Marginal Jobs and Job Surplus A Test of the Efficiency of Separations

Simon Jäger Benjamin Schoefer Josef Zweimüller MIT UC Berkeley U Zurich

> NBER Summer Institute 2019 Macro Perspectives

Two Views of Jobs and Separations

- Coasean view of jobs and separations:
 - Efficient bargaining, exploiting all gains from trade
 - \Rightarrow Joint job surplus allocative (firm + worker surplus)

Joint Job Surplus = Inside Values - Outside Values

- \Rightarrow Separations efficient: joint surplus < 0
- Frictional ("non-Coasean") views of jobs and separations
 - Unilateral worker and firm surpluses are allocative
 - Separations can be inefficient
 - Ex: Firm surplus < 0 while worker surplus \gg 0, so joint surplus > 0
- Our paper: empirical test to adjudicate b/w Coasean and frictional views at the separations margin

Testing Between Coasean and Alternative Views

- We study a separations effects of large UIB extension (job surplus $\downarrow)$
- Quasi-experiment: UI benefit extension in Austria (REBP)
 - Large increase in maximum benefit duration: $1 \rightarrow 4$ years, starting in 1988
 - Treatment and control regions
 - Sharp age eligibility cutoff (50+)
- Abolished in 1993
- Prediction of Coasean view: Post-abolition, surviving matches more resilient in response to any surplus shocks
- Prediction of other view: Post-abolition resilience to worker surplus shifts, but not firm surplus shifts

Jobs: Matches with positive surplus

Benefit increase reduces surplus

Surplus of surviving matches during reform

Abolishing the reform

Abolishing the reform missing mass of marginal matches (with low joint surplus)

Post-abolition resilience to shocks

Preview of Results

- I. Does UI-induced boost of nonemployment option lead to separations of marginal matches?
 - 11ppt increase in separations among initially employed (39ppt base)
- II. Which matches were dissolved by the policy? (Complier analysis in paper, today just summary)
 - Evidence consistent with low-surplus jobs at the margin (but not definitely informative)
 - Pre-separation attributes: blue-collar jobs in shrinking industries and firms, with freq't sickness
 - Survey: significant share of worker-sided quits

III. Core test of Coasean vs. alternative view

- Exploit abolition of reform in 1993
- Prediction of Coasean view: surviving matches are more resilient
 - Provided some degree of persistence in idiosyncratic surplus
- Yet, in the data: same resilience among survivors in treatment and control
- \Rightarrow Inefficient separations or efficient, but full "reshuffling" of surplus distribution even after 1 year

One non-Coasean story: wage rigidity + high initial worker surplus, post-abol'n sep's from firm surplus

Outline

- 1. Conceptual Framework
- 2. Reform, Empirical Strategy, and Data
- 3. The Causal Effect of Outside Options on Separations
- 4. Characterizing Jobs Destroyed by the Reform
- 5. Test of Coasean View: Post-Abolition Stability of Surviving Jobs
 - $5.1\,$ Conceptual Framework for Coasean Setting
 - 5.2 Structural Estimation
 - 5.3 Alternative Non-Coasean Interpretation

Context: Austria & REBP

- No experience rating
- Voluntary quitters eligible for UI (and extension)
 - Four week wait period
- Replacement rate: 41-48% of gross income; UIBs untaxed
- Level bounded at minimum and maximum amount

1988 Policy Change: Regional Extended Benefit Program (REBP)

- UI benefit extension from max 52 weeks to max 209 weeks
- Active June 1988 to July 1993
- Targeted 28 (out of 100) labor market districts
- Eligibility criteria (at unemployment entry):
 - Residence in REBP district \geq 6 months
 - Older than age 50
 - More than 15 years of work experience in last 25 years
- Context and policy objectives:
 - Original goal: mitigate job loss from steel sector restructuring
 - Reform affected all incl. non-steel workers in REBP regions
 - We exclude steel workers from analysis

The Regional Benefit Extension Program (REBP)

REBP Extended Benefit Duration for Age 50+

Second Control Group: Workers Age $<\!50$

Data and Sample

- Population of matched employer-employee data from Austria
 - Universe of Austrian Social Security Register (ASSD)
- Primary sample: male workers aged 45 to 55, 1987 to 1998

Outline

- 1. Conceptual Framework
- 2. Reform, Empirical Strategy, and Data
- 3. The Causal Effect of UI on Separations
- 4. Characterizing Jobs Destroyed by the Reform
- 5. Test of Coasean View: Post-Abolition Stability of Surviving Jobs
 - $5.1\,$ Conceptual Framework for Coasean Setting
 - 5.2 Structural Estimation
 - 5.3 Alternative Non-Coasean Interpretation

Control: Fraction Separated from 1988 Job by 1993

Sample: Individuals with job in 1988.

REBP vs. Control: Fraction Separated from '88 Job by '93

Sample: Individuals with job in 1988.

Treatment Effect: Differences

Sample: Individuals with job in 1988.

Quarters Employed 50–55: Differences

Sample: Individuals with job at 49.

Continuous Employment $\downarrow \simeq$ Overall Employment \downarrow

Sample: Individuals with job at 49.

Outline

- 1. Conceptual Framework
- 2. Reform, Empirical Strategy, and Data
- 3. The Causal Effect of Outside Options on Separations
- 4. Characterizing Jobs Destroyed by the Reform (More in Paper)
- 5. Test of Coasean View: Post-Abolition Stability of Surviving Jobs
 - 5.1 Conceptual Framework for Coasean Setting
 - 5.2 Structural Estimation
 - 5.3 Alternative Non-Coasean Interpretation

Complier Analysis: Attributes of Incremental REBP Separators

Differences Between Compliers and Always-Separators, and Compliers and Never-Separators

Partition

Outline

- 1. Conceptual Framework
- 2. Reform, Empirical Strategy, and Data
- 3. The Causal Effect of Outside Options on Separations
- 4. Characterizing Jobs Destroyed by the Reform

5. Test of Coasean View: Post-Abolition Stability of Surviving Jobs

- $5.1\,$ Conceptual Framework for Coasean Setting
- 5.2 Structural Estimation
- 5.3 Alternative Non-Coasean Interpretation

Conceptual Framework

Job is **feasible** if worker surplus S^W and firm surplus S^F : $S^W(\mathbf{V}^W, w) = V_{ln}^W + w - V_{Out}^W \ge 0$ $S^F(\mathbf{V}^F, w) = V_{ln}^F - w - V_{Out}^F \ge 0$ $\mathbf{V}^W = (V_{ln}^W, V_{Out}^W)$: worker inside job value (e.g. amenities), outside value (e.g. value of unemployment) $\mathbf{V}^F = (V_{ln}^F, V_{Out}^F)$: firm inside job value (e.g. productivity), outside value (e.g. vacancy)

Coasean bargaining Illustration

Parties agree on $w \in [\underline{w}^W, \overline{w}^F]$, which implements bilaterally efficient allocation

 $\Rightarrow~$ Joint surplus is the allocative surplus concept

$$S(\mathbf{V}) = \overbrace{V_{\mathrm{ln}}^{W} + V_{\mathrm{ln}}^{F} - V_{\mathrm{Out}}^{W} - V_{\mathrm{Out}}^{F}}^{S^{W}(\mathbf{V}^{W}, w) + S^{F}(\mathbf{V}^{W}, w)}$$

Coasean separation probability for a job $\mathbf{V}:$

$$d(\mathbf{V}) = \int_{\mathbf{V}'} \mathbf{1}\{S(\mathbf{V}') < 0\}k(\mathbf{V}'|\mathbf{V})d\mathbf{V}'$$

k(.|.): Markov process guiding evolution of ${\bf V}$

REBP-Induced Separations

REBP shock hits treatment group (Z = 1), but not control group (Z = 0) $\varepsilon_b^W = V_{\text{Out}}^W(b_0 + \Delta b) - V_{\text{Out}}^W(b_0) > 0$

Surplus level gross of aggregate shock ε' :

$$\widetilde{S}(\mathbf{V}') = S(\mathbf{V}', \varepsilon') - \varepsilon'$$

Separation share:

$$\delta^{Z} = \int_{\mathbf{V}} \underbrace{\int_{\mathbf{V}'} \mathbf{1}\{\widetilde{S}(\mathbf{V}') < Z \times \varepsilon_{b}^{W}\} k(\mathbf{V}'|\mathbf{V}) d\mathbf{V}'}_{\widetilde{\mathfrak{d}}(\mathbf{V}, Z \times \varepsilon_{b}^{W})} f_{\mathsf{pre}}^{Z}(\mathbf{V}) d\mathbf{V}$$

 $f_{\rm pre}^Z:$ distribution of job values pre-REBP — Assume $f_{\rm pre}^1=f_{\rm pre}^0$

Treatment effect:

$$\delta^{1} - \delta^{0} = \int_{\mathbf{V}} \int_{\mathbf{V}'} \underbrace{\mathbf{1}\{0 \leq \widetilde{S}(\mathbf{V}') < \varepsilon_{b}^{W}\}}_{\text{Marginal jobs, } M} k(\mathbf{V}'|\mathbf{V}) d\mathbf{V}' f_{\text{pre}}^{0}(\mathbf{V}) d\mathbf{V}'$$

Post-REBP Separations

Separation share:

$$\Delta^{Z} = \int_{\mathbf{V}'} \underbrace{\int_{\mathbf{V}''} \mathbf{1}\{\widetilde{S}(\mathbf{V}'') < \varepsilon''\} k(\mathbf{V}''|\mathbf{V}') d\mathbf{V}''}_{\widetilde{\mathfrak{d}}(\mathbf{V}';\varepsilon'')} f^{Z}(\mathbf{V}') d\mathbf{V}''}$$

Now $f^1(\mathbf{V}') \neq f^0(\mathbf{V}')$ due to REBP!

Difference in separation rates driven by composition differences from extraction of marginal jobs:

$$\Delta^{1} - \Delta^{0} = \int_{\mathbf{V}'} \widetilde{d}(\mathbf{V}'; \varepsilon'') \left[f^{1}(\mathbf{V}') - f^{0}(\mathbf{V}') \right] d\mathbf{V}'$$

Post-REBP Resilience: General Case

• To assess data, we construct benchmark model for **predicted** separations:

$$\begin{split} \Delta^{1} &= \int_{\mathbf{V}'} \widetilde{\mathrm{d}}(\mathbf{V}', \varepsilon'') f^{1}(\mathbf{V}') d\mathbf{V}' \\ &= \int_{\mathbf{V}' \in M} \widetilde{\mathrm{d}}(\mathbf{V}', \varepsilon'') f^{1}(\mathbf{V}') d\mathbf{V}' + \int_{\mathbf{V}' \notin M} \widetilde{\mathrm{d}}(\mathbf{V}', \varepsilon'') f^{1}(\mathbf{V}') d\mathbf{V}' \\ &= 0 + \int_{\mathbf{V}' \notin M} \widetilde{\mathrm{d}}(\mathbf{V}', \varepsilon'') f^{0}(\mathbf{V}') d\mathbf{V}' * \left[\frac{1 - \delta^{0}}{1 - \delta^{1}}\right] \\ &= \frac{1 - \delta^{0}}{1 - \delta^{1}} \left[\int_{\mathbf{V}' \notin M} \widetilde{\mathrm{d}}(\mathbf{V}', \varepsilon'') f^{0}(\mathbf{V}') d\mathbf{V}' \pm \int_{\mathbf{V}' \in M} \widetilde{\mathrm{d}}(\mathbf{V}', \varepsilon'') f^{0}(\mathbf{V}') d\mathbf{V}' \right] \\ &= \frac{1 - \delta^{0}}{1 - \delta^{1}} \left[\Delta^{0} - \int_{\mathbf{V}' \in M} \widetilde{\mathrm{d}}(\mathbf{V}', \varepsilon'') f^{0}(\mathbf{V}') d\mathbf{V}' \right] \end{split}$$

Post-REBP Resilience: Case of No Idiosyncratic Shocks

$$\Delta^{1}(\varepsilon'') = \begin{cases} 0 & \text{if } \varepsilon'' \leq \varepsilon_{b}^{W} \\ \frac{1-\delta^{0}}{1-\delta^{1}} \left[\Delta^{0}(\varepsilon'') - \frac{\delta^{1}-\delta^{0}}{1-\delta^{0}} \right] & \text{if } \varepsilon'' > \varepsilon_{b}^{W} \end{cases}$$

$$\Delta^{1} = \max\left\{0, \frac{1-\delta^{0}}{1-\delta^{1}}\left[\Delta^{0} - \frac{\delta^{1} - \delta^{0}}{1-\delta^{0}}\right]\right\}$$

Post-REBP Resilience: Case of No Idiosyncratic Shocks

Predicted Post-REBP Comovement of Separation Rates — By Cohort

Predicted Separations by 1995 for 1988-93 Job Stayers

Stayer definition: in same establishment from 1988 through 1994 Track separations through 1995

Predicted vs. Actual Separations by 1995 for 1988-94 Job Stayers

Stayer definition: in same establishment from 1988 through 1994 Track separations through 1995

Predicted vs. Actual vs. Control Sep's by 1995 for 1988-94 Job Stayers

Stayer definition: in same establishment from 1988 through 1994 Track separations through 1995

Differences: Predicted vs. Actual in 1995 for 1988-94 Job Stayers

Stayer definition: in same establishment from 1988 through 1994 Track separations through 1995

Labor Demand Shocks: Difference by Tercile of Industry Emp. Growth

Stayer definition: in same establishment from 1988 through 1994 Track separations through 1995 Two-digit NACE

Labor Demand Shocks: Establishment-Level "Hockey-Sticks"

Labor Demand Shocks: Establishment-Level "Hockey-Sticks"

Battery of Other Tests

- Controlling for shifts of within-cohort age composition
- Comparing distribution of the age of separators during mass lay-offs in each region
- Estimating relationship of separations and **industry growth rates** (Austria, also instrumenting with German rates)
- Comparing ages at first separation and months of continuous employment
- Using placebos for pre-REBP period
- Cell-based analysis of industry-occupation-specific shocks

Predicted Post-REBP Comovement of Separation Rates

Horse Race: Structural Estimation

- Let the data put weight on these two extreme models
- Structural relationship between cell-level separation rates in formerly treated and control regions:

$$\Delta_i^1 = (1 - \kappa) \times \underbrace{\Delta_i^0}_{\text{Reshuffling}} + \kappa \times \underbrace{\max\left\{0, \frac{1 - \delta_i^0}{1 - \delta_i^1} \cdot \Delta_i^0 - \frac{\delta^1 - \delta_i^0}{1 - \delta_i^1}\right\}}_{\text{Persistence}}$$

- κ : weight on persistence model "which fraction of cells follow which model?"
- where δ_i^0, δ_i^1 are cell-specific REBP-period measured separation rates
- Δ_i^0 : younger cohorts in REBP region in the same industry-occupation (blue/white collar) cell
 - Not treated by REBP
 - Still contain marginal matches
 - Exposed to similar industry-occupation-level surplus shocks
 - Non-linear model with measurement error (due to idiosyncratic shocks). Solution: GMM using procedure from Schennach (2012) to resolve measurement error.

Horse Race: Results

	2-Digit Industry $ imes$ Occupation Cells				4-Digit Industry $ imes$ Occupation Cells				
	1995	1996	1997	1998	1995	1996	1997	1998	
$\hat{\kappa}$	-0.0464	-0.123	-0.184	-0.302	0.033	-0.0367	-0.074	-0.168	
	(0.087)	(0.077)	(0.088)	(0.081)	0.046	(0.055)	(0.063)	(0.064)	
95% CI	0.127	0.029	-0.010	-0.141	0.124	0.072	0.050	-0.041	
(Upper Limit)									
N	109	109	109	109	275	275	275	275	

Alternative Interpretation: Non-Coasean Setting

- Which frictional model consistent with the data?
 - Like Tolstoy's unhappy families: each frictional setting is inefficient in its own way
 - Wage rigidity in response to (nonemployment) outside option shifts (Jäger, Schoefer, Young, Zweimüller 2018)
 - \Rightarrow Prevents efficient (re-)bargaining

Conceptual Framework — Non-Coasean Setting

Job is **feasible** if worker surplus S^W and

firm surplus S^F :

 $S^W(\mathbf{V}^W,w) = V^W_{\rm ln} + w - V^W_{\rm Out} \geq 0$

 $S^F(\mathbf{V}^F,w) = V_{\mathsf{ln}}^F - w - V_{\mathsf{Out}}^F \geq 0$

Coasean Bargaining Friction: Wage Rigidity

Parties agree on $w \in [\underline{w}^W, \overline{w}^F]$, which implements bilaterally efficient allocation

 \Rightarrow Joint surplus Unilateral surpluses are the allocative surplus concepts

$$S(V) = V_{ln}^{W} + V_{ln}^{F} - V_{Out}^{W} + V_{Out}^{F}$$

Non-Coasean separation probability for a job V:

$$\widetilde{\mathrm{d}}(\mathbf{w},\mathbf{V},\varepsilon') = \int_{(w',\mathbf{V}')} \mathbbm{1}\Big(\underbrace{\widetilde{S}^W(w',\mathbf{V}') < \varepsilon^{W'}}_{\mathrm{Quit}} ~\vee~ \underbrace{\widetilde{S}^F(w',\mathbf{V}') < \varepsilon^{F'}}_{\mathrm{Layoff}}\Big) k((w',\mathbf{V}')|(w,\mathbf{V}))d(w',\mathbf{V}')$$

k(.|.): Markov process guiding evolution of (w,\mathbf{V})

Coasean Bargaining

Initial REBP Effect — Coasean Model

Gross [Net] of Wage Worker Surplus V^w_{In} - V^w_{Out} [+w]

Post-REBP — Coasean Model

Former Treatment Group

Former Control Group

Initial REBP Effect: — Non-Coasean Model: Initially High Worker Surplus

Gross [Net] of Wage Worker Surplus V^w_{In} - V^w_{Out} [+w]

Post-REBP — Non-Coasean Model: Largely Firm Surplus Shocks

Former Treatment Group

Former Control Group

Predicted Post-REBP Comovement of Separation Rates

Predicted Post-REBP Comovement of Separation Rates

Horse Race: Two Interpretations

κ: weight on persistence Coasean model or Non-Coasean/Firm Shocks

Horse Race: Two Interpretations

	2-Digit Industry $ imes$ Occupation Cells				4-Di	4-Digit Industry $ imes$ Occupation Cells				
	1995	1996	1997	1998	1995	1996	1997	1998		
$\hat{\kappa}$	-0.0464	-0.123	-0.184	-0.302	0.033	-0.0367	-0.074	-0.168		
	(0.087)	(0.077)	(0.088)	(0.081)	0.046	(0.055)	(0.063)	(0.064)		
95% CI	0.127	0.029	-0.010	-0.141	0.12	4 0.072	0.050	-0.041		
(Upper Limit)										
N	109	109	109	109	275	275	275	275		

Complier Analysis: Attributes of Incremental REBP Separators

Differences Between Compliers, Always-Separators, and Never-Separators

Conclusion

I. Does UI-induced boost of nonemployment value lead to separations among marginal jobs?

• 11ppt increase in separations among initially employed (39ppt base)

II. Which matches were dissolved by the policy? (More in paper)

- Evidence consistent with low-surplus jobs at the margin, but not definitely informative
- Pre-separation attributes: blue-collar jobs in shrinking industries and firms, with freq't sickness
- Survey: significant share of worker-sided quits

III. Core test of Coasean vs. alternative view

- Exploit abolition of reform in 1993
- Prediction of Coasean view: surviving matches are more resilient
 - Provided some degree of persistence in idiosyncratic surplus
- Yet, in the data: same resilience among survivors in treatment and control
- \Rightarrow Inefficient separations or efficient, but full "reshuffling" of surplus distribution even after 1 year

One non-Coasean story: wage rigidity + high initial worker surplus, post-abol'n sep's from firm surplus