job to values above ε''. We view this scenario as unrealistic because it requires one to believe that there will no longer be any marginal jobs in the post-period control group, i.e., $F_0^S(\varepsilon''|s) > 0$. When there is variation in ε'' across subsamples, as explored in the next section, the surplus of all surviving jobs have to clear the largest realized ε''. This seems unlikely when ε'' is large, especially since we know from the REBP treatment effect that $F_0^S(e^{W')}$ is significantly positive.

26
Figure A.3: Separation Rate Predictions with Large Idiosyncratic Shocks

(a) Shocks to Joint Surplus in a Coasean Setting

(b) Empirical Strategy: Observable Separation Rates

Note: This figure plots the dynamics of post-repeal job separations in the Coasean setting, generalizing Panels (a) and (b) of Appendix Figure A.15 to the scenario in which large idiosyncratic shocks induce efficient separations with probability x. Panel (a) plots the separations in the former treatment group (Δ_1) and former control group (Δ_0) in response to joint surplus shocks in a Coasean setting. Panel (b) plots the relationship between treatment group and control group separation rates, after the treatment, for the Coasean setting, assuming (1) full reshuffling of job surplus and (2) no reshuffling apart from large idiosyncratic shocks.
D Theoretical Appendix: Full Non-Coasean Model Featuring Wage Rigidity

Non-Coasean Bargaining and Inefficient Separations

The strong Coasean result of efficient separations arises from the assumption of flexible (re-)bargaining of compensation, from which joint job surplus stems as the sole allocative concept. However, a variety of potential real-world frictions, e.g., wage rigidity, may preclude such wage setting. Such frictions prevent the parties from moving towards a wage in the feasible-jobs frontier even though the job carries positive joint surplus, thereby shrinking the set of feasible jobs. Then, the Coasean allocation is not necessarily attainable, and inefficient separations can emerge. In this non-Coasean setting, we therefore think of wage w as one additional job attribute that can evolve or be fixed, such that jobs are now characterized by (w, V), and unilateral worker and firm surpluses $S^W(w, V^W)$ and $S^F(w, V^F)$ are allocative.

In consequence, with non-Coasean bargaining, a separation occurs if at least one of worker surplus or firm surplus turns negative at the given wage. Hence, the job-level separation probability is given by

$$
d(w, V) = \int_{(w', V')} 1 \left(S^W(w', V'^W) < 0 \lor S^F(w', V'^F) < 0 \right) k((w', V')|(w, V))d(w', V'),
$$

where separations can be labeled as quits (negative worker surplus but positive firm surplus), layoffs (reversed), or mutual separations (both negative). The non-Coasean expression also formalizes that here the initial incidence of a shock matters for separations for lack of automatic Coasean rebargaining, such that worker and firm values are not “fungible.”

Separation Effects from REBP REBP reduced worker surplus, as REBP directly shifted workers’ (nonemployment) outside option. Any market-level effects that in turn affected firm outside options or inside values we net out with a control group in the data.

Formally, the two separation rates by treatment group ($Z = 1$) and control group ($Z = 0$) therefore occur to differential worker surplus cutoffs, albeit at the same firm cutoff (here again normalized to zero without loss of generality). Let $\tilde{S}^i(w', V')$ denote the surplus of party $i \in \{W, F\}$ gross of a given aggregate shock, e.g., during REBP again the REBP worker surplus shifter $\varepsilon_b^{W'}$. We thus have:

$$
\delta^Z = \int_{(w, V)} \int_{(w', V')} 1 \left(\tilde{S}^W(w', V'^W) < Z \times \varepsilon_b^{W'} \lor \tilde{S}^F(w', V'^F) < 0 \right) k((w', V')|(w, V))d(w', V')
\equiv d(w, V; Z \times \varepsilon_b^{W'}, 0)
$$

$$
f^Z(w, V)d(w, V),
$$

(A38)
where \(\tilde{d} \) is a slight modification of \(d \) defined in Equation (A37).

REBP therefore pushed the following mass of jobs initially viable in 1988 into quit or layoff (or both) territory of negative unilateral surpluses, where again \(f^Z(\cdot) \) denotes the pre-REBP initial surplus distribution:

\[
\begin{align*}
\delta^1 - \delta^0 &= \int_{(w', V) \in (0, V)} \int_{(w', V') \in (0, V)} 1 \left(0 \leq \tilde{S}^W (w', V) < \epsilon^W + \tilde{S}^F (w', V) \leq 0 \right) \\
&= \int_{(w, V)} \int_{(w', V') \in M^{NC}} k((w', V')|(w, V))d(w, V')f^Z(w, V)d(w, V) \\
&= \int_{(w, V)} \left[\tilde{d}(w, V; \epsilon^W, 0) - \tilde{d}(w, V; 0, 0) \right] f^0(w, V)d(w, V).
\end{align*}
\]

That is, the incremental jobs destroyed by REBP had low worker surplus, between 0 and \(\epsilon^W \), making up the set of marginal-to-REBP jobs \(M^{NC} = \{ (w', V') : 0 \leq \tilde{S}^W (w', V) < \epsilon^W \} \). By contrast, the firm surplus of these jobs were positive (and moreover need not have been low, unless the two are very correlated).

REBP-Induced Truncation of the Surplus Distribution
As a result of REBP, right after the repeal, the treatment group therefore features a missing mass of marginal matches between 0 and \(\epsilon^W \), making up the set of marginal-to-REBP jobs \(M^{NC} = \{ (w', V') : 0 \leq \tilde{S}^W (w', V) < \epsilon^W \} \). With low worker but not necessarily low firm surplus. By contrast, the distribution of surpluses in the control group remains a larger set \(\tilde{M}^{NC} = \{ (w', V') : \tilde{S}^W (w', V) \geq 0 \} \), still containing the low worker-surplus jobs \(M^{NC} \).

Post-Repeal Separation Behavior
We again define the post-repeal separation rate of treatment [control] group \(Z = 1[= 0] \) as a function of common worker and firm shocks \(\epsilon^W \) and \(\epsilon^F \) (which we can now, in contrast to the Coasean model, no longer collapse into

\[
\begin{align*}
{f^1_{pos}(w', V)} &= \begin{cases}
0 & \text{if (} w', V') \notin (J^{NC} \setminus M^{NC}) \Rightarrow \tilde{S}^W (w', V) < \epsilon^W \wedge \tilde{S}^F (w', V) < 0 \\
\frac{{f^0_{pos}(w', V)}}{1 - f^0_{pos}(w', V) \delta(w', V)} & \text{if (} w', V') \in (J^{NC} \setminus M^{NC}) \Rightarrow \tilde{S}^W (w', V) \geq \epsilon^W \wedge \tilde{S}^F (w', V) \geq 0.
\end{cases}
\end{align*}
\]

(A40)
a joint surplus shock ε'' as shocks are no longer fungible:

$$
\Delta^Z = \int_{(w', V')} \int_{(w'', V'')} \mathbb{1} \left(\tilde{S}^W(w'', V'') < \varepsilon'' \vee \tilde{S}^F(w'', V'') < \varepsilon'' \right) K((w'', V'')(w', V')) d(w'', V'')
$$

$$
f^Z_{\text{post}}(w', V') d(w', V'). \quad (A41)
$$

The non-Coasean analogue of the Coasean predicted post-repeal separation rate given by Equation [(A20)] is (from a closely analogous derivation):

$$
\Delta^1 = \frac{1 - \delta^0}{1 - \delta^1} \left[\Delta^0 - \int_{(w', V') \in M^{NC}} \tilde{D}(w', V'; \varepsilon^{W''}, \varepsilon^{F''}) f^0_{\text{post}}(w', V') d(w', V') \right]. \quad (A42)
$$

As in the Coasean case, the post-repeal separation behavior of the former treatment group tracks that of the former control group, except for the contribution of the marginal jobs $((w', V') \in M^{NC})$ to such separation behavior. Unlike in the Coasean setting, these missing matches are marginal with respect to worker surplus—the dimension along which REBP selects them into separation—but not necessarily with respect to a firm surplus shock.

The Incidence of Worker vs. Firm Surplus Shifts In fact, this non-Coasean model can rationalize the observed patterns of separations even if we assume no idiosyncratic shocks to job surplus following the REBP repeal (an assumption perhaps particularly plausible within the one-year interval following the repeal to 1995). By contrast, the Coasean model was not able to explain the empirical post-repeal separation behavior, except if one were willing to assume full reshuffling in idiosyncratic surplus.

As in the Coasean case, our objective is to rewrite expression [(A42)] in an empirically tractable form of realized control group separation rates (and the original size of the REBP treatment effects). In order to do this, we first specify the model to feature stability of idiosyncratic job surplus (while still permitting any structure on $k((w', V')(w, V))$ i.e., no restriction on idiosyncratic shocks during the five years REBP was active), such that $K((w'', V'')(w', V')) = 1$ if $((w'', V'')(w', V'))$ and 0 otherwise, such that for $Z = 0, 1$, post-repeal separation rates given by Equation [(A41)] are specified to:

$$
\Delta^Z = \int_{(w', V')} \mathbb{1} \left(\tilde{S}^W(w', V'') < \varepsilon'' \vee \tilde{S}^F(w', V') < \varepsilon'' \right) f^Z_{\text{post}}(w', V') d(w', V'). \quad (A43)
$$

Then, the general relationship between treatment and control separations given by Equation [(A42)] is specified to:

$$
\Delta^1 = \frac{1 - \delta^0}{1 - \delta^1} \left[\Delta^0 - \int_{(w', V') \in M^{NC}} \mathbb{1} \left(\tilde{S}^W(w', V'') < \varepsilon'' \vee \tilde{S}^F(w', V') < \varepsilon'' \right) f^0_{\text{post}}(w', V') d(w', V') \right]. \quad (A44)
$$

As a second and last step to obtaining empirically tractable expressions, we now distinguish two cases: only worker or only firm shocks driving separations.
Resilience: Post-Repeal Separations Driven by Worker Surplus

First, suppose most (all) post-repeal separations arise from worker shocks. In this case, the formerly treated group again exhibits resilience in the form of a piece-wise linear comovement between treatment and control separations featuring a flat-at-zero region, mirroring the Coasean case. This analogue arises because the selection during REBP was with respect to the same allocative concept post-repeal. Accordingly, the resulting expression is analogous to Coasean Equation (A23):\[^{31}\]

\[
\Delta^1(\Delta^0(\varepsilon^W), \delta^0, \delta^1) = \max \left\{ 0, \frac{1 - \delta^0}{1 - \delta^1} \left[\Delta^0(\varepsilon^W) - \frac{\delta^1 - \delta^0}{1 - \delta^0} \right] \right\}. \tag{A47}
\]

Therefore, when there are no post-repeal idiosyncratic shocks apart from worker shocks, the marginal jobs are those which separate first and hence the average separation rate of the inframarginal jobs is lower than that of the marginal jobs, resulting in \(\Delta^1(\varepsilon^W) \leq \Delta^0(\varepsilon^W)\) as in Equation (A47).

Perfect Comovement: Post-Repeal Separations Driven by Firm Surplus

We now ask which properties let the non-Coasean model rationalize the (empirically consistent) comovement between the groups post-repeal. Of course, making an assumption of perfect reshuffling right after the repeal could again generate the perfect comovement in the non-Coasean setting (which was the only way the Coasean setting could rationalize this pattern)\[^{32}\]. Yet, additionally even with stability in idiosyncratic surplus, the non-Coasean

\[^{31}\]To see this, consider again the two cases, \(\varepsilon^W \leq \varepsilon^W_0\) and \(\varepsilon^W > \varepsilon^W_0\), in order to derive \(\Delta^1_{\varepsilon^W \geq \varepsilon^W_0}(\varepsilon^W)\) and \(\Delta^1_{\varepsilon^W < \varepsilon^W_0}(\varepsilon^W)\) similarly to the Coasean no-continuous-shocks case. For the case of \(\varepsilon^W \leq \varepsilon^W_0\), it holds that jobs for which \(S^W(w', \nu^W) < \varepsilon^W_0\) also have \(S^W(w', \nu^W) < \varepsilon^W_0\) and hence these jobs were in the marginal set w.r.t. REBP \((w', \nu') \in M^{NC}\). Therefore, using Equation (A43), we have for the case of \(\varepsilon^W \leq \varepsilon^W_0\) (i.e., now we can limiting the integral to \(M^{NC}\)):

\[
\Delta^0(\varepsilon^W) = \int_{(w', \nu') \in M^{NC}} 1 \left(S^W(w', \nu^W) < \varepsilon^W \vee S^f(w', \nu^F) < 0 \right) f_{post}(w', \nu')d(w', \nu'), \tag{A45}
\]

which implies that \(\Delta^1_{\varepsilon^W \geq \varepsilon^W_0}(\varepsilon^W) = 0\) by Equation (A44). By contrast, for the case of \(\varepsilon^W > \varepsilon^W_0\), all marginal-to-REBP jobs \((w', \nu') \in M^{NC}\) satisfy the condition \(S^W(w', \nu^W) < \varepsilon^W \vee S^f(w', \nu^F) < 0\), and therefore Equation (A44) becomes

\[
\Delta^1_{\varepsilon^W \leq \varepsilon^W_0}(\varepsilon^W) = \frac{1 - \delta^0}{1 - \delta^1} \int_{(w', \nu') \in M^{NC}} 1 \left(S^W(w', \nu^W) < \varepsilon^W \vee S^f(w', \nu^F) < 0 \right) f_{post}(w', \nu')d(w', \nu'), \tag{A46}
\]

where \(\frac{\delta^1 - \delta^0}{1 - \delta^0}\) is the fraction of marginal jobs in the control group. Combining the two cases, we obtain Equation (A47).

\[^{32}\]Perfect comovement requires that, in response to the shock being considered, the average separation rate of the marginal jobs is equal to the average separation rate of the inframarginal jobs. The same identical
model can rationalize very similar separation sensitivities between the treatment and control group REBP survivors, if post-repeal separations are largely due to firm surplus shocks. More precisely and subtly, another ingredient is that worker and firm surplus are approximately independently distributed, since REBP extracted jobs that were marginal with respect to worker (rather than firm) surplus.

With firm shocks, again assuming stability in idiosyncratic job surplus right after REBP is repealed but permitting arbitrary surplus evolution during REBP, the empirical relationship between post-repeal separation rates in the treatment and in the control group is driven by the relative separation behavior of marginal and inframarginal matches with respect to firm shocks—which in turn is determined by the distribution of firm surplus in the marginal vs. inframarginal matches. To formally derive this result, we start from the general relationship between the separation rates in the non-Coasean setting (with two unilateral surpluses and participation constraints)

\[
\Delta^1(\epsilon^{F''}, \delta^0, \delta^1) \leq \Delta^0(\epsilon^{F''}, \delta^0, \delta^1)
\]

\[
\Leftrightarrow \int_{(w',V') \in (I^{NC} \setminus M^{NC})} \mathbb{1}(\tilde{S}^W(w', V^{W'}) < 0 \lor \tilde{S}^F(w', V^{F'}) < \epsilon^{F''}) f_1^0(w', V') d(w', V')
\]

\[
\leq \int_{(w',V') \in M^{NC}} \mathbb{1}(\tilde{S}^F(w', V^{F'}) < \epsilon^{F''}) f_1^0(w', V') d(w', V')
\]

\[
\Leftrightarrow \Pr(0 \leq \tilde{S}^F(w', V^{F'}) < \epsilon^{F''} | \tilde{S}^W(w', V^{W'}) \geq \epsilon_b^{W'})
\]

\[
\leq \Pr(0 \leq \tilde{S}^F(w', V^{F'}) < \epsilon^{F''} | 0 \leq \tilde{S}^W(w', V^{W'}) < \epsilon_b^{W'})
\]

This expression is derived by specializing Equation (A43) to the case of firm shocks only, and then, analogous to the Coasean derivation Equation (A32), combining the inframarginal jobs in the treatment and control groups on one side, using:

\[
\Delta^1(\epsilon^{F''}) = \int_{(w',V')} \mathbb{1}(\tilde{S}^W(w', V^{W'}) < 0 \lor \tilde{S}^F(w', V^{F'}) < \epsilon^{F''}) f_{post}^3(w', V') d(w', V')
\]

\[
= \int_{(w',V') \in (I^{NC} \setminus M^{NC})} \mathbb{1}(\tilde{S}^W(w', V^{W'}) < 0 \lor \tilde{S}^F(w', V^{F'}) < \epsilon^{F''}) f_{post}^0(w', V') \left[1 - \frac{\delta^0}{1 - \delta^1}\right] d(w', V'),
\]

where the second equality follows from Equation (A40) (after reformulating the densities there into \(1 - \delta^0\) and \(1 - \delta^1\)).
where \(f^0_I(w', V') = f^0_{\text{post}}(w', V') \left[\frac{1-\delta^0}{1-\delta^1} \right] \) is the density of the inframarginal jobs in the control group and \(f^0_M(w', V') = f^0_{\text{post}}(w', V') \left[\frac{1-\delta^0}{1-\delta^1} \right] \) is the density of the marginal jobs in the control group.

The second step recognizes that condition \(\tilde{S}^W(w', V^W) < 0 \) is slack without worker aggregate shocks and with stability in idiosyncratic surplus (i.e., for these jobs, \(f^0_{\text{post}}(w', V^W, V^F) = 0 \)).

The third step clarifies that the conditions now compare two simple conditional cumulative distribution functions of firm surplus with threshold given by the firm surplus shock, for the range of worker surplus shocks partitioned by the REBP surplus cutoff \(^{34}\)

Our empirically interesting case is:

\[
\Delta^1(\varepsilon^{F''}, \delta^0, \delta^1) = \Delta^0(\varepsilon^{F''}, \delta^0, \delta^1),
\]

(A52)

such that the two post-repeal separation rates are equal for all post-repeal firm shocks and moreover for any size of the set of marginal jobs REBP extracted (\(\delta^1 - \delta^0 \)). This “global” condition is fulfilled if worker and firm surpluses are independently distributed \(^{35}\). The non-Coasean setting can then rationalize our findings of no post-repeal resilience whatsoever even with no reshuffling in idiosyncratic job surplus.

\(^{34}\)To see this formally, note that the property of joint densities implies that \(f^0_{\text{post}}(w', V^W, V^F) = f^0_{\text{post}}(w', V^W) f^0_{\text{post}}(w', V^F) \), we can write condition \((A50)\) as

\[
\int \int \left(\tilde{S}^F < \varepsilon^{F''} \right) h^0_{\text{post}}(\tilde{S}^F | \tilde{S}^W) d\tilde{S}^F \int \left[\frac{1-\delta^0}{1-\delta^1} \right] \tilde{S}^W d\tilde{S}^W
\]

(A51)

\(\forall \in \int \int \left(\tilde{S}^F < \varepsilon^{F''} \right) h^0_{\text{post}}(\tilde{S}^F | \tilde{S}^W) d\tilde{S}^F \int \left[\frac{1-\delta^0}{1-\delta^1} \right] \tilde{S}^W d\tilde{S}^W. \)

Up until now we rewrote condition \((A50)\). Now assume that worker surplus and firm surpluses are independent: \(h^0_{\text{post}}(\tilde{S}^F | \tilde{S}^W) = h^0_{\text{post}}(\tilde{S}^F) \). Then condition \((A50)\) collapses to equality. That is, if worker and firm surpluses are independently distributed, \(\Delta^1(\varepsilon^{F''}, \delta^0, \delta^1) = \Delta^0(\varepsilon^{F''}, \delta^0, \delta^1) \), i.e., post-repeal separation rates co-move perfectly in response to a firm shock even if there is no reshuffling of surplus from one period to the next.

\(^{35}\)Of course, in practice, the shocks may be percent shifters of the given job surplus, so that the condition would not literally need to apply in levels.
E Estimation Details: Mixed Model

Consider the following mixed model, obtained by augmenting Equation (12) in the paper with large idiosyncratic shocks:

\[
\Delta^1 = \kappa \Delta^0 + (1 - \kappa) \max \left\{ x, \frac{1 - \delta^0}{1 - \delta^1} \left[\Delta^0 - \frac{\delta^1 - \delta^0}{1 - \delta^0} \right] \right\} + \nu. \tag{A53}
\]

We collect our parameters of interest in the vector \(\theta = (\kappa, x) \). Setting up the estimation problem as a non-linear least squares procedure:

\[
\min_{\theta \in \Theta} E \left[\left(\Delta^1 - \kappa \Delta^0 - (1 - \kappa) \max \left\{ x, \frac{1 - \delta^0}{1 - \delta^1} \left[\Delta^0 - \frac{\delta^1 - \delta^0}{1 - \delta^0} \right] \right\} \right)^2 \right]. \tag{A54}
\]

The first-order conditions with respect to \(\kappa \) lead to a moment equation corresponding to the assumption that the regressors in Equation (A53) are exogenous, while the first-order condition with respect to \(x \) gives rise to a second:

\[
E \left[\left(\Delta^0 - \max \left\{ x, \frac{1 - \delta^0}{1 - \delta^1} \left[\Delta^0 - \frac{\delta^1 - \delta^0}{1 - \delta^0} \right] \right\} \right) \nu \right] = 0 \tag{A55}
\]

\[
E \left[(1 - \kappa) \mathbf{1} \left(\Delta^0 \leq x + (1 - x) \frac{\delta^1 - \delta^0}{1 - \delta^0} \right) \nu \right] = 0. \tag{A56}
\]

These equations allow us to identify \(\theta \). Intuitively, \(\kappa \) is identified by projecting the treatment separation rates predicted by perfect reshuffling and the Coasean benchmark, respectively, on \(\Delta^0 \), while \(x \) is identified by fitting the location of the kink in the Coasean prediction. To avoid estimates of \(x \) that are smaller than the smallest observed values of \(\Delta^z \), we can introduce the restriction that \(x \leq \min \{ \Delta^0 \} \) in the parameter space \(\Theta \).

In practice, we can also allow the prevalence of idiosyncratic shocks to vary across cohorts. Since the REBP effect also depends on age, we can allow \(\delta^0 \) and \(\delta^1 \) to be cohort-specific as well. To operationalize this, we replace the Coasean prediction in Equation (A53) with cohort-specific parameters to get the following estimating equation considered in Section 6.1.2:

\[
\Delta^1_{ci} = \kappa \Delta^0_{ci} + (1 - \kappa) \sum_{c \in C} \tau_c \max \left\{ x_c, \frac{1 - \delta^0_c}{1 - \delta^1_c} \left[\Delta^0_{ci} - \frac{\delta^1_c - \delta^0_c}{1 - \delta^0_c} \right] \right\} + \nu_{ci}. \tag{A57}
\]

Here, \(c \) indexes cohorts and \(i \) indexes industries. \(\tau_c \) is an indicator for membership in cohort \(c \) and \(C \) is the set of cohorts.

Because the objective is non-linear, we search over initializations of \(\theta = (\kappa, x) \) that deliver the best model fit. A grid search is computationally demanding since \(\theta \) has dimension equal to the number of cohorts plus two. We instead proceed sequentially. In particular, we implement the following procedure:

1. Find the best initialization of \(\kappa \) (increments of 0.1 from 0 to 1) with \(x = 0 \). Call this
2. Find the best initialization of x_0 (increments of 0.01 from 0 to 1) with κ initialized at κ^* and other x’s initialized at zero. Call this x_0^*.

3. Find the best initialization of x_1 with κ initialized at κ^*, x_0 initialized at x_0^*, and other x’s initialized at zero. Call this x_1^*.

4. Repeat until initial values for x_c have been found for all c in C.

We will impose throughout that \hat{x}_c be positive. To impose this constraint, we replace x_c in the estimating Equation (A57) with $\hat{x}_c = \exp(x_c)$. This allows us to continue treating estimation of Equation (A57) as an unconstrained optimization problem, while recovering $\hat{x}_c \geq 0$ by taking the log of the estimated \hat{x}_c. We will also consider requiring that \hat{x}_c to be lower than the 10th percentile of Δ^0_{ci} for each cohort, which we denote $\Delta^0_{c,10}$. We rely in this case on the sigmoid transformation $\tilde{x}_c = \frac{\Delta^0_{c,10}}{1+\exp(-\hat{x}_c)}$.

Before presenting the results of estimating Equation (12), we plot the reduced-form relationship between post-repeal cohort-by-cell two-year (1994-96) separation rates in the treatment region (Δ^1_{ci}) against separation rates in the control region (Δ^0_{ci}) for the coarser 5-year cohort definition in Figure A.4. The dark blue circles correspond to separation rates for the younger 1938-1943 cohort while the red diamonds correspond to the older 1933-1938 cohort. The figure shows that the older workers have higher separation rates overall, but separation rates for both groups are comparable across treatment and control regions, providing suggestive evidence against the Coasean benchmark without idiosyncratic post-repeal shocks.

Appendix Tables A.2-A.9, below, report additional estimates that probe the robustness of the results in Table 4. Each table varies the cohort definition and separation horizon used to produce the estimates, and the columns of each table vary the method of specifying x_c. In each table, the first four columns fix x_c at a constant value (varying between 0 and 0.3), the fifth and sixth fix x_c at the 10th or 25th percentile of Δ^0, and the seventh and eighth columns estimate x_c with the restriction that it be non-negative (seventh column) or the restriction that it be non-negative and not exceed the 10th percentile of Δ^0 (eighth column). The first and eighth columns of each table are also reported in Panels (a) and (b) of Table 4.
Figure A.4: Cohort-by-Cell-Level Post-Repeal Separation Rates (1994-96)

Note: This figure plots the reduced-form relationship between post-repeal cohort-by-cell two-year (1994-96) separation rates in the treatment region (Δ^1_{ci}) against separation rates in the control region (Δ^0_{ci}) for the coarser 5-year cohort definition. The dark blue circles correspond to separation rates for the younger 1938-1943 cohort while the red diamonds correspond to the older 1933-1938 cohort. The figure shows that the older workers have higher separation rates overall, but separation rates for both groups are comparable across treatment and control regions, providing suggestive evidence against the Coasean benchmark without idiosyncratic post-repeal shocks. Cells are at the industry by occupation level, where industries are measured using two-digit codes, while occupations are classified as either blue collar or white collar. The dashed 45 degree line represents equality of separation rates.
Table A.2: Mixed Model Estimates: 1994-95 Separations Window, 5-Year Cohorts

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\kappa)</td>
<td>0.978</td>
<td>0.946</td>
<td>0.993</td>
<td>1.001</td>
<td>0.980</td>
<td>0.992</td>
<td>0.928</td>
<td>0.934</td>
</tr>
<tr>
<td></td>
<td>(0.035)</td>
<td>(0.047)</td>
<td>(0.021)</td>
<td>(0.012)</td>
<td>(0.042)</td>
<td>(0.030)</td>
<td>(0.072)</td>
<td>(0.053)</td>
</tr>
<tr>
<td>(1 - \kappa)</td>
<td>0.022</td>
<td>0.054</td>
<td>0.007</td>
<td>-0.001</td>
<td>0.020</td>
<td>0.008</td>
<td>0.072</td>
<td>0.066</td>
</tr>
<tr>
<td></td>
<td>(0.035)</td>
<td>(0.047)</td>
<td>(0.021)</td>
<td>(0.012)</td>
<td>(0.042)</td>
<td>(0.030)</td>
<td>(0.072)</td>
<td>(0.053)</td>
</tr>
<tr>
<td>(x_{1933–1938})</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.188</td>
<td>0.228</td>
<td>0.029</td>
<td>0.080</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.229)</td>
<td>(0.089)</td>
</tr>
<tr>
<td>(x_{1938–1943})</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.039</td>
<td>0.069</td>
<td>0.167</td>
<td>0.039</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.180)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x_c) method</th>
<th>(x_c = 0)</th>
<th>(x_c = 0.1)</th>
<th>(x_c = 0.2)</th>
<th>(x_c = 0.3)</th>
<th>(x_c = \Delta_0^{10})</th>
<th>(x_c = \Delta_0^{25})</th>
<th>Estimated</th>
<th>Estimated</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_c \leq 0)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(x_c \leq \min \Delta_0)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.792</td>
<td>0.794</td>
<td>0.793</td>
<td>0.792</td>
<td>0.793</td>
<td>0.793</td>
<td>0.797</td>
<td>0.793</td>
</tr>
<tr>
<td>(N)</td>
<td>182</td>
<td>182</td>
<td>182</td>
<td>182</td>
<td>182</td>
<td>182</td>
<td>182</td>
<td>182</td>
</tr>
</tbody>
</table>

Note: This table reports NLS estimates of Equation (12) and Equation (15), testing which fraction of labor market cells would need to exhibit full surplus reshuffling in order to rationalize our results. The first column does not allow for “large” idiosyncratic shocks as in Section 6.1.2, while the second to eighth do with varying levels of probability. This table uses a one-year (1994-1995) separations window, and 5-year cohort definitions. In all specifications, we collapse the data at the cohort by industry by occupation (blue/white collar) level and weight each observation by the number of workers in each cell, dropping cells with fewer than ten workers who survived REBP. The different columns vary the method of specifying \(x_c \), the probability of a large shock. The first four columns fix \(x_c \) at constant values (varying between 0 to 0.3), the fifth and sixth columns fix \(x_c \) at the 10th or 25th percentile of \(\Delta^0 \) in the data, and the seventh and eighth columns estimate \(x_c \), imposing the restriction that \(x_c \) be nonnegative and (in Column 8) that \(x_c \) not exceed the 10th percentile of \(\Delta^0 \). Standard errors reported in parentheses, but omitted for estimates of \(x_c \) on the boundary of the parameter space.
<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>κ</td>
<td>0.974</td>
<td>0.994</td>
<td>0.999</td>
<td>1.000</td>
<td>1.000</td>
<td>1.005</td>
<td>0.864</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.032)</td>
<td>(0.004)</td>
<td>(0.002)</td>
<td>(0.001)</td>
<td>(0.003)</td>
<td>(0.002)</td>
<td>(0.004)</td>
<td>(0.051)</td>
</tr>
<tr>
<td>$1 - \kappa$</td>
<td>0.026</td>
<td>0.006</td>
<td>0.001</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.005</td>
<td>0.136</td>
</tr>
<tr>
<td></td>
<td>(0.032)</td>
<td>(0.004)</td>
<td>(0.002)</td>
<td>(0.001)</td>
<td>(0.003)</td>
<td>(0.002)</td>
<td>(0.004)</td>
<td>(0.051)</td>
</tr>
<tr>
<td>x_{1933}</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.321</td>
<td>0.321</td>
<td>0.998</td>
<td>0.084</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.092)</td>
<td></td>
</tr>
<tr>
<td>x_{1934}</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.595</td>
<td>0.663</td>
<td>0.002</td>
<td>0.045</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.124)</td>
<td></td>
</tr>
<tr>
<td>x_{1935}</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.154</td>
<td>0.248</td>
<td>0.002</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.237)</td>
<td></td>
</tr>
<tr>
<td>x_{1936}</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.095</td>
<td>0.165</td>
<td>0.002</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.537)</td>
<td></td>
</tr>
<tr>
<td>x_{1937}</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.063</td>
<td>0.112</td>
<td>0.002</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_{1938}</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.079</td>
<td>0.100</td>
<td>0.002</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.527)</td>
<td></td>
</tr>
<tr>
<td>x_{1939}</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.052</td>
<td>0.085</td>
<td>0.002</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.471)</td>
<td></td>
</tr>
<tr>
<td>x_{1940}</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.041</td>
<td>0.064</td>
<td>0.002</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.543)</td>
<td></td>
</tr>
<tr>
<td>x_{1941}</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.033</td>
<td>0.062</td>
<td>0.002</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.336)</td>
<td></td>
</tr>
<tr>
<td>x_{1942}</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.041</td>
<td>0.067</td>
<td>0.002</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_{1943}</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.037</td>
<td>0.067</td>
<td>0.002</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x_c method</th>
<th>$x_c = 0$</th>
<th>$x_c = 0.1$</th>
<th>$x_c = 0.2$</th>
<th>$x_c = 0.3$</th>
<th>$x_c = \Delta_{10}^0$</th>
<th>$x_c = \Delta_{25}^0$</th>
<th>Estimated</th>
<th>Estimated</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_c \geq 0$</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$x_c \leq \min \Delta_0$</td>
<td>0.803</td>
<td>0.805</td>
<td>0.804</td>
<td>0.803</td>
<td>0.803</td>
<td>0.803</td>
<td>0.803</td>
<td>0.809</td>
</tr>
<tr>
<td>N</td>
<td>513</td>
<td>513</td>
<td>513</td>
<td>513</td>
<td>513</td>
<td>513</td>
<td>513</td>
<td>513</td>
</tr>
</tbody>
</table>

Note: This table reports NLS estimates of Equation (12) and Equation (15), testing which fraction of labor market cells would need to exhibit full surplus reshuffling in order to rationalize our results. The first column does not allow for “large” idiosyncratic shocks as in Section 6.1.2, while the second to eighth do with varying levels of probability. This table uses a one-year (1994-1995) separations window, and 1-year cohort definitions. In all specifications, we collapse the data at the cohort by industry by occupation (blue/white collar) level and weight each observation by the number of workers in each cell, dropping cells with fewer than ten workers who survived REBP. The different columns vary the method of specifying x_c, the probability of a large shock. The first four columns fix x_c at constant values (varying between 0 to 0.3), the fifth and sixth columns fix x_c at the 10th or 25th percentile of Δ_0 in the data, and the seventh and eighth columns estimate x_c, imposing the restriction that x_c be nonnegative and (in Column 8) that x_c not exceed the 10th percentile of Δ_0. Standard errors reported in parentheses, but omitted for estimates of x_c on the boundary of the parameter space. Column (1) replicates Panel A Column (5) of Table 4, and Column (8) replicates Panel B Column (5) of Table 4.
Table A.4: Mixed Model Estimates: 1994-96 Separations Window, 5-Year Cohorts

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\kappa)</td>
<td>1.040</td>
<td>1.035</td>
<td>0.989</td>
<td>0.999</td>
<td>1.008</td>
<td>1.014</td>
<td>1.052</td>
<td>1.045</td>
</tr>
<tr>
<td></td>
<td>(0.044)</td>
<td>(0.048)</td>
<td>(0.030)</td>
<td>(0.017)</td>
<td>(0.022)</td>
<td>(0.017)</td>
<td>(0.052)</td>
<td>(0.052)</td>
</tr>
<tr>
<td>(1 - \kappa)</td>
<td>-0.040</td>
<td>-0.035</td>
<td>0.011</td>
<td>0.001</td>
<td>-0.008</td>
<td>-0.014</td>
<td>-0.052</td>
<td>-0.045</td>
</tr>
<tr>
<td></td>
<td>(0.044)</td>
<td>(0.048)</td>
<td>(0.030)</td>
<td>(0.017)</td>
<td>(0.022)</td>
<td>(0.017)</td>
<td>(0.052)</td>
<td>(0.052)</td>
</tr>
<tr>
<td>(x_{1933-1938})</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.387</td>
<td>0.431</td>
<td>0.265</td>
<td>0.265</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.179)</td>
<td>(0.210)</td>
</tr>
<tr>
<td>(x_{1938-1943})</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.089</td>
<td>0.148</td>
<td>0.002</td>
<td>0.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x_c) method</th>
<th>(x_c = 0)</th>
<th>(x_c = 0.1)</th>
<th>(x_c = 0.2)</th>
<th>(x_c = 0.3)</th>
<th>(x_c = \Delta_0^{10})</th>
<th>(x_c = \Delta_0^{25})</th>
<th>Estimated (x_c)</th>
<th>Estimated (x_c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_c \geq 0)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(x_c \leq \min \Delta_0)</td>
<td>0.910</td>
<td>0.910</td>
<td>0.909</td>
<td>0.909</td>
<td>0.908</td>
<td>0.908</td>
<td>0.909</td>
<td>0.909</td>
</tr>
<tr>
<td>(R^2)</td>
<td>182</td>
<td>182</td>
<td>182</td>
<td>182</td>
<td>182</td>
<td>182</td>
<td>182</td>
<td>182</td>
</tr>
<tr>
<td>(N)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: This table reports NLS estimates of Equation (12) and Equation (15), testing which fraction of labor market cells would need to exhibit full surplus reshuffling in order to rationalize our results. The first column does not allow for “large” idiosyncratic shocks as in Section 6.1.2, while the second to eighth do with varying levels of probability. This table uses a two-year (1994-1996) separations window, and 5-year cohort definitions. In all specifications, we collapse the data at the cohort by industry by occupation (blue/white collar) level and weight each observation by the number of workers in each cell, dropping cells with fewer than ten workers who survived REBP. The different columns vary the method of specifying \(x_c\), the probability of a large shock. The first four columns fix \(x_c\) at constant values (varying between 0 to 0.3), the fifth and sixth columns fix \(x_c\) at the 10th or 25th percentile of \(\Delta_0\) in the data, and the seventh and eighth columns estimate \(x_c\), imposing the restriction that \(x_c\) be nonnegative and (in Column 8) that \(x_c\) not exceed the 10th percentile of \(\Delta_0\). Standard errors reported in parentheses, but omitted for estimates of \(x_c\) on the boundary of the parameter space. Column (1) replicates Panel A Column (2) of Table 4 and Column (8) replicates Panel B Column (2) of Table 4.
Table A.5: Mixed Model Estimates: 1994-96 Separations Window, 1-Year Cohorts

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>κ</td>
<td>1.083</td>
<td>0.986</td>
<td>0.995</td>
<td>0.997</td>
<td>0.998</td>
<td>0.999</td>
<td>0.980</td>
<td>0.992</td>
</tr>
<tr>
<td></td>
<td>(0.035)</td>
<td>(0.007)</td>
<td>(0.003)</td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.050)</td>
<td>(0.008)</td>
</tr>
<tr>
<td>$1 - \kappa$</td>
<td>-0.083</td>
<td>0.014</td>
<td>0.005</td>
<td>0.003</td>
<td>0.002</td>
<td>0.001</td>
<td>0.020</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td>(0.035)</td>
<td>(0.007)</td>
<td>(0.003)</td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.050)</td>
<td>(0.008)</td>
</tr>
<tr>
<td>x_{1933}</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.464</td>
<td>0.464</td>
<td>0.134</td>
<td>0.463</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(5.746)</td>
<td></td>
</tr>
<tr>
<td>x_{1934}</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.761</td>
<td>0.824</td>
<td>0.130</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(6.897)</td>
<td></td>
</tr>
<tr>
<td>x_{1935}</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.661</td>
<td>0.769</td>
<td>0.076</td>
<td>0.002</td>
</tr>
<tr>
<td>x_{1936}</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.305</td>
<td>0.351</td>
<td>0.076</td>
<td>0.001</td>
</tr>
<tr>
<td>x_{1937}</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.181</td>
<td>0.241</td>
<td>0.076</td>
<td>0.181</td>
</tr>
<tr>
<td>x_{1938}</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.153</td>
<td>0.198</td>
<td>0.076</td>
<td>0.000</td>
</tr>
<tr>
<td>x_{1939}</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.132</td>
<td>0.175</td>
<td>0.086</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1.369)</td>
<td></td>
</tr>
<tr>
<td>x_{1940}</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.100</td>
<td>0.153</td>
<td>0.133</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(8.928)</td>
<td></td>
</tr>
<tr>
<td>x_{1941}</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.071</td>
<td>0.119</td>
<td>0.078</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(4.460)</td>
<td></td>
</tr>
<tr>
<td>x_{1942}</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.083</td>
<td>0.116</td>
<td>0.076</td>
<td>0.083</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(4.456)</td>
<td></td>
</tr>
<tr>
<td>x_{1943}</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.081</td>
<td>0.113</td>
<td>0.076</td>
<td>0.080</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(4.456)</td>
<td></td>
</tr>
</tbody>
</table>

Note: This table reports NLS estimates of Equation (12) and Equation (15), testing which fraction of labor market cells would need to exhibit full surplus reshuffling in order to rationalize our results. The first column does not allow for “large” idiosyncratic shocks as in Section 6.1.2, while the second to eighth do with varying levels of probability. This table uses a two-year (1994-1996) separations window, and 1-year cohort definitions. In all specifications, we collapse the data at the cohort by industry by occupation (blue/white collar) level and weight each observation by the number of workers in each cell, dropping cells with fewer than ten workers who survived REBP. The different columns vary the method of specifying x_c, the probability of a large shock. The first four columns fix x_c at constant values (varying between 0 to 0.3), the fifth and sixth columns fix x_c at the 10th or 25th percentile of Δ_0 in the data, and the seventh and eighth columns estimate x_c, imposing the restriction that x_c be nonnegative and (in Column 8) that x_c not exceed the 10th percentile of Δ_0. Standard errors reported in parentheses, but omitted for estimates of x_c on the boundary of the parameter space. Column (1) replicates Panel A Column (6) of Table 4 and Column (8) replicates Panel B Column (6) of Table 4.
Table A.6: Mixed Model Estimates: 1994-97 Separations Window, 5-Year Cohorts

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>κ</td>
<td>1.097</td>
<td>1.045</td>
<td>0.937</td>
<td>0.964</td>
<td>0.996</td>
<td>0.995</td>
<td>0.920</td>
<td>1.097</td>
</tr>
<tr>
<td></td>
<td>(0.057)</td>
<td>(0.063)</td>
<td>(0.042)</td>
<td>(0.022)</td>
<td>(0.015)</td>
<td>(0.012)</td>
<td>(0.061)</td>
<td>(0.057)</td>
</tr>
<tr>
<td>$1 - \kappa$</td>
<td>-0.097</td>
<td>-0.045</td>
<td>0.063</td>
<td>0.036</td>
<td>0.004</td>
<td>0.005</td>
<td>0.080</td>
<td>-0.097</td>
</tr>
<tr>
<td></td>
<td>(0.057)</td>
<td>(0.063)</td>
<td>(0.042)</td>
<td>(0.022)</td>
<td>(0.015)</td>
<td>(0.012)</td>
<td>(0.061)</td>
<td>(0.057)</td>
</tr>
<tr>
<td>$x_{1933-1938}$</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.560</td>
<td>0.618</td>
<td>0.055</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.391)</td>
<td></td>
</tr>
<tr>
<td>$x_{1938-1943}$</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.170</td>
<td>0.238</td>
<td>0.479</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.169)</td>
<td></td>
</tr>
</tbody>
</table>

Note: This table reports NLS estimates of Equation (12) and Equation (15), testing which fraction of labor market cells would need to exhibit full surplus reshuffling in order to rationalize our results. The first column does not allow for “large” idiosyncratic shocks as in Section 6.1.2, while the second to eighth do with varying levels of probability. This table uses a three-year (1994-1997) separations window and 5-year cohort definitions. In all specifications, we collapse the data at the cohort by industry by occupation (blue/white collar) level and weight each observation by the number of workers in each cell, dropping cells with fewer than ten workers who survived REBP. The different columns vary the method of specifying x_c, the probability of a large shock. The first four columns fix x_c at constant values (varying between 0 to 0.3), the fifth and sixth columns fix x_c at the 10th or 25th percentile of Δ^0 in the data, and the seventh and eighth columns estimate x_c, imposing the restriction that x_c be nonnegative and (in Column 8) that x_c not exceed the 10th percentile of Δ^0. Standard errors reported in parentheses, but omitted for estimates of x_c on the boundary of the parameter space. Column (1) replicates Panel A Column (3) of Table 4 and Column (8) replicates Panel B Column (3) of Table 4.

κ method

$\kappa \geq 0$

$\kappa \leq \min \Delta^0$

<table>
<thead>
<tr>
<th>x_c method</th>
<th>$x_c = 0$</th>
<th>$x_c = 0.1$</th>
<th>$x_c = 0.2$</th>
<th>$x_c = 0.3$</th>
<th>$x_c = \Delta^0_{10}$</th>
<th>$x_c = \Delta^0_{25}$</th>
<th>Estimated Δ^0_{10}</th>
<th>Estimated Δ^0_{25}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_c \geq 0$</td>
<td>0.935</td>
<td>0.934</td>
<td>0.933</td>
<td>0.934</td>
<td>0.933</td>
<td>0.933</td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
<tr>
<td>$x_c \leq \min \Delta^0$</td>
<td>0.935</td>
<td>0.934</td>
<td>0.933</td>
<td>0.934</td>
<td>0.933</td>
<td>0.933</td>
<td>0.937</td>
<td>0.935</td>
</tr>
<tr>
<td>R^2</td>
<td>0.935</td>
<td>0.934</td>
<td>0.933</td>
<td>0.934</td>
<td>0.933</td>
<td>0.933</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>182</td>
<td>182</td>
<td>182</td>
<td>182</td>
<td>182</td>
<td>182</td>
<td>182</td>
<td>182</td>
</tr>
</tbody>
</table>
Table A.7: Mixed Model Estimates: 1994-97 Separations Window, 1-Year Cohorts

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>κ</td>
<td>1.157</td>
<td>0.983</td>
<td>0.990</td>
<td>0.995</td>
<td>0.997</td>
<td>0.998</td>
<td>1.157</td>
<td>1.157</td>
</tr>
<tr>
<td></td>
<td>(0.043)</td>
<td>(0.011)</td>
<td>(0.003)</td>
<td>(0.002)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.043)</td>
<td>(0.043)</td>
</tr>
<tr>
<td>$1 - \kappa$</td>
<td>-0.157</td>
<td>0.017</td>
<td>0.010</td>
<td>0.005</td>
<td>0.003</td>
<td>0.002</td>
<td>-0.157</td>
<td>-0.157</td>
</tr>
<tr>
<td></td>
<td>(0.043)</td>
<td>(0.011)</td>
<td>(0.003)</td>
<td>(0.002)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.043)</td>
<td>(0.043)</td>
</tr>
<tr>
<td>x_{1933}</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.524</td>
<td>0.524</td>
<td>0.002</td>
<td>0.001</td>
</tr>
<tr>
<td>x_{1934}</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.804</td>
<td>0.865</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>x_{1935}</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.789</td>
<td>0.872</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>x_{1936}</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.737</td>
<td>0.804</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>x_{1937}</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.327</td>
<td>0.409</td>
<td>0.002</td>
<td>0.001</td>
</tr>
<tr>
<td>x_{1938}</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.221</td>
<td>0.312</td>
<td>0.002</td>
<td>0.001</td>
</tr>
<tr>
<td>x_{1939}</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.244</td>
<td>0.307</td>
<td>0.002</td>
<td>0.001</td>
</tr>
<tr>
<td>x_{1940}</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.175</td>
<td>0.235</td>
<td>0.002</td>
<td>0.000</td>
</tr>
<tr>
<td>x_{1941}</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.138</td>
<td>0.204</td>
<td>0.002</td>
<td>0.000</td>
</tr>
<tr>
<td>x_{1942}</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.124</td>
<td>0.190</td>
<td>0.002</td>
<td>0.000</td>
</tr>
<tr>
<td>x_{1943}</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.111</td>
<td>0.172</td>
<td>0.002</td>
<td>0.000</td>
</tr>
</tbody>
</table>

x_c method

<table>
<thead>
<tr>
<th>$x_c \geq 0$</th>
<th>$x_c = 0$</th>
<th>$x_c = 0.1$</th>
<th>$x_c = 0.2$</th>
<th>$x_c = 0.3$</th>
<th>$x_c = \Delta^0_{10}$</th>
<th>$x_c = \Delta^0_{25}$</th>
<th>Estimated</th>
<th>Estimated</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_c \leq \min \Delta_0$</td>
<td>R2</td>
<td>0.915</td>
<td>0.911</td>
<td>0.913</td>
<td>0.913</td>
<td>0.913</td>
<td>0.915</td>
<td>0.911</td>
</tr>
<tr>
<td>N</td>
<td>513</td>
<td>513</td>
<td>513</td>
<td>513</td>
<td>513</td>
<td>513</td>
<td>513</td>
<td>513</td>
</tr>
</tbody>
</table>

Note: This table reports NLS estimates of Equation (12) and Equation (15), testing which fraction of labor market cells would need to exhibit full surplus reshuffling in order to rationalize our results. The first column does not allow for “large” idiosyncratic shocks as in Section 6.1.2, while the second to eighth do with varying levels of probability. This table uses a three-year (1994-1997) separations window, and 1-year cohort definitions. In all specifications, we collapse the data at the cohort by industry by occupation (blue/white collar) level and weight each observation by the number of workers in each cell, dropping cells with fewer than ten workers who survived REBP. The different columns vary the method of specifying x_c, the probability of a large shock. The first four columns fix x_c at constant values (varying between 0 to 0.3), the fifth and sixth columns fix x_c at the 10th or 25th percentile of Δ^0 in the data, and the seventh and eighth columns estimate x_c, imposing the restriction that x_c be nonnegative and (in Column 8) that x_c not exceed the 10th percentile of Δ^0. Standard errors reported in parentheses, but omitted for estimates of x_c on the boundary of the parameter space. Column (1) replicates Panel A Column (7) of Table 4, and Column (8) replicates Panel B Column (7) of Table 4.
Table A.8: Mixed Model Estimates: 1994-98 Separations Window, 5-Year Cohorts

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>κ</td>
<td>1.117</td>
<td>1.114</td>
<td>0.799</td>
<td>0.920</td>
<td>1.001</td>
<td>1.000</td>
<td>0.856</td>
<td>0.889</td>
</tr>
<tr>
<td></td>
<td>(0.077)</td>
<td>(0.078)</td>
<td>(0.068)</td>
<td>(0.033)</td>
<td>(0.011)</td>
<td>(0.009)</td>
<td>(0.105)</td>
<td>(0.096)</td>
</tr>
<tr>
<td>$1 - \kappa$</td>
<td>-0.117</td>
<td>-0.114</td>
<td>0.201</td>
<td>0.080</td>
<td>-0.001</td>
<td>-0.000</td>
<td>0.144</td>
<td>0.111</td>
</tr>
<tr>
<td></td>
<td>(0.077)</td>
<td>(0.078)</td>
<td>(0.068)</td>
<td>(0.033)</td>
<td>(0.011)</td>
<td>(0.009)</td>
<td>(0.105)</td>
<td>(0.096)</td>
</tr>
<tr>
<td>$x_{1933-1938}$</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.720</td>
<td>0.800</td>
<td>0.211</td>
<td>0.233</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.252)</td>
<td>(0.220)</td>
</tr>
<tr>
<td>$x_{1938-1943}$</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.264</td>
<td>0.343</td>
<td>0.316</td>
<td>0.263</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.101)</td>
<td></td>
</tr>
</tbody>
</table>

x_c method:
- $x_c = 0$
- $x_c = 0.1$
- $x_c = 0.2$
- $x_c = 0.3$
- $x_c = \Delta_0^{10}$
- $x_c = \Delta_0^{25}$

Estimated x_c:
- $x_c \geq 0$
- $x_c \leq \min \Delta_0$

<table>
<thead>
<tr>
<th></th>
<th>Estimated</th>
<th>Estimated</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_c = 0$</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>$x_c = 0.1$</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>$x_c = 0.2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x_c = 0.3$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x_c = \Delta_0^{10}$</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$x_c = \Delta_0^{25}$</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

| R^2 | 0.952 | 0.952 | 0.948 | 0.951 | 0.949 | 0.949 | 0.950 | 0.950 |
| N | 182 | 182 | 182 | 182 | 182 | 182 | 182 | 182 |

Note: This table reports NLS estimates of Equation (12) and Equation (15), testing which fraction of labor market cells would need to exhibit full surplus reshuffling in order to rationalize our results. The first column does not allow for “large” idiosyncratic shocks as in Section 6.1.2, while the second to eighth do with varying levels of probability. This table uses a four-year (1994-1998) separations window, and 5-year cohort definitions. In all specifications, we collapse the data at the cohort by industry by occupation (blue/white collar) level and weight each observation by the number of workers in each cell, dropping cells with fewer than ten workers who survived REBP. The different columns vary the method of specifying x_c, the probability of a large shock. The first four columns fix x_c at constant values (varying between 0 to 0.3), the fifth and sixth columns fix x_c at the 10th or 25th percentile of Δ_0^0 in the data, and the seventh and eighth columns estimate x_c, imposing the restriction that x_c be nonnegative and (in Column 8) that x_c not exceed the 10th percentile of Δ_0^0. Standard errors reported in parentheses, but omitted for estimates of x_c on the boundary of the parameter space. Column (1) replicates Panel A Column (4) of Table 4 and Column (8) replicates Panel B Column (4) of Table 4.
Table A.9: Mixed Model Estimates: 1994-98 Separations Window, 1-Year Cohorts

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>κ</td>
<td>1.226</td>
<td>0.925</td>
<td>0.984</td>
<td>0.991</td>
<td>0.998</td>
<td>0.998</td>
<td>0.902</td>
<td>0.937</td>
</tr>
<tr>
<td></td>
<td>(0.059)</td>
<td>(0.030)</td>
<td>(0.006)</td>
<td>(0.003)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.065)</td>
<td>(0.047)</td>
</tr>
<tr>
<td>$1 - \kappa$</td>
<td>-0.226</td>
<td>0.075</td>
<td>0.016</td>
<td>0.009</td>
<td>0.002</td>
<td>0.002</td>
<td>0.098</td>
<td>0.063</td>
</tr>
<tr>
<td></td>
<td>(0.059)</td>
<td>(0.030)</td>
<td>(0.006)</td>
<td>(0.003)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.065)</td>
<td>(0.047)</td>
</tr>
<tr>
<td>x_{1933}</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.560</td>
<td>0.560</td>
<td>0.273</td>
<td>0.199</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.638)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>x_{1934}</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.827</td>
<td>0.900</td>
<td>0.130</td>
<td>0.273</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.511)</td>
<td>(0.459)</td>
</tr>
<tr>
<td>x_{1935}</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.853</td>
<td>0.920</td>
<td>0.109</td>
<td>0.103</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.774)</td>
<td>(0.565)</td>
</tr>
<tr>
<td>x_{1936}</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.830</td>
<td>0.905</td>
<td>0.106</td>
<td>0.311</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.810)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>x_{1937}</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.704</td>
<td>0.836</td>
<td>0.096</td>
<td>0.132</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1.465)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>x_{1938}</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.353</td>
<td>0.481</td>
<td>0.106</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>x_{1939}</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.354</td>
<td>0.421</td>
<td>0.094</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>x_{1940}</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.289</td>
<td>0.348</td>
<td>0.076</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1.358)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>x_{1941}</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.200</td>
<td>0.299</td>
<td>0.076</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>x_{1942}</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.201</td>
<td>0.263</td>
<td>0.266</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.645)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>x_{1943}</td>
<td>0.000</td>
<td>0.100</td>
<td>0.200</td>
<td>0.300</td>
<td>0.179</td>
<td>0.273</td>
<td>0.102</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.852)</td>
<td>(0.000)</td>
</tr>
</tbody>
</table>

x_c method | $x_c = 0$ | $x_c = 0.1$ | $x_c = 0.2$ | $x_c = 0.3$ | $x_c = \Delta^0_{10}$ | $x_c = \Delta^0_{25}$ | Estimated | Estimated |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_c \geq 0$</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$x_c \leq \min \Delta_0$</td>
<td>0.930</td>
<td>0.925</td>
<td>0.926</td>
<td>0.928</td>
<td>0.927</td>
<td>0.927</td>
<td>0.929</td>
<td>0.928</td>
</tr>
<tr>
<td>R^2</td>
<td>0.930</td>
<td>0.925</td>
<td>0.926</td>
<td>0.928</td>
<td>0.927</td>
<td>0.927</td>
<td>0.929</td>
<td>0.928</td>
</tr>
<tr>
<td>N</td>
<td>513</td>
<td>513</td>
<td>513</td>
<td>513</td>
<td>513</td>
<td>513</td>
<td>513</td>
<td>513</td>
</tr>
</tbody>
</table>

Note: This table reports NLS estimates of Equation (12) and Equation (15), testing which fraction of labor market cells would need to exhibit full surplus reshuffling in order to rationalize our results. The first column does not allow for “large” idiosyncratic shocks as in Section 6.1.2, while the second to eighth do with varying levels of probability. This table uses a four-year (1994-1998) separations window, and 1-year cohort definitions. In all specifications, we collapse the data at the cohort by industry by occupation (blue/white collar) level and weight each observation by the number of workers in each cell, dropping cells with fewer than ten workers who survived REBP. The different columns vary the method of specifying x_c, the probability of a large shock. The first four columns fix x_c at constant values (varying between 0 to 0.3), the fifth and sixth columns fix x_c at the 10th or 25th percentile of Δ^0 in the data, and the seventh and eighth columns estimate x_c, imposing the restriction that x_c be nonnegative and (in Column 8) that x_c not exceed the 10th percentile of Δ^0. Standard errors reported in parentheses, but omitted for estimates of x_c on the boundary of the parameter space. Column (1) replicates Panel A Column (8) of Table 4 and Column (8) replicates Panel B Column (8) of Table 4.
F GSOEP Surplus Calibration

In the case of continuous idiosyncratic shocks, described in Section 6.1.3, the effects of a shock depend on the initial distribution of joint surplus. Empirical assessment of this case therefore requires a prior measure of the post-repeal joint surplus distribution in the control group; to obtain such a measure, we draw on the custom questionnaire from Jäger, Roth, Roussille, and Schoefer (2021). Jäger, Roth, Roussille, and Schoefer (2021) study workers’ beliefs about outside options in the form of wages with other employers; they also construct worker rent distributions to study the counterfactual surplus distribution if workers had correct beliefs about outside options, for which they draw on the same question about workers’ reservation wages. In this section, we describe the survey and the questions, present descriptive statistics, and outline a conceptual model connecting the questions to our concept of joint job surplus.

The questions were fielded in the 2019 and 2020 waves of the Innovation Sample of the German Socio-Economic Panel (SOEP-IS). The SOEP-IS surveys a representative (panel) sample of the German population once a year on a variety of topics. It achieves high response quality, representativeness, and response rates through probability-based sampling, face-to-face and telephone interviews, and multi-month recontact strategies. The reservation wage questions were included in a special module in the 2019 and 2020 waves for respondents in part-time or full-time employment; this resulted in a sample of 1,068 respondents.

The two relevant reservation wage questions, translated into English as well as in the original German, read as follows:

Worker’s Reservation Wage

Imagine that your current employer would permanently cut wages. This wage cut results from a change of the CEO in the company and is independent of the economic conditions in your industry. At which wage cut would you quit your job within one year?

I would quit my job if my current employer cut wages by more than −X%.

Stellen Sie sich vor, dass bei Ihrem derzeitigen Arbeitgeber die Löhne dauerhaft gekürzt werden. Die Lohnkürzung ist die Folge eines Wechsels in der Unternehmensführung und unabhängig von der wirtschaftlichen Entwicklung in Ihrer Branche. Ab welcher Lohnsenkung würden Sie Ihre Stelle innerhalb eines Jahres kündigen?

Ich würde kündigen, wenn bei meinem derzeitigen Arbeitgeber die Löhne um mehr als X% gesenkt werden würden.

Worker’s Perception of Firm’s Reservation Wage

Imagine that you consider switching to a different employer. What do you think: how much more would your current employer be willing to pay you to prevent that you switch to a different employer.
My current employer would be willing to pay me up to \(X \% \) more to prevent that I switch to a different employer.

Stellen Sie sich vor, Sie überlegen sich, die Stelle zu wechseln. Was glauben Sie: wieviel mehr wäre Ihr derzeitiger Arbeitgeber bereit, Ihnen zu zahlen, damit Sie nicht die Stelle wechseln?

Mein derzeitiger Arbeitgeber wäre bereit, mir bis zu \(-X\%\) mehr zu zahlen, um mich von dem Wechsel abzuhalten.

The first question elicits the worker’s reservation wage for staying at their current job, while the second elicits their belief about their employer’s reservation wage for keeping them at the firm. Both are elicited as a percent of the worker’s salary, but we can convert the results into Euros using information on the worker’s monthly salary from the SOEP-IS. The first question avoids ambiguity by fixing the duration of the wage cut and specifying a one-year window for quitting, as well as making it clear that the wage cut results from an independent firm-specific shock and is unrelated to the broader labor market. The second question zooms in on the worker’s belief about their firm’s reservation wage by specifying a concrete scenario where the respondent is entertaining an outside offer from another firm.

Under our Coasean conceptual framework, what is the connection between responses to these reservation wage questions and joint job surplus? Recall that Equation (3) expresses joint job surplus \(S(V) \) as a sum of the differences between each party’s inside job value \(V_i^\text{In} \) and their outside value \(V_i^\text{Out} \):

\[
S(V) = V_i^W + V_i^F - V_i^W\text{Out} - V_i^F\text{Out}.
\]

Moreover, recall from Section 3.1 that the worker’s reservation wage \(\overline{w}^W \) and firm’s reservation wage \(\overline{w}^F \) are defined such that \(S^W(\overline{w}^W, V^W) = 0 \) and \(S^F(\overline{w}^F, V^F) = 0 \) (i.e., at party i’s reservation wage, party i’s surplus is equal to zero). That is, using Equations (1) and (2), the reservation wages \(\overline{w}^W \) and \(\overline{w}^F \) are defined such that:

\[
S^W(\overline{w}^W, V^W) = V_i^W + \overline{w}^W - V_i^W\text{Out} = 0
\]

\[
S^F(\overline{w}^F, V^F) = V_i^F - \overline{w}^F - V_i^F\text{Out} = 0.
\]

Since both right-hand sides equal zero, we can add the two equations together and move the reservation wages to the right-hand side to yield

\[
S(V) = V_i^W + V_i^F - V_i^W\text{Out} - V_i^F\text{Out} = \overline{w}^F - \overline{w}^W,
\]

i.e., joint surplus can be expressed as the difference between the firm’s reservation wage and the worker’s reservation wage.

This expression provides a link between the reservation wages reported in the SOEP-IS survey and our concept of joint job surplus. If we additionally want to link these reservation wages to the wage that is actually set and the resulting division of joint surplus
into worker and firm surplus, we could impose a variety of assumptions on the bargaining process. For example, according to the Nash bargaining framework outlined in Footnote 9, the wage will equal \(w^W + \phi \cdot [\bar{w}^f - w^W] \), where \(\phi \in [0, 1] \) is the worker’s bargaining weight.

Demographic characteristics for the SOEP-IS sample, and descriptive statistics for the distribution of worker/firm/joint surplus as implied by the reservation wage questions, are presented below in Appendix Tables A.10 and A.11. We restrict to the 2019 wave of the survey, restrict to individuals with non-missing responses to the “perception of firm surplus” question, and drop one individual with joint surplus above 3000% of salary and one individual with zero salary.

Table A.10: SOEP-IS Sample Demographic Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>SD</th>
<th>Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>44.14</td>
<td>11.79</td>
<td>924</td>
</tr>
<tr>
<td>Years of education</td>
<td>13.14</td>
<td>2.71</td>
<td>899</td>
</tr>
<tr>
<td>Salary (in Euro, per Year)</td>
<td>39705.64</td>
<td>26632.12</td>
<td>924</td>
</tr>
<tr>
<td>Tenure</td>
<td>11.05</td>
<td>10.69</td>
<td>924</td>
</tr>
<tr>
<td>Female</td>
<td>0.48</td>
<td>0.50</td>
<td>924</td>
</tr>
<tr>
<td>Full-time Employed</td>
<td>0.70</td>
<td>0.46</td>
<td>924</td>
</tr>
<tr>
<td>Part-time Employed</td>
<td>0.30</td>
<td>0.46</td>
<td>924</td>
</tr>
</tbody>
</table>

Table A.11: SOEP-IS Implied Surplus Distributions

Panel A: Surplus (In EUR, per year)

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>SD</th>
<th>P10</th>
<th>P25</th>
<th>Median</th>
<th>P75</th>
<th>P90</th>
<th>Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worker Surplus</td>
<td>6047.09</td>
<td>7544.03</td>
<td>540.00</td>
<td>1620.00</td>
<td>3840.00</td>
<td>7860.00</td>
<td>12960.00</td>
<td>924</td>
</tr>
<tr>
<td>Firm Surplus</td>
<td>2615.51</td>
<td>6029.57</td>
<td>0</td>
<td>0</td>
<td>936</td>
<td>3125</td>
<td>6480</td>
<td>924</td>
</tr>
<tr>
<td>Joint Surplus</td>
<td>8662.61</td>
<td>8114.24</td>
<td>1248</td>
<td>2964</td>
<td>6000</td>
<td>10563</td>
<td>16800</td>
<td>924</td>
</tr>
</tbody>
</table>

Panel B: Surplus (as % of Salary)

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>SD</th>
<th>P10</th>
<th>P25</th>
<th>Median</th>
<th>P75</th>
<th>P90</th>
<th>Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worker Surplus</td>
<td>14.49</td>
<td>11.73</td>
<td>1.00</td>
<td>5.00</td>
<td>10.00</td>
<td>20.00</td>
<td>30.00</td>
<td>924</td>
</tr>
<tr>
<td>Firm Surplus</td>
<td>6.36</td>
<td>9.85</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>10</td>
<td>15</td>
<td>924</td>
</tr>
<tr>
<td>Joint Surplus</td>
<td>20.85</td>
<td>15.86</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>924</td>
</tr>
</tbody>
</table>
Data Based on the GSOEP survey described above, we define two joint surplus measures: S'_{pct} measured in percent of the gross salary last month, and $S'_{eur} = (S'_{pct}/100) \times w'$, measured in Euros. We focus on the first out of the two waves and exclude observations with missing or negative joint surplus which leaves us with a sample of $N = 924$ (out of 1,068) unique individuals.

Calibration Suppose the initial distributions of joint surplus prevailing at the onset of the REBP are the same across both groups and let $f_0(\tilde{S}(V'))$ denote the control group surplus distribution at the end of REBP. As shown in Appendix C, the corresponding surplus distribution in the treatment group is truncated below by ε_{W}':

$$f^1_{post}(\tilde{S}(V')) = \begin{cases} 0 & \tilde{S}(V') < \varepsilon_{W}' \\ f^0_{post}(\tilde{S}(V')) \frac{1-\delta_0}{1-\delta_1} & \tilde{S}(V') \geq \varepsilon_{W}' \end{cases}$$

(A58)

where the fraction of marginal jobs can be expressed in terms of the REBP treatment effects:

$$\Pr(\tilde{S}(V') < \varepsilon_{W}') = \int_{\tilde{S}(V')} \mathbb{1}(0 \leq S' \leq \varepsilon_{W}') f^0_{post}(S') dS' = F^0_{post}(\varepsilon_{W}') = \frac{\delta_1 - \delta_0}{1-\delta_0}. \quad (A59)$$

Now, consider a continuous idiosyncratic shock ν with $\nu \sim F_\nu(\nu)$ and density f_ν and suppose the transition matrix of the Markov process is $K(V''|V') = f_\nu(\tilde{S}(V'') - \tilde{S}(V'))$. As a consequence, joint surplus evolves according to

$$\tilde{S}(V'') = \tilde{S}(V') + \nu. \quad (A60)$$

As shown in Appendix C, separation rates in each group Z for a general transition matrix $K(V''|V')$ are given by Equation (A17):

$$\Delta^Z = \int_{V'} \tilde{D}(V', \varepsilon'') f^Z_{post}(V') dV', \quad (A61)$$

where the probability to separate for a job with job value V' is

$$\tilde{D}(V', \varepsilon'') = \int_{V''} \mathbb{1}(\tilde{S}(V'') < \varepsilon'') K(V''|V') dV'' \quad (A62)$$

Using the assumption on the evolution of joint surplus in Equation (A60) and replacing the surplus distribution using Equation (A58), we can therefore express the separation rate in the treatment group as:

$$\Delta^1 = \int_{V' \in M'} F_\nu(\varepsilon'' - \tilde{S}(V')) f^0_{post}(\tilde{S}(V')) \frac{1-\delta_0}{1-\delta_1} dV'. \quad (A63)$$

As a consequence, if we assume that $f^0_{post}(\tilde{S}(V'))$ can be observed from the GSOEP survey

36In addition, we exclude one observation with a firm surplus of more than 3,000 percent of the gross salary and one observation with zero salary.
and δ^0, δ^1 are the (empirically measured) separation rates during REBP, post-repeal separation rates in the treatment group are only a function of the aggregate post-repeal shock ε'' and the idiosyncratic shock ν. Furthermore, in order to investigate whether continuous idiosyncratic shocks could explain the observed similarity of post-repeal separation rates, we will assume that all separations are driven by idiosyncratic shocks, so $\varepsilon'' = 0$, and the idiosyncratic shock ν is:

$$\nu \equiv -|\tilde{\nu}|, \text{ with } \tilde{\nu} \sim \mathcal{N}(0, \sigma).$$

Hence, for a given initial control group surplus distribution $f^0_{\text{post}}(\tilde{S}(V'))$ and REBP treatment parameters δ^0, δ^1, the post-repeal separation rate in the former treatment group is only a function of the idiosyncratic shock dispersion (standard deviation), i.e., $\Delta_1 (\sigma)$.

Our calibration will therefore proceed in the following way: For each bootstrap replication $b = 1, \ldots, B$, we:

- randomly assign 50% of our GSOEP survey sample to the treatment group,
- truncate the joint surplus distribution in the treatment group such that the fraction of marginal jobs is equal to $\frac{\delta^1 - \delta^0}{1 - \delta^0}$,
- calibrate σ such that the predicted separation rate in the control group matches the empirically observed separation rate in our data:

$$\sigma^s = \arg\min_{\sigma} \left(\Delta^s_0 (\sigma) - \Delta^0 \right).$$

- calculate the post-repeal separation rate in the treatment group $\Delta^s_1 (\sigma^s)$ as a function of the idiosyncratic shock dispersion σ, assuming that treated individuals are exposed to the same idiosyncratic shock dispersion σ^s as individuals in the control group.

The separation rates Δ^s_Z are then averaged across all $B = 20$ bootstrap replications and 95% confidence intervals are shown as shaded areas.

Panel (c) of Figure 7 (in percent of salary) and Figure A.9 (in EUR) illustrate the joint surplus distribution from the GSOEP survey. The joint surplus distribution in the treatment group at the end of the REBP $f^1_{\text{post}}(\tilde{S}(V'))$ will be truncated at the value of the REBP shock ε^W_b such that $Pr(\tilde{S}(V') < \varepsilon^W_b) = \frac{\delta^1 - \delta^0}{1 - \delta^0}$ (indicated by the red dashed line). Additionally, Figures A.5 and A.10 illustrate the intuition of our calibration exercise in Section 6.1.3 for various time horizons and both surplus measures S', the figure plots post-repeal separation Δ^s_Z rates for the treatment ($Z = 1$) and control ($Z = 0$) group as a function of the idiosyncratic shock dispersion σ. At the idiosyncratic shock dispersion σ^s_0 that is necessary to rationalize the observed post-repeal separation rate in the control group Δ^0, the implied separation rate in the treatment group $\Delta^s_1 (\sigma^s_0)$ is consistently much lower. In order to observe a similar post-repeal separation rate in the treatment group as in the control group, we would therefore need to assume a much higher idiosyncratic shock dispersion σ^s_1 for the treatment group. Finally, for various post-repeal time horizons,
Figures A.7 and A.11 repeat the calibration separately for each birth year using cohort-specific REBP separation rates $\delta^1_c, \delta^0_c, \Delta^0_c$ assuming that each birth cohort has the same initial distribution of joint surplus $f^0_{\text{post}}(\tilde{S}(V))$. As for the aggregate results in Figures A.5 and A.10, the predicted separation rate in the treatment group $\Delta^1_s(\sigma^s_0)$ is significantly lower if we assume that both groups are exposed to the same idiosyncratic shock dispersion σ^s and we need to assume a much higher dispersion in order to rationalize the observed separation rate in the treatment group, see Figure A.6.
Figure A.5: Predicted Post-Repeal Aggregate Separations Among Program Survivors, in Percent

(a) 1994–1995

(b) 1994–1996

(c) 1994–1997

(d) 1994–1998

Note: The figure presents predicted post-repeal separation rates, $\Delta \frac{\sigma}{\sigma}$, for various time horizons as a function of the idiosyncratic shock dispersion σ, separately for the treatment and control group. See Appendix F for more details.
Figure A.6: Predicted Idiosyncratic Shock Dispersion by Birth Year

(a) in Percent

(b) in Euros

Note: This figure presents predicted idiosyncratic shock dispersion σ^s by birth cohort for different time horizons. The idiosyncratic shock dispersion σ is calibrated for each birth year such that the predicted separation rate in the control group matches the empirically observed cohort-specific separation rate in our data. Long-dashed lines are 1994–98, solid lines are 1994-1997, dashed lines are 1994–96, and short-dashed are 1994–95.
Figure A.7: Predicted and Observed Cohort-Specific Post-Repeal Separations Among Program Survivors, in Percent and Levels

(a) Levels (1994-1995)

(b) Levels (1994-1996)

(c) Levels (1994-1997)

(d) Levels (1994-1998)

Note: This figure replicates Panel (b) of Figure 7 for different time horizons including bootstrapped 95% confidence intervals for the separation rates based on \(B = 20 \) bootstrap replications. It displays levels of separations in the treatment and control groups. Surplus distribution is specified using the "percent of respondent’s salary" measure.
Figure A.8: Predicted and Observed Cohort-Specific Post-Repeal Separations Among Pro-gram Survivors, in Percent and Differences

(a) Differences (1994-1995)

(b) Differences (1994-1996)

(c) Differences (1994-1997)

(d) Differences (1994-1998)

Note: This figure replicates Panel (b) of Figure 7 for different time horizons including bootstrapped 95% confidence intervals for the separation rates based on $B = 20$ bootstrap replications. It displays differences in separation rates between former treatment and control groups. Surplus distribution is specified using the "percent of respondent's salary" measure.
Figure A.9: Joint Surplus Distribution (Euros)

Note: This figure shows the joint surplus distribution based on the GSOEP survey described in Appendix F, in Euros instead of as a percent of the respondent’s salary.
Figure A.10: Predicted Post-Repeal Aggregate Separations Among Program Survivors, in Euros

(a) 1994–1995

(b) 1994–1996

(c) 1994–1997

(d) 1994–1998

Note: This figure presents predicted post-repeal separation rates, Δ_Z, for various time horizons as a function of the idiosyncratic shock dispersion σ, separately for the treatment and control group. See Appendix F for more details.
Figure A.11: Predicted and Observed Cohort-Specific Post-Repeal Separations Among Program Survivors, in Euros and Levels

(a) Levels (1994-1995)

(b) Levels (1994-1996)

(c) Levels (1994-1997)

(d) Levels (1994-1998)

Note: This figure replicates Panel (b) of Figure 7 for different time horizons including bootstrapped 95% confidence intervals for the separation rates based on $B = 20$ bootstrap replications. It displays levels of separations in the treatment and control groups. Surplus distribution is specified using the raw "Euros" measure.
Figure A.12: Predicted and Observed Cohort-Specific Post-Repeal Separations Among Program Survivors, in Euros and Differences

(a) Differences (1994-1995)

DiD Estimate: -0.113

(b) Differences (1994-1996)

DiD Estimate: -0.100

(c) Differences (1994-1997)

DiD Estimate: -0.065

(d) Differences (1994-1998)

DiD Estimate: -0.048

Note: This figure replicates Panel (b) of Figure 7 for different time horizons including bootstrapped 95% confidence intervals for the separation rates based on $B = 20$ bootstrap replications. It displays differences in separation rates between the treatment and control groups. Surplus distribution is specified using the raw "Euros" measure.
G Variable Construction

Outcome Variables We describe the construction of the outcome variables presented in the paper. In the descriptions below, status refers to a variable in the ASSD aggregating hundreds of administrative designations into 12 labor market statuses (Zweimüller, Winter-Ebmer, Laliv, Kuhn, Wuhlrich, Ruf, and Buchi, 2009). We classify self-employment (status == 6) and minor-employment (status == 10) as employment.

1. Separation
 - Create an indicator equal to zero if, between two periods (e.g., 1988q2 and 1993q3), the worker is observed in the same establishment.
 - If not, the worker is separated (the indicator is one).

2. Separation into Nonemployment
 - Create an indicator equal to one if the worker separated as defined above and had no other employer between e.g., 1988q2 and 1993q3.

3. Unemployment (Quarters)
 - Between two periods (e.g., 1988q2 and 1993q3), count the number of quarters where the worker is observed on UI or UA (status = 1).
 - Multiply the quarter count by 3 to get a monthly count for tractability.

4. Continuous Employment (Quarters)
 - Between two periods (e.g., 1988q2 and 1993q3), count the number of quarters where the worker is employed in the same establishment as in the baseline quarter (e.g., 1988q2).
 - Stop counting when the worker is observed either employed in a new establishment or with another labor market status.

Wage Rigidity Proxies We consider active male workers within the ASSD earnings caps in the five-year period before REBP (1982-87). The four proxies for wage rigidity are standard deviations at the firm level averaged over the time period 1982–1987 based on annual earnings winsorized at the 1% level by year:

1. Log Wage: the within-firm standard deviation of log wages is based on the natural logarithm of annual earnings in 2018 euros.

2. Residuals of Log Wage: the within-firm standard deviation of residualized log wages is based on residuals from a regression of log wages on tenure-experience-occupation-industry-year fixed effects. Tenure is made up of 5 three-year categories and a category for those with more than 15 years of tenure. Experience is made up

37We consider full-time jobs, minor-employment, and self-employment. We only keep the last quarter for each year, and drop workers at the yearly earnings caps.
of 5 five-year categories and a category for those with more than 25 years experience. Occupation refers to white- vs. blue-collar, for which there are often separate collective bargaining agreements. Industry refers to four-digit industries per the NACE 2008 (Rev. 2) classification.

3. Wage Growth: the within-firm standard deviation of wage growth is based on five-year wage growth for stayers, where we compute individual wage growth over the period 1982–1987 for all workers who stay employed with the same establishment between 1982 and 1987.

4. Residuals of Wage Growth: the within-firm standard deviation of residualized wage growth is based on residuals from a regression of five-year wage growth for stayers on the same tenure-experience-occupation-industry-year fixed effects as in 2. above.

The wage rigidity proxies are then merged onto the sample of job holders in 1988 using the establishment the worker was employed in 1988 and quartiles are computed using the number of job holders in 1988 as weights. Table A.18 shows summary statistics and Table A.19 shows correlates of the wage rigidity proxies.
Table A.12: Initial Treatment Effect: Difference-in-Differences Effects on Separations Between Age 50 and 55 Among Job Holders at Age 50

<table>
<thead>
<tr>
<th></th>
<th>(1) Separation Into Nonemployment</th>
<th>(2) Separation Into Nonemployment</th>
<th>(3) Nonemployment (Quarters)</th>
<th>(4) Unemp. (Benefits) (Quarters)</th>
<th>(5) Cont. Empl. (Quarters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>REBP Region × Treated Cohort</td>
<td>0.131***</td>
<td>0.103**</td>
<td>1.129**</td>
<td>0.812</td>
<td>-1.272***</td>
</tr>
<tr>
<td></td>
<td>(0.027)</td>
<td>(0.041)</td>
<td>(0.533)</td>
<td>(0.574)</td>
<td>(0.367)</td>
</tr>
<tr>
<td>REBP Region</td>
<td>-0.038</td>
<td>0.021**</td>
<td>0.069</td>
<td>0.093</td>
<td>0.643</td>
</tr>
<tr>
<td></td>
<td>(0.033)</td>
<td>(0.010)</td>
<td>(0.314)</td>
<td>(0.244)</td>
<td>(0.562)</td>
</tr>
<tr>
<td>Treated Cohort</td>
<td>-0.071***</td>
<td>-0.007***</td>
<td>-0.416</td>
<td>-0.272</td>
<td>1.194*</td>
</tr>
<tr>
<td></td>
<td>(0.016)</td>
<td>(0.003)</td>
<td>(0.326)</td>
<td>(0.188)</td>
<td>(0.622)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.426***</td>
<td>0.133***</td>
<td>2.307***</td>
<td>1.164*</td>
<td>14.557***</td>
</tr>
<tr>
<td></td>
<td>(0.083)</td>
<td>(0.021)</td>
<td>(0.840)</td>
<td>(0.616)</td>
<td>(1.705)</td>
</tr>
<tr>
<td>Observations</td>
<td>370,335</td>
<td>370,335</td>
<td>370,335</td>
<td>370,335</td>
<td>370,335</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.006</td>
<td>0.015</td>
<td>0.009</td>
<td>0.011</td>
<td>0.005</td>
</tr>
<tr>
<td>No of Clusters</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Note: This table reports results of the econometric specification in Equation 9, but examines separations within an age window (50-55) rather than a time window (1994-96, as in Table 2). REBP captures the effect of REBP eligibility on the outcomes listed in columns (1) through (5) on a sample of workers employed in the quarter before turning 50. Separation denotes an indicator function that is 1 if a worker is not employed by their employer at age 49.75 by the quarter before they turn 55. Separation into Nonemployment denotes an indicator for Separation from the initial employer interacted with an indicator for not taking up employment with another employer by the quarter before turning 55. Nonemployment (Quarters), Unemployment (Benefits) (Quarters), and Continuous Employment (Quarters) denote the quarters of nonemployment, unemployment benefits, and continuous employment with the initial employer between age 50 and age 55. Standard errors clustered at the administrative region level are reported in parentheses. Levels of significance: * 10%, ** 5%, and *** 1%.
Table A.13: Resilience Test: Post-Repeal Separations (1994-95) Among Program Survivors

<table>
<thead>
<tr>
<th></th>
<th>(1) Separation Into Nonemployment</th>
<th>(2) Separation Nonemployment (Quarters)</th>
<th>(3) Unemp. (Benefits) (Quarters)</th>
<th>(4) Cont. Empl. (Quarters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>REBP Region × Treated Cohort</td>
<td>0.010* (0.005)</td>
<td>0.006** (0.003)</td>
<td>0.012 (0.008)</td>
<td>-0.022 (0.014)</td>
</tr>
<tr>
<td>REBP Region</td>
<td>-0.011 (0.011)</td>
<td>-0.000 (0.007)</td>
<td>-0.008 (0.018)</td>
<td>0.003 (0.013)</td>
</tr>
<tr>
<td>Treated Cohort</td>
<td>0.067*** (0.005)</td>
<td>0.079*** (0.001)</td>
<td>0.193*** (0.005)</td>
<td>0.050** (0.021)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.090*** (0.030)</td>
<td>0.041** (0.020)</td>
<td>0.104** (0.047)</td>
<td>0.045 (0.036)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.756*** (0.072)</td>
</tr>
</tbody>
</table>

Observations: 202,528 202,528 202,528 202,528 202,528
Adjusted R^2: 0.010 0.019 0.016 0.003 0.008
No of Clusters: 99 99 99 99 99

Note: This table replicates Table 3 for the 1994-95 horizon.
Table A.14: Resilience Test: Post-Repeal Separations (1994-97) Among Program Survivors

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Into Nonemployment</td>
<td>(Quarters)</td>
<td>(Quarters)</td>
<td>(Quarters)</td>
<td>(Quarters)</td>
</tr>
<tr>
<td>REBP Region × Treated Cohort</td>
<td>0.024**</td>
<td>0.021***</td>
<td>0.112**</td>
<td>-0.119</td>
<td>-0.165**</td>
</tr>
<tr>
<td></td>
<td>(0.010)</td>
<td>(0.007)</td>
<td>(0.051)</td>
<td>(0.080)</td>
<td>(0.074)</td>
</tr>
<tr>
<td>REBP Region</td>
<td>-0.014</td>
<td>0.004</td>
<td>-0.002</td>
<td>0.012</td>
<td>0.159</td>
</tr>
<tr>
<td></td>
<td>(0.026)</td>
<td>(0.013)</td>
<td>(0.114)</td>
<td>(0.084)</td>
<td>(0.189)</td>
</tr>
<tr>
<td>Treated Cohort</td>
<td>0.195***</td>
<td>0.236***</td>
<td>1.568***</td>
<td>0.235*</td>
<td>-1.242***</td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
<td>(0.006)</td>
<td>(0.015)</td>
<td>(0.127)</td>
<td>(0.105)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.212***</td>
<td>0.081**</td>
<td>0.611**</td>
<td>0.276</td>
<td>11.370***</td>
</tr>
<tr>
<td></td>
<td>(0.071)</td>
<td>(0.037)</td>
<td>(0.288)</td>
<td>(0.213)</td>
<td>(0.524)</td>
</tr>
<tr>
<td>Observations</td>
<td>200,155</td>
<td>200,155</td>
<td>200,155</td>
<td>200,155</td>
<td>200,155</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.044</td>
<td>0.080</td>
<td>0.063</td>
<td>0.006</td>
<td>0.027</td>
</tr>
<tr>
<td>No of Clusters</td>
<td>99</td>
<td>99</td>
<td>99</td>
<td>99</td>
<td>99</td>
</tr>
</tbody>
</table>

Note: This table replicates Table 3 for the 1994-97 horizon.
Table A.15: Resilience Test: Post-Repeal Separations (1994-98) Among Program Survivors

<table>
<thead>
<tr>
<th></th>
<th>(1) Separation</th>
<th>(2) Separation</th>
<th>(3) Nonemployment (Quarters)</th>
<th>(4) Unemp. (Benefits) (Quarters)</th>
<th>(5) Cont. Empl. (Quarters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>REBP Region × Treated Cohort</td>
<td>0.027**</td>
<td>0.020*</td>
<td>0.195**</td>
<td>-0.166</td>
<td>-0.273**</td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.010)</td>
<td>(0.087)</td>
<td>(0.113)</td>
<td>(0.115)</td>
</tr>
<tr>
<td>REBP Region</td>
<td>-0.021</td>
<td>0.007</td>
<td>0.005</td>
<td>0.018</td>
<td>0.237</td>
</tr>
<tr>
<td></td>
<td>(0.030)</td>
<td>(0.014)</td>
<td>(0.186)</td>
<td>(0.135)</td>
<td>(0.307)</td>
</tr>
<tr>
<td>Treated Cohort</td>
<td>0.234***</td>
<td>0.295***</td>
<td>2.754***</td>
<td>0.304*</td>
<td>-2.132***</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.013)</td>
<td>(0.047)</td>
<td>(0.180)</td>
<td>(0.171)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.280***</td>
<td>0.108***</td>
<td>1.014**</td>
<td>0.447</td>
<td>14.287***</td>
</tr>
<tr>
<td></td>
<td>(0.082)</td>
<td>(0.039)</td>
<td>(0.470)</td>
<td>(0.342)</td>
<td>(0.862)</td>
</tr>
<tr>
<td>Observations</td>
<td>197,086</td>
<td>197,086</td>
<td>197,086</td>
<td>197,086</td>
<td>197,086</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.057</td>
<td>0.105</td>
<td>0.092</td>
<td>0.005</td>
<td>0.039</td>
</tr>
<tr>
<td>No of Clusters</td>
<td>99</td>
<td>99</td>
<td>99</td>
<td>99</td>
<td>99</td>
</tr>
</tbody>
</table>

Note: This table replicates Table 3 for the 1994-98 horizon.
Table A.16: Robustness to Retirement Dynamics (Dropping Cohorts Born Before 1938) for Resilience Test: Post-Repeal Separations (1994-96) Among Program Survivors

<table>
<thead>
<tr>
<th>(1) Separation</th>
<th>(2) Separation Into Nonemployment</th>
<th>(3) Nonemployment (Quarters)</th>
<th>(4) Unemp. (Benefits) (Quarters)</th>
<th>(5) Cont. Empl. (Quarters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>REBP Region x Treated Cohort</td>
<td>0.014**</td>
<td>0.015***</td>
<td>0.083***</td>
<td>-0.016</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.005)</td>
<td>(0.015)</td>
<td>(0.019)</td>
</tr>
<tr>
<td>REBP Region</td>
<td>-0.003</td>
<td>0.008</td>
<td>-0.007</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>(0.019)</td>
<td>(0.011)</td>
<td>(0.056)</td>
<td>(0.042)</td>
</tr>
<tr>
<td>Treated Cohort</td>
<td>0.050***</td>
<td>0.068***</td>
<td>0.276***</td>
<td>0.067*</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.006)</td>
<td>(0.008)</td>
<td>(0.035)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.152***</td>
<td>0.063**</td>
<td>0.306**</td>
<td>0.139</td>
</tr>
<tr>
<td></td>
<td>(0.052)</td>
<td>(0.030)</td>
<td>(0.144)</td>
<td>(0.108)</td>
</tr>
</tbody>
</table>

Adjusted R^2 | 0.005 | 0.014 | 0.011 | 0.002 | 0.003 |
No of Clusters | 99 | 99 | 99 | 99 | 99 |

Note: This table reports results of the specification in Equation (9) while dropping all workers who reached retirement age by 1998. The coefficient on REBP Region x Treated Cohort captures the effect of REBP eligibility on the outcomes listed in columns (1) through (5) on a sample of workers employed at the same establishment in May 1988 and February 1994. The regression specification includes region and cohort effects. Separation denotes an indicator function that is 1 if a worker is not employed by their employer from February 1994 (and May 1988) in February 1996. Employment Indicator denotes whether a worker is employed in February 1996. Separation into Nonemployment denotes an indicator for Separation from the initial employer interacted with an indicator for not being employed in February 1996. Employment (Quarters), Unemployment (Quarters) and Continuous Employment (Quarters) denote the quarters of employment, unemployment insurance/assistance receipt, and continuous employment with the initial employer between February 1994 and 1996. Standard errors clustered at the administrative region level are reported in parentheses. Levels of significance: * 10%, ** 5%, and *** 1%.
Table A.17: Complier Analysis by Predicted Separations

<table>
<thead>
<tr>
<th>Type</th>
<th>Mean</th>
<th>SE</th>
<th>CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compliers</td>
<td>0.67</td>
<td>0.098</td>
<td>[0.48 , 0.87]</td>
</tr>
<tr>
<td>Always-Separators</td>
<td>0.49</td>
<td>0.038</td>
<td>[0.41 , 0.56]</td>
</tr>
<tr>
<td>Non-Separators</td>
<td>0.33</td>
<td>0.078</td>
<td>[0.17 , 0.48]</td>
</tr>
<tr>
<td>Control Group = Compliers + Non-Separators</td>
<td>0.37</td>
<td>0.080</td>
<td>[0.22 , 0.53]</td>
</tr>
<tr>
<td>All</td>
<td>0.44</td>
<td>0.056</td>
<td>[0.33 , 0.55]</td>
</tr>
</tbody>
</table>

Note: This table reports characteristics of compliers, always-separators, and non-separators using predicted separations as complier attributes. The prediction is estimated as follows: for all workers employed in 1982, we regress an indicator for separating from the 1982 job by 1987 on a rich set of covariates measured in 1982: age, industry-occupation fixed effects interacted third degree polynomials in tenure and experience, indicators for deciles for income and local unemployment rates, and indicators for nonemployment or nonemployment with UI spells between 1972 and 1982. Compliers are those workers who are employed in 1988 and whose job would have survived in the absence of the REBP reform, always-separators are those matches that separate even in the control group (i.e., absent REBP), and non-separators are the matches that survive even in the treatment group (i.e., despite REBP). For each of the variables and groups, the table reports means as well as standard errors (in parentheses) based on 100 bootstrap replications blocked at the administrative region level.
Table A.18: Summary Statistics of Wage Rigidity Proxies

<table>
<thead>
<tr>
<th>Wage Rigidity Proxy</th>
<th>Log Wage</th>
<th>Residuals of Log Wage</th>
<th>Δ Log Wage</th>
<th>Residuals of Δ Log Wage</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Quartile (More Rigid):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.13</td>
<td>0.11</td>
<td>11.53</td>
<td>10.18</td>
</tr>
<tr>
<td>Range</td>
<td>0.00, 0.17</td>
<td>0.00, 0.14</td>
<td>0.00,16.32</td>
<td>0.00,14.21</td>
</tr>
<tr>
<td>Second Quartile:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.19</td>
<td>0.15</td>
<td>19.28</td>
<td>16.40</td>
</tr>
<tr>
<td>Range</td>
<td>0.17, 0.21</td>
<td>0.14, 0.17</td>
<td>16.32,22.04</td>
<td>14.21,18.38</td>
</tr>
<tr>
<td>Third Quartile:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.24</td>
<td>0.18</td>
<td>25.02</td>
<td>20.80</td>
</tr>
<tr>
<td>Range</td>
<td>0.21, 0.27</td>
<td>0.17, 0.20</td>
<td>22.04,27.80</td>
<td>18.38,23.66</td>
</tr>
<tr>
<td>Fourth Quartile (Less Rigid):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.39</td>
<td>0.27</td>
<td>40.09</td>
<td>31.50</td>
</tr>
<tr>
<td>Range</td>
<td>0.27, 1.22</td>
<td>0.20, 1.33</td>
<td>27.80,126.93</td>
<td>23.67,135.74</td>
</tr>
</tbody>
</table>

Correlation [Rank Correlation] Between Within-Firm SD of ...

<table>
<thead>
<tr>
<th></th>
<th>Log Wage</th>
<th>Residuals of Log Wage</th>
<th>Δ Log Wage</th>
<th>Residuals of Δ Log Wage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Wage</td>
<td>1</td>
<td>0.88 [0.85]</td>
<td>0.35 [0.33]</td>
<td>0.36 [0.39]</td>
</tr>
<tr>
<td>Residuals of Log Wage</td>
<td>1</td>
<td>0.40 [0.35]</td>
<td>0.43 [0.43]</td>
<td></td>
</tr>
<tr>
<td>Δ Log Wage</td>
<td>1</td>
<td>0.92 [0.77]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residuals of Δ Log Wage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: This table reports summary statistics and a correlation matrix for our four wage rigidity proxies: the (within-firm) standard deviation of log wage, standard deviation of log wage growth, and standard deviations of residuals from regressions of log wages/log wage growth on the interaction of year, industry, occupation, as well as tenure and experience cell fixed effects (to proxy for deviation of wages from collectively bargained floors).
Table A.19: Correlates of Wage Rigidity Proxies

Panel A: Wages
Within-Firm SD of ...

<table>
<thead>
<tr>
<th>Covariates</th>
<th>Q1 (1)</th>
<th>Q2 (2)</th>
<th>Q3 (3)</th>
<th>Q4 (4)</th>
<th>Q1 (5)</th>
<th>Q2 (6)</th>
<th>Q3 (7)</th>
<th>Q4 (8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (Years, in May 1988)</td>
<td>39.59</td>
<td>38.91</td>
<td>38.43</td>
<td>40.58</td>
<td>39.42</td>
<td>38.82</td>
<td>38.56</td>
<td>38.42</td>
</tr>
<tr>
<td>(3.99)</td>
<td>(3.48)</td>
<td>(3.65)</td>
<td>(4.42)</td>
<td>(4.11)</td>
<td>(3.45)</td>
<td>(3.48)</td>
<td>(3.97)</td>
<td></td>
</tr>
<tr>
<td>Experience (Years)</td>
<td>17.30</td>
<td>16.49</td>
<td>15.69</td>
<td>11.76</td>
<td>17.38</td>
<td>16.52</td>
<td>16.15</td>
<td>15.08</td>
</tr>
<tr>
<td>(3.29)</td>
<td>(2.56)</td>
<td>(3.05)</td>
<td>(4.80)</td>
<td>(3.20)</td>
<td>(2.57)</td>
<td>(2.49)</td>
<td>(3.20)</td>
<td></td>
</tr>
<tr>
<td>Tenure (Years)</td>
<td>7.28</td>
<td>7.08</td>
<td>6.76</td>
<td>5.80</td>
<td>7.50</td>
<td>7.12</td>
<td>6.88</td>
<td>5.80</td>
</tr>
<tr>
<td>(3.35)</td>
<td>(2.75)</td>
<td>(2.68)</td>
<td>(2.71)</td>
<td>(3.24)</td>
<td>(2.81)</td>
<td>(2.71)</td>
<td>(2.71)</td>
<td></td>
</tr>
<tr>
<td>Annual Earnings (1,000 EUR)</td>
<td>33.04</td>
<td>33.22</td>
<td>32.82</td>
<td>30.63</td>
<td>32.95</td>
<td>32.95</td>
<td>33.31</td>
<td>31.29</td>
</tr>
<tr>
<td>(6.96)</td>
<td>(5.53)</td>
<td>(5.50)</td>
<td>(6.46)</td>
<td>(6.73)</td>
<td>(5.41)</td>
<td>(5.46)</td>
<td>(6.74)</td>
<td></td>
</tr>
<tr>
<td>White Collar</td>
<td>0.25</td>
<td>0.36</td>
<td>0.51</td>
<td>0.63</td>
<td>0.29</td>
<td>0.34</td>
<td>0.47</td>
<td>0.58</td>
</tr>
<tr>
<td>(0.29)</td>
<td>(0.30)</td>
<td>(0.33)</td>
<td>(0.33)</td>
<td>(0.31)</td>
<td>(0.29)</td>
<td>(0.33)</td>
<td>(0.35)</td>
<td></td>
</tr>
<tr>
<td>Firm Size (1,000 Employees)</td>
<td>17.22</td>
<td>11.44</td>
<td>11.02</td>
<td>130.74</td>
<td>13.60</td>
<td>12.12</td>
<td>10.98</td>
<td>11.62</td>
</tr>
<tr>
<td>(32.58)</td>
<td>(22.37)</td>
<td>(22.36)</td>
<td>(181.38)</td>
<td>(27.12)</td>
<td>(24.75)</td>
<td>(22.89)</td>
<td>(29.97)</td>
<td></td>
</tr>
<tr>
<td>Number of Workers</td>
<td>90,550</td>
<td>90,534</td>
<td>91,681</td>
<td>89,401</td>
<td>81,397</td>
<td>81,485</td>
<td>81,297</td>
<td>81,387</td>
</tr>
</tbody>
</table>

Panel B: Wage Growth
Within-Firm SD of ...

<table>
<thead>
<tr>
<th>Covariates</th>
<th>Q1 (1)</th>
<th>Q2 (2)</th>
<th>Q3 (3)</th>
<th>Q4 (4)</th>
<th>Q1 (5)</th>
<th>Q2 (6)</th>
<th>Q3 (7)</th>
<th>Q4 (8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (Years, in May 1988)</td>
<td>39.39</td>
<td>39.37</td>
<td>39.64</td>
<td>39.52</td>
<td>39.46</td>
<td>39.41</td>
<td>38.72</td>
<td>38.01</td>
</tr>
<tr>
<td>(4.02)</td>
<td>(3.15)</td>
<td>(3.65)</td>
<td>(4.44)</td>
<td>(4.05)</td>
<td>(3.10)</td>
<td>(3.22)</td>
<td>(3.79)</td>
<td></td>
</tr>
<tr>
<td>Experience (Years)</td>
<td>17.14</td>
<td>16.82</td>
<td>14.76</td>
<td>12.91</td>
<td>17.31</td>
<td>17.05</td>
<td>16.29</td>
<td>15.05</td>
</tr>
<tr>
<td>(2.96)</td>
<td>(2.61)</td>
<td>(4.09)</td>
<td>(4.59)</td>
<td>(2.94)</td>
<td>(2.34)</td>
<td>(2.33)</td>
<td>(2.89)</td>
<td></td>
</tr>
<tr>
<td>Tenure (Years)</td>
<td>7.66</td>
<td>7.77</td>
<td>6.90</td>
<td>5.60</td>
<td>7.92</td>
<td>7.96</td>
<td>6.92</td>
<td>5.53</td>
</tr>
<tr>
<td>(2.89)</td>
<td>(2.45)</td>
<td>(2.44)</td>
<td>(2.63)</td>
<td>(2.85)</td>
<td>(2.39)</td>
<td>(2.44)</td>
<td>(2.52)</td>
<td></td>
</tr>
<tr>
<td>Annual Earnings (1,000 EUR)</td>
<td>31.50</td>
<td>33.03</td>
<td>33.43</td>
<td>33.46</td>
<td>32.13</td>
<td>33.13</td>
<td>33.57</td>
<td>32.34</td>
</tr>
<tr>
<td>White Collar</td>
<td>0.32</td>
<td>0.39</td>
<td>0.44</td>
<td>0.54</td>
<td>0.35</td>
<td>0.38</td>
<td>0.43</td>
<td>0.50</td>
</tr>
<tr>
<td>(0.31)</td>
<td>(0.31)</td>
<td>(0.31)</td>
<td>(0.37)</td>
<td>(0.32)</td>
<td>(0.30)</td>
<td>(0.31)</td>
<td>(0.37)</td>
<td></td>
</tr>
<tr>
<td>Firm Size (1,000 Employees)</td>
<td>10.68</td>
<td>16.50</td>
<td>54.95</td>
<td>98.92</td>
<td>11.67</td>
<td>17.11</td>
<td>12.22</td>
<td>10.65</td>
</tr>
<tr>
<td>(28.19)</td>
<td>(26.18)</td>
<td>(96.77)</td>
<td>(179.16)</td>
<td>(29.55)</td>
<td>(26.54)</td>
<td>(22.95)</td>
<td>(28.23)</td>
<td></td>
</tr>
<tr>
<td>Number of Workers</td>
<td>84,743</td>
<td>84,880</td>
<td>86,498</td>
<td>82,851</td>
<td>75,906</td>
<td>75,761</td>
<td>75,841</td>
<td>75,824</td>
</tr>
</tbody>
</table>

Note: This table reports summary statistics split up by quartiles of our four wage rigidity proxies: the (within-firm) standard deviation of log wage, standard deviation of log wage growth, and standard deviations of residuals from regressions of log wages/log wage growth on the interaction of year, industry, occupation, as well as tenure and experience cell fixed effects (to proxy for deviation of wages from collectively bargained floors). The proxies and covariates are firm-level variables calculated in the pre-treatment years (1982-1987) and then matched by firm to our worker-level analysis sample (job holders in 1988).
I Additional Figures

Figure A.13: Industry Heterogeneity of Separation Behavior (1994-96)

Note: This figure reports several separation outcomes, repeating our analysis within each industry cell. The coefficients in blue show the separation behavior for survivors between 1994 and 1996.
Figure A.14: Difference by Industry Growth and Establishment-Level “Hockey Sticks”

Difference in Separation by Industry Growth

(a) Through 1995
(b) Through 1997
(c) Through 1998

Survivor Separations by Cohort and Region

(d) Through 1995
(e) Through 1997
(f) Through 1998

Birth Cohort-Specific Slopes

(g) Through 1995
(h) Through 1997
(i) Through 1998

Note: This figure replicates Figure 6 Panels (a), (c) and (d) for the post-repeal separation horizons through 1995, 1997 and 1998.
Figure A.15: Separations and Shocks in the Coasean and Non-Coasean Framework

(a) Shocks to Joint Surplus in a Coasean Setting

(b) Empirical Strategy: Observable Separation Rates

(c) Worker Shock in a Non-Coasean Setting

(d) Firm Shock in a Non-Coasean Setting

Note: This figure plots the dynamics of post-repeal job separations in the model, in the Coasean (efficient bargaining) and non-Coasean (fixed-wage) settings. Panel (a) plots the separations in the former treatment group (Δ^1) and former control group (Δ^0) in response to joint surplus shocks (i.e., either a worker or firm shock) in a Coasean setting. Panel (b) plots the relationship between treatment group and control group separation rates, after the treatment, for the Coasean setting, assuming either no idiosyncratic shocks or full reshuffling of idiosyncratic job surplus. Panels (c) and (d) compare the separations of survivors in the former treatment and control groups, respectively, in response to post-repeal worker (c) and firm (d) surplus shocks for the non-Coasean settings.
Figure A.16: No Evidence for Aggregate Spillovers: Separations during REBP and after REBP with Even Younger Control Cohorts

(a) Separations During REBP (1988 to 1993)

(b) During REBP: Difference T vs. C

(c) Post-Repeal Separations (1994 to 1996)

(d) Post-Repeal: Difference T vs. C

Note: Panel (a) shows the share of workers who separated from their 1988q2-employer (right before the reform) by 1993q3 (when reform had just ended) for all workers born between 1928 and 1958. It plots rates by month of birth and within the REBP (red, short dashes) and non-REBP (blue, solid) regions. Panel (b) shows the difference between the REBP and the control region by cohort. Panels (c) and (d) are based on workers whose matches with their 1988q2-employer survived until 1994q1. Among these survivors, Panel (a) shows the share of workers who separated from their initial employer by 1996 for all workers born between 1933 and 1958. Panel (c) plots rates by month of birth and within the REBP (red, short dashes) and non-REBP (blue, solid) regions. Panel (d) shows the difference between the REBP and the control region by cohort.
Figure A.17: Initial Treatment Effect: Additional Results

Separations Between Ages 50 and 55

(a) Levels

(b) Differences (Treatment - Control)

Quarters Nonemployed (1988-93)

(c) Levels

(d) Differences (Treatment - Control)

Quarters Unemployed (Benefits) (1988-93)

(e) Levels

(f) Differences (Treatment - Control)

Note: Panel (a) shows the share of workers who separated from their initial employer (measured in quarter before turning 50) by the quarter before turning 55. Panels (c) and (e) show the average number of quarters that the workers are nonemployed and on unemployment benefits, respectively, during the REBP period, among those employed in the quarter before the start of REBP (1988q2). We plot rates by month of birth and within the REBP (treated) (red, short dashes) and control (blue, solid) regions. Panels (b), (d), and (f) show the differences between the treatment and the control regions by cohort. Cohorts born after 1943 were not covered by the policy as they turned 50 after the program was repealed in 1993.
Figure A.18: Initial Treatment Effect: Outcomes by Age

(a) Level

(b) Differences (Treatment - Control)

(c) Level

(d) Differences (Treatment - Control)

Note: Panels (a) and (c) show the average number of quarters that the workers are nonemployed and unemployed (UI/UA receipt), respectively, until the quarter before they turn 55, among those employed in the quarter before they turn 50. Both plot rates by month of birth and within the treatment (red, short dashes) and control (blue, solid) regions. Panels (b) and (d) show the difference between the REBP and the control region by cohort. Cohorts born after 1943 were not covered by the policy as they turned 50 after the program was repealed 1993.
Figure A.19: Resilience Test at Other Horizons: Post-Repeal Separations Among Program Survivors

Horizon: 1994-95

(a) Levels

(b) Differences (Treatment - Control)

Horizon: 1994-97

(c) Levels

(d) Differences (Treatment - Control)

Horizon: 1994-98

(e) Levels

(f) Differences (Treatment - Control)

Note: Panels (a), (c), and (e) show variants of Figure 5 Panel (a) for various post-repeal horizons. Panels (b), (d), and (f) show the observed and predicted differences in separation rates as in Figure 5 Panel (b).
Figure A.20: No Evidence for Employer-Level Spillovers: Differences in Post-Repeal Separations by Firm and Industry Exposure to REBP (Share of Program-Eligible (Old) Workers)

(a) Firm-Level Exposure to REBP

(b) Industry-Level Exposure to REBP

Note: This figure extends Appendix Figure A.16 (d) by splitting the sample based on firm- or industry-level of exposure to the treatment. Specifically, each line corresponds to the difference in post-repeal separation rates (1994 to 1996) between the treated and control group. The solid blue line denotes firms or industries in the lowest quartile of exposure to treatment; the dashed black line denotes the ones in the highest quartile of exposure. Exposure at the firm or industry level is calculated as the share of workers in program-eligible cohorts (1933-43) in the year before the reform (1987).
Figure A.21: Separations by Wage Rigidity Proxies (Other Horizons)

(a) By SD of Log Wage
(b) By SD of Residuals of Log Wage
(c) By SD of Δ Log Wage
(d) By SD of Residuals of Δ Log Wage

Note: This figure replicates Figure 8 for other post-repeal horizons.
Online Appendix References

