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Abstract

How robust are experimental results to changes in design? Researchers designing an exper-

iment expect some design choices to matter more than other ones. The stability of results is

also critical to conceptual, as opposed to exact, replication. We consider a specific context, a

real-effort task with multiple behavioral treatments, and examine the stability along six dimen-

sions: (i) pure replication; (ii) demographics; (iii) geography and culture; (iv) the task; (v) the

output measure; (vi) the presence of a consent form. We use rank-order correlation across the

treatments as measure of stability, and compare the observed correlation to the one under a

benchmark of perfect stability. We also collect expert forecasts of the correlation along each

dimension. The academic experts expect that the pure replication will be close to perfect, that

the results will differ sizably across demographic groups (age/gender/education), and that the

task and output will make a further impact. We find near perfect replication of the experimental

results, and significantly higher stability across demographics than the experts expect. Specif-

ically, the demographic groups differ in average effort and sensitivity to incentives, but have a

stable response to the behavioral treatments. The results are quite different across tasks, mostly

because the task change introduces added noise in the findings. The experts are insensitive to

this source of instability, even when it is made clear. We discuss the implications for measures

of conceptual replication.
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Rees-Jones, Dmitry Taubinsky, as well as audiences at Rice University, at the University of Bonn, at UC Berkeley,
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1 Introduction

A researcher has designed an experiment to test a model of reciprocity. The key elements of the

design are set, and yet the researcher wonders: Will it matter if I run the experiment in a laboratory,

or on MTurk? How important is the choice of the specific task? Should I worry about a change in

consent form that the IRB required? After running the experiment, the researcher is not confident

that the results would be similar if the experiment was run with different design choices.

Another researcher is evaluating a field experiment as a journal referee. While the results in

the paper are statistically significant and internally valid, the researcher worries about external

validity. He is concerned about demand effects, given that the subjects knew they were part of an

experiment, and also about the specificity of the geographic setting in rural Brazil. These concerns

about external validity lead him to recommend rejection for the paper under review.

A third researcher reads about the exact replications of economic experiments (Camerer et al.,

2016) and wonders: If we move beyond exact replication to conceptual replication, how do we even

measure replication, if for example the units of measure in the replication differ from the units in

the original experiments?

These three researchers are concerned about how experimental results vary as the design changes.

This is a key concern in the literature: a number of papers examine the stability of experimental

results with respect to specific design choices. Classical examples include the difference between the

strategy method versus direct choice (Brandts and Charness, 2011), the debate on within-subject

versus between-subject designs (Greenwald, 1976), and the impact of anonymity (Hoffman, McCabe,

and Smith, 1996). Among the more recent examples, de Quidt, Haushofer, and Roth (forthcoming)

consider the impact of demand effects and Allcott (2015) studies the heterogeneity by demographic

group of the effect of the mailing of the OPower electricity report letter.

Most of these papers consider in depth the impact of one particular design aspect, such as the

degree of anonymity, demand effects, or the demographic groups. Surprisingly, there has been little

work instead comparing the robustness of one experimental result to a battery of design changes.

And yet, this is a question that often preoccupies researchers at the design or review stage: within

a set of plausible design changes, which ones would affect the results substantially, and which ones

not? This assessment requires a comparison across different designs, holding constant one setting.

In this paper, we consider a specific setting, a real-effort task with multiple behavioral treatments,

and we examine the stability of the results across several design variants. We use this specific case

to illustrate a roadmap for how to think about conceptual replication more broadly. Since some

of the design changes produce results with different units of measurement, we propose rank-order

correlation as a suitable way to compare treatment effects. Further, since we are interested not only

in how the results change, but also in how researchers expect the results to change, we collect forecasts

from academic experts about the stability of the experimental results for each design change.

Which design changes are of interest? We single out six of them, although clearly other ones

also play a role: (i) (pure replication) the results may change even if we re-run the experiment as

similarly as possible to the original; (ii) (demographics) the results may change with a sample with

a different share of women or, say, college-educated respondents; (iii) (geography and culture) the
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results may be specific to a geographic or cultural setting; (iv) (task chosen) the result may be

specific to a task; (v) (output measure) the results may be different with a different measure; (vi)

(consent form) it may matter that subjects know that it is an experiment.

The experimental task that we take as starting place is a typing task employed in DellaVigna

and Pope (2018, forthcoming): subjects on MTurk were given 10 minutes to alternatively press the

‘a’ and ‘b’ buttons on their keyboards as quickly as possible. While the task is not meaningful per

se, it lends itself to study motivation since the typing exercise becomes tiresome. In DellaVigna

and Pope (2018, forthcoming), we recruited nearly 10,000 MTurk subjects and compared effort

under 18 treatments which included, among others, 4 piece rate incentives, 3 social preference

treatments, 2 time preferences treatments, 2 probability weighting treatments, 3 purely psychological

manipulations, and a paying-too-little treatment. The experiment was designed to be a microcosm

of behavioral economics, comparing the effectiveness of different motivators in inducing effort.

We build on this experiment by considering several design variants, covering the six dimensions

singled out above. In each design variant we include 15 of the original treatments, following a pre-

registered design. Overall, we collect data on nearly 10,000 new MTurk subjects. First, we re-run, 3

years later, the same experiment, to examine the extent of pure replication. Second, taking advantage

of the substantial demographic heterogeneity in the MTurk sample, we compare the experimental

results along three key demographic cleavages: gender, education, and age. Third, we consider the

geographic and cultural component comparing the results for US subjects versus subjects from India,

as well as results in “red states” versus “blue states”.

While all the above comparisons take place for the same typing task, for our fourth comparison

we use a more motivating task—coding World-War II conscription cards— and measure the number

of cards coded within 10 minutes. Fifth, we consider alternative measures of output. Inspired by

Abeler et al. (2011), we repeat the WWII card coding, but we now measure not how many cards

subjects code in a fixed amount of time, but how many extra cards they code beyond a minimum

required amount.1 Finally, for our sixth dimension, we run a version of the WWII card coding in

which, unlike in all previous versions, subjects are not given a consent form and are thus plausibly

unaware that they are part of the experiment.2

Moving from one design to the next, we are interested in the stability of the findings on effort

for the 15 treatments. But what is the right metric of stability? For example, consider the task

change: in the a-b typing task, the average output within 10 minutes is 1,800 points, but in the

WWII coding task, the average output within 10 minutes is about 58 cards. One could make the

two designs comparable by rescaling the effect sizes by 1,800/58. But this rescaling does not take

into account differences in the elasticity of effort to motivation: a 30 percent increase in effort in the

a-b task, which we observe in response to piece rate variation, may not be achievable in the WWII

card coding case. Importantly, like in most real-effort experiments, we do want to control for the

responsiveness to motivation, since the focus is on comparing across different motivating treatments.

With these considerations in mind, we use the rank-order correlation of the average effort in the

1As another change in the output measure, returning to the a-b typing task, we compare the performance in the
first 5 minutes of the task versus the later 5 minutes.

2Notice that, since subjects are coding historical data, this should be a natural framing. As elsewhere in our
experiment, there is no deception.
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15 treatments as our benchmark measure of stability of experimental results. To illustrate, consider

a case in which treatments ranked by effort, respectively, 3, 8, and 14 out of 15 in context A are

ranked 4, 8, and 15 in context B, and similarly the other treatments keep the same rank; in this case,

the rank-order correlation will be high. If instead those treatments move to positions 7, 4, and 10,

the rank-order correlation will be low. While this measure is not without draw-backs, it performs

well also in cases in which the underlying model predicts a non-linear transformation, as in the

output change. Importantly, wherever possible, we compare the observed rank-order correlation to

the average rank-order correlation under a benchmark of perfect stability, in which the only variation

in rank is due to idiosyncratic noise in the realization of effort in the treatments.

Having identified the design changes and the measure of stability, following DellaVigna and

Pope (forthcoming) we collect forecasts. We contact 70 behavioral experts or experts on replication,

yielding 55 responses. Each expert sees a description of the task, of the design changes, and an

illustration of how rank-order correlation works; whenever possible, we also provide information on

the rank-order correlation under full stability. The experts then forecast the rank-order correlation

for 10 design changes. We also collect forecasts from PhD students and MTurk respondents.

The experts expect that: (i) the pure replication will not be perfect, but will be fairly close

to exact replication (0.82 correlation, compared to 0.94 under full stability); (ii) the results will

differ sizably for different demographic groups (age/gender/education) (0.75 correlation, compared

to 0.95 under full stability), (iii) the results will also be different for the India and US sample (0.65

correlation, compared to 0.89 under full stability); (iv) the change in task will have a similar, sizable

impact (0.65 correlation); (v) similarly for the change in output (0.5 to 0.6 correlation); (vi) the

disclosure of experimental consent will have a modest impact (0.78 correlation, compared to 0.88

under full stability). There is very little heterogeneity in the forecasts, whether comparing experts,

PhDs, and MTurks, or splitting by confidence in the forecasts, or by measures of effort (e.g., time

spent) in making forecasts.

We then compare the forecasts to the experimental results. We find (i) near perfect replication

of the a-b task (correlation of 0.91), within the confidence interval of the full-stability benchmark.

We find (ii) strikingly high stability across demographics—correlation of 0.96 for gender, 0.97 for

education, and 0.98 for age—, significantly higher than the experts expected (0.75 on average).

Interestingly, the demographic groups do differ in the average effort and even in the sensitivity to

incentives. Once we control for that, though, as the rank-order correlation measure does, there is

no difference across the demographic groups in the response to the behavioral treatments, and in

how the behavioral treatments compare to the incentive treatments. We find a lower correlation for

our geographic comparison (iii) between US subjects and Indian subjects (0.65), just as the experts

predicted, though we cannot reject that this lower correlation could be due to noise (given that Indian

workers are just 12 percent of the data). In another geographic comparison, we find near-perfect

correlation (0.94) in the results for workers from “blue states” as opposed to “red states”.

We then compare across tasks (iv): the rank-order correlation between the 10-minute productivity

in a-b typing versus in WWII card coding is 0.64, close to the expert forecast of 0.66. We also compare

across output, (v), by comparing two designs with the same task—coding WWII cards—but different

output measures: the number of cards coded within 10 minutes, versus the number of extra cards
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that the workers are willing to code after completing the required cards. The rank-order correlation

in this output dimension is just 0.27, compared to the expert prediction of 0.61. Changing the task

and output measures, thus, has a quite large impact on the results, more than the experts expected.

This (relative) instability has two possible explanations. First, changes in task and output may

have affected the impact of behavioral and financial motivators. Second and more simply, the 10-

minute WWII task, unlike the a-b task, may be quite insensitive to motivation; if this is the case, we

would expect a lower correlation, as the noise in the realized effort by treatment would swamp the

motivational effects. Indeed, in the 10-minute WWII task, output is barely responsive to incentives,

with an elasticity of effort of less than 0.01, compared to 0.04 for the a-b task, likely because this

task is highly motivating to start with, limiting the impact of additional motivators.

We confirm this interpretation with a combined output/task comparison of the a-b 10-minute

task to the WWII coding with extra cards. This latter task is responsive to incentives with an effort

elasticity of 0.4, among the highest for any real-effort task in the literature. If changes in task and

output matter, we would expect a low correlation between the two tasks, as both task and output

measure change. If the lack of stability is mostly tied to noise, we would expect a relatively high

correlation, as effort is clearly responsive to incentives in both tasks.

The correlation for the joint task/output change, 0.65, is higher than for just the output change,

0.27, consistent with the role of noise. Interestingly, the experts appear to miss the role for noise,

since they predict a higher correlation for just the output change, 0.63, than for the joint task/output

change, 0.54. Of course, it is plausible that the degree of noise in the different tasks was not

obvious to the forecasters. To address this issue, we randomly provided half of forecasters with

information on the mean effort (and s.e.) under three piece rate treatments, indicating a flat and

non-monotonic response to incentives in the 10-minute WWII task, and in contrast a precisely-

estimated responsiveness in the extra-work WWII task. This additional information has little impact

on the expert forecasts, indicating a deeper neglect for the role of noise.

Lastly, we analyze dimension (vi) using the same extra-card WWII coding task, but without

a consent form at the beginning of the experiment. Thus, participants are arguably unaware that

they are taking part in an experiment, but rather think they are doing a coding job, which is not

uncommon on MTurk. The rank-order correlation across treatments for this dimension is 0.84, which

is not significantly different from the expert prediction (0.78) or the full-stability measure (0.88).

Taking this altogether, we draw five main lessons. First, we find a remarkable degree of stability

of experimental results across design changes. Nine out of ten planned comparisons have a rank-

order correlation above 0.60, and six comparisons have a rank-order correlation above 0.80. This

conclusion is not affected by the particular choice of metric to compute the stability, and is not

contaminated by selective reporting, as we report all the comparisons as pre-specified.

Second, we find mixed evidence on the ability of experts to predict which design changes will

affect the results the most. The experts are qualitatively accurate that the results would be stable to

pure replication and to the omission of a consent form, and would be less stable in response to a task

change. However, they are incorrect in expecting an important role for demographic composition

and in failing to anticipate the role of noise. These results confirm the anecdotal impression that

design choices are a difficult and somewhat unpredictable part of the experimenter toolbox.
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Third, we find remarkable stability of the results with respect to the demographic composition of

the sample, or even geographic and cultural differences. In contrast, nearly all the experts expected

a larger role for the demographic composition. Selective publication may explain some of this

discrepancy: while null results on demographic differences typically do not get published, differences

that are statistically significant draw attention and may thus be salient in the mind of experts.

Fourth, the degree of noise in the experimental results is a first-order determinant of stability of

the results: the only two instances of low replication are due to a task with very inelastic output. The

experts do not appear to anticipate this important role for noise, even when provided with diagnostic

information. The neglect for noise may again have to do with publication bias, as experimental

designs with noisy results are typically not published. And yet, predicting which designs will yield

noisy results is an important component of design choice.

A final lesson relates to conceptual replication more broadly. We demonstrate how rank-order

correlation can serve as a useful metric when analyzing the stability of results across design changes.

Further, we illustrate the importance of thinking about the elasticity of the outcome with respect

to the treatment (in our case, effort with respect to motivation). Design changes may lead to “non-

replicable results” not because the treatments are ineffective at changing intentions, but because

intentions no longer translate to outcomes in such a clean manner. Underlying structural models

can provide insight when thinking about conceptual replication with major design changes.

Related to our paper is the work on direct/exact/pure replication, including the recent open-

science work on large-scale replication of experiments (Open Science Collaboration, 2015; Camerer

et al., 2016, 2018). To our knowledge, there has not been a similar, systematic effort to test for the

conceptual replication of a large group of studies. As we discussed above, many papers have studied

the stability of results to specific changes in experimental design.

2 Design and Measure of Stability

2.1 Experimental Design

2.1.1 2015 Experiment and Model

The starting point for the design in this paper is the real-effort task in DellaVigna and Pope (2018,

forthcoming) which we ran in May 2015 on the Amazon Mechanical Turk (MTurk) platform. MTurk

is an online platform that allows researchers and businesses to post small tasks (referred to as HITs)

that require a human to perform. Potential workers browse the postings and choose whether to

complete a task for the amount offered. MTurk has become a popular platform to run experi-

ments in marketing and psychology (Paolacci, 2010) and is also used increasingly in economics (e.g.,

Kuziemko, Norton, Saez, and Stantcheva, 2015). The evidence suggests that the findings of studies

run on MTurk are similar to the results in more standard laboratory or field settings (Horton, Rand,

and Zeckhauser (2011)).

The task involves alternating presses of ‘a’ and ‘b’ on a computer keyboard for 10 minutes,

achieving a point for each a-b alternation (see Online Appendix Figure 1b). While the task is not

meaningful per se, it does have features that parallel clerical jobs: it involves repetition and it gets
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tiring, thus testing the motivation of the workers. It is also simple to explain to both subjects and

experts.

In May 2015, we recruited subjects on MTurk for a $1 pay for an “academic study regarding

performance in a simple task.” Subjects interested in participating sign a consent form, enter their

MTurk ID, answer three demographic questions, and then saw the instructions, reproduced in Online

Appendix Figure 1b, indicating that “The object of this task is to alternately press the ‘a’ and ‘b’

buttons on your keyboard as quickly as possible for 10 minutes. Every time you successfully press

the ‘a’ and then the ‘b’ button, you will receive a point. [...] Feel free to score as many points as

you can.” The participants then saw a different final paragraph (bold and underlined) depending

on which one of 18 treatment conditions they were assigned to. For example, in the high-piece rate

treatment, the sentence read “As a bonus, you will be paid an extra 10 cents for every 100 points

that you score. This bonus will be paid to your account within 24 hours.” To give another example,

in the high-return charity condition, the return is the same, but it accrues to the Red Cross: “As a

bonus, the Red Cross charitable fund will be given 10 cents for every 100 points that you score.”

The subjects could try the task before moving on to the real task. As subjects pressed digits, the

page showed a clock with a 10-minute countdown, the current points, and any earnings accumulated.

The final sentence on the page summarizes the condition for earning a bonus (if any) in that particular

treatment. At the end of the 10 minutes, the subjects are presented with the total points and the

payout, are thanked for their participation and given a validation code to redeem the earnings.

The experiment ran for three weeks in May 2015. After applying the sample restrictions detailed

in DellaVigna and Pope (2018), the final sample included 9,861 subjects, about 550 per treatment.

The 18 treatments were selected to compare the impact of traditional piece-rate incentives and

of behavioral and psychological motivators. Table 1 lists 15 of the 18 treatments run in this initial

sample, plus a 16th additional treatment. The treatments differ in only three ways: the main

paragraph in the instructions explaining the condition, summarized in Column 2 of Table 1, the

one-line reminder on the task screen, and the rate at which earnings (if any) accumulate on the task

screen.

The first four treatments in Table 1 are piece-rate treatments, with the piece rate varying from

no-piece-rate to low-piece-rate (1 cent per 100 points) to mid-piece-rate (4 cents per 100 points)

to high-piece-rate (10 cents per 100 points). These treatments capture the response to financial

motivations and thus allow us to back out the baseline motivation and the cost of effort curvature.

Model. Assume that participants in the experiment maximize the return from effort e net of the

cost of effort, where e denotes the number of points (that is, alternating a-b presses). For each point

e, the individual receives a piece-rate p as well as a non-monetary reward, s > 0. The parameter s

captures, in reduced form, intrinsic motivation, personal competitiveness, or sense of duty to put in

effort for an employer. This motivation is important because otherwise, for s = 0, effort would equal

zero in the no-piece rate treatment, counterfactually. Assume also a convex cost of effort function

c(e): c′(e) > 0 and c′′(e) > 0 for all e > 0. Assuming risk-neutrality, an individual solves

maxe≥0(s+ p)e− c(e), (1)
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leading to the solution (when interior) e∗ = c′−1(s+ p). Optimal effort e∗ is increasing in the piece

rate p and in the motivation s. A useful special case for the cost function, discussed further in

DellaVigna et al. (2015) is the power cost function c(e) = ke1+γ/(1+γ), characterized by a constant

elasticity of effort 1/γ with respect to the value of effort. Under this assumption, we obtain

e∗ =

(
s+ p

k

)1/γ

. (2)

A plausible alternative is that the elasticity decreases as effort increases. A function with this

feature is the exponential cost function, C(e) = kexp(γe)/γ, which has elasticity 1/(γe). This cost

function leads to solution

e∗ =
1

γ
ln

(
s+ p

k

)
. (3)

Under either function, the solution for effort has three unknowns, s, k, and γ which we can back

out from the observed effort at different piece rates. Three piece rates are in principle enough, but

we incorporate four piece rates to build in over-identification. We present the estimation details in

Section 4.3.

Returning to the list of treatments in Table 1, the next treatments are motivated by behavioral

research. In the paying-too-little treatment, we set a very low piece rate, 1 cent for very 1,000

points, to test whether this crowds out internal motivation. The next three treatments focus on

social preferences. In the first two, subjects earn a return for a charity by working (as in Imas,

2014), with either a low return to the charity (1 cent per 100 points) or a high return (10 cents per

100 points). The third social-preference treatment, on gift exchange (as in Gneezy and List (2006)),

provides an unconditional payment of 40 cents to the subjects to test whether the subjects responds

with higher effort, as in the gift exchange hypothesis.

Next, we consider two time-discounting treatments motivated by the research on present bias

(Laibson, 1997; O’Donoghue and Rabin, 1999). In both cases the piece rate is 1 cent per 100 points,

but in one case the bonus will be deposited “two weeks from today”, while in a second case the bonus

will be deposited “four weeks from today”. These two treatments allow, under some assumptions,

to back out β and δ.

The next two treatments consider probability weighting and risk aversion. In the first treatment,

subjects have “a 1% chance of being paid an extra $1 for every 100 points”. The expected value of

this piece rate is the same as in the low-piece-rate treatment, but the piece rate is now stochastic.

Under the typical parametrizations of the probability weighting function in prospect theory, we

would expect a higher effort under this treatment, provided subjects are not too risk averse, given

that the probability weighting function magnifies small probabilities. The next treatment aims to

capture in a simple way risk aversion and offers “a 50% chance of being paid an extra 2 cents for

every 100 points”. Once again, the expected value is the same as the 1 cent piece rate, but in this

case we do not expect the probability weighting to play a role.

The next three treatments do not involve any incentive and are more directly borrowed from

psychology, with wording aimed to boost effort, either by introducing social comparisons (“many
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participants were able to score more than 2,000 points”), ranking of the subjects (“we will show you

how well you did relative to other participants”), or a task significance manipulation (“your work is

very valuable for us”).

We can generalize the model in (1) to incorporate the impact of behavioral motivators, as we

discuss in more detail in DellaVigna and Pope (2018). For example, we can model the psychological

treatments, and the gift exchange treatment, as increasing the baseline motivation by a term ∆s,

such that the individual maximizes (s+ ∆s+ p)e− c(e).

The 2015 experiment also included three treatments focused on gain and loss framing, which

we decided not to replicate in 2018, leaving 15 treatments.3 Column 3 of Table 1 and Online

Appendix Figure 2 summarize the average effort in each of these 15 treatments that resulted from

the experiment that we ran in 2015.

2.1.2 2018 Experiment

In May of 2018 we ran a new round of experiments in MTurk following a pre-analysis plan, with

design variants aimed at testing the stability of the earlier experimental results. Other than the

emphasized design changes, we aimed to keep the experimental material as close as possible to the

earlier experiment, to be able to attribute any differences just to the design changes.

We ran the experiment for 3 weeks, advertising the task as an “11 to 12-minute typing task”

paying $1, the same pay as in the 2015 experiment (see the screenshot in Online Appendix Figure 1a).

Subjects that clicked on the ad on MTurk were randomized to one of four different versions of the

new experiment and, within each version they were randomized into 1 of 16 treatments. In addition

to the 15 treatments from the earlier experiment, the new experiment also include an additional 16th

treatment, listed at the bottom of the table, combining a piece rate and a psychological manipulation.

We do not use this treatment for the main comparisons given that we did not run it in 2015; we

return to this treatment later in an out-of-sample comparison of the model.

The assignment of subjects into versions and treatments is as follows. The subjects are assigned

into one of the four versions randomly, with versions 2, 3, and 4 oversampled by 15 percent. This is

in anticipation of the fact that the historical task used in version 2-4 will likely have a higher share

of subjects not complete the task due to, for example, difficulty in reading cursive writing (employed

in these cards). In pilot data, we observed higher attrition in these versions by about 15 percent.

The overweighting is designed to equate as much as possible the post-attrition sample size across

the four versions. Within a version, we randomize participants into one of the 16 treatments with

equal weights.4 We now describe in detail the four versions of the 2018 experiment.

Exact Replication. The first version, summarized in Column 4 of Table 1, is an exact repli-

cation of the 2015 experiment, with the same 10-minute a-b typing task and the same wording for

the 15 treatments as detailed above.5

3These three treatments turned out to be under-powered to identify the reference dependence parameters, making
a replication less meaningful. In addition, these were the only treatments based on a threshold payoff (e.g., 40c for
reaching 2,000 points), and a model-based prediction of the effort for these treatments requires information on the full
distribution of effort, unlike for the other treatments. This made it particularly tricky to compare across contexts.

4Online Appendix Table 1 reports the number of observations in each cell.
5There are four small difference: (i) the advertising screen in 2015 mentioned a 15-minute “academic study regarding

performance in a simple task”; we changed this in 2018 and mention an 11-12 minutes “typing task”, in order for
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10-Minute WWII Coding. The second version, summarized in Column 5 of Table 1, is also a

10-minute task, but subjects, instead of doing a-b button presses, are instead assigned to coding the

occupation in World War II enrollment cards6 We introduce the task as follows: “In this task you

will be coding up conscription records about soldiers in World War II. You will have 10 minutes to

complete as many cards as you can. Your job is to identify the occupation in field 7 of each record

and to type it into the text box below each card. If you are unable to determine what the occupation

is, or if field 7 is missing from the card, please type ”unclear”.” We then show the subjects an

example of a card and then state “Please be as careful as possible (we will check the accuracy of your

work).”. For each card, the subjects thus have to type the occupation as they read it, and click to

load the next card (see Online Appendix Figure 1c). We randomly draw cards out of a sample of

over 3,353 cards.

This second version of the experiment has the same 16 treatments as the first version with piece

rate variation and behavioral and psychological treatments. We aim to make the fewest changes in

the wording possible, so as to keep the design parallel, other than the change in task. Column 2 of

Table 1 displays in bracket the wording used for this second version. The most important change

is the change in units for the treatments with incentives. Based on pilot data, we determined that

on average subjects coded 50-60 cards in 10 minutes, compared to 1,500-2,000 a-b presses. Based

on this ratio of productivity, and in order to set incentives at round numbers, we multiply the a-b

payoffs by a factor of 50. So for example, the low-piece-rate treatment yields a bonus of “an extra

1 cent for every 2 cards that you complete” and the high-piece-rate treatment yields a bonus of

“an extra 5 cents for every card that you complete”. This yielded an average pay that is somewhat

higher than, but comparable to, the pay in the a-b task. We apply a similar conversion to the other

payoffs, keeping the unconditional gift exchange payment to 40 cents.

Extra-Work WWII Coding. For the third version, summarized in Column 6 of Table 1, the

subjects still code World War II cards, but with a different design and output measure. In versions

1 and 2, the task of the subjects is to produce as many units as possible within a given time limit.

This is the typical structure of real-effort experiments, including Gneezy, Niederle, and Rustichini

(2003), Gneezy and List (2006), and Gill and Prowse (2012). Yet, an alternative margin of effort is

not how hard one works in a given unit of time, but how much work one is willing to do. Abeler et

al. (2011) pioneered this design for the study of forward-looking reference points. In their design,

subjects have 4 minutes to count as many tables as possible. Afterwards, subjects are asked if they

would do more of the work and stay longer, for up to 60 minutes, and how long subjects stay is the

key outcome of interest.

In our third version, we similarly adopt the margin of how long workers decide to work, after a

minimum required. Namely, after the initial sign-up screen, the subjects randomized into the third

this to be consistent across the different 2018 experiments; (ii) the consent form was longer, as required by the IRB;
(iii) in 2015 we asked the demographic questions at the beginning of the survey, while in 2018 we asked them at
the end of the survey; (iv) the formatting of the final pay-out page changed from “Points: XXX, Bonus Payout:
$XXX, Total Payout: $XXX, Any bonus payment must be approved before it is given” in 2015 to “Thank you for
your participation. You will be paid $1.00 for this HIT.” and, if the participant received a bonus, also “You will also
be paid a bonus of XXX for every XXX points that you scored. Since you scored XXX points, your total bonus will
be XXX.”

6We coded this cards as part of an ongoing historical project by Bruno Caprettini and Joachim Voth, who provided
us with the cards to be coded.
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version are asked to code the occupation field for 40 WWII cards (Online Appendix Figure 1d). The

task is as in the previous version, and there is no manipulation at this stage: all workers are asked

to do this for no extra payoff.

After they are done with the 40 cards, all subjects see “If you are willing, there are 20 additional

cards to be coded. Doing this additional work is not required for your HIT to be approved or for you

to receive the $1 promised payment. Please feel free to complete any number of additional cards, up

to 20.” At this point, the randomization into the 16 treatments kicks in. Subjects in the control

group read “The number of additional cards you complete will not affect your payment in any way,”

while subjects in the low piece rate, for example, are informed “as a bonus, you will be paid an extra

1 cent for every 2 additional cards you complete. This bonus will be paid to your account within

24 hours.” Column 2 in Table 1 shows the key wording for the treatments in double brackets. We

keep the same exact incentives as in the second version; this keeps the marginal incentives the same,

though it implies that the average total payment will tend to be lower in this version, compared to

the 10-minute WWII card coding version, given that subjects can at most code 20 extra cards. To

partially compensate for this, we set the required number of cards to code in this version, 40 cards,

such that most subjects would finish earlier than in 10 minutes.7

No-Consent WWII Coding. The fourth and final version, featured in Column 7 of Table 1,

is identical to the third version, except that the subjects do not see a consent form. In all other

versions, the workers see a consent form right after clicking on the MTurk HIT. In this version,

instead, they are taken directly to the description of the task. Given that the task is quite similar

to the coding of historical documents that are common on platforms like MTurk, the absence of

a consent form should not come as a surprise. We consider this condition given the debate on

whether it matters if subjects know that it is an experiment. For example, in the Harrison and List

(2004) classification, a natural field experiment has as requirement that subjects are unaware that

it is an experiment. Surprisingly, there is little evidence on whether this matters for the results of

experiments other than in List (2006), where knowing that one is part of an experiment makes a

difference.

Sample. In the pre-analysis plan, we set out to exclude subjects that: (1) do not complete the

MTurk task within 30 minutes of starting; (2) exit and then re-enter the task as a new subject (as

these individuals might see multiple treatments); (3) are not approved for any other reason (e.g.

they did not having a valid MTurk ID); (4) In version 1 (a-b typing) do not complete a single effort

unit; there is no need for a parallel requirement for version 2 since the participants have to code

a first card to start the task; (5) in version 1 scored 4000 or more a-b points (since this would

indicate cheating); (6) in version 2 coded 120 or more cards with accuracy below 50% (since this

would indicate cheating); (7) in versions 3 and 4 completed the 40 required cards in less than 3

minutes with accuracy below 50%, or completed the 20 additional cards in less than 1.5 minutes

with accuracy below 50% (since this would indicate cheating). We also planned an ideal number

of subjects of 10,000 people completing the tasks. We planned to keep open the task on Amazon

7In this version, we removed the demographic questions, since it was awkward to ask them after already asking
for extra work; in addition, we did not want demographic questions in the next version, and wanted to keep the two
versions parallel.
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Mechanical Turk until either (i) three weeks have passed or (ii) 10,500 subjects have completed the

study, whichever comes first.

We followed the pre-registration sample rules. The experiment ran for three weeks. After three

weeks, we had 12,983 recorded responses on Qualtrics, from which we first removed 324 observations

because they had re-entered the task and therefore may have seen multiple treatments. The largest

cut to the sample (2,660 observations) occurred when removing those who had either taken more

than 30 minutes to finish or not completed the survey at all. We then dropped 89 individuals who

had not been approved for reasons such as an invalid MTurk ID and blatant cheating on the tasks

(less than 10% accuracy on the cards). Finally, we removed 40 individuals with no button presses

in the a-b typing task and those who coded quickly with less than 50% accuracy.

A final restriction not included in the preregistration were Qualtrics data “glitches.” We removed

observations with the following data errors: (i) Missing treatment variable; (ii) Negative time stamps;

(iii) Descending time stamps; (iv) Time stamps that go beyond 10 minutes in the first task (with a

10 second leeway for early timer starts); (v) More than 10 time stamps than total coded cards. In

total, these restrictions removed 59 observations.

In total, we are left with a final valid sample size of 9,811 responses, close to the envisioned

sample of 10,000. The sample size is similar in Versions 1, 3, and 4, with a range of 2,330-2,390

subjects in the three versions. The oversampling (by 15 percent) of Versions 3 and 4, as mentioned

above, thus succeeded in approximately equating the sample size. Version 2 has a larger sample size,

with 2,708 subjects, due to the oversampling.

2.2 Design Changes

Using the data from both the 2015 and the 2018 real-effort experiments, we measure the change in

experimental results with respect to six main dimensions, listed in Table 2.

Dimension 1. Pure Replication. We compare the results from the 2015 a-b task experiment

and the 2018 a-b task experiment. The two experiments have nearly identical design; the key

difference is the year in which subjects are recruited, which had a small effect on the make-up of the

MTurk sample. The 2018 sample has more female workers (59.2% versus 54.4%), more older workers

(55.4% above the age of 30, compared to 48.5%) and more college-educated workers (58.8% versus

54.8%). Also, the 2018 experiment has a smaller sample size of about 150 subjects per treatment,

compared to 550 subjects in 2015, given that the subjects in 2018 are split across four versions.

Dimension 2. Demographics. We take advantage of the demographic heterogeneity in the

Mturk population and compare across three different demographic break-downs, splitting subjects

into two groups of approximate size (to maximize the statistical power of the comparison). We do

these splits pooling the 2015 and the 2018 data in order to maximize the sample size. We compare:

(i) male workers (N=4,686) versus female workers (N=5,785); (ii) workers with a completed college

degree (N=5,842) to other workers (N=4,629); (iii) workers who are up to 30 years old (N=5,259)

versus workers who older than 30 (N=5,212).

Dimension 3. Geography/Culture. Using the latitude and longitude inferred from the IP

address, we can geo-code the likely location of the workers (barring say the use of a VPN). Still
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pooling the 2015 and 2018 a-b task data, for our main geographic/cultural comparison, we compare

workers in the US (N=8,803) versus workers in India (N=1,225).8 For an additional comparison,

we compare workers in “red states” versus “blue states” according to the vote share in the 2016

presidential election.

Dimension 4. Task. We compare the pooled 2015-18 results for the a-b task to the results

for the 10-minute WWII card coding task in 2018. As we discussed above, the two experimental

designs are as close as possible, including keeping marginal incentives for effort close, except for a

different, more motivating task.

Dimension 5. Output. We compare two versions of the WWII coding experiment, comparing

Version 2 in which output is coded as the number of units of output coded within 10 minutes to

Version 3 in which output is coded as the number of extra cards coded (between 0 and 20). As a

second output comparison, returning to the 2015-18 a-b coding task, we compute the output in the

first 5 minutes versus in the last 5 minutes.

Dimension 6. Consent. As our final comparison, we estimate the impact of awareness of

participation in an experiment by comparing two versions of the extra-work WWII card coding

experiment: Version 3 in which subjects see a consent form and Version 4 in which subjects do not

see any consent form. There is no other difference between the two versions.

2.3 Measure of Stability

Across all the dimensions listed above, we compare the average measure of effort for the 15 treat-

ments, across the two different experimental designs. We considered different measures of heterogene-

ity. Since we compare versions with very different output scales (e.g., coding of WWII conscription

cards versus a simple button pushing task), we opted for a measure that is unit-free. We thus

considered the Pearson correlation and the rank-order correlation. We opted as main measure for

rank-order correlation because a natural measure of stability is that the order of effectiveness of

the experimental manipulations should be preserved. The Pearson correlation builds in a stronger

assumption of linearity between the treatments in one version versus another.

To be more precise, one can think of the stability of experimental results as follows. Our structural

estimates of the effort in the various treatments in DellaVigna and Pope (REStud) depend on two

set of parameters: behavioral parameters and incidental parameters. The behavioral parameters

are the ones which we can expect to be stable across versions, such as the discounting parameters

beta and delta. In contrast, the incidental parameters – curvature of cost of effort, level of cost of

effort, and baseline motivation – surely will differ across versions. For example, the level of the cost

of effort much be higher for a task that takes longer to execute, such as coding of WWII cards,

compared to a simple push of a-b buttons. These tasks likely also may differ in the elasticity of

effort to motivation, as well as in the baseline motivation.

We can then define two versions to have stable experimental findings if they share the same

behavioral parameters, even if the incidental parameters vary. As simulations show, given how we

set up the treatments across version, this translates into the same order of treatments across the

8We exclude the workers with geo-location in neither of these countries.
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different versions, but the average effort for the 15 treatments will vary in a non-linear manner across

version; hence, our preference for rank-order correlation, as opposed to Pearson correlation.

3 Expert Forecasts of Stability

3.1 Design

Can academic experts predict how stable the experimental results will be to each of the six dimensions

listed above? The ability of researchers to predict the importance of various design changes is an

important factor for how they choose to implement experiments and how they evaluate the projects

of other researchers. Following DellaVigna and Pope (2018, forthcoming), we contact a group of

researchers to collect their forecasts and test their ability to make predictions about the importance

of design changes.

Sample. To determine the sample of forecasters, we build on the sample of 208 experts that

provided forecasts for the 2015 experiments, given that these experts are familiar with the original

experiment. At the same time, we wanted to scale back the sample given the value of people’s

time and given that the original forecast sample of 208 respondents provided plenty of statistical

power: our 2015 forecasting results suggest that a couple dozen respondents are enough to achieve

the wisdom-of-the-crowd effect.

Thus, we narrowed the sample as follows: (i) PhD year between 2005 and 2015; (ii) behavioral

economics is the main, or second, field of specialization; (iii) the expert provided a forecast in 2015.

Out of the resulting sample of 73 experts, we picked 42. In addition, we added 18 behavioral

economists with PhD in 2015-2018 (who were not included in the earlier sample). The latter names

were largely drawn from list of attenders and presenters at key conferences in the behavioral area

(BEAM and SITE Psychology and Economics). In addition, we identified 10 experts working on

replication, since the topic studied is related to the issue of conceptual replication. Out of the

70 experts contacted, we received 55 responses, 50 from the behavioral experts and 5 from the

replication experts, for an overall response rate of 79 percent.

As additional samples, we also contacted a group of PhD students in economics, like we did in

2015, at UC Berkeley and the University of Chicago. We obtained a total of 33 responses. Finally,

we posted the same survey (for a $1 payment) on MTurk for a maximum sample of 150; we collected

a total of 109 valid responses.9

Survey. The survey, which was expected to take 15-20 minutes, walked the forecasters through

four steps. In the first step, the survey briefly summarized the design in the 2015 experiment and the

key results using Online Appendix Figure 2 which lists each treatment, together with the average

effort in 2015. In the second step, the survey introduced the concept of rank-order correlation, using

four graphical examples, two of which are displayed in Online Appendix Figure 3.

9We recruited 150 MTurkers to take a forecasting survey on Qualtrics. In order to prevent bots and inattentive
survey-takers, two features were implemented in the survey: a captcha verification and an attention question. Those
who failed the attention check (18 MTurkers) were dropped. Furthermore, 21 Mturkers who had taken the survey in
under 5 minutes were dropped as they were also likely to be inattentive survey-takers. Lastly, we removed MTurkers
with the same IP address as it may indicate duplicate users (2 MTurkers). In total, we were left with a sample size
of 109 MTurk forecasters.
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In the third step, the forecasters are asked to make ten forecasts, as listed in Table 2. For each

forecast, they simply predict the rank-order correlation between 0 and 1 using a slider (see Online

Appendix Figure 3b): (i) 1 forecast about exact replication; (ii) 3 forecasts about demographics,

along the gender, education, and age lines; (iii) 1 forecast about geography/culture regarding differ-

ences between the workers in US versus in India; (iv) 1 forecast about task change; (v) 3 forecasts

about output change, comparing first effort in the 10-minute WWII coding to effort in the extra-

work WWII coding; then comparing effort in the a-b task to effort in the extra-work WWII coding;

and finally, comparing effort in the first 5 minutes of the a-b task to effort in the last 5 minutes of

the a-b task; and (vi) 1 forecast about the importance of the consent form, comparing Version 3 to

Version 4.

In some of these comparisons above, to ease the forecast, we provide as a benchmark the rank-

order correlation under full stability, that is, what rank-order correlation we would expect to observe

if the results did not change (Column 1 in Table 2). This number will be less than 1, due to sampling

noise. For example, in the case of dimension (i) (pure replication), we bootstrap from the 2015

experimental sample, drawing (with replacement) from each of the 15 treatments 150 observations,

to mirror the smaller sample size in the 2018 experiment, compute the average effort in each of 15

cells, and compute the rank order correlation with the 2015 results. We repeat this 300 times, and

report to the forecasters the average rank-order correlation of 0.94. Column 1 in Table 2 reports

also the standard deviation of such bootstrap (0.04), which we did not report to the forecasters.

We also report a boot-strap for the demographic comparisons. In this case, we pool the 2015

and 2018 sample. In each of the 15 treatments, we randomly assign a subject to either demographic

group A or demographic group B. We then compute the average effort in each of the 15*2 cells, and

thus the rank-order correlation. We report the average rank-order correlation across 300 bootstraps

to the forecasters, which is 0.95. We also report a bootstrap for the US-India comparison, which is

built the same way as the demographic bootstrap, except that we explicitly model that one of the

two groups is just 12 percent of the data and the other 88 percent; this leads to a lower average

rank-order correlation of 0.89.

We did not report a full-stability benchmark comparing across different tasks or output, given

that comparing across experiments with different units makes the stability benchmark much less

obvious. We could compute the stability benchmark for the comparison of output in the first 5

minutes and next 5 minutes (0.99), but we did not report this to the forecasters. Finally, we can

compute the stability benchmark for the last comparison of the consent form (0.88), but again we

did not report it.

In the fourth and final step of the forecasting survey, respondents indicated their overall confi-

dence in their response accuracy by predicting, once again with a slider scale, how many of the 10

responses would fall within 0.1 of the correct rank-order correlation. This last question ended the

survey.
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3.2 Forecasts of Correlation

Figures 1a-b and Columns 2-4 in Table 2 report the results from the forecasts. On average, the

experts expected that the rank-order correlation for the pure replication would be quite high (0.83),

though lower than the full stability one (0.94), a difference that is statistically significant (p=0.004,

Column 6). The cdf plot in Figure 1a shows that 75 percent of experts expect a correlation above

0.80, with only 10 percent of experts expecting a correlation above 0.9.

The forecasts of correlation are sizably lower for the three demographic variables, with average

forecasted rank-order correlation of 0.75 (gender), 0.73 (education), and 0.75 (age). As Figure 1a

shows, the cdfs for the three demographic forecasts are quite similar. Only 20 percent of experts

expect a correlation of 0.85 or higher, and only 5 percent of experts expect a correlation higher

than 0.9. That is, nearly all experts expect a rank-order correlation below the average rank-order

correlation under full stability. The forecast of rank-order correlation for the geographic/cultural

difference is further shifted down, to a correlation of 0.65. For both the demographic difference and

the geographic differences, the average expert expects a rank-order correlation that is statistically

significantly lower than the benchmark of full stability.

Turning the task and output correlations, the experts on average expect a correlation of 0.67 for

the change in task (a-b typing versus WWII card coding) and a similar correlation of 0.63 when

comparing within a task (WWII card coding) two different output margins, the effort within 10

minutes as opposed to the number of extra cards coded. Across the two forecasts, only 5 percent of

experts expect a correlation lower than 0.4, with a nearly uniform distribution of forecasts between

a correlation of 0.4 and a correlation of 0.8. We also elicit forecasts about the joint task/output

change, comparing the 10-minute a-b typing to the extra-work WWI coding. The experts are most

pessimistic about the rank-order correlation in this scenario, with an average forecast of 0.54 and 25

percent of expert expecting a correlation lower than 0.4. We also elicit a different output comparison,

comparing the typing in the a-b task in the first 5 minutes, versus in the last 5 minutes; the experts

on average expect a correlation of 0.72, quite a bit lower than the full-stability benchmark of 0.99.

The final comparison is for the presence, or absence, of the consent form. The experts on average

expect a correlation of 0.78, compared to the full-stability benchmark of 0.88.

How confident are the 55 experts about their forecasts? We asked each forecaster for a prediction

of the expected number of their forecasts, out of 10, which would end up being within 0.1 of the

realized value. As we display at the bottom of Table 2, the experts are only mildly confident about

their accuracy, expecting 3.99 “correct” correlation forecasts. We return to the accuracy of this

forecast below.

We can compare the predictions of the experts to the predictions of two other groups, PhD

students at UC Berkeley and at the University of Chicago, and MTurk workers. The predictions

of the PhD students track closely the predictions of the experts; we cannot reject that the two

predictions are the same in each of the 10 comparisons. The PhD students express higher confidence,

expecting 4.95 correct predictions out of 10. The forecasts of the MTurk subjects are on average

somewhat lower, but exhibit similar patterns. Thus, the expectations do not vary much with the

population at hand; we present the evidence on further splits in Section 5.
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4 Stability of Experimental Results

4.1 Main Results on Stability

We now compare the results along each of the key six design comparisons.

Pure Replication. We start by comparing the results for the a-b typing task in the 2015

experiment and in the 2018 experiment. This is a pure replication, as there is essentially no change

in design, other than the year it was run in. Online Appendix Figure 4a and 4b compare the

distribution of effort, pooling across the 15 treatments. The distribution in the two years is very

similar, if somewhat noisier in 2018, given the smaller sample size. In Figure 2a-b we plot the

average effort in the 3 piece-rate treatments, comparing to the baseline no-piece rate treatment.

The estimates are very similar, with some difference just in the baseline effort, which is somewhat

lower in the 2018 run. But overall, the elasticity of effort to incentives is very similar, and similarly

precisely estimated.

What about the other behavioral treatments? Figure 3 shows that the results for the behavioral

treatments replicate very nicely as well. The treatments stack up on a line (continuous line) that

is only slightly lower than the 45-degree line (dotted line). Just one treatment deviates by more

than 100 points from the interpolating line, the probability weighting treatment, which yields higher

effort in 2018 than one would have predicted based on the 2015 results. Overall, the rank-order

correlation is very high, at 0.91, and close to the full-stability benchmark of 0.94, and higher than

the average forecast at 0.82 (p=0.068 for the difference, Column 8). Thus, our first result is that

doing a pure replication produces results that are remarkably similar to the original experiment.

Demographics. Next, we consider the impact of demographic differences in the subject pool,

along gender/age/education lines. To maximize statistical power (and given the evidence of nearly

perfect replication), we consider such differences in the pooled 2015/2018 data. In Figure 4a we

display the evidence splitting male and female respondents.10 The data suggests two striking pat-

terns. First, men and women do differ: male subjects are more responsive to incentive, varying

their effort from 1,450 to nearly 2,300 from the baseline treatment to the high-piece-rate treatment.

Female subjects, in contrast, increase effort from 1,500 to 2,050. And yet, the second finding is that,

conditional on this difference in elasticity of effort to motivation, the experimental results in the two

demographic groups are remarkably lined up, as the continuous line shows. This indicates that there

is no difference between men and women in how they respond to the different behavioral motivators,

and in how they respond to the behavioral motivators compared to the financial motivators. This

leads to a very high rank-order correlation of 0.96, which is much higher than the average expert

forecast of 0.73, a difference that is highly statistically significant.

Is this result unique to the gender comparison? In Figure 4b we do a median split on the

education variable, comparing subjects with a completed college degree with subjects without. The

two groups of subjects do differ, but this time only in the level of effort, as opposed to the elasticity:

higher-education subjects display less effort, for any given treatment. Once again, once we control for

this difference, the behavioral treatment effects lined up nicely. Indeed, the rank-order correlation

10Online Appendix Table 2 presents the average effort for each treatment-demographic combination.
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in effectiveness is 0.97, much larger than the average forecast of 0.71, a difference that again is

statistically highly significant.

In Figure 4c we present the last demographic split, by age. Subjects younger than 30 years of age

display higher effort than subjects that are older, but once again the rank–order of the behavioral

treatments is very high (0.98).

Geography/Culture. We now turn to our third comparison: geographical and cultural lines.

In particular, while the previous demographic features are self-reported, we now take advantage of

the geo-location due to the IP address. We compare the average effort by treatment among the

12% of subjects that have an IP in India versus the subjects with an IP in the US. As Figure 5

shows, there is a sizable difference in the average effort, and in the elasticity, with the subjects in

India displaying lower average effort and lower elasticity. Still, adjusting for this difference, the

behavioral and incentive treatments are quite nicely lined up, for a rank-order correlation of 0.65.

This correlation is statistically lower than the full-stability benchmark (p=0.049).

Task. In the fourth comparison, we compare the effort results in the 10-minute a-b typing task,

still pooling the 2015 and 2018 experiments, to the effort results in a 10-minute task of coding

the occupation in WWII enrollment cards, which we envisioned would be more motivating. Online

Appendix Figure 4c shows that the distribution of the effort measure in this new task, the number of

cards coded, is approximately normally distributed, with a mode and median around 60 cards. How

responsive is this task to financial incentives? Figure 2c shows that the task is very unresponsive to

these incentives, and in fact the effort with respect to the piece rate is not monotonic; indeed, we

cannot reject that the high-piece rate treatment and the baseline no-piece-rate treatment yield the

same effort.11

In light of this, it is not surprising that the correlation between the results across the two tasks

is not particularly high. Figure 6 shows that the rank-order correlation is 0.64, in line with the

average expert forecast of 0.66. In fact, given the noise in this task, we cannot reject a rank-order

correlation as low as 0.34.

Output Measure. In our fifth comparison, we consider how changes in measures of output,

even for a given task, may change the experimental findings. We start by comparing two versions of

the WWII card-coding task: the one described above, with a 10-minute time limit, and a second one,

in which subjects can code as many extra cards as they decide from 0 to 20, after completing a first

required batch of 40 cards. Online Appendix Figure 4d shows that the distribution of extra cards

coded in this task is highly bimodal: pooling across the 15 treatments, the large majority of subjects

code 0 extra cards, or all 20 extra cards, with only a small number of subjects coding a number of

cards between 1 and 19. Most importantly, the output measure in this task is highly responsive to

incentives. As Figure 2d shows, the average number of extra cards coded rises from 8.6 (no piece

rate) to 12.6 (low piece rate) to 15.2 (mid piece rate) to 17.4 (high piece rate). This increase is

highly significant; importantly, the increase in effort is statistically significant even moving from the

mid-piece rate to the high-piece rate, while this increase is not significant in the a-b task. Thus, this

11While it is not the focus of the experiment, a legitimate question is whether the incentive conditions induce
differences in accuracy in the coding of cards, in addition to differences in quality. Online Appendix Table 4 and
Online Appendix Figure 5 show that there is no systematic relationship between the number of units coded in the
different treatments and the accuracy of the coding.
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extra-work task appears well-suited to capture variation in motivation.

Figure 7a shows that the effort recorded with this output measure only has a low correlation of

0.27 with the effort in the 10-minute WWII coding task. In particular, the correlation is much lower

than in the expert forecasts (0.61).

This (relative) instability has two possible explanations. First, changes in task and output may

have affected the impact of behavioral and financial motivators. Second and more simply, the

10-minute WWII coding task, unlike the a-b task, is quite insensitive to motivation, as we saw.

Thus, purely due to noise we would expect a lower correlation, as the noise in the realized effort by

treatment would swamp the treatment effects.

In order to provide some evidence on whether the task change per se changed the behavioral

results, setting aside the noise, we compare output in the a-b 10-minute task to output in the WWII

coding with extra cards. As we showed, both of these tasks are responsive to incentives and thus

the comparison should not be too affected by noise. If, instead, changes in task and output measure

change the behavioral effects, even aside from noise, we would expect the correlation between the

a-b 10-minute task to output in the WWII coding with extra cards to be relatively low, as both task

and output measure change.

Figure 7b shows that the correlation for the joint task/output change, 0.70, is quite high, and

much higher than for just the output change, 0.27, consistent with the important role of noise in

the experimental results. Interestingly, the expert forecasters instead expect the correlation to be

higher for just the output change, 0.63, than for the task/output change, 0.54.

As a final output comparison, in Figure 7c we return to the a-b typing task (pooling 2015 and

2018) and compute the results using as a first measure of output the number of cards coded in the

first 5 minutes and as a second measure the number of cards coded in the next 5 minutes. As Figure

7c shows, the two measures are very highly correlated, with a rank-order correlation of 0.97, close

to the full-stability benchmark of 0.99 and clearly higher than the average forecast of 0.72.

Consent. As our final comparison, we estimate the impact of awareness of participation in an

experiment by comparing two versions of the extra-work WWII card coding experiment, Version 3

in which subjects see a consent form and Version 4 in which subjects do not see any consent form.

There is no other difference between the two versions. As Figure 8 shows, the two versions yield very

similar results, with all treatments close to the 45 degree line. The rank-order correlation between

these two tasks is 0.84, close to the full-stability benchmark of 0.88 and higher, but not too dissimilar

to the average forecast of 0.78.

Overall Assessment. To summarize the results across the different versions, also summarized

in Table 2, in Figure 9 we plot for each of the 10 rank-order correlation predictions the average expert

forecast of correlation versus the actual correlation. As the figure makes clear, the two measures

display only a weak correlation.

4.2 Robustness

Alternative Measure of Stability. A legitimate worry is that the results displayed so far on the

impact of design changes depend on the specific measure used, the rank-order correlation. In Online
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Appendix Table 3, we replicate the results on the stability of the empirical results across different

versions using alternative measures. For these measures we do not have, of course, expert forecasts,

but we can still compute the actual measure of stability and, when possible, the measure under full

stability.

In Columns 1 and 2 we present the results using the Pearson correlation which is related to the

rank-order correlation but imposes a linearity assumption between the two version being compared.

The table shows that the results are very similar using this alternative measure.

In the next columns, we move away from correlation and compute the effect of the treatment

in one of the quantitative scales, relative to a baseline. In Columns 3 and 4, for each treatment

(other than the baseline one), we compare the difference in effort in log points, compared to the

effort in the baseline group. We then compute, for each treatment, the absolute difference in this

log-point effect across the two versions–say, between male subjects and female subjects—and then

average across the 14 treatments. This measure shows that the pure replication and the different

demographic versions are associated with fairly small log point changes, and in any case within the

confidence interval of the full-stability benchmark. The log point change is larger for the task and

output changes, not surprisingly since this measure essentially assume the same elasticity—same log

point response in effort—across different versions. Columns 5 and 6 show that the calculations are

fairly similar if we use a different treatment as comparison point, in this case the high-pay treatment.

In Columns 7-10 we repeat the same exercise, but we measure the changes from the baseline

in standard deviation units (z scores), instead of in log point units. As for the other columns,

the pure replication, demographics, and geography changes all yield results within the full-stability

benchmark, with larger differences for the task and output changes.

Alternative Comparisons of Designs. A separate robustness issue is that we focus on ten

rank-order correlation comparisons to estimate the degree of stability with respect to the various

dimensions. What if we use other comparisons within a particular dimension?

In Table 3 we consider 11 additional comparisons which expand along our motivating dimensions.

The first three comparisons present the familiar demographic comparisons, but instead of making

the comparison for the a-b typing task, we compare along demographic dimensions for the 10-minute

WWII card coding task.12 The rank-order correlation across the two versions is clearly lower than

for our benchmark comparisons, given the smaller sample and noisiness of the results in this sample,

but the correlation is sizable and close to the one computed under full stability.

Next, we revisit the geographic/culture comparison between the India and US sample for the

extra-card WWII card coding task.13 We obtain a rank-order correlation between the results for

the two samples of 0.68, which is close to the full-stability benchmark of 0.77.

In the next step, we provide a different measure of geographic and cultural differentiation, com-

paring between Mturkers with an IP address in “Red states” versus “Blue States”, which we de-

termine using the geo-coding of the IP address and attributing state to either group depending

12We cannot make this comparison for the extra-card WWII coding task, since we did not collect demographics for
that task, since we did not want to collect demographics for a task that, in Version 4, we run as an actual data coding
job, with no consent form.

13We do not do such comparison for the 10-minute WWII task given the noisiness of the estimates, given the Indian
workers constitute only 12% of the sample.
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on the winner of the vote share in the 2016 presidential election. In this case, we obtain a very

strong estimate of stability of the results, with a rank-order correlation of 0.94, very close to the full-

stability benchmark of 0.97. Overall, these results further reinforce the message that demographic

and geographic variation in the result are small and the results are close to full stability along these

dimensions.

In the final six comparisons, we consider two further forms of sample selection which do not

fit neatly into either of the other dimensions, but which have been identified by previous papers

as potentially important for the productivity of MTurk workers (Case et al., 2017): (i) whether

subjects sign up early on in a experimental study, or later on, as this could be a proxy for how

motivated the worker are; and (ii) whether the subjects perform the test during the day or during

the night. We compare along these two dimensions for the a-b typing task, for the 10-minute WWII

card-coding task, and for the extra-cards WWII coding task. For five of the six comparisons, the

actual rank-order correlation is close to the one under full stability, providing another example of

stability of the results.

4.3 Structural Estimates

We return the model which we briefly described in Section 2.1.1 and present estimates of the model

parameters. We use such estimates to quantify the elasticity of effort in the various design versions,

and to present an alternative measure of the stability of the results across different design versions:

the stability of the underlying structural parameters. In addition, we discuss the results of the 16th

treatment, which we have omitted so far, as an out-of-sample model validation.

Estimation. To bring the model in Section 2.1.1 to the data, we need to specify the source of

heterogeneity in the data. As benchmark model, we take the specification with exponential cost of

effort function, since it implies a specification that conveniently expresses effort as function of the

motivation parameters; we show below that the results are similar assuming a power cost of effort

function. Building on DellaVigna et al. (2015), we assume that the cost of effort parameter k has a

log-normal distribution across subjects j, implying a cost of effort cj(ej) = kexp(γej)γ
−1exp(−γεj),

with εj normally distributed εj ∼ N(0, σε
2). This assumption ensures positive realizations for the

marginal cost of effort. Given that the agent maximizes (s+ p)e− c(e), this implies the first-order

condition s+ p− kexp(γej)exp(−γεj) = 0 and, taking logs and transforming, yields

ej =
1

γ
[log(s+ p) − log(k)] + εj . (4)

Equation (4) can be estimated with non-linear least squares (NLS). We estimate the three pa-

rameters ŝ, k̂, and γ̂, taking advantage of the four piece rate treatments. In the a-b button pushing

task, we specify effort ej as the number of button presses, in the 10-minute WWII coding as the

number of cards coded, and in the extra-work experiment as the number of cards coded, including

in the count the required 40 cards.

In order to accommodate the behavioral treatments, we generalize the model of motivation,

allowing for an additional parameter for each behavioral treatment. Specifically, for the paying-
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too-little treatment, for the gift-exchange treatment, and for the three psychological treatments, we

allow for additive motivation shifters ∆s such that motivation becomes s + ∆s. For example, the

null hypothesis of no crowd out due to paying too little entails ∆sCO = 0.

For the two social preference treatments, we allow for both a pure-altruism parameter α a la

Becker (1974) and for a “warm glow” parameter a: the altruism parameter α multiplies the actual

return to the charity while the warm glow term a multiplies the return to the charity for the low-

return treatment (1 cent per 100 presses for the a-b task). Intuitively, the difference between the

two models is that in the Beckerian pure altruism world, the return to the charity is important, and

we expect the effort to be significantly higher when the return to the charity is high (10 cents per

100 points) versus when it is low (1 cent per 100 points). In the “warm glow” model, instead, the

return to the charity does not matter, as the individual exerts extra effort for the charity in response

to a “warm glow”, not in response to the exact return.

For the two delayed-payment treatments, we model the motivation part as in the present-bias

model (Laibson, 1997; O’Donoghue and Rabin, 1999) as (s + βδtp)e, with t denoting the weeks of

delay, β the present bias parameter, and δ the (weekly) discount factor.

Finally, for the probability weighting treatments, we model the motivation (s+ π(P )p)e, where

P is the probability of receiving the piece rate, that is, P = 0.01or P = 0.5. Under risk neutrality,

we should estimate π(P ) = P. The evidence on probability weighting (e.g., Prelec, 1998) suggests

that small probabilities are overweighted by a factor of 3 to 6, with a probability of 50 percent is

slightly downweighted. The treatment with a 1 percent probability of a $1 piece rate allows us to

test for such overweighting of small probability and estimate π(0.01), while the treatment with 50

percent probability of a 2-cent piece rate to provide evidence on the concavity of the value function,

i.e., the risk aversion, which in this case we capture as reduced-form in π(0.5).

In Table 2 we present estimates of the parameters of the model, using all the 15 treatments used

for the design comparisons. Since our estimation allows for one parameter for each behavioral treat-

ment, effectively the identification of the incidental parameters is given by the piece-rate treatments,

while the identification of the behavioral parameters is given by the behavioral treatments. That is,

the incidental parameters in Table 2 are essentially identical if we estimate them including only the

piece rate treatments.

Estimates, Button Pushing. Columns 1 and 2 report the estimates of the model using NLS

on, respectively, the 2015 button-pressing data and the 2018 button-pressing data. The estimates

for the 2015 experiment replicate the ones in DellaVigna and Pope (2018) and the estimates for the

2018 experiment are very close: in both data sets, the elasticity of effort is quite precisely estimated

to be 1/γ̂ = 0.04. Figures 2a-b display the predicted effort given the parameter estimates and show

that the model fit is near perfect. This is not obvious given that the model fits 4 piece rates with 3

parameters.

The next rows show the estimates of the behavioral parameters. The estimates for the motivation

terms—that is, s and ∆s—are displayed in units for cents per 100 presses. For example, the estimate

for the social comparison treatment ˆ∆sSC = 0.06 indicates an impact equivalent to an incentive of

0.06 cents per 100 presses. Indeed, this treatment, which is the most effective of all the psychological

treatments, has an effect which is smaller than even the paying-too-little treatment, which we code
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as having an incentive p = 0.1. As we noted in DellaVigna and Pope (2018), there is no evidence

that the paying-too-little treatment crowds out motivation, with estimates for ˆ∆sCO very close to

zero.

The estimates for the social preference parameters are the most informative ones. They indicate a

precisely-estimate zero effect for the altruism parameter, with point estimates α̂ = 0.003 (s.e. 0.010)

for 2015 and α̂ = 0.010 (s.e. 0.017) for 2018. This means that in both years we can reject a pure

altruism coefficient as low as α = 0.05; for comparison, full altruism (equal weight on the recipient)

is α = 1. The estimates indicate instead a warm-glow weight â around 0.1. This is consistent with

the fact that we do not find any response in worker effort to the return to the charity, but we do

find that subjects work harder when there is a charitable giving, compared to the baseline condition.

Turning to the time-preference point estimates, unfortunately they are too imprecisely estimated in

this design.

Estimates, Demographics. With these estimates at hand, we revisit the key finding above

that the results are very stable with respect to demographic shifts. We present the result of estimates

split by gender (Columns 3 and 4), but education (Columns 5 and 6) and by age (Columns 7 and 8).

In all cases, we pool the 2015 and 2018 experiments, consistent with the results in Column 1 and 2

suggesting no differences, and so as to maximize statistical power. The point estimates indicate that

there are some differences across the groups in the incidental parameters, especially the curvature,

even as the differences are not quite statistically significant. For example the estimated cost-of-effort

curvature γ̂ equals 0.012 (se 0.003) for males but 0.019 (se 0.007) for females, and it equals 0.011 (se

0.003) for younger workers but 0.022 (se 0.009) for older workers. Among the behavioral parameters,

however, there is no evidence of any difference. In particular, the social preference parameters, which

are among the most precisely estimated, indicate very consistent evidence supporting the warm glow

model, as opposed to the pure altruism model.

Estimates, WWII Task. We then turn in Columns 9 to the estimate of the 10-minute WWII

task. The estimates for the curvature parameter γ̂ = 1.909 imply an elasticity smaller than 0.01,

really tiny, consistent with the very limited response to incentives. Figure 2c shows that we capture

to some extent the response to incentives in the data, but the fit is imperfect, as expected given the

observed non-monotonicity in the response of effort to piece rate. Given the very small elasticity, the

estimates of the key parameters are necessarily noisy; nonetheless, qualitatively the key parameters

are aligned.

In Columns 10 and 11 we turn to the extra-work treatments for the WWII coding, with experi-

mental consent (Column 10) and without (Column 11). In this case, we have to explicitly model the

censoring at both 0 cards coded and at 20 cards coded, and we thus turn to maximum-likelihood

estimation. Otherwise, the model estimation is the same as for the other specifications.

The estimates indicate a much higher elasticity of effort to incentives, just as we expected based

on the results in Abeler et al. (2011) and Gneezy et al. (2017). Indeed, the estimated γ̂ = 0.047

(se 0.0015) in Column 10 implies an elasticity of 1/(0.047 ∗ (40 + 11.1) = 0.42, which is among the

highest real-effort elasticities recorded, higher than in all cases in the literature we are aware of

where effort is measured as units produced in a fixed amount of time (e.g., 0.1 for stuffing envelopes

in DellaVigna et al., 2015 and 0.025 for the slider task in Araujo et al., 2016). This higher elasticity
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implies that this design yields good statistical power for the behavioral estimates. Figures 2d-e show

that the structural estimates for the cost of effort function capture well the curvature observed effort

under the different piece rate conditions.

Importantly, the structural estimates for the various treatments are in line with what we find

for the other designs, subject to recognizing differences in the baseline level of intrinsic motivation s

(now measure in terms of cents per extra card). The one difference is the higher intrinsic motivation

due to gift exchange.

Out-of-Sample Prediction. These estimates also allow us to make predictions about out 16th

treatment, which combines the low-piece rate incentive with a “please try” psychological inducement.

Our structural estimates make a prediction on what the observed effort should be in this treatment

– how close do we come in the prediction? The bottom row in the table shows that the model does

quite well in the prediction.

5 Revisiting the Forecasts

In this section, we return to the expert forecasts to further probe some of the findings and interpre-

tations from the analysis.

Impact of Noise on Stability. A key theme for the results on task and output is the impact of

noise in the experimental results. As Figures 2a-b show, the 10-minute WWII task is very insensitive

to incentive, unlike the button pushing task and the extra-cards WWII task, both of which clearly

respond to motivation. As a result of this, the experimental findings in the 10-minute WWII task

are much more imprecisely estimated than in the other design versions, since the average output

in essentially all treatments varies just between 52 and 61 cards coded within 10 minutes, with a

substantial between-subject dispersion (Online Appendix Figure 4c). As we discussed above, this

additional degree of noise largely explains the lower degree of stability of the results across tasks

and across output, when one of the comparisons involves the 10-minute WWII task.

As we discussed, the forecasters do not appear to anticipate this pattern. Of course, it was

not obvious that the 10-minute WWII card task would have substantially more noise than any

of the other designs. Precisely to address this issue, we randomized the provision of additional

information. All the forecasters were informed about the overall mean and standard deviation of

effort in the two WWII card experiments. For one half of the forecasters, in addition, we provided the

mean effort (and s.e.) under the three key piece rate treatments, indicating a flat and non-monotonic

pattern with respect to incentives in the 10-minute WWII task, and in contrast a precisely-estimated

responsiveness to incentives in the extra-work WWII task. Does this additional information have

an impact on the forecasts for the task and output comparisons?

In Table 5, we compare the forecasts by the two groups in Columns 2 and 3, using the pooled

sample of academic experts and PhDs (Column 1), given that the two groups make very similar

forecasts. Columns 2 and 3 show that the experts respond very little to the additional information

on the noisiness of the 10-minute WWII task. Thus, the forecasters do not appear to take much

into account an important determinant of the stability of experimental results, the noisiness of an

experimental set-up.
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Forecaster Effort. In Table 5, we also consider another determinant of possible differences in

forecaster accuracy. As we document in DellaVigna and Pope (forthcoming), forecasters who appear

to put more effort by taking longer time and by clicking on links do a bit better in the their forecasts

(at least in some conditions). In Columns 4 and 5 we split the forecasters depending on whether the

forecasters clicked on at least one link to gather additional information on the experimental design.

In Columns 6 and 7 similarly we split by the time taken to do the survey. Under either dimension,

we find little evidence that the forecasts differ in the direction of higher accuracy.

Confidence. A relevant question too is whether confidence in the answers is a relevant predictor

of the forecasts, as it is, to some extent, in DellaVigna and Pope (forthcoming). In the last question

of the survey, we asked the forecasters how many of their rank-order correlation forecasts they expect

to be within 0.1 of the truth. In Columns 8 and 9 we present the average forecast for individuals

with higher, versus lower, confidence. The individuals with higher confidence are closer to the truth

on average for the exact replication and for the impact of demographics, the impact of the task, and

the impact of consent. They are, however, not closer to the truth for the two first output forecasts.

Overall, confidence is a predictor of accuracy, as we show in an alternative form in Figure 10. The

figure shows the actual number of forecasts within 0.1 of the truth for the group of forecasters making

that forecast. Unbiased forecasts should lie on the 45-degree line. The plot shows that the accuracy

does increase with the confidence, but the slope is too flat. In particular, while the individuals with

lower confidence are unbiased, the individuals with higher confidence overstate their precision. For

example, the 12 forecasters who on average expect to get 6 answers correctly get just 4 answers

correctly, a mean forecast that is statistically different from 6. This suggests that experimenters

with higher confidence in the design have real information about the stability of the results, but

probably not as much as they think they have.

Expert Accuracy. A related question is whether there are sizable differences in the ability to

predict experimental results across forecasters. In DellaVigna and Pope (forthcoming) we showed

that some of the variables that one would have expected to be high predictors of accuracy – like

the professorial rank or citations – do not predict accuracy. This is indeed also the case in our

setting, given that the accuracy of PhD students is at least as high as the accuracy of the faculty

forecasters (Table 2). But in DellaVigna and Pope (forthcoming) we find some evidence suggestive

of individual differences in forecasting ability, as in the superforecasters literature (Tetlock and

Gardner (2015)). In DellaVigna and Pope (forthcoming) forecasters who do a better job forecasting

a group of treatment also have higher accuracy in forecasting other groups of treatments within the

experiment.

But does this forecasting ability translate across experiments? For the 35 individuals who made

forecasts both in 2015 and in 2018, we can compare the accuracy of their two forecasts. Figure 11a

displays the accuracy of each of these 35 forecasters, with their average absolute error (in terms of

point) in the 2015 forecasts on the x axis and their average absolute error (in terms of rank-order

correlation) in the 2018 forecasts. As Figure 11a shows, there is no correlation, or in fact the hint

of a negative correlation, between accuracy across the two experiments. This finding suggests that

the correlation in accuracy in forecasts may be small.

Explaining the 2015 Forecasts Errors. Finally, we return to the 2015 forecasts to reinterpret
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some patterns of the forecasts in light of the newer data. As we document in DellaVigna and Pope

(forthcoming), the average (i.e., wisdom-of-crowd) forecast for each treatment does a good job of

predicting the average effort in that treatment. Yet, there are some treatments where the experts are

sizably off in their forecast: the experts on average under-predict effort in the very-low-pay treatment

and over-predict effort for the probability weighting treatment and for the ranking treatment. One

interpretation of these results is that the experts were not wrong: their forecasts are on average

accurate, but the specific experimental design that we ran in 2015 provides a result that may not

be representative of the result over a range of different designs.

Thus, we can revisit the findings in light of the 2018 experiment and ask if the treatments where

experts had the larger forecast error in 2015 are such that the treatments do better in the 2018

new runs than they did in 2015. Figure 11b presents this evidence. The x axis indicates for each

treatment the average forecast error, while on the y axis we plot, for each of the four 2018 new

versions of the experiment, how much a treatment shifted in rank from the 2015 experiment to the

2018 experiment. For example, Figure 11b shows that the probability weighting treatment indeed

moves up by 3, 4, 5, and 6 ranks in the four 2018 runs compared to the 2015 results. On the other

hand, there is no evidence that the very-low-pay treatment moves down in ranks, as one would

predict based on the 2015 forecast error. All in all, Figure 11b provides just suggestive evidence

that the 2015 forecast errors could be explained by alternative versions of the design.

6 Conclusion

In this paper, we have considered a particular experimental setting—a real effort task with a dozen

of treatments corresponding to behavioral and financial motivators—and we have examined the

stability of the findings to several design changes. We considered pure replication, changes in the

demographic groups and in the geographic/cultural mix of subjects, changes in the task and in the

output measure, and changes in whether subjects are aware that they are part of an experiment.

We compared the results on stability to both the forecasts of experts and to a benchmark of full

stability, which accounts for noise in the results. While we stress that any lessons are to some extent

specific to the experimental set-up we consider, we highlight two main implications.

The first implication is methodological. We highlight, and attempt to address, the issues that

arise when examining the stability of an experimental finding to substantial changes in design.

When one compares across different tasks and output measures, one needs a measure of stability

that accounts for the fact that the units of measure may not be compatible. We proposed rank-order

correlation as a measure of stability with desirable properties when one compares several treatments.

The measure is simple enough that it is possible to also elicit forecasts of stability.

The second implication is in the substance. We find a remarkable degree of stability of ex-

perimental results with respect to changes in the demographic composition of the sample, or even

geographic and cultural differences, in contrast to the beliefs of nearly all the experts, who expected

larger differences in results due to the demographic composition. We also find that the degree of

noise in the experimental results is, in our setting, the main determinant of stability: the only two

instances of low replication are due to a task with very inelastic output, limiting the role of moti-
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vation compared to the role for noise. The experts do not appear to fully appreciate the important

role for noise, even when provided with diagnostic information.

What can explain the divergence between the replication results and the expectations of experts?

We conjecture that selective publication (Christensen and Miguel, forthcoming) may provide at least

a partial explanation: while null results on demographic differences typically do not get published, or

even remarked upon in a paper, differences that are statistically significant draw attention. Similarly,

experimental designs with (ex post) noisy results are typically not published.
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Figure 1. Expert Forecasts, CDFs 
Figure 1a. Forecasts of Replication and Demographics 

 

Figure 1b. Forecasts of Output, Task, and Context 

 
Notes: Figures 1a-b present the c.d.f. of the forecasts by the 55 academic experts. Each expert made forecasts about rank-order correlation 
with respect to 10 design changes. We split the 10 forecasts into Figure 1a  and Figure 1b. 
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Figure 2. Average Effort in Piece-Rate Treatments 
Figure2a. 2015 Button Pushing Task   Figure 2b. 2018 Button Pushing Task 

  
Figure 2c. 2018 10-Minute WWII Card Coding Task Figure 2d. 2018 Extra Card Coding Task Figure 2e. 2018 Extra Card Coding Task, No Consent 

 
Notes: Figures 2a-e displays the average effort in four piece rate conditions (including the no-piece-rate baseline), separately each of five experiments: the 2015 button press (Figure 2a), the 2018 
button press (Figure 2b), the 2018 10-minute card coding (Figure 2c), the 2018 extra card coding (Figure 2d), and the 2018 extra card coding with no consent form (Figure 2e).The figures display a 95% 
confidence interval around the mean effort. The figure also displays with a dotted line the predicted effort from the structural estimates in Table 4, Columns 1, 2, 9, 10, and 11. 
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Figure 3. Pure Replication, Button Pushing Task 

 
Notes: Figure 3 displays, for each one of 15 treatments, the average effort across two experimental versions: on the x axis the average effort in the 2015 button pushing task, on the y axis the average 
effort in the 2018 button pushing task. The 15 treatments are denoted with dots of different shape and color to indicate different groups of treatments: e.g., the square red dots denote the baseline 
and piece-rate treatments. The dotted line indicates the 45-degree line, while the continuous blue line is the best-fit line. The figure also indicates the rank-order correlation across the two versions, 
the rank-order correlation under a benchmark of stable results (see text for details), and the average forecast of rank-order correlation by the experts. 
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Figure 4. Impact of Demographics, Button Pushing Task 
Figure 4a. Gender     Figure 4b. Education 

   
Figure 4c. Age 

 
Notes: Figures4a-c display, for each one of 15 treatments, the average effort for the button pushing task (pooling the 2015 and 2018 experiments) across different demographics of the subjects, 
splitting by gender (Figure 4a), by education (Figure 4b), and by age (Figure 4c). See notes to Figure 3 for more detail.  



33 
 

Figure 5. Impact of Geography/Culture, Button Pushing Task 

 
 

Notes: Figure 5 displays, for each one of 15 treatments, the average effort for the button pushing task (pooling the 2015 and 2018 experiments), splitting subjects by whether the respondents have an 
IP address associated with a S location (x axis) or with a location in India (y axis). See notes to Figure 3 for more detail.  
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Figure 6. Impact of Task, Button Pushing Task vs. WWII Card Coding Task 

 
Notes: Figure 6 displays, for each one of 15 treatments, the average effort across two different tasks. On the x axis is the effort for the a-b typing task (pooling the 2015 and 2018 experiments), while 
on the y axis is the effort for the 2018 WWII 10-minute card coding task. See notes to Figure 3 for more detail.  



35 
 

Figure 7. Impact of Output 
Figure 7a. WWII Coding, Ext. Margin vs. WWII, Int. Margin Figure 7b. WWII Coding, Ext. Margin vs. Button Pushing Task 

   
Figure 7c. Output in First 5 Minutes vs. Later 5 Minutes, Button Pushing Task 

 
Notes: Figures 7a-c display, for each one of 15 treatments, the average effort across two different output measures. In Figure 7a we compare the cards coded in the 10-minute WWII card coding task 
to the extra cards coded in the extra-work WWII card task. In Figure 7b we compare the a-b points in the 10-minute button pushing taskto the extra cards coded in the extra-work WWII card task. In 
Figure 7c we compare, within the button pushing task (pooling 2015 and 2018), productivity in the first 5 minutes versus in the next 5 minutes. See notes to Figure 3 for more detail. 
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Figure 8. Impact of Consent, WWII Coding Task 

 
Notes: Figure 8 displays, for each one of 15 treatments, the average effort for two versions of the same extra-work WWII card coding experiment. In the version on the x axis, subjects are not 
displayed a consent form (and thus are presumably unaware of being part of an experiment) while in the version on the y axis, subjects are shown a consent form. See notes to Figure 3 for more 
detail.
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Figure 9. Comparing the Expert Forecasts of Rank Correlation to the Actual Correlation, Across 10 
Design Changes 

 
Notes: Figure 9 displays, for each of 10 version changes, the actual rank-order correlation and the average expert prediction for that same rank-
order correlation. For example, the Pure Replication dot indicates that the actual rank-order correlation on Pure Replication (Figure 3) is 0.91, 
while the average expert prediction is 0.82. 
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Figure 10. Confidence (in the Forecast of Rank-Order Correlation) and Accuracy 

 
Notes: In the survey of forecasters, as last question we asked the expected number of forecasts of rank-order correlation which the forecasters expected to get within 0.1 of the correct answer. In 
Figure 10we plot the actual share of answers about rank-order correlation that were within 0.1 of the correct answer, splitting by the measure of confidence, that is, the forecast (rounded to the 
closest round number) of the number of “correct“ predictions. The sample includes academic experts, as well as PhDs. The dotted line is the 45-degree line indicating an unbiased estimate. 
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Figure 11. How much Information is in Expert Forecasts? Revisiting the 2015 Expert Forecasts 
Figure 11a. Accuracy of 2015 Forecasts vs. 2018 Forecasts 

 
Figure 11b. Errors in 2015 Forecasts and Changes of Treatment Rank in 2018 Experiments 

 
Notes: For the 35 individuals who made forecasts both in 2015 and in 2018, in Figure 11a we compare the accuracy of their two forecasts, 
displaying the average absolute error (in terms of point) in the 2015 forecasts on the x axis and the average absolute error (in terms of rank-
order correlation) in the 2018 forecasts. In Figure 11b, the x axis indicates for each treatment the average forecast error in 2015, while on the y 
axis we plot, for each of the four 2018 new versions of the experiment, how much a treatment shifted in rank from the 2015 experiment to the 
2018 experiment. 
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Task:

Category Treatment Wording 2015 
Exp.

2018 
Exp. 10-Min Extra 

Work

Extra 
Work, No 
Consent

(1) (2) (3) (4) (5) (6) (7)
“Your score [The number of [additional] cards you complete] will not affect your 
payment in any way."

1521
(31)

1367
(60)

53.83
(1.84)

8.63
(0.75)

7.55
(0.78)

"As a bonus, you will be paid an extra 1 cent for every 100 points that you score [2 
[additional] cards that you complete]”

2029
(27)

1966
(53)

59.36
(1.81)

12.63
(0.79)

12.39
(0.73)

“As a bonus, you will be paid an extra 4 cents for every 100 points that you score  
[2 cents for every [additional] card that you complete].”

2132
(26)

2119
(45)

57.22
(1.93)

15.21
(0.69)

16.40
(0.60)

“As a bonus, you will be paid an extra 10 cents for every 100 points that you score 
[5 cents for every [additional] card that you complete].”

2175
(24)

2146
(50)

56.33
(1.97)

17.39
(0.50)

17.08
(0.55)

Pay Enough 
or 

Don't Pay

“As a bonus, you will be paid an extra 1 cent for every 1,000 points that you score 
[20 [additional] cards you complete].”

1883
(29)

1801
(60)

61.05
(1.87)

9.94
(0.78)

9.54
(0.81)

"As a bonus, the Red Cross charitable fund will be given 1 cent for every 100 points 
that you score [2 [additional] cards you complete].”

1907
(27)

1780
(50)

56.90
(1.80)

9.85
(0.84)

9.86
(0.71)

"As a bonus, the Red Cross charitable fund will be given 10 cents for every 100 
points that you score [5 cents for every [additional] card you complete].”

1918
(26)

1839
(51)

56.99
(2.00)

10.07
(0.81)

10.21
(0.73)

Social 
Preferences: 

Gift 
Exchange

“In appreciation to you for performing this task, you will be paid a bonus of 40 
cents. Your score will not affect your payment in any way [The number of cards you 
complete will not affect your payment in any way / You will receive this bonus even if 
you choose not to complete any additional cards].“ 

1602
(30)

1476
(54)

51.89
(1.76)

13.06
(0.73)

14.11
(0.70)

"As a bonus, you will be paid an extra 1 cent for every 100 points that you score 
[every 2 [additional] cards you complete]. This bonus will be paid to your account 
two weeks from today.“

2004
(27)

1953
(48)

59.42
(2.01)

12.44
(0.77)

10.50
(0.80)

"As a bonus, you will be paid an extra 1 cent for every 100 points that you score 
[every 2 [additional] cards you complete]. This bonus will be paid to your account 
four weeks from today.“

1970
(29)

1940
(53)

59.10
(1.83)

9.64
(0.76)

11.70
(0.82)

"As a bonus, you will have a 1% chance of being paid an extra $1 for every 100 
points that you score [extra 50 cents for every [additional] card you complete].“

1896
(28)

1975
(47)

59.09
(1.68)

12.83
(0.76)

11.54
(0.79)

"As a bonus, you will have a 50% chance of being paid an extra 2 cents for every 
100 points that you score [extra 1 cents for every [additional] card you complete]." 

1977
(25)

1837
(51)

53.92
(1.95)

10.75
(0.80)

11.03
(0.78)

Social 
Comparisons

“Your score [The number of [additional] cards you complete] will not affect your 
payment in any way. In a previous version of this task, many participants 
[workers] were able to score more than 2,000 points [completed more than 70 
cards [the additional cards]].”

1848
(32)

1774
(54)

52.48
(1.90)

8.27
(0.79)

8.21
(0.75)

Ranking

“Your score [The number of [additional] cards you complete] will not affect your 
payment in any way. After you play [finish], we will show you how well you did 
[how many [additional] cards you completed] relative to other participants 
[workers] who have previously done this task.“ 

1761
(31)

1642
(56)

55.40
(1.70)

8.90
(0.78)

9.56
(0.77)

Task 
Significance

"Your score [The number of [additional] cards you complete] will not affect your 
payment in any way [, but your work is very valuable for us, and we would really 
appreciate your help]. We are interested in how fast people choose to press digits 
and we would like you to do your very best. So please try as hard [do as many] as 
you can."

1740
(29)

1627
(58)

54.83
(1.83)

8.22
(0.77)

9.96
(0.77)

Piece Rate 
+ 

Task 
Significance

"We are interested in how fast people choose to press digits and we would like you 
to do your very best [Your work is very valuable for us, and we would really 
appreciate your help]. So please try as hard [do as many [additional] cards] as you 
can. As a bonus, you will be paid an extra 1 cent for every 100 points that you 
score [2 [additional] cards you complete]."

- 2056
(46)

56.18
(1.76)

10.81
(0.79)

13.3
(0.74)

Number of Observations 8,252 2,380 2,708 2,331 2,392
Notes: The Table lists the 16 treatments in the Mturk experiment; the main analysis focuses on the first 15 treatments which are run in all experiments. Column 1 reports the conceptual grouping of the treaments and
Column 2 reports the exact wording that distinguishes the treatments. The treatments differ just in one paragraph explaining the task and in the vizualization of the points earned. Column (2) reports the key part of the
wording of the paragraph. For brevity, we omit from the description the sentence "This bonus will be paid to your account within 24 hours" which applies to all treatments with incentives other than in the Time
Preference ones where the payment is delayed. Notice that the bolding is for the benefit of the reader of the Table. In the actual description to the MTurk workers, the whole paragraph was bolded and underlined. The
main wording applies to the Button Pushing task (Columns 3 and 4), which we run in 2015 (Column 3) and replicate in 2018 (Column 4). The wording in brackets applies to the experiments on WWII card coding, in
Columns 5-7. Columns 3-7 report the mean output and the standard error of the output in each treatment. 

Mean Effort (s.e.)
Button 

Pushing, 10 
Min

2018 WWII Cards Coding 
Task

Table 1. Findings by Treatment: Effort in Different Versions

Piece Rate

Social 
Preferences: 

Charity

Discounting

Risk Aversion 
and 

Probability 
Weighting
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Rank-Ord. 
Correl.

Rank-Ord. 
Correl.

Category Design Comparison
Full 

Stability 
w/ Noise

Faculty 
Experts

PhD 
Students Mturkers Actual

Experts 
vs. Full 
Stability

Actual vs. 
Full 

Stability

Actual 
vs. 

Experts
(1) (2) (3) (4) (5) (6) (7) (8)

Pure Repl. 2015 AB Task vs. 2018 AB Task
(n=8,252; n=2,219)

0.94    
(0.04)

0.82    
(0.01)

0.87    
(0.01)

0.75    
(0.02)

0.91    
(0.04) 0.004 0.630 0.068

Male vs. Female
(n=4,686; n=5,785)

0.95    
(0.03)

0.73    
(0.02)

0.77    
(0.02)

0.73    
(0.02)

0.96    
(0.04) 0.000 0.856 0.000

College vs. No College
(n=5,842; n=4,629)

0.95    
(0.03)

0.71    
(0.02)

0.74    
(0.02)

0.67    
(0.02)

0.97    
(0.04) 0.000 0.691 0.000

Young (=<30) vs. Old (30+)
(n=5,259; n=5,212)

0.95    
(0.03)

0.74    
(0.02)

0.76    
(0.02)

0.66    
(0.02)

0.98    
(0.04) 0.000 0.527 0.000

Geogr./ 
Culture

US vs. India
(n=8,803; n=1,225)

0.89    
(0.05)

0.63    
(0.02)

0.67    
(0.03)

0.68    
(0.02)

0.65    
(0.11) 0.000 0.049 0.897

Task AB Task vs. 10-min Card Coding
(n=2,219; n=2,537) - 0.66   

(0.02)
0.63    

(0.03)
0.64    

(0.02)
0.64    

(0.15) - - 0.866

10-min Cards vs. Extra Cards
(n=2,537; n=2,188) - 0.61    

(0.02)
0.61    

(0.03)
0.62    

(0.02)
0.27    

(0.17) - - 0.052

Extra Cards vs. AB Task 
(n=2,188; n=2,219) - 0.53    

(0.03)
0.56    

(0.04)
0.58    

(0.02)
0.70    

(0.17) - - 0.046

 AB Task: First 5 min vs. Last 5 min
(n=10,471)

0.99    
(0.01)

0.72    
(0.02)

0.70    
(0.03)

0.64    
(0.02)

0.97    
(0.03) 0.000 0.543 0.000

Consent Cards: Consent vs. No Consent
(n=2,188; n=2,246)

0.88    
(0.05)

0.78    
(0.02)

0.81    
(0.02)

0.70    
(0.02)

0.84    
(0.09) 0.067 0.645 0.552

N=55 N=33 N=109
0.20 (0.01) 0.19 (0.01) 0.24 (0.01)
0.17 (0.03) 0.15 (0.04) 0.20 (0.04)
3.99 (0.24) 4.95 (0.25) 4.66 (0.22)
3.35 (0.24) 3.55 (0.23) 3.02 (0.16)

Table 2. Stability Across Designs: Rank-Order Correlations, Forecasts vs. Actual

Notes: The Table lists the 10 design changes to the experiment which sonstitute the focus of the paper. For example, in row 1 we compare the estimate of effort in the 15 treatments in the button pushing task, comparing the
results for male subjects versus for female subjects. To compare the stability of results across versions, we compute the rank-order correlation of the average effort in the 15 treatments across versions. In Column 1 we
report the average correlation under a benchmark of full-stability, that is, if the results do not change with the change in design. This correlation, which is the average over a series of bootstraps, is lower than 1 due to
measurement error. Columns 2-4 report the average forecast of rank-order correlation for the population of academic experts (Column 2), PhD students (Column 3), and MTurkers (Column 4). Column 5 reports the actual
rank-order correlation. Columns 6 -8 report the p-value for the difference between the relevant columns.

Output

Average Forecast of Rank-
Order Correlation

Demogr., 
Typing 
Task

p-value for Difference        

N 
Average Individual Abs. Error 
Wisdom of Crowd Error
Average Forecast of No. Rank-o. Corr w/in 0.1 of Truth
Average Actual No. Rank-o. Corr w/in 0.1 of Truth
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Category Version Comparison
Full 

Stability 
w/ Noise

Actual p-value for 
Difference  

(1) (2) (3)
Male vs. Female

(n=1,014; n=1,523)
0.43    

(0.18)
0.27    

(0.22) 0.573

College vs. No College
(n=1,478; n=1,059)

0.44    
(0.18)

0.38    
(0.21) 0.845

Young vs. Old
(n=1,128; n=1,409)

0.43    
(0.17)

0.31    
(0.21) 0.680

Geography/ 
Culture, Extra-
Cards WWII 

Coding

US vs. India
(n=3,668; n=492)

0.76    
(0.11)

0.65   
(0.10) 0.479

Geography/ 
Culture, AB 
Typing Task

Red States vs. Blue States
(n=5,062; n=3,464)

0.94    
(0.03)

0.96    
(0.04) 0.748

Enrollment in Week 1 vs. Weeks 2-3
(n=6,359; n=4,112)

0.95    
(0.03)

0.95    
(0.04) 0.947

Night vs. Day
(n=4,556; n=5,195)

0.94    
(0.03)

0.97    
(0.04) 0.624

Enrollment in Week 1 vs. Weeks 2-3
(n=1,569; n=968)

0.43    
(0.18)

0.58   
(0.21) 0.570

Night vs. Day
(n=949; n=1,338)

0.37    
(0.18)

-0.05    
(0.22) 0.138

Enrollment in Week 1 vs. Weeks 2-3
(n=2,641; n=1,793)

0.88    
(0.06)

0.83    
(0.10) 0.634

Night vs. Day
(n=1,600; n=2,428)

0.88    
(0.06)

0.82
(0.09) 0.564

Rank-Order Correlations Across Designs
Table 3. Stability Across Designs, Additional Comparisons

Notes: The Table lists additional design changes which we did not present to the forecasters. In Column (1) we report the results under a full-
stability benchmark (see notes to Table 2) and in Column 2 we present the actual rank-order correlation.

Other Selection, 
WWII Coding 
Extra Cards

Demographics, 10-
minute WWII 
Coding Task

Other Selection, 
AB Task

Other Selection, 
10-minute WWII 

Coding Task



43 
 

Category Parameters 2015 
Exp.

2018 
Exp. Male Female College No 

College
Young 
(=<30) Old (30+) 10-Min Extra 

Work

Extra Work, 
No 

Consent
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Curvature of Cost of 
Effort  ɣ

0.015    
(0.004)

0.013    
(0.005)

0.012    
(0.003)

0.019    
(0.007)

0.015    
(0.005)

0.014    
(0.004)

0.011      
(0.003)

0.022     
(0.009)

1.909    
(4.180)

0.047    
(0.015)

0.057    
(0.014)

Implied Elasticity 0.034 0.04 0.043 0.028 0.036 0.037 0.046 0.025 0.01 0.42 0.34
Level of Cost of Effort 
k

2.39E-16  
(1.93E-15)

1.46E-13  
(1.53E-12)

1.34E-13   
(9.74E-13)

4.43E-19   
(5.82E-18)

5.10E-16   
(4.90E-15)

4.37E-15   
(3.73E-14)

8.63E-13   
(4.83E-12)

2.34E-21   
(4.43E-20)

5.11E-50   
(9.37E-31) 

0.028    
(0.041)

0.014    
(0.015)

Baseline Motivation s 3.87E-4   
(9.03E-4)

4.77E-4   
(1.75E-3)

4.25E-4    
(0.001)

 2.47E-04   
(8.21E-04)

1.363E-4   
(4.275E-4)

0.002    
(0.004)

0.002     
(0.004)

 1.90E-5   
(1.00E-04)

1.79E-5    
(4.52E-4)

0.203    
(0.191)

0.097    
(0.083)

Pay Enough or 
Don't Pay ΔsCO

0.003  
(0.104)

0.009     
(0.177)

-0.049    
(0.067)    

0.121      
(0.259)

-0.013   
(0.112)

0.028    
(0.142)

0.158      
(0.199)

-0.080     
(0.047)

-0.009    
(0.370)

0.068   
(0.102

0.052    
(0.076)

Pure Altruism alpha 
(1 is full altruism)

0.003    
(0.010)

0.010    
(0.017)

0.009    
(0.013)

0.001      
(0.009)

0.002      
(0.110)

0.010      
(0.014)

0.004     
(0.015)

0.006     
(0.011)

0.001    
(0.014)

0.011    
(0.028)

0.007    
(0.020)

Warm Glow a 0.138    
(0.134)

0.070    
(0.128)

0.112      
(0.128)

0.094      
(0.133)

0.131    
(0.154)

0.102     
(0.126)

0.224     
(0.180)

0.034     
(0.077)

0.014    
(0.621)

0.205    
(0.220)

0.267    
(0.180)

Social Pref.: Gift 
Exchange ΔsGE

2.39E-5   
(4.74E-5)

3.56E-5   
(0.0001)

2.99E-5  
(6.45E-5)

1.43E-5    
(4.06E-5)

1.38E-5    
(3.56E-5)

5.87E-5  
(1.12E-4)

0.0001    
(0.0002)

1.34E-06   
(6.14E-06)

-1.24E-5   
(3.45E-4)

2.073    
(0.865)

2.271    
(0.884)

Beta 1.163     
(1.194)

0.828    
(1.292)

0.805    
(0.967)

 1.516     
(1.970)

1.242     
(1.519)

0.729    
(0.884)

3.412     
(3.203)

0.254     
(0.498)

1.283    
(11.431)

5.407    
(6.018)

0.215    
(0.225)

Delta  (Weekly) 0.757     
(0.237)

0.930    
(0.425)

0.771    
(0.276)

0.810      
(0.323) 

0.665    
(0.258)

1.048    
(0.363)

0.651    
(0.201)

0.992    
(0.493)

0.690    
(1.875)

0.435    
(0.200)

1.318    
(0.378)

Social 
Comparisons ΔsSC

0.060    
(0.070)

0.076    
(0.130)

0.069    
(0.086)

.044      
(0.072)

0.036    
(0.055)

0.137    
(0.153)

0.194    
(0.162)

0.009     
(0.025)

-3.73e-06   
(1.184E-4)

-0.018    
(0.07)

0.024    
(0.044)

Ranking ΔsR
0.015    

(0.021)
0.015    

(0.033)
0.015   

(0.025)
0.010      

(0.020)
0.010    

(0.019)
0.021    

(0.032)
0.053    

(0.056)
0.001      

(0.005)
5.51E-6    

(1.59E-4)
0.001    

(0.070)
0.103    

(0.074)

Task 
Significance ΔsTS

0.011     
(0.016)

0.011    
(0.026)

0.015     
(0.024)

0.005   
(0.012)

0.004    
(0.009)

0.037     
(0.052)

0.040    
(0.045)

0.001   
(0.003) 

3.33E-6    
(1.23E-4)

-0.007    
(0.070)

0.143    
(0.091)

No. of Obs. 7,129 1,925 4,061 4,993 5,051 4,003 4,535 4,519 2,200 1,895 1,950
Avg effort 1,886 1,807 1,918 1,829 1,813 1,940 1,944 1,794 56.53 11.10 11.31
Root MSE 664.29 651.85 730.53 596.67 670.53 645.21 692.40 622.22 24.36 53.62 49.60

Out-of-Sample Pred. - 1978 2164 1952 1982 2069 2076 1959 59.09 12.62 13.00
Actual - 2056 2065 2049 2011 2106 2178 1910 56.18 10.81 13.30

Notes: The Table shows structural estimates of the incidental parameters (ɣ, k, and s) and psychological parameters estimated using all 15 treatments across 11 different samples. All models assume an exponential cost function. Cols (1)-(9) are estimated using
nonlinear least squares using the individual effort of MTurkers (rounded to the nearest 100). Cols (10)-(11) are estimated with maximum likelihood due to censoring. Col (1) shows estimates using all 2015 typing task conditions, Col (2) shows the estimates using all
2018 typing task  conditions. Cols (2)-(8) pool the typing task conditions from both years and estimate parameters restricting to a demographic subset. Cols (9)-(11) show estimates on the 2018 card coding treatments.  Standard errors in parantheses. 

Table 4. Structural Estimates
Exponential cost of Effort Function

Button Pushing 
Task, 10 Min Demographics, Typing Task, Pooled 2015-2018 2018 WWII Cards Coding Task

Incentive + 
Please try

Incidental 
Parameters

Social Pref. 
Parameters

Discounting
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Category Version 
Comparison

Info on 
Piece 
Rate

No Info 
on Piece 

Rate
Yes No Long 

(18 mins+)
Short 

(<18 mins)

High 
(4+ corr. 
w/in 0.1)

Low 
(<4 corr. 
w/in 0.1)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Pure Repl. 2015 AB Task vs. 
2018 AB Task

0.84    
(0.01)

0.84
(0.01)

0.83
(0.02)

0.86    
(0.01)

0.82    
(0.02)

0.84
(0.01)

0.83
(0.02)

0.86
(0.01)

0.81    
(0.02)

Male vs. Female 0.75    
(0.01)

0.76
(0.02)

0.74
(0.02)

0.76    
(0.02)

0.72    
(0.02)

0.76
(0.02)

0.73
(0.02)

0.77   
(0.02)

0.71    
(0.03)

College vs. No 
College

0.72    
(0.01)

0.72
(0.02)

0.73
(0.02)

0.75    
(0.01)

0.69    
(0.02)

0.75
(0.02)

0.70
(0.02)

0.76    
(0.02)

0.67    
(0.03)

Young (=<30) vs. 
Old (30+)

0.74    
(0.01)

0.76
(0.02)

0.73
(0.02)

0.77    
(0.02)

0.72    
(0.02)

0.77
(0.02)

0.72
(0.02)

0.77    
(0.02)

0.71    
(0.03)

Geogr. / 
Culture US vs. India 0.65    

(0.02)
0.65

(0.02)
0.65

(0.03)
0.65    

(0.02)
0.65    

(0.03)
0.67

(0.02)
0.62

(0.03)
0.69    

(0.02)
0.60    

(0.03)

Task AB Task vs. Card 
Coding

0.65    
(0.02)

0.62
(0.03)

0.69
(0.03)

0.64    
(0.03)

0.66    
(0.03)

0.66
(0.03)

0.64
(0.03)

0.67    
(0.02)

0.49    
(0.04)

10-min Cards vs. 
Extra Cards

0.61    
(0.02)

0.60
(0.03)

0.63
(0.03)

0.60    
(0.03)

0.64    
(0.03)

0.62
(0.03)

0.61
(0.02)

0.65    
(0.02)

0.66    
(0.04)

Extra Cards vs. AB 
Task 

0.54    
(0.02)

0.54
(0.03)

0.54
(0.03)

0.53    
(0.03)

0.55    
(0.03)

0.57
(0.03)

0.51
(0.03)

0.60    
(0.02)

0.65    
(0.03)

 AB Task: First 5 
min vs. Last 5 min

0.71    
(0.02)

0.72
(0.02)

0.70
(0.03)

0.70    
(0.02)

0.73    
(0.03)

0.71
(0.03)

0.71
(0.03)

0.69    
(0.02)

0.58    
(0.03)

Consent Cards: Consent 
vs. No Consent

0.79    
(0.01)

0.81
(0.02)

0.78
(0.02)

0.78    
(0.02)

0.80    
(0.02)

0.80
(0.02)

0.79
(0.02)

0.81    
(0.01)

0.76    
(0.03)

N=88
0.19 (0.01)
0.16 (0.04)

N=48
0.19 (0.01)
0.15 (0.03)

N=40
0.20 (0.01)
0.17 (0.04)

N=45
0.19 (0.01)
0.15 (0.03)

N=43
0.20 (0.01)
0.17 (0.04)

N=44
0.18 (0.01)
0.15 (0.03)

N=44
0.20 (0.01)
0.17 (0.04)

N=54
0.18 (0.01)
0.15 (0.03)

N=34
0.22 (0.01)
0.20 (0.03)

Notes: The Table considers the forecasts of sub-groups. Column 1 presents the results for the overall group of academic experts ad PhDs. In Columns 2 and 3 we split this group depending on whether the respondents were
randomized to be provided information on the aerage effort by piece rate or not. In Columns 4 and 5 we split by whether the subjects clicked on at least one link for additional information. In Columns 6 and 7 we split by the time
taken to complete the survey. In Columns 8 and 9 we split by the expressed degree of confidence in the forecast.

Table 5. Forecasts of Rank-Order Correlations by Different Forecasters

Version Clicked a Link Time Spent on Survey Confidence

N 
Average Ind. Abs. Error 
Wisdom-of-Crowd Error

Average Forecast of Rank-Order Correlation for the 15 Treatments Across Designs

Pooled 
Experts 

and PhDs

Demogr., 
Typing 
Task

Output
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Online Appendix Figures 1a-e. MTurk Task, Examples of Screenshots 
Online Appendix Figure 1a. Recruitment Ad on MTurk 

 
Online Appendix Figure 1b. Screenshot for Button Pushing Task, Example 
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Online Appendix Figure 1c. Screenshot for WWII 10-minute Card Coding Task, Example 

 
Online Appendix Figure 1d. Screenshot for Extra-Cards WWII Coding Task, Example I 
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Online Appendix Figure 1e. Screenshot for Extra-Cards WWII Coding Task, Example II 

 
Notes: Online Appendix Figures 1a-e plot excerpts of the MTurk real-effort task. Figure 1a displays the advertising for the task on MTurk, 
whereas the next figures display the key screen for the different experimental designs run in the 2018 experiment.
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Online Appendix Figure 2. Summary of Treatments and Results from DellaVigna and Pope (2018) 

 
Notes: The figure summarizes the key wording as well as the average effort and standard error for the mean effort in the 2015 experimental results of DellaVigna and Pope (2018) for the 15 
treatments which we replicate. This image is as presented to the forecasters. 
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Online Appendix Figure 3. Expert Survey, Screenshots 
Online Appendix Figure 3a. Examples of Rank-order Correlation 

 

 
 

Online Appendix Figure 3b. Example of Slider for Expert Forecast 

 
Notes: The figure shows two screenshots reproducing portions of the Qualtrics survey eliciting forecasts. The first screenshot reproduces two of 
the examples of rank-order correlation as treatments change effectiveness across two versions. The second screenshot shows one of the 10 
sliders that the forecasters used to make forecasts. 
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Online Appendix Figure 4. Distribution of Effort Across All Treatments 
Online Appendix Figure 4. 2015 MTurk Button Pushing Task  Figure 4b. 2018 MTurk Button Pushing Task 

 
Figure 4c. 2018 10-Minute Card Coding Task  Figure 4d. 2018 Extra Card Coding Task Figure 4e. 2018 Extra-Card Coding Task,No Consent 

 
Notes: Online Appendix Figures 4a-e plot the distribution of the effort measure across the 2015 experimental results (Figure 4a) and for the four versions of the 2018 experimental results (Figures 4b-
e). The distributions include all 15 treatments of focus in the paper.  
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Online Appendix Figure 5. Average Accuracy and Effort by Treatment in the 10-Minute Card Coding Experiment 

 
Notes: Online Appendix Figures 5 displays evidence on accuracy for the 10-minute WWII coding task. The graph plots the average effort by treatment (on the x axis) against the average accuracy of 
coding (on the y axis). The measure of accuracy is the share of cards coded correctly, where we only considered cards for which 80% or higher of respondents provide the same answer (considering 
only the alphabetical letters of the responses) and cards that were formatted correctly (some cards did not have the right fields for respondents to code).  
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Task:

Category Treatment Description 2015 
Exp.

2018 
Exp. 10-Min Extra 

Work
Extra Work, 
No Consent

(1) (2) (3) (4) (5)
No payment 540 137 170 158 138
Low piece rate 558 151 175 136 157
Medium piece rate 562 150 173 136 154
High piece rate 566 155 174 154 145

Pay Enough or 
Don't Pay Very low piece rate 538 138 167 155 143

Charity, low donation 554 151 164 130 168
Charity, high donation 549 151 168 135 160

Social Preferences: 
Gift Exchange Gift exchange, 40c bonus 545 151 168 150 146

Low piece rate, 2-week delay 544 145 164 154 145
Low piece rate, 4-week delay 550 155 170 154 141
1% prob. Piece rate 555 145 172 147 149
50% prob. Piece rate 568 149 165 146 147

Social Comparisons No payment, social comparison 526 149 164 142 151

Ranking No payment, feedback after 543 143 169 143 153
Task Significance No payment, please try hard 554 149 174 148 149

Piece Rate +
Task Significance Low piece rate, please try hard - 161 171 143 146

Number of Observations 8,252 2,380 2,708 2,331 2,392

Discounting

Risk Aversion and 
Probability Weighting

Notes: The Table lists the number of observations in each treatment cell. Because treatment randomization occurred in the 2018 Extra Coding Consent (version 3) and No
Consent (version 4) as one unit, the survey platform evenly presented the different treatments using all participants in these two versions. Therefore, there is a tradeoff
between Column (4) and Column (5). For additional information on effort and treatments, see Table 2.

Online Appendix Table 1. Observation Counts by Treatment
Number of Observations

Typing Task, 10 2018 WWII Cards Coding Task

Piece Rate

Social Preferences: 
Charity
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Task:

Category Treatment Wording Male Female College No 
College

Young 
(=<30)

Old 
(30+) USA India First 5 

Mins
Last 5 
Mins

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

No payment 1451 
(46)

1520 
(34)

1403 
(37)

1602 
(42)

1516 
(42)

1461 
(36)

1502 
(31)

1371 
(66)

734 
(16)

759 
(14)

Low piece rate 2094 
(40)

1957 
(30)

1964 
(33)

2080 
(36)

2060 
(35)

1964 
(33)

2057 
(26)

1743 
(68)

1008 
(14)

1008 
(12)

Medium piece rate 2258 
(35)

2022 
(29)

2120 
(30)

2141 
(35)

2235 
(33)

2022 
(31)

2163 
(25)

1833 
(71)

1075 
(13)

1055 
(12)

High piece rate 2280 
(36)

2076 
(26)

2104 
(30)

2251 
(31)

2258 
(30)

2067 
(31)

2228 
(22)

1750 
(69)

1101 
(12)

1068 
(11)

Pay Enough or 
Don't Pay Very low piece rate 1857 

(45)
1873 
(31)

1824 
(37)

1916 
(36)

1953 
(37)

1778 
(35)

1901 
(28)

1577 
(74)

903 
(16)

964 
(13)

Charity, low donation 1931 
(39)

1834 
(28)

1855 
(31)

1910 
(37)

1944 
(34)

1813 
(32)

1890 
(26)

1789 
(65)

943 
(14)

937 
(12)

Charity, high donation 1974 
(37)

1838 
(29)

1862 
(31)

1954 
(34)

1953 
(34)

1852 
(31)

1926 
(25)

1728 
(64)

962 
(14)

939 
(12)

Social Preferences: 
Gift Exchange Gift exchange, 40c bonus 1564 

(45)
1582 
(31)

1509 
(35)

1664 
(39)

1635 
(42)

1521 
(33)

1580 
(29)

1533 
(71)

788 
(15)

787 
(13)

Low piece rate, 2-week delay 2044 
(41)

1952 
(28)

1942 
(33)

2051 
(35)

2105 
(36)

1896 
(31)

2030 
(26)

1734 
(67)

1001 
(14)

993 
(12)

Low piece rate, 4-week delay 2003 
(43)

1931 
(30)

1891 
(35)

2060 
(36)

2029 
(38)

1898 
(33)

2006 
(27)

1676 
(65)

985 
(14)

979 
(13)

1% prob. Piece rate 1977 
(39)

1854 
(31)

1856 
(34)

1985 
(35)

1978 
(37)

1851 
(33)

1971 
(26)

1557 
(64)

946 
(15)

968 
(12)

50% prob. Piece rate 2018 
(39)

1899 
(26)

1887 
(31)

2022 
(32)

2016 
(34)

1886 
(29)

1981 
(24)

1629 
(65)

983 
(13)

970 
(12)

Social Comparisons No payment, social comparison 1884 
(45)

1787 
(34)

1765 
(38)

1922 
(40)

1927 
(40)

1744 
(38)

1845 
(31)

1755 
(77)

920 
(16)

914 
(14)

Ranking No payment, feedback after 1761 
(43)

1712 
(32)

1687 
(37)

1793 
(39)

1813 
(40)

1662 
(36)

1748 
(30)

1548 
(73)

869 
(15)

868 
(13)

Task Significance No payment, please try hard 1758 
(42)

1684 
(32)

1629 
(35)

1832 
(37)

1789 
(39)

1643 
(34)

1740 
(28)

1565 
(72)

862 
(15)

856 
(12)

Piece Rate + 
Task Significance Low piece rate, please try hard 2065 

(85)
2049 
(50)

2011 
(64)

2106 
(65)

2178 
(62)

1910 
(65)

2131 
(49)

1686 
(125)

1038 
(23)

1019 
(26)

Number of Observations 4,754 5,878 5,927 4,705 5,300 5,332 8,926 1,247 10,632 10,632
Notes: The Table presents the average output for each treatment cel, split by the dimensions listed in the column headings. See Table 2 for more information.

Mean Effort (s.e.)
Online Appendix Table 2. Findings by Treatment: Effort in Different Versions of Experiment

Discounting

Risk Aversion and 
Probability Weighting

Piece Rate

Social Preferences: 
Charity

Buttob-Pushing a-b Typing Task
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Category Version 
Comparison

Full 
Stability 
w/ Noise

Actual
Full 

Stability 
w/ Noise

Actual
Full 

Stability 
w/ Noise

Actual
Full 

Stability 
w/ Noise

Actual
Full 

Stability 
w/ Noise

Actual

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Pure 

Replication
2015 AB Task vs. 

2018 AB Task
0.96    

(0.02)
0.97     

(0.02)
0.04    

(0.02)
0.07

(0.04)
0.03

(0.01)
0.04

(0.01)
0.33    

(0.14)
0.13

(0.07)
0.32      

(0.12)
0.10

(0.04)

Male vs. Female 0.97    
(0.01)

0.98    
(0.02)

0.04    
(0.02)

0.10
(0.03)

0.03
(0.01)

0.06
(0.02)

0.28    
(0.11)

0.12
(0.06)

0.26      
(0.09)

0.09
(0.04)

College vs. No 
College

0.97    
(0.01)

0.97    
(0.02)

0.04    
(0.02)

0.07
(0.03)

0.03      
(0.01)

0.02
(0.01)

0.28    
(0.10)

0.09
(0.05)

0.26      
(0.09)

0.07
(0.03)

Young vs. Old 0.97    
(0.01)

0.98    
(0.02)

0.04    
(0.02)

0.04
(0.03)

0.03      
(0.01)

0.02
(0.01)

0.28    
(0.11)

0.08
(0.05)

0.27      
(0.10)

0.05
(0.03)

Geography/ 
Culture

US vs. India 0.92    
(0.03)

0.78    
(0.09)

0.06    
(0.03)

0.07
(0.03)

0.04      
(0.01)

0.11
(0.02)

0.42    
(0.18)

0.20
(0.06)

0.41      
(0.14)

0.34
(0.10)

Task AB Task vs. Card 
Coding

- 0.60    
(0.14)

- 0.25
(0.06)

- 0.19
(0.04)

- 0.59
(0.12)

- 0.53
(0.11)

Extensive Cards vs. 
Intensive Cards

- 0.21    
(0.17)

- 0.21
(0.06)

- 0.50
(0.05)

- 0.23
(0.05)

- 0.71
(0.10)

Extensive Cards vs. 
AB Task 

- 0.65    
(0.07)

- 0.16
(0.04)

- 0.33
(0.04)

- 0.47
(0.11)

- 0.29
(0.07)

 AB Task: First 5 min 
vs. Last 5 min

0.99    
(0.00)

0.98    
(0.01)

0.03    
(0.01)

0.04
(0.02)

0.02      
(0.01)

0.03
(0.01)

0.21    
(0.07)

0.04
(0.02)

0.21     
(0.07)

0.04
(0.02)

Ecological 
validity

Cards: Consent vs. 
No Consent

0.92    
(0.03)

0.92    
(0.04)

0.13    
(0.06)

0.16
(0.08)

0.09      
(0.02)

0.08
(0.02)

0.43    
(0.17)

0.15
(0.07)

0.36     
(0.10)

0.10
(0.03)

Online Appendix Table 3. Comparison Across Designs, Alternative Measures

Demographics

N o tes:  The Table presents alternative measures o f stability o f experimental results for the version comparisons o f Table 2. Values that are bo lded are significantly different from the full stability measure (p value <0.05).

Output

Average Log Point Difference From 
Baseline Treatment

Baseline 
Treatment: No 

Payment 

Baseline 
Treatment: 10 

Cent 

Pearson 
Correlations 

Across Versions

Average Absolute z-Score Difference 
from Baseline Treatment

Baseline 
Treatment: No 

Payment 

Baseline 
Treatment: 10 

Cent 
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Category Treatment Wording
10-Minute 

Card 
Coding

Required 
Cards, 
Pooled

Extra 
Cards, 
Pooled

(1) (2) (3)

No payment 0.912
 (0.013)

0.928
 (0.009)

0.920
 (0.018)

Low piece rate 0.914
 (0.012)

0.912
 (0.010)

0.922
 (0.014)

Medium piece rate 0.925
 (0.010)

0.921
 (0.009)

0.936
 (0.011)

High piece rate 0.914
 (0.012)

0.896
 (0.011)

0.884
 (0.016)

Pay Enough or 
Don't Pay Very low piece rate 0.916

 (0.012)
0.919

 (0.009)
0.898
 (0.02)

Charity, low donation 0.920
 (0.012)

0.932
 (0.008)

0.906
 (0.017)

Charity, high donation 0.895
 (0.014)

0.920
 (0.009)

0.929
 (0.015)

Social Pref: Gift 
Exchange Gift exchange, 40c bonus 0.916

 (0.011)
0.928

 (0.009)
0.934

 (0.013)

Low piece rate, 2-week delay 0.917
 (0.013)

0.922
 (0.01)

0.920
 (0.015)

Low piece rate, 4-week delay 0.887
 (0.015)

0.906
 (0.01)

0.899
 (0.017)

1% prob. Piece rate 0.931
 (0.011)

0.929
 (0.009)

0.943
 (0.011)

50% prob. Piece rate 0.901
 (0.013)

0.914
 (0.01)

0.920
 (0.015)

Social 
Comparisons No payment, social comparison 0.920

 (0.012)
0.909

 (0.010)
0.896

 (0.019)

Ranking No payment, feedback after 0.922
 (0.011)

0.918
 (0.009)

0.921
 (0.016)

Task Significance No payment, please try hard 0.911
 (0.013)

0.927
 (0.009)

0.922
 (0.016)

Piece Rate + 
Task Significance Low piece rate, please try hard 0.923

 (0.012)
0.918

 (0.009)
0.904

 (0.016)
Number of Observations 2,708 4,723 3,026

Average Accuracy 0.914
(0.003)

0.919
(0.002)

0.916
(0.004)

Prob > F 0.750 0.477 0.188

Online Appendix Table 4. Accuracy in the 2018 Card-Coding Task

Notes: The Table presents the average accuracy of coding of occupation in WWII cards. The accuracy is defined as follows: We consider only
cards for which 80% or higher of respondents provide the same answer (considering only the alphabetical letters of the responses) and cards that
were formatted correctly (some cards did not have the right fields for respondents to code). This restricts the sample from 3,353 cards to 2,588
cards. Restricting the analysis to such cards, we compute the share of cards that an individual computed correctly, and then average across the
individuals in a treatment. Column 1 refers the 10-minute card-coding experiment, Column 2 refers to the required-cards experiment, and Column 3
refers to the coding of the extra cards.

Discounting

Risk Aversion and 
Probability 
Weighting

Piece Rate

Social Preferences: 
Charity




