Two Views of Jobs and Separations

• Coasean view of jobs and separations:
 • Efficient bargaining, exploiting all gains from trade

 ⇒ Joint job surplus allocative (firm + worker surplus)

 \[
 \text{Joint Job Surplus} = \text{Inside Values} - \text{Outside Values}
 \]

 ⇒ Separations efficient: joint surplus < 0

• Frictional ("non-Coasean") views of jobs and separations
 • Unilateral worker and firm surpluses are allocative
 • Separations can be inefficient
 Ex: Firm surplus < 0 while worker surplus \(\gg 0\), so joint surplus > 0

• Our paper: empirical test to adjudicate b/w Coasean and frictional views at the separations margin
Testing Between Coasean and Alternative Views

- We study a separations effects of large UIB extension (job surplus ↓)
- Quasi-experiment: UI benefit extension in Austria (REBP)
 - Large increase in maximum benefit duration: 1 → 4 years, starting in 1988
 - Treatment and control regions
 - Sharp age eligibility cutoff (50+)
- **Abolished in 1993**
- Prediction of Coasean view: Post-abolition, surviving matches more resilient in response to any surplus shocks
- Prediction of other view: Post-abolition resilience to worker surplus shifts, but not firm surplus shifts
Coasean View: Separation and Resilience Effects

Jobs: Matches with positive surplus
Benefit increase reduces surplus
Surplus of surviving matches during reform
Abolishing the reform
Coasean View: Separation and Resilience Effects

Abolishing the reform missing mass of marginal matches (with low joint surplus)
Coasean View: Separation and Resilience Effects

Post-abolition resilience to shocks
Preview of Results

I. Does UI-induced boost of nonemployment option lead to separations of marginal matches?
 • 11ppt increase in separations among initially employed (39ppt base)

II. Which matches were dissolved by the policy? (Complier analysis in paper, today just summary)
 • Evidence consistent with low-surplus jobs at the margin (but not definitely informative)
 • Pre-separation attributes: blue-collar jobs in shrinking industries and firms, with freq’t sickness
 • Survey: significant share of worker-sided quits

III. Core test of Coasean vs. alternative view
 • Exploit abolition of reform in 1993
 • Prediction of Coasean view: surviving matches are more resilient
 • Provided some degree of persistence in idiosyncratic surplus
 • Yet, in the data: same resilience among survivors in treatment and control

⇒ Inefficient separations — or efficient, but full “reshuffling” of surplus distribution even after 1 year

One non-Coasean story: wage rigidity + high initial worker surplus, post-abol’n sep’s from firm surplus
Outline

1. Conceptual Framework

2. Reform, Empirical Strategy, and Data

3. The Causal Effect of Outside Options on Separations

4. Characterizing Jobs Destroyed by the Reform

5. Test of Coasean View: Post-Abolition Stability of Surviving Jobs
 5.1 Conceptual Framework for Coasean Setting
 5.2 Structural Estimation
 5.3 Alternative Non-Coasean Interpretation
No experience rating

Voluntary quitters eligible for UI (and extension)
 - Four week wait period

Replacement rate: 41-48% of gross income; UIBs untaxed

Level bounded at minimum and maximum amount
1988 Policy Change: Regional Extended Benefit Program (REBP)

- UI benefit extension from max 52 weeks to max 209 weeks
- Active June 1988 to July 1993
- Targeted 28 (out of 100) labor market districts

Eligibility criteria (at unemployment entry):
- Residence in REBP district \geq 6 months
- Older than age 50
- More than 15 years of work experience in last 25 years

Context and policy objectives:
- Original goal: mitigate job loss from steel sector restructuring
- Reform affected all – incl. non-steel – workers in REBP regions
- We exclude steel workers from analysis
The Regional Benefit Extension Program (REBP)
REBP Extended Benefit Duration for Age 50+

Potential Benefit Duration (Weeks)

Age 50+

1988 1989 1993

REBP Non-REBP

Potential Benefit Duration (Weeks)
Second Control Group: Workers Age <50

<table>
<thead>
<tr>
<th>Potential Benefit Duration (Weeks)</th>
<th>1988</th>
<th>1989</th>
<th>1993</th>
</tr>
</thead>
<tbody>
<tr>
<td>REBP and Non-REBP Age 40-49</td>
<td>30</td>
<td>39</td>
<td></td>
</tr>
</tbody>
</table>
Data and Sample

- Population of matched employer-employee data from Austria
 - Universe of Austrian Social Security Register (ASSD)
- Primary sample: male workers aged 45 to 55, 1987 to 1998
Outline

1. Conceptual Framework
2. Reform, Empirical Strategy, and Data
3. The Causal Effect of UI on Separations
4. Characterizing Jobs Destroyed by the Reform
5. Test of Coasean View: Post-Abolition Stability of Surviving Jobs
 5.1 Conceptual Framework for Coasean Setting
 5.2 Structural Estimation
 5.3 Alternative Non-Coasean Interpretation
Control: Fraction Separated from 1988 Job by 1993

Sample: Individuals with job in 1988.
REBP vs. Control: Fraction Separated from '88 Job by '93

Sample: Individuals with job in 1988.
Treatment Effect: Differences

Sample: Individuals with job in 1988.
Quarters Employed 50–55: Differences

Sample: Individuals with job at 49.
Continuous Employment \(\downarrow \approx \) Overall Employment \(\downarrow \)

Sample: Individuals with job at 49.
Outline

1. Conceptual Framework

2. Reform, Empirical Strategy, and Data

3. The Causal Effect of Outside Options on Separations

4. **Characterizing Jobs Destroyed by the Reform** *(More in Paper)*

5. Test of Coasean View: Post-Abolition Stability of Surviving Jobs

 5.1 Conceptual Framework for Coasean Setting

 5.2 Structural Estimation

 5.3 Alternative Non-Coasean Interpretation
Complier Analysis: Attributes of Incremental REBP Separators

<table>
<thead>
<tr>
<th>Attribute</th>
<th>C - N</th>
<th>C - A</th>
</tr>
</thead>
<tbody>
<tr>
<td>White Collar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emp. Growth Industry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emp. Growth at Establishment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1(Growing Establishment)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earnings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Establishment FE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worker FE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tenure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share Sickness in Industry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long Spell Duration Risk</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Differences Between Compliers and Always-Separators, and Compliers and Never-Separators
Outline

1. Conceptual Framework

2. Reform, Empirical Strategy, and Data

3. The Causal Effect of Outside Options on Separations

4. Characterizing Jobs Destroyed by the Reform

5. Test of Coasean View: Post-Abolition Stability of Surviving Jobs
 5.1 Conceptual Framework for Coasean Setting
 5.2 Structural Estimation
 5.3 Alternative Non-Coasean Interpretation
Conceptual Framework

Job is **feasible** if worker surplus S^W and firm surplus S^F:

$$S^W(V^W, w) = V^W_{In} + w - V^W_{Out} \geq 0$$

$$S^F(V^F, w) = V^F_{In} - w - V^F_{Out} \geq 0$$

$V^W = (V^W_{In}, V^W_{Out})$: worker inside job value (e.g. amenities), outside value (e.g. value of unemployment)

$V^F = (V^F_{In}, V^F_{Out})$: firm inside job value (e.g. productivity), outside value (e.g. vacancy)

Coasean bargaining

Parties agree on $w \in [w^W, w^F]$, which implements bilaterally efficient allocation

⇒ **Joint surplus** is the allocative surplus concept

$$S(V) = \underbrace{S^W(V^W, w) + S^F(V^W, w)}_{S^W(V^W, w) + S^F(V^W, w)}$$

Coasean separation probability for a job V:

$$\bar{d}(V) = \int_{V'} 1\{S(V') < 0\}k(V'|V)dV'$$

$k(., .)$: Markov process guiding evolution of V
REBP-Induced Separations

REBP shock hits treatment group \((Z = 1)\), but not control group \((Z = 0)\)

\[
\varepsilon_b^W = V_{\text{Out}}^W (b_0 + \Delta b) - V_{\text{Out}}^W (b_0) > 0
\]

Surplus level gross of aggregate shock \(\varepsilon'\):

\[
\tilde{S}(V') = S(V', \varepsilon') - \varepsilon'
\]

Separation share:

\[
\delta^Z = \int_V \int_{V'} \mathbf{1}_{\{\tilde{S}(V') < Z \times \varepsilon_b^W\}} k(V'|V) dV' f^Z_{\text{pre}}(V) dV
\]

\[\tilde{d}(V, Z \times \varepsilon_b^W)\]

\(f^Z_{\text{pre}}\): distribution of job values pre-REBP — Assume \(f^1_{\text{pre}} = f^0_{\text{pre}}\)

Treatment effect:

\[
\delta^1 - \delta^0 = \int_V \int_{V'} \mathbf{1}_{\{0 \leq \tilde{S}(V') < \varepsilon_b^W\}} k(V'|V) dV' f^0_{\text{pre}}(V) dV
\]

Marginal jobs, \(M\)
Always-Separators Compliers or Marginal Matches Never-Separators

38.5% 10.6% 50.8%

δ^0 $\delta^1 - \delta^0$ $1 - \delta^1$ $\tilde{S}(V')$
Surplus distribution at the end of REBP

\[\delta^0 \quad 0 \quad \delta^1 - \delta^0 \quad \varepsilon^W_b \quad 1 - \delta^1 \quad \tilde{S}(V') \]

\[38.5\% \quad 10.6\% \quad 50.8\% \]

\[17.3\% \quad 82.7\% \quad 100\% \]
Surplus distribution RIGHT ATTER ABOLITION OF REBP
Post-REBP Separations

Separation share:

\[\Delta^Z = \int_{V'} \int_{V''} \left\{ \tilde{S}(V'') < \varepsilon'' \right\} k(V'' | V') dV'' f^Z(V') dV' \]

\[\tilde{d}(V'; \varepsilon'') \]

Now \(f^1(V') \neq f^0(V') \) due to REBP!

Difference in separation rates driven by composition differences from extraction of marginal jobs:

\[\Delta^1 - \Delta^0 = \int_{V'} \tilde{d}(V'; \varepsilon'') \left[f^1(V') - f^0(V') \right] dV' \]
Post-REBP Resilience: General Case

• To assess data, we construct benchmark model for predicted separations:

\[
\Delta^1 = \int_{V'} \tilde{d}(V', \varepsilon'') f^1(V') dV' \\
= \int_{V' \in M} \tilde{d}(V', \varepsilon'') f^1(V') dV' + \int_{V' \notin M} \tilde{d}(V', \varepsilon'') f^1(V') dV' \\
= 0 + \int_{V' \notin M} \tilde{d}(V', \varepsilon'') f^0(V') dV' \ast \left[\frac{1 - \delta^0}{1 - \delta^1} \right] \\
= \frac{1 - \delta^0}{1 - \delta^1} \left[\int_{V' \notin M} \tilde{d}(V', \varepsilon'') f^0(V') dV' \pm \int_{V' \in M} \tilde{d}(V', \varepsilon'') f^0(V') dV' \right] \\
= \frac{1 - \delta^0}{1 - \delta^1} \left[\Delta^0 - \int_{V' \in M} \tilde{d}(V', \varepsilon'') f^0(V') dV' \right]
\]
Post-REBP Resilience: Case of No Idiosyncratic Shocks

\[\Delta^1(\varepsilon'') = \begin{cases}
0 & \text{if } \varepsilon'' \leq \varepsilon_b^W \\
\frac{1 - \delta^0}{1 - \delta^1} \left[\Delta^0(\varepsilon'') - \frac{\delta^1 - \delta^0}{1 - \delta^0} \right] & \text{if } \varepsilon'' > \varepsilon_b^W
\end{cases} \]

\[\Delta^1 = \max \left\{ 0, \frac{1 - \delta^0}{1 - \delta^1} \left[\Delta^0 - \frac{\delta^1 - \delta^0}{1 - \delta^0} \right] \right\} \]
Post-REBP Resilience: Case of No Idiosyncratic Shocks

\[\Delta S(b, \Delta b) \]

SEPARATIONS

SIZE OF SUBSEQUENT SURPLUS SHOCK

FORMER CONTROL GROUP

FORMER TREATMENT GROUP
Predicted Post-REBP Co-movement of Separation Rates — By Cohort

\[
\begin{align*}
\text{Separation Rate,} \\
\text{Treatment Group } & \Delta^1 \\
& \frac{1 - \delta^0}{1 - \delta^1} \\
\text{Separation Rate,} \\
\text{Control Group } & \Delta^0
\end{align*}
\]
Predicted Separations by 1995 for 1988-93 Job Stayers

Stayer definition: in same establishment from 1988 through 1994
Track separations through 1995
Predicted vs. Actual Separations by 1995 for 1988-94 Job Stayers

Stayer definition: in same establishment from 1988 through 1994
Track separations through 1995
Predicted vs. Actual vs. Control Sep’s by 1995 for 1988-94 Job Stayers

Stayer definition: in same establishment from 1988 through 1994
Track separations through 1995

Stayer definition: in same establishment from 1988 through 1994
Track separations through 1995
Labor Demand Shocks: Difference by Tercile of Industry Emp. Growth

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1933q3</td>
<td>-0.1</td>
<td>-0.05</td>
<td>0</td>
</tr>
<tr>
<td>1938q3</td>
<td>0.05</td>
<td>0.1</td>
<td>0.15</td>
</tr>
<tr>
<td>1943q3</td>
<td>0.1</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>1948q3</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Stayer definition: in same establishment from 1988 through 1994
Track separations through 1995
Two-digit NACE
Labor Demand Shocks: Establishment-Level “Hockey-Sticks”

![Graph showing the relationship between annual separation rate and annual employment growth. The graph illustrates a downward trend in separation rate with increasing employment growth, indicating a negative correlation.](image-url)
Labor Demand Shocks: Establishment-Level "Hockey-Sticks"
Battery of Other Tests

- Controlling for shifts of *within-cohort* age composition
- Comparing distribution of the age of separators during *mass lay-offs* in each region
- Estimating relationship of separations and *industry growth rates* (Austria, also instrumenting with German rates)
- Comparing ages at first separation and months of continuous employment
- Using placebos for pre-REBP period
- Cell-based analysis of industry-occupation-specific shocks
Reconciling Patterns — $\Delta_1(\varepsilon'') = \Delta_0(\varepsilon'') \forall \varepsilon''$ — with Coasean Model

\[
\Delta_1(\varepsilon'') = \Delta_0(\varepsilon'')
\]

\[
\Leftrightarrow \int_{\mathbf{V}' \in M} \tilde{d}(\mathbf{V}', \varepsilon'') f^1(\mathbf{V}') d\mathbf{V}' + \int_{\mathbf{V}' \notin M} \tilde{d}(\mathbf{V}', \varepsilon'') \frac{f^1(\mathbf{V}')}{1 - \delta^0} d\mathbf{V}' = \int_{\mathbf{V}' \in M} \tilde{d}(\mathbf{V}', \varepsilon'') f^0(\mathbf{V}') d\mathbf{V}' + \int_{\mathbf{V}' \notin M} \tilde{d}(\mathbf{V}', \varepsilon'') f^0(\mathbf{V}') d\mathbf{V}'
\]

Av. sep. rate for the marginals

Av. sep. rate for the inframarginals

\[
\Leftrightarrow \int_{\mathbf{V}' \in M} \tilde{d}(\mathbf{V}', \varepsilon'') f^0(\mathbf{V}') \left[\frac{1 - \delta^0}{\delta^1 - \delta^0} \right] d\mathbf{V}' = \int_{\mathbf{V}' \notin M} \tilde{d}(\mathbf{V}', \varepsilon'') f^0(\mathbf{V}') \left[\frac{1 - \delta^0}{1 - \delta^1} \right] d\mathbf{V}'
\]

Av. sep. rate for the marginals

Av. sep. rate for the inframarginals

\[
\Leftrightarrow \int_{\mathbf{V}' \in M} \int_{\mathbf{V}''} 1\{\tilde{S}(\mathbf{V}'') < \varepsilon''\} k(\mathbf{V}'', \mathbf{V}') \hat{f}(\mathbf{V}'') d\mathbf{V}' d\mathbf{V}'' = \int_{\mathbf{V}' \notin M} \int_{\mathbf{V}''} 1\{\tilde{S}(\mathbf{V}'') < \varepsilon''\} k(\mathbf{V}'', \mathbf{V}') \hat{f}(\mathbf{V}'') d\mathbf{V}' d\mathbf{V}''
\]

Av. sep. rate for the marginals

Av. sep. rate for the inframarginals
Predicted Post-REBP Comovement of Separation Rates

\[\Delta^1 \text{ Separation Rate, Treatment Group} \]

\[\Delta^0 \text{ Separation Rate, Control Group} \]

\[\frac{1 - \delta^0}{1 - \delta^1} \]

\[\frac{\delta^1 - \delta^0}{1 - \delta^0} \]
Horse Race: Structural Estimation

• Let the data put weight on these two extreme models

• Structural relationship between cell-level separation rates in formerly treated and control regions:

\[
\Delta^1_i = (1 - \kappa) \times \Delta^0_i + \kappa \times \max \left\{ 0, \frac{1 - \delta^0_i}{1 - \delta^1_i} \cdot \Delta^0_i - \frac{\delta^1_i - \delta^0_i}{1 - \delta^1_i} \right\}
\]

\(\kappa \): weight on persistence model – “which fraction of cells follow which model?”

• where \(\delta^0_i, \delta^1_i \) are cell-specific REBP-period measured separation rates

\(\Delta^0_i \): younger cohorts in REBP region in the same industry-occupation (blue/white collar) cell

• Not treated by REBP

• Still contain marginal matches

• Exposed to similar industry-occupation-level surplus shocks

• Non-linear model with measurement error (due to idiosyncratic shocks). Solution: GMM using procedure from Schennach (2012) to resolve measurement error.
Horse Race: Results

<table>
<thead>
<tr>
<th></th>
<th>2-Digit Industry × Occupation Cells</th>
<th>4-Digit Industry × Occupation Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{\kappa})</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.0464</td>
<td>-0.123</td>
</tr>
<tr>
<td></td>
<td>(0.087)</td>
<td>(0.077)</td>
</tr>
<tr>
<td>95% CI (Upper Limit)</td>
<td>0.127</td>
<td>0.029</td>
</tr>
<tr>
<td>(N)</td>
<td>109</td>
<td>109</td>
</tr>
</tbody>
</table>
Alternative Interpretation: Non-Coasean Setting

- Which frictional model consistent with the data?
 - Like Tolstoy’s unhappy families: each frictional setting is inefficient in its own way
 - Wage rigidity in response to (nonemployment) outside option shifts (Jäger, Schoefer, Young, Zweimüller 2018)

⇒ Prevents efficient (re-)bargaining
Conceptual Framework — Non-Coasean Setting

Job is **feasible** if worker surplus S^W and firm surplus S^F:

$$S^W(V^W, w) = V^W_{In} + w - V^W_{Out} \geq 0$$

$$S^F(V^F, w) = V^F_{In} - w - V^F_{Out} \geq 0$$

Coasean Bargaining Friction: Wage Rigidity

Parties agree on $w \in [w^W, w^F]$, which implements bilaterally efficient allocation

⇒ **Joint surplus** Unilateral surpluses are the allocative surplus concepts

$$S(V) = S^W(V^W, w) + S^F(V^F, w)$$

Non-Coasean separation probability for a job V:

$$\tilde{d}(w, V, \varepsilon') = \int_{(w', V')} 1\left(\tilde{S}^W(w', V') < \varepsilon^W' \lor \tilde{S}^F(w', V') < \varepsilon^F'\right) k((w', V')|(w, V))d(w', V')$$

$k(.,.)$: Markov process guiding evolution of (w, V)
Coasean Bargaining

Quits

Layoffs

Mutual
Separations

Feasible Jobs

Gross [Net] of Wage Worker Surplus $V_{in}^w - V_{Out}^w [\pm w]$

Gross [Net] of Wage Firm Surplus $V_{in}^f - V_{Out}^f [\pm w]$

$(0,0)$
Initial REBP Effect — Coasean Model

\[V_{in} - V_{out} \]

Gross Net of Wage Worker Surplus

In Out \(+w\)

Gross Net of Wage Firm Surplus

In Out \(-w\)

Quits

Layoffs

Mutual Separations

Feasible Jobs

\(-\epsilon_b < 0 \)

\(W < 0 \)
Post-REBP — Coasean Model

Gross [Net] of Wage Worker Surplus $V_{in} - V_{out} + w$

Gross [Net] of Wage Firm Surplus $V_{in} - V_{out} - w$

(0,0)

Quits
Layoffs
Mutual Separations

Feasible Jobs

$\varepsilon W' = 0 < 0$

$\varepsilon F' = 0 < 0$

Former Treatment Group

Former Control Group
Initial REBP Effect: — Non-Coasean Model: Initially High Worker Surplus
Post-REBP — Non-Coasean Model: Largely Firm Surplus Shocks

Quits : Feasible Jobs

\(\varepsilon^w = X < 0 \)

\(\varepsilon^f = X < 0 \)

Gross [Net] of Wage Worker Surplus \(V_{in} - V_{out} [w] \)

Gross [Net] of Wage Firm Surplus \(V_{in} - V_{out} [-w] \)

(0,0)

Mutual Separations

Layoffs

Feasible Jobs

Former Treatment Group

Former Control Group
Predicted Post-REBP Comovement of Separation Rates

\[
\begin{align*}
\text{Separation Rate,} & \quad \text{Treatment Group} \, \Delta^1 \\
\text{Control Group} & \, \Delta^0
\end{align*}
\]

\[
\begin{align*}
\text{Non-Coasean, Firm Shock} & \, \varepsilon^f_0 \\
\text{Non-Coasean, Worker Shock} & \, \varepsilon^w_0 = \text{Coasean, Any Shock} \, \varepsilon^f_0, \varepsilon^w_0
\end{align*}
\]
Predicted Post-REBP Comovement of Separation Rates

WORKER Surplus Shocks

FIRM Surplus Shocks
Horse Race: Two Interpretations

\[\Delta_i^1 = (1 - \kappa) \times \begin{cases} \Delta_i^0 & \text{Coasean & Reshuffling} \\ \Delta_i^0 & \text{Non-Coasean & Firm Shocks} \end{cases} + \kappa \times \max \left\{ 0, \frac{1 - \delta_i^0}{1 - \delta_i^1} \cdot \Delta_i^0 - \frac{\delta_i^1 - \delta_i^0}{1 - \delta_i^1} \right\} \]

\(\kappa \): weight on persistence Coasean model or Non-Coasean/Firm Shocks
Horse Race: Two Interpretations

<table>
<thead>
<tr>
<th></th>
<th>2-Digit Industry × Occupation Cells</th>
<th>4-Digit Industry × Occupation Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{\kappa})</td>
<td>-0.0464 -0.123 -0.184 -0.302</td>
<td>0.033 -0.0367 -0.074 -0.168</td>
</tr>
<tr>
<td>(Upper Limit)</td>
<td>(0.087) (0.077) (0.088) (0.081)</td>
<td>(0.046) (0.055) (0.063) (0.064)</td>
</tr>
<tr>
<td>95% CI</td>
<td>0.127 0.029 -0.010 -0.141</td>
<td>0.124 0.072 0.050 -0.041</td>
</tr>
<tr>
<td>N</td>
<td>109 109 109 109</td>
<td>275 275 275 275</td>
</tr>
</tbody>
</table>
Complier Analysis: Attributes of Incremental REBP Separators

Differences Between Compliers, Always-Separators, and Never-Separators
Conclusion

I. Does UI-induced boost of nonemployment value lead to separations among marginal jobs?
 - 11ppt increase in separations among initially employed (39ppt base)

II. Which matches were dissolved by the policy? (More in paper)
 - Evidence consistent with low-surplus jobs at the margin, but not definitely informative
 - Pre-separation attributes: blue-collar jobs in shrinking industries and firms, with freq’t sickness
 - Survey: significant share of worker-sided quits

III. Core test of Coasean vs. alternative view
 - Exploit abolition of reform in 1993
 - Prediction of Coasean view: surviving matches are more resilient
 - Provided some degree of persistence in idiosyncratic surplus
 - Yet, in the data: same resilience among survivors in treatment and control

⇒ Inefficient separations — or efficient, but full “reshuffling” of surplus distribution even after 1 year

One non-Coasean story: wage rigidity + high initial worker surplus, post-abol’n sep’s from firm surplus