JOBS AND MATCHES: QUITS, REPLACEMENT HIRING, AND VACANCY CHAINS

Yusuf Mercan U Melbourne Benjamin Schoefer UC Berkeley

June 2019

JOB OPENINGS

Key variable for aggregate labor market behavior.

DATA • Drives the job finding rate of unemployed workers,

• And thereby employment fluctuations.

THEORY Diamond-Mortensen-Pissarides (DMP) search model.

- Job openings = creation of **new** jobs.
- Driven solely by "fundamentals" in costs and benefits of hiring: productivity, discount factor, wages, separations, ...

This Paper

- I Establish/point out three empirical facts:
 - 1. Job: $\sim 60\%$ of job openings aim to fill **old** jobs vacated by **quits**.
 - 2. Establishment: 1 quit $\Rightarrow \sim 1$ new hire.
 - 3. Aggregate: Hires tightly track quits.
- II Extend textbook DMP model to accommodate old jobs and quit-replacement hiring.
 - + Sunk job creation cost \Rightarrow Vacant positions are valuable.
 - + On-the-job search \Rightarrow Job-to-job quits drive vacancy repostings.
 - $\Rightarrow Two types of jobs: \begin{array}{c} new \\ old \end{array} \begin{array}{c} standard DMP entry \\ vacated by quits and reposted \end{array}$
- III Quantitatively study aggregate implications:
 - Vacancy chains & "multipliers".
 - $\circ~$ Business cycles amplification.

Road Map

MECHANISM

Empirical Evidence

Model

QUANTITATIVE ANALYSIS

BUSINESS CYCLE IMPLICATIONS

TWO-PERIOD DMP

• New hires:

$$\underbrace{h}_{\text{hires}} = \underbrace{q(\theta)}_{\text{job filling rate}} \times \underbrace{v}_{\text{job openings}}$$

• Zero-profit condition for vacancy posting:

$$\underbrace{\kappa}_{\text{flow cost}} = \underbrace{q(\theta)\beta(y-w)}_{\text{returns to hiring}},$$

where market tightness $\theta \coloneqq \frac{\text{Job Openings}}{\text{Unemployed Searchers}}$.

- Equilibrium θ through:
 - Congestion in labor market: $q'(\theta) < 0$.
 - Wage bargaining: w_y , $w_\theta > 0$.
- A model solely of **new** job creation:
 - Linear production function (CRS).
 - No sunk investments.

This Paper: Old VS New Jobs

New jobs: pay one-time fixed cost of job creation k(n) (Fujita and Ramey (2007)):

$$\kappa + k(n) = q(\theta)\beta(y-w)$$

Old jobs: costs are sunk and vacancies have ${\bf strictly}\ {\bf positive}$ equilibrium value:

$$\kappa < q(\theta)\beta(y-w)$$

- \Rightarrow Old jobs are **reposted**.
- \Rightarrow Quits trigger **replacement hiring**.
- \Rightarrow Quits can act as a (proximate) driver of total job openings in "**vacancy chain**".

CONVENTIONAL VIEW OF QUITS IN DMP

Add on-the-job-search to the baseline model:

 $\theta = \frac{\text{Job Openings}}{\text{Total Searchers}} = \frac{\text{Job Openings}}{\text{Unemployed} + \text{On-the-job Searchers}}$

$$\kappa = q(\theta)\beta \Big[(y-w) + (1 - P(Quit)) \cdot \beta(y-w) \Big]$$

- Two market-level effects of quits:
 - ⓒ Labor supply channel: $q(\theta)$ ↑
 - ⓒ Match duration channel: [1 Prob(Quit)] ↓
- But: jobs vacated by quits are **not** reposted!
 - ... zero value of vacancy, old or new.
 - $\circ~$ Match resolution and job destruction similar events.

Road Map

MECHANISM

Empirical Evidence

Model

QUANTITATIVE ANALYSIS

BUSINESS CYCLE IMPLICATIONS

WHAT IS A JOB OPENING?

Job Openings and Labor Turnover Survey (JOLTS) definition:

[...] all positions that are open (not filled) on the last business day of the month. A job is "open" only if it meets **all three** of the following conditions:

- 1. A specific **position exists** and there is **work available** for that position.
- 2. The job could start within 30 days.
- 3. There is **active recruiting** for workers from outside the establishment.
- \Rightarrow Notion of **sunk** cost!

Empirical Evidence

Four levels of evidence:

- 1. Vacancy survey
- 2. Establishment level worker flows
- 3. Local labor markets
- 4. Aggregate comovements

VACANCY LEVEL EVIDENCE

- German IAB Vacancy Survey.
- $\circ\,$ Annual, 2000-2015, \sim 75,000 establishments per year.
- $\circ~$ Detailed questions on the last filled opening in the past 12 months.

"Why did you post this particular job opening?"

Replacem	ent Hiring	Demand	Increase
Temporary	Long-term	Temporary	Long-term
8.7%	47.4%	7.7%	36.2%
56.	1%	43.	9%

Composition of Job Openings

 $\sim 50\%-60\%$ of job openings to replace workers.

Empirical Evidence

Four levels of evidence:

- 1. Vacancy survey
- 2. Establishment level worker flows
- 3. Local labor markets
- 4. Aggregate comovements

ESTABLISHMENT-LEVEL EVIDENCE

Run regression at the establishment level:

$$\frac{\operatorname{Hires}_{e,t}}{\operatorname{Emp}_{e,t-1}} = \beta_0 + \beta_1 \frac{\operatorname{Quits}_{e,t}}{\operatorname{Emp}_{e,t-1}} + \gamma X_{e,t} + \alpha_e + \alpha_t + \varepsilon_{e,t}$$

Source: IAB Establishment Survey ("annual German JOLTS").

ESTABLISHMENT-LEVEL QUITS AND HIRES

ESTABLISHMENT-LEVEL QUITS AND JOB OPENINGS

ESTABLISHMENT LEVEL REGRESSIONS

		All]	Positive Quit	s
	(1)	(2)	(3)	(1)	(2)	(3)
Quitset	.736	.727	.733	.824	.817	.821
$\frac{\text{Quits}_{et}}{\text{Emp}_{et-1}}$	(.067)	(.068)	(.068)	(.086)	(.086)	(.085)
Establishment FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Year FE	\checkmark			\checkmark		
Year x Industry FE		\checkmark			\checkmark	
Year x State FE			\checkmark			\checkmark
N	24509	24509	24509	18015	18015	18015
R^2	.64	.64	.64	.66	.67	.67

A. Dependent Variable: $\frac{\text{New Hires}_{et}}{\text{Emp} \cdot et - 1}$

B. Dependent Variable: $\frac{\text{Job Openings}_{et}}{\text{Emp}_{et-1}}$

		All			Positive Quit	s
	(1)	(2)	(3)	(1)	(2)	(3)
$\operatorname{Quits}_{et}$.048	.046	.047	.071	.069	.068
$\overline{\mathrm{Emp}}_{\cdot et-1}$	(.026)	(.027)	(.026)	(.035)	(.035)	(.035)
Establishment FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Year FE	\checkmark			\checkmark		
Year x Industry FE		\checkmark			\checkmark	
Year x State FE			\checkmark			\checkmark
N	23209	23209	23209	16964	16964	16964
\mathbb{R}^2	.37	.37	.37	.35	.36	.35

EVENT STUDY

			De	pendent Varial	ble: $\frac{\text{New Hires}}{\text{Emp} \cdot et -}$	<u>et</u>		
		А	.11			Positiv	e Quits	
Lead/Lag	(1)	(2)	(3)	(4)	(1)	(2)	(3)	(4)
-3				060				115
-3				(.067)				(.074)
-2			.016	008			.060	123
-2			(.096)	(.086)			(.158)	(.132)
-1		.051	.064	.078		.011	.010	005
-1		(.057)	(.098)	(.091)		(.089)	(.150)	(.129)
0	.736	.753	.815	.818	.824	.928	1.03	.903
0	(.067)	(.068)	(.095)	(.127)	(.086)	(.097)	(.140)	(.164)
+1		.050	.079	.192		0.030	.044	.070
+1		(.069)	(.086)	(.104)		(.102)	(.136)	(.129)
+2			.086	055			001	258
+2			(.085)	(.088)			(.122)	(.122)
+3				.161				.037
+3				(.139)				(.226)
Establishment FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Year FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
N	24509	11414	5732	2832	18015	6433	2912	1385
R ²	.64	.67	.63	.65	.66	.64	.62	.73

Empirical Evidence

Four levels of evidence:

- 1. Vacancy survey
- 2. Establishment level worker flows
- 3. Local labor markets
- 4. Aggregate comovements

LOCAL-LABOR-MARKET-LEVEL QUITS AND HIRES

LOCAL-LABOR-MARKET-LEVEL QUITS AND JOB OPENINGS

Empirical Evidence

Four levels of evidence:

- 1. Vacancy survey
- 2. Establishment level worker flows
- 3. Local labor markets
- 4. Aggregate comovements

QUITS AND HIRES (Quarterly Rate per 100 Workers)

QUITS AND JOB OPENINGS (quarterly Rate per 100 Workers)

SUMMARY OF EMPIRICAL EVIDENCE

Old rather than **new** jobs behind job openings:

 $\circ~$ Vacancy level: $\sim 60\%$ of job openings to replace quitting workers.

Suggests quit-replacement hiring:

- Establishment level: 1 quit $\propto 0.7$ -0.8 new hires.
- Aggregate level: Strongly procyclical quits, hires and vacancies.

Interpretation:

- $\checkmark\,$ Quit-replacement hiring: concentrated in same firm/job!
- X Standard view: market level.

Road Map

MECHANISM

Empirical Evidence

Model

QUANTITATIVE ANALYSIS

BUSINESS CYCLE IMPLICATIONS

Environment

- $\circ\,$ Equilibrium search model TEXTBOOK DMP
 - + fixed cost of vacancy creation
 - + on-the-job search.
- Random search under CRS matching function.
 - On-the-job search with relative efficiency λ .
- Different types of exogenous shocks:
 - σ : match separation
 - $\circ~$ Firm can repost vacated job with probability $\gamma.$
 - δ : job destruction
 - Permanent destruction \Rightarrow No reposting.

QUITS AND ON THE JOB SEARCH: $Pr(QUIT) = \lambda f(\theta)$

WORKER PROBLEM

Unemployed:

$$U(\mathbf{s}) = b + \beta \Big[(1-\delta)(1-\sigma)f(\theta)\mathbb{E}[W(\mathbf{s}')] + (1-(1-\delta)(1-\sigma)f(\theta))\mathbb{E}[U(\mathbf{s}')] \Big]$$

Employed:

$$W(\mathbf{s}) = w(\mathbf{s}) + \beta(\delta + (1 - \delta)\sigma)\mathbb{E}[U(\mathbf{s}')] + \beta(1 - \delta)(1 - \sigma)\underbrace{\left[\overbrace{\lambda f(\theta)}^{\text{EE Quit}} + (1 - \lambda f(\theta))\right]}_{= 1}\mathbb{E}[W(\mathbf{s}')]$$

Unemployment LoM:

$$u_{t} = \underbrace{\left(1 - (1 - \delta)(1 - \sigma)f(\theta_{t-1})\right)u_{t-1}}_{\text{stay unemployed}} + \underbrace{\delta(1 - u_{t-1})}_{\text{EU: job destruction}} + \underbrace{(1 - \delta)\sigma(1 - u_{t-1})}_{\text{EU: match separation}}$$

FIRM PROBLEM

Vacant job:

$$V(\mathbf{s}) = -\kappa + \beta(1-\delta) \Big[q(\theta)(1-\sigma) \mathbb{E}[J(\mathbf{s}')] + (1-q(\theta)(1-\sigma)) \mathbb{E}[V(\mathbf{s}')] \Big]$$

Filled job:

$$J(\mathbf{s}) = y - w(\mathbf{s}) + \beta(1-\delta) \Big[\gamma(\sigma + (1-\sigma)\lambda f(\theta)) \mathbb{E}[V(\mathbf{s}')] + (1-\sigma)(1-\lambda f(\theta)) \mathbb{E}[J(\mathbf{s}')] \Big]$$

New job creation:

$$N(\mathbf{s}) = -k(n) + V(\mathbf{s})$$

Free Entry implies $N(\mathbf{s}) = 0$:

 $V(\mathbf{s}) = k(n)$

VACANCY DYNAMICS

In equilibrium vacancies have positive value.

- \Rightarrow Firms will repost positions.
- \Rightarrow Vacancies become predetermined (not jump variable anymore!).

$$v_t = \underbrace{n_t}_{\text{new}} + (1 - \delta) \left(\underbrace{(1 - (1 - \sigma)q(\theta_{t-1}))v_{t-1}}_{\text{unfilled}} \right)$$

$$+ \underbrace{\gamma \Big(\underbrace{(1-\sigma) \lambda f(\theta_{t-1}) e_{t-1}}_{\text{reposted: EE}} + \underbrace{\sigma e_{t-1}}_{\text{reposted: EU}} \Big) \Big)$$

STATIONARY EQUILIBRIUM

Set of worker and firm value functions, wage function and new job creation such that:

- $W(\mathbf{s}), U(\mathbf{s}), J(\mathbf{s}), V(\mathbf{s})$ satisfy worker and firm Bellman Equations.
- Wage function $w(\mathbf{s})$ solves the Nash Bargaining problem.
- $\circ~$ Unemployment u and vacancies v satisfy the LoMs induced by Bellman Equations.
- $\circ\,$ New job creation n solves firm free-entry condition.

Road Map

MECHANISM

Empirical Evidence

Model

QUANTITATIVE ANALYSIS

BUSINESS CYCLE IMPLICATIONS

CALIBRATION

Set model period to a month.

Matching function: $M(S, V) = \mu S^{\eta} V^{1-\eta}$, where $S = u + \lambda e$.

A. PREDETERMINED					
Discount factor	β	0.9967			
Worker bargaining share	ϕ	0.5			
Elasticity of matching function	η	0.5			
Unemployment benefit	b	0.9			
Reposting rate	γ	1			
Vacancy creation cost	k_1	0.1			
	k_2	1			
B. ESTIMATED	k_2	1			
B. ESTIMATED Relative efficiency of OJS	$\frac{k_2}{\lambda}$	1 0.0556			
		$ 1 \\ 0.0556 \\ 0.6542 $			
Relative efficiency of OJS	λ	0.0000			
Relative efficiency of OJS Scale of matching function	$\frac{\lambda}{\mu}$	0.6542			

TARGETS AND MODEL FIT

Target	Data	Model	Source
Unemployment rate	0.057	0.057	CPS - Shimer (2005)
Job-to-job rate	0.025	0.025	CPS - Fujita and Nakajima (2016)
Unemployed job finding rate	0.45	0.45	CPS - Shimer (2005)
Reposted vacancy share	0.56	0.56	IAB German Job Vacancy Survey
Job filling rate	0.9	0.9	Fujita and Ramey (2007)

MICRO VACANCY CHAINS

Chain: Expected count of vacancies "generated" by one vacancy.

Define $\Upsilon \coloneqq \frac{u}{u+\lambda(1-u)}$.

1. Special case: $\delta = 0, \gamma = 1$:

$$\mathbb{E}[C] = \sum_{c=1}^{\infty} c(1-\Upsilon)^{c-1}\Upsilon = \frac{1}{\Upsilon} = \frac{u+\lambda(1-u)}{u}$$

$$u \uparrow \Rightarrow \mathbb{E}[C] \downarrow$$

$$\lambda \uparrow \Rightarrow \mathbb{E}[C] \uparrow$$

2. Gross vacancy chain: $\delta > 0, \gamma < 1$:

$$\mathbb{E}[C] = \frac{\delta + (1-\delta)q(\Upsilon + \gamma(1-\Upsilon))}{1 - (1-\delta)(1-q\Upsilon)} \approx 1.88$$

Tractable, DMP, equilibrium version of vacancy chain in Akerlof, Rose and Yellen (1988)!
TOWARDS AGGREGATE EQUILIBRIUM EFFECTS...

$$v_{t} = \mathbf{n}_{t} + \underbrace{(1-\delta) \left((1-(1-\sigma)q(\theta_{t-1}))v_{t-1} + \gamma \left((1-\sigma)\lambda f(\theta_{t-1})e_{t-1} + \sigma e_{t-1} \right) \right)}_{\tilde{v}_{t}: \text{ inherited vacancies}} \underbrace{\left[+\varepsilon_{s}^{\tilde{v}} \right]}_{\tilde{v}_{t}: \tilde{v}_{t}: \tilde{v$$

Aggregate effects of vacancy chain depend on "crowd-out" from new job creation:

 $\frac{dn}{d\tilde{v}} \in [-1,0]$

3. Net vacancy chain:

$$\mathbb{E}[C^{\text{net}}] = \frac{\delta + (1-\delta)q(\Upsilon + \gamma(1-\Upsilon)(1+\frac{dn}{d\tilde{\nu}}))}{1 - (1-\delta)(1-q\Upsilon)}$$

Full crowd-out: $\frac{dn}{d\tilde{v}} = -1 \Rightarrow \mathbb{E}[C^{\text{net}}] = 1$

EMPIRICAL (SHORT-RUN) CROWD-OUT

Job Creation Costs:
$$k(n) = k_1 + k_2 \frac{(n-\bar{n})}{\bar{n}}$$

Free-entry condition under:

1. No creation cost
$$(k_1 = 0, k_2 = 0)$$
:
0 = V

2. Fixed marginal cost $(k_1 > 0, k_2 = 0)$:

 $k_1 = V$

3. Linear marginal cost $(k_1 > 0, k_2 > 0)$:

$$k_1 + k_2 \frac{(n - \bar{n})}{\bar{n}} = V$$

NET EFFECTS OF REPOSTING

Equilibrium Vacancy "Multiplier"

$$v_t = n_t + (1-\delta) \left((1-(1-\sigma)q(\theta_{t-1}))v_{t-1} + \gamma \left((1-\sigma)\lambda f(\theta_{t-1})e_{t-1} + \sigma e_{t-1} \right) \right) + \varepsilon_s^{\tilde{v}}$$

... in response to one-time transitory shock to vacancy stock:

$$M(h) \coloneqq \frac{\sum_{s=1}^{h} dv_s}{\varepsilon_1^{\tilde{v}}}$$

OTHER OUTCOMES

ROADMAP

MECHANISM

Empirical Evidence

Model

QUANTITATIVE ANALYSIS

BUSINESS CYCLE IMPLICATIONS

EXPERIMENTS

- $\circ~$ One-time, unanticipated aggregate shock to
 - $\circ~$ labor productivity y
 - $\circ~$ on-the-job search intensity λ
 - matching efficiency μ .
- Compare IRFs of three economies.

GREEN: Vacancy reposting — full equilibrium dynamics.

- BLUE : No incremental reposting keep repostings at SS.
- **RED** : Full crowd-out new and old jobs are perfect substitutes.

$$v_{t} = \underbrace{n_{t}}_{\text{new}} + (1 - \delta) \left(\underbrace{(1 - (1 - \sigma)q(\theta_{t-1}))v_{t-1}}_{\text{unfilled}} \right) + \underbrace{\gamma\left(\underbrace{(1 - \sigma)\lambda f(\theta_{ss})e_{ss}}_{\text{reposted: EE}} + \underbrace{\sigma e_{ss}}_{\text{reposted: EU}}\right) \right)$$

Cyclical Amplification: Aggregate Productivity Shock

DOES THE VACANCY CHAIN AMPLIFY BUSINESS CYCLES?

Mechanism in model:

- $y\uparrow\Rightarrow$ Returns to hiring $\uparrow\Rightarrow n\uparrow\Rightarrow v,\theta\uparrow$
 - \Rightarrow Job finding rate, Quits $\uparrow \stackrel{k_2>0}{\Rightarrow} v \uparrow$

Total vacancies increase by more than in model without reposting!

Aggregate Productivity Shock

Other Shocks

OJS INTENSITY SHOCK

MATCHING EFFICIENCY SHOCK

CONCLUSION

• Tension:

- DMP model: all job openings are for new jobs.
- $\circ~$ Data: $\sim 60\%$ of job openings are for old jobs, vacated by a quit.
- Fix: sunk vacancy creation cost for new jobs generates quit-replacement hiring.
- Rich notion of vacancy chain and vacancy multiplier.
- Aggregate effects depend on crowd-out between new and old jobs.
 - Evidence suggests very limited short-run crowd-out.
- $\circ\,$ One implication: procyclicality of quits may be a key (proximate) contributor to fluctuations in job openings.