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stop at borders and is typically not determined by distance alone. This paper introduces a method
that leverages observations of multiple outcomes to adjust standard errors for cross-sectional
dependence. Specifically, a researcher, while interested in a particular outcome variable, often
observes dozens of other variables for the same units. We show that these outcomes can be
used to estimate dependence under the assumption that the cross-sectional correlation structure
is shared across outcomes. We develop a procedure, which we call Thresholding Multiple
Outcomes (TMO), that uses this estimate to adjust standard errors in a given regression setting.
We show that adjustments of this form can lead to sizable reductions in the bias of standard errors
in calibrated U.S. county-level regressions. Re-analyzing nine recent papers, we find that the
proposed correction can make a substantial difference in practice.
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1. INTRODUCTION

Empirical research in economics often considers data indexed by locations in space. In 2023 alone, nearly

half—61 of 128—of all empirical, observational papers published in five leading, general interest journals

primarily consider data with this characteristic.1 The interpretation of inferences produced using these data is

complicated by a ubiquitous form of dependence: economic outcomes are typically linked across locations in

potentially complex ways, through direct causal relationships or a common underlying influence. Productivity

shocks to one region may propagate to other areas through trade linkages or labor market flows (Greenstone

et al., 2010; Bustos et al., 2016; Giroud et al., 2024), fiscal policies in one municipality may affect both the

design of symmetric policies and economic outcomes in other locations (Case et al., 1993; DellaVigna and

Kim, 2022), and political events in one jurisdiction may determine voter behavior in others (Besley and Case,

1995; Madestam et al., 2013).

Spatial dependence has the potential to induce substantial biases in statistical inferences that are made

under the assumption that outcomes are independent across space. Existing methods for correcting standard

errors fall into two broad categories. The first set of methods cluster standard errors based on a partition of

the space. A prototypical instance of this approach allows for dependence between pairs of U.S. counties in

the same state (for discussion, see Moulton 1986, 1990). The second set of methods parameterize dependence

as a monotonic, decreasing function of geographic distance (Conley, 1999; Müller and Watson, 2022, 2023).

Both approaches impose strong, ex ante restrictions on how spatial dependence varies with geography, in

one case with sharp boundaries, and in the other with smooth functions of distance. However, the correlation

between economic outcomes at two locations need not be driven, in large or substantial part, by their

geographic distance. For instance, similarities in economic or political behavior could instead arise from

factors like urbanization, income, or education levels, some of which may be unobserved.

To illustrate this point, we collect a set of 91 U.S. county-level economic outcomes (including the

unemployment rate, the average income, the poverty rate, etc.,) for each of the 3,144 U.S. counties.2 We

normalize each outcome to have mean zero and unit variance across the set of counties. The left column of

Figure 1 displays the correlation between the economic outcomes of San Francisco County, California and

the outcomes of every other county in the states of California, North Dakota, and New York. As one might

expect, San Francisco is more correlated with other densely populated areas, such as Los Angeles County and

New York County (which contains the borough of Manhattan), than with the less populated areas in the rural

state of North Dakota. The same, intuitive, patterns hold among less populated areas. Take Modoc County,

California, for instance. Modoc County is the third least populous county in the state of California, with an

1We hand-labeled the 370 papers published in the American Economic Review, Econometrica, Journal of Political Economy, Review
of Economic Studies, and Quarterly Journal of Economics in 2023 according to whether they are, primarily, empirical, observational,
and consider data indexed by locations in space. Further details concerning the criteria used to define these categories are given in
Section 5. Examples of empirical analyses without a spatial aspect include those where units are products, or students in a single
educational institution, or patents.
2We list these outcomes, and give further details concerning their construction, primarily from the U.S. Census, in Appendix B.1.
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FIGURE 1. Correlation with Two California Counties

Correlation w/ San Francisco County Correlation w/ Modoc County

California

North Dakota

New York

Notes: Figure 1 displays heat-maps giving the correlation of a collection of economic outcomes between pairs of U.S. counties.
These outcomes are listed in Appendix B.1 and have been normalized to have mean zero and unit variance. The first column gives
the correlation between outcomes in San Francisco County, California, with each county in the states of California, North Dakota,
and New York. The second column is analogous, but gives correlations relative to Modoc County, California.
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economy substantially driven by the agricultural sector (California Deprtment of Transportation, 2023). The

right column of Figure 1 displays the correlation between the economic outcomes of Modoc County, and

every other county in California, North Dakota, and New York. Modoc County is highly correlated with other

rural, agricultural areas. In fact, Modoc County is more correlated with very distant less populated areas in

North Dakota and New York than with closer, but more populated, areas in California.3

Methods based on the assumption that cross-sectional dependence is determined by geographic proximity

alone cannot capture the many of the main features of the estimates displayed in Figure 1, and so may not

perform well in many regression problems considered in empirical economics. Indeed, in Section 2, we

calibrate a simulation to the estimates of the correlation between pairs of U.S. counties across the outcomes

introduced above. We find that, in this setting, many standard adjustments for spatial dependence yield

standard errors that are badly biased.

In this paper, we introduce a method that uses observations of multiple outcomes to adjust standard errors

for spatial dependence. We detail the proposal in Section 3. Often, in a single study, researchers observe many

outcome variables for the same set of units. We give a condition under which collections of outcomes, of the

type considered above, can be used to estimate dependence across units. In particular, rather than directly

restricting cross-sectional dependence to be determined by, say, geographic proximity, we assume that the

structure of cross-sectional correlation is shared across outcomes. This is a highly stylized restriction—so too

are alternative assumptions. The main appeal is that, in settings where this assumption is reasonable, i.e.,

where the main features of cross-sectional correlation are captured by a collection of available outcomes,

spatial dependence can be estimated directly from the data at hand.

We propose a procedure, which we call Thresholding Multiple Outcomes (TMO), for using estimates of

spatial dependence to adjust standard errors in a given regression setting. The method consists of three steps.

First, we estimate the correlation across locations using a collection of auxiliary outcomes. Second, we use

the empirical distribution of these estimates to determine a threshold; pairs of locations whose correlation

exceeds this threshold are treated as correlated, while pairs below the threshold are treated as uncorrelated.

Third, we construct standard errors by allowing for dependence among location pairs treated as correlated.

This approach is analogous to the construction of clustered standard errors. There, pairs of locations in the

same cluster are assumed to correlate a priori. Here, we use the auxiliary outcomes to determine the pairs

of locations that correlate. Revisiting the calibrated simulation from Section 2, we find that this procedure

exhibits substantially smaller bias, and more accurate rejection rates, than existing methods.

Our procedure is premised on the hypothesis that, in many settings of practical interest in applied

economics, pairs of locations can be effectively categorized as either “null” or “non-null.” Outcomes at

non-null location pairs exhibit meaningful correlation, whereas outcomes at null pairs do not. The main idea

3These results generalize beyond Modoc county. Figure A.1 displays the correlation in outcomes between each pair of counties in
California, North Dakota, and New York. Counties are sorted by state and population. It is clear that both population and geography
are important determinants of the correlation between two counties. Figure A.2 gives an analogous visualization for each pair of
counties in the United States. The same pattern holds.
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is that the empirical distribution of the estimates of the correlation between each pair of locations can be used

to distinguish null pairs from non-null pairs. We appeal to the intuition that the center of this distribution

should predominately consist of the correlations associated with null pairs. Thus, we estimate the null

distribution using the center, and then extrapolate this estimate into the tails to infer the analogous distribution

for the non-nulls. We rely on a Gaussian approximation to the null distribution. These inferred distributions

can then be used to select a threshold that appropriately balances the contributions of null and non-null pairs

to the error when constructing the resultant standard errors.

The main non-standard feature of our setting is that the data under consideration are correlated across both

locations and outcomes. In Section 4, we consider how both sources of correlation impact the performance

of the TMO estimator. We present two results. First, we give a quantitative description of the extent of the

correlation across locations and outcomes under which spatial dependence is consistently estimable. Second,

we characterize the quality of a Gaussian approximation to the empirical distribution of the null correlation

estimates in terms of the extent of the correlation across outcomes. In both cases, the main takeaway is that

our ability to recover spatial dependence is adversely impacted by the use of highly correlated outcomes.

Thus, when applying the TMO estimator, researchers face a trade-off: pairs of outcomes with the most similar

cross-sectional correlation are likely to be, themselves, more correlated. We provide recommendations on

how to best balance these considerations in the remaining two sections.

In Section 5, we illustrate the application of TMO standard errors to nine recent papers. We begin by

documenting that the potential for spatial correlation is widespread in empirical economics. In a set of 370

economics papers published in 2023 in five leading journals, we identify 126 observational papers, 48% of

which have the potential for spatial correlation to affect a main estimate in the paper. The most common

geographic unit in such papers is the U.S. county, employed in 15 papers. We re-analyze seven of these

papers, which differ in their economic context and underlying methodology. For each paper, we identify a set

of county-level outcomes, taken from each paper’s replication packages as well as from external sources. We

use these outcomes to construct the TMO estimator.

When applied to these papers, we find that the TMO estimator can substantively change the estimated

standard errors, with a median increase of 37%. We then compare TMO to several leading alternatives based

on modeling dependence in terms of geographic proximity: clustered standard errors, Conley (1999), and

Müller and Watson (2022, 2023). In some cases, the TMO standard error leads to a similar adjustment. In

others, the resultant standard errors are qualitatively different. To show that the method is applicable to other

units of observation, we apply the TMO estimator to two additional papers—one that studies commuting

zones and another that studies countries.

We conclude in Section 6 by detailing our recommendations for practice. We emphasize rules-of-thumb

concerning what types of data our method is best suited for, diagnostics for determining that the method

is performing as intended, and further illustrations of principals for choosing a relevant collection of

outcomes. Auxiliary Figures and Tables are displayed in Appendix A. Further details and extensions
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are given in Appendix B. Proofs for all results stated in the main text are given in Appendix C; Proofs

for supporting Lemmas are given in Appendix D. Details concerning our empirical applications are given

in Appendix E. Code implementing the method developed in this paper is available at the link https:

//github.com/wjnkim/tmo.

1.1 Related Literature

We contribute to an extensive econometric literature concerning quantification of uncertainty in data that

exhibit cross-sectional dependence. Much of this research focuses on methods that partition units into clusters

according to an observable characteristic, allowing for correlation among observations within the same cluster.

Liang and Zeger (1986) introduce the first heteroskedasticity-consistent clustered standard error (see also

MacKinnon and White 1985, Bell and McCaffrey 2002, and Imbens and Kolesar 2016 for alternatives that

exhibit better finite-sample performance). Bertrand et al. (2004) provide a compelling demonstration of the

practical importance of these methods in panel data. Cameron and Miller (2015) give a comprehensive review.

Like this approach, we assume that only a small proportion of pairs of units correlate.4 By contrast, we do not

assume that these pairs are know ex ante, but rather, can be learned from observations of auxiliary outcomes.

A smaller, but widely applied, subset of this literature develops methods premised on the assumption that

dependence can be modeled as a function of the distance between units. This line of work was initiated

by Conley (1999), who emphasizes that dependence should be modeled by general measures of “economic

distance” (see also Kelejian and Prucha 2007, Kim and Sun 2011, Bester et al. 2016, Pollmann (2020), Colella

et al. (2023) and Müller and Watson 2022, 2023 for alternative estimators based on this program). Despite

this, most applications of this framework parameterize dependence in terms of geographic proximity alone.

Separately, Barrios et al. (2012), Müller and Watson (2024), and Conley and Kelly (2025) demonstrate

that applying standard variance estimators to spatially correlated data often yields spurious findings. The

simulation experiments conducted in Section 2 generate results that are consistent with this view. Despite this,

our outlook is pragmatic. The core of our proposal is that, due to the widespread availability of additional

outcome data, at the very least, some of the cross-sectional correlation that is common across measured

outcomes can be controlled.

Our approach for identifying pairs of locations that correlate draws on an extensive literature in multiple

hypothesis testing, particularly as developed for DNA micro-array analyses. See Efron (2012) for a textbook

treatment. As our primary aim is to construct a single standard error, the criteria that we use to distinguish

nulls from non-nulls differs from the methods developed in that literature (see also Bailey et al. (2016) and

Bailey et al. (2019) for connections between multiple hypothesis testing and the construction of spatial

standard errors). Moreover, we emphasize simple methods that require minimal nonparametric modeling.

4Available methods for constructing clustered standard errors with large clusters are either conservative (Ibragimov and Müller, 2010,
2016) or rely an assumption that error covariance matrices are identical across clusters (Canay et al., 2017, 2021).

https://github.com/wjnkim/tmo
https://github.com/wjnkim/tmo
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More sophisticated methods for estimating null distributions, as well as optimality theory, are discussed in

Langaas et al. (2005), Efron (2007), Jin and Cai (2007), and Cai and Jin (2010), among other places.

Finally, we contribute to a growing literature that considers how standard statistical procedures can be

improved by incorporating measurements of multiple outcomes. For example, Ludwig et al. (2019), Sun et al.

(2023), and Abadie et al. (2024) each consider how collections of outcomes can be used to improve estimates

of causal effects. Our primary focus, by contrast, is on obtaining more accurate estimates of uncertainty in

regression problems.

2. STANDARD ADJUSTMENTS FOR SPATIAL DEPENDENCE ARE BIASED

In this section, we use a simulation experiment to measure the performance of several methods for adjusting

standard errors for spatial dependence. We consider settings with the following structure. A researcher

observes the data pYi,Wi, Xiq for each unit i in 1, . . . , n, where Yi is a scalar outcome, Wi is a scalar

treatment, and Xi is a vector of covariates. For the sake of concreteness, Yi could measure the change in the

income per capita in U.S. county i over a given time period, Wi could denote the change in the percent of the

population in county i that has completed a college degree, and Xi could collect a set of state fixed effects.

The researcher assumes that the data arise from the linear model

Yi “ α ` τWi ` θJXi ` εi, Erεi|W,Xs “ 0, i “ 1, . . . , n , (2.1)

where W “ pWiq
n
i“1 and X “ pXiq

n
i“1 collect the treatment and covariate measurements over the full

sample of units. Let τ̂ denote the ordinary least squares estimate of the parameter τ . Our interest is in

estimating an appropriate standard error for τ̂ .

Often, it is unreasonable to assume that the components of the residual vector ε “ pεiq
n
i“1 are uncorrelated.

For most settings of interest in applied economics, factors that determine outcomes in San Francisco, say,

plausibly also determine outcomes in Berkeley. There are two common ways of adjusting standard errors

for spatial dependence. One set of methods is based on clustering standard errors based on a partition of the

space, thereby imposing geographic borders on the scope of spatial dependence (Moulton, 1986, 1990). A

second set of methods parameterize spatial dependence smoothly in terms of geographic distance (Conley,

1999; Müller and Watson, 2022, 2023).

How well do these methods address the types of spatial dependence exhibited by the data considered in

applied economics? An answer to this question requires the specification of a “typical” correlation structure.

In Section 2.1, we measure the main features of the spatial dependence exhibited by the types of U.S.

county-level outcomes considered in applied economics.5 In Section 2.2, we use these measurements to

5We focus our discussion on U.S. counties because this is the most common level unit of aggregation considered in leading general
interest economics journals in 2023. In particular, 12% of all observational papers in this sample take U.S. counties as their unit of
observation. This proportion increases to 25% if the sample is restricted to papers whose unit of observation has the potential for
spatial correlation. Further details are given in Section 5.



7

calibrate a simulation and document the performance of several widely applied approaches to adjusting

standard errors for spatial dependence.

2.1 Measuring The Structure of Spatial Dependence

What types of spatial dependence should we expect in the economic outcomes of U.S. counties? The

basic premise of this paper is that non-trivial correlation structures can be inferred from measurements of

multiple outcomes. To operationalize this idea, we collect 91 U.S. county-level outcomes. This is the same

set of outcomes considered in Section 1. These outcomes, which include measurements of income, poverty,

employment, crime, and health, and are intended to capture the main features of the types of outcomes

considered in applied economics. We list these outcomes and give further details concerning their construction

in Appendix B.1.

Given a “representative” outcome Yi and treatment Wi, and a pair of counties i and i1, should we expect

the residuals εi and εi1 to correlate? We argue that an answer to this question can be recovered by averaging

the product of the empirical versions of these residuals across the outcomes in our sample. Formally, let

Y
p1q

i , . . . , Y
pdq

i denote the d outcomes measured for county i. As a working example, we take the treatment

of interest Wi to be the change in the percentage of the population in county i that has completed a college

degree from 1980 to 2009. For each outcome Y pjq

i , let ε̂pjq

i be the empirical residuals from the least squares

regression of Y pjq

i on Wi and a vector of state fixed effects. Let ε̃pjq

i denote a version of ε̂pjq

i that has been

standardized to have variance one across units, given by

ε̃
pjq

i “ ε̂
pjq

i

O

g

f

f

e

1

n

n
ÿ

i“1

pε̂
pjq

i q2 . (2.2)

The empirical covariance and correlation between the empirical residuals for counties i and i1 across outcomes

are given by

λ̂i,i1 “
1

d

d
ÿ

j“1

pε̃
pjq

i ´ εiqpε̃
pjq

i1 ´ εi1q and ρ̂i,i1 “
λ̂i,i1

b

λ̂i,iλ̂i1,i1

, (2.3)

respectively, where εi “ 1
d

řd
j“1 ε̃

pjq

i is the average of the normalized residuals ε̃pjq

i across outcomes for

county i. Intuitively, the statistic ρ̂i,i1 captures the tendency for residuals associated with counties i and i1 to

be correlated.

Figure 2 displays a histogram of the correlation estimates ρ̂i,i1 over each pair of distinct U.S. counties.

A Gaussian density function, centered at zero, is overlaid in blue. The scaling of this density function has

been chosen to best fit the quartiles of the distribution of the measurements ρ̂i,i1 . The left and right tails of

the distribution are displayed as enlarged insets. Two features stand out: The Gaussian distribution does an

exceptional job at approximating the center, but under-estimates the right-tail, of the empirical distribution of

the correlation estimates.
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FIGURE 2. The Distribution of Correlations Between Pairs of U.S. Counties

Notes: Figure 2 displays a histogram of the estimates ρ̂i,i1 over each pair of distinct U.S. counties. A mean-zero, Gaussian density
function is overlaid in blue. The scaling of this density function has been chosen to best fit the corresponding quartiles of the
distribution of the estimates ρ̂i,i1 . The left and right tails of the distribution are displayed as enlarged insets.

These observations can be rationalized as follows. Suppose that the correlation estimates ρ̂i,i1 are approxi-

mately Gaussian. This will hold if the number of outcomes d is sufficiently large and there is not too much

correlation across residuals. (We will have more to say about this in Section 4.) The excellent approximation

of a mean-zero, Gaussian distribution to the central quantiles of the correlation estimates suggests that most

pairs of counties are not systematically correlated. By contrast, the poor approximation of the Gaussian

distribution to the right tail of the correlation estimates suggests that there is a relatively small proportion of

pairs of counties that are systematically positively correlated.

It is worth scrutinizing, however, whether the right-tail of the distribution of correlation estimates captures

pairs of counties that are genuinely correlated. Consider the set of county pairs pi, i1q in which the correlation

estimate ρ̂i,i1 exceeds the positive threshold δ. Table 1 reports, for several values of δ, the proportion of county

pairs pi, i1q in this set in which county i is among the closest 10% of counties to i1 on a collection of observable

characteristics. Proximity on observable characteristics is very predictive of having highly correlated residuals.

Geographic proximity does not tell the whole story, however. Demographic and socioeconomic proximity,

e.g., income, population, and population density, are similarly predictive of correlations in residuals.
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TABLE 1. Predictors of Highly-Correlated County Pairs

Among county pairs pi, i1q with ρ̂i,i1 ą δ,
percentage in which i ranks among the 10% closest to i1 in:

δ

0 0.2 0.4

Population 13 21 41

Urban % 14 20 41

Geographic Distance 12 17 32

Median income 13 17 31

Non-white % 12 15 24

Vote-share 12 14 22

Any of the above 51 62 83

Notes: Table 1 shows the percent of county-pairs pi, i1
q in which county i is within the top 10% of counties closest to i1 on a

collection of observable characteristics, among the county-pairs that have a correlation greater than a threshold δ. The threshold δ
increases across columns. The percentages of county-pairs with estimated correlations above 0, 0.2, and 0.4 are 49.3%, 6.4%, and
0.3%, respectively.

2.2 Calibrated Simulation

The estimates displayed in Figure 2 suggest that the outcomes of at least some pairs of U.S. counties

are systematically correlated. The next question is whether this matters. We assess, through a calibrated

simulation, whether ignoring these correlations leads to biased standard error estimates. Specifically, we use

the estimates ρ̂i,i1 to parameterize a covariance matrix Σ for the residual vector ε in the specification (2.1).

We assume that the residual vector ε has a Gaussian distribution with mean zero and variance Σ. Let σi,i1

denote the i, i1th component of Σ. Our goal is to assess the performance of standard methods that ignore

spatial dependencies, as well as the performance of conventional methods for adjusting standard errors that

are based on modeling spatial correlation in terms of geographic distance.

To do this, we must meet two objectives. First, the non-zero off-diagonal elements of Σ should primarily

consist of pairs of counties whose correlation estimate ρ̂i,i1 is likely to reflect real dependence. Second, the

covariance matrix Σ must be a proper, positive-definite, covariance matrix, so that it can be used to draw

simulation replicates. We develop a simple approach that achieves these goals. We set σi,i1 “ 0 for all pairs

of counties with |ρ̂i,i1 | ă 0.45. We then implement an algorithm, described in Appendix B.2, to produce a

positive-definite matrix by forming “clusters” among the remaining pairs of counties that have |ρ̂i,i1 | ľ 0.45.

Within these clusters, which contain 39% of these highly correlated pairs, we set σi,i1 “ ρ̂i,i1 . The simulation

is structured as follows. For each of 1,000 simulation replicates, we draw a random vector ε from Np0,Σq, set

Y “ βW ` ε, where β “ 0 and W is a specified treatment vector, and apply various methods to (i) estimate

the standard error associated with the least squares regression of Y on W and (ii) test the null hypothesis that

β “ 0 at level α “ 0.05.
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TABLE 2. Comparison of Methods for Adjusting for Spatial Dependence

∆ % College Grad ∆ Per-acre Farm Value

Mean
` Est. SE

True SE

˘

Rej. rate Mean
` Est. SE

True SE

˘

Rej. rate

Method (1) (2) (3) (4)

(1) HC1 0.44 0.39 0.54 0.29

(2) Cluster by state 0.47 0.36 0.57 0.25

(3) Conley (150mi) 0.47 0.37 0.57 0.26

(4) SCPC 0.64 0.24 0.71 0.17

(5) TMO 0.77 0.14 0.76 0.12

Notes: Table 2 reports the performance of various methods in the calibrated simulation experiment outlined in Section 2.2. Columns
(1) and (3) report the mean standard error estimate, over simulation replications, as a proportion of the true standard error. Columns
(2) and (4) reports the rejection rate at level 0.05 of the associated test that β “ 0. Results are from 1,000 simulation draws. The
treatments of interest are the change in the percent of college graduates from 1980-2009 (Columns 1-2) and the change in the per-acre
value of farmland (Columns 3-4). “Robust” refers to HC1 heteroskedasticity consistent standard errors (Hinkley, 1977). “Conley
(150mi)” refers to the standard error estimator proposed by Conley (1999), implemented with a bandwidth of 150 miles. “SCPC”
refers to the Spatial Correlation Principal Components method proposed by Müller and Watson (2022, 2023). “TMO” refers to the
Thresholding Multiple Outcomes estimator proposed in Section 3.

Table 2 displays the results of this exercise. We consider two choices of the treatment vector W : The

change in the percentage of the population in county i that has completed a college degree from 1980 to

2009 and the change in the per-acre value of farm-land. The first row displays the bias for heteroskedasticity-

consistent standard errors (HC1). Across the 1,000 simulation draws, the median estimated standard error

is only 0.44 of the true standard error, leading to a rejection rate of 0.39. Conventional methods to address

spatial correlation, for example clustering by state (row 2) or using Conley (1999) standard errors with a

150-mile radius (row 3), shows little improvement, with the median standard error at still less than half of the

true standard error.6 These adjustments have no impact on the bias in the standard error estimates (This can

be attributed to the fact that Σ is based on the covariance of residuals that have already been been demeaned

by state). The fourth row displays the performance of the Spatial Correlation Principal Components (SCPC)

method of Müller and Watson (2022, 2023), which is based on parameterizing spatial correlation in terms of

geographic distance. The results here exhibit a sizable improvement over the previous methods. The bias of

the median estimated standard error is reduced to around 40% of the the true standard error and the rejection

rate falls to 0.24.
6Conley (1999) standard errors are consistent only if the number of location pairs within the bandwidth is small relative to the sample
size. In our setting, a bandwidth of 150 miles includes 3.1% of county pairs. Setting the bandwidth to 300 miles, say, includes 11.3%
of county pairs, moving beyond the regime where we should expect consistency to hold. The methods proposed in Bester et al.
(2016) and Müller and Watson (2022, 2023), by contrast, control size under various restrictions in strongly correlated data.
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3. USING MULTIPLE OUTCOMES TO ADJUST STANDARD ERRORS

The results reported in Table 2 are concerning. In a setting calibrated to approximate the spatial dependence

exhibited by outcomes frequently studied in applied economics, we find that standard methods can be severely

biased. In this section, we propose an alternative method. Our method takes as input a collection of outcomes,

of the sort constructed in Section 2.1. This collection is used to recover an estimate of spatial dependence.

This estimate is used to adjust standard errors.

As before, we consider the linear model

Y
p0q

i “ α ` τ p0qWi ` ε
p0q

i , i “ 1, . . . , n , (3.1)

where Y p0q

i measures some outcome and Wi denotes some treatment of interest. Extensions to settings

with covariates, instruments, and panel data are treated in Appendix B.3. Again, the statistic τ̂ p0q denotes

the ordinary least squares estimate of τ p0q in the specification (3.1) and we are interested in estimating an

appropriate standard error for τ̂ p0q. For the purposes of this paper, we interpret this problem as desiring an

estimate of the conditional variance

V pΣp0qq “ Varpτ̂ p0q | W q “ S´2
n

´

WJΣp0qW
¯

, (3.2)

where W “ pWiq
n
i“1 collects the observations Wi, Σp0q “ Varpεp0q | W q, and Sn “ WJW . As a

consequence, estimation of the conditional variance (3.2) reduces to estimation of the error covariance matrix

Σp0q “ pσ
p0q

i,i1 q
n
i,i1“1, where σ

p0q

i,i1 “ Covpε
p0q

i , ε
p0q

i1 | W q . (3.3)

This conditional perspective is shared by, e.g., Müller and Watson (2022, 2023). Design based settings, where

interest is in estimating the randomness in the estimator generated by the treatment W , are worth further

consideration (Abadie et al., 2020, 2023).

3.1 Multiple Outcomes and Proportionality

In absence of further assumptions on its structure, the residual covariance matrix Σp0q is not recoverable.

As a consequence, in practice, researchers impose a variety of restrictions on the structure of cross-sectional

correlation. For example, in many settings, it is common to assume that all of the off-diagonal elements of the

matrix Σp0q are equal to zero (White, 1980). In cases where this is less credible, researchers often assume that

units can be partitioned into clusters on the basis of some shared characteristic (Moulton, 1986, 1990; Liang

and Zeger, 1986), or that cross-sectional correlation can be parameterized smoothly in terms of geographic

proximity (Conley, 1999; Müller and Watson, 2022, 2023).

We take an alternative route. Our approach is premised on the observation that, often, in a single study,

researchers observe many outcome variables for the same set of units. For example, a researcher, interested

in the correlation across U.S. counties between average income and the proportion of the population with a

college education, could also feasibly observe all of the outcomes considered in Section 2. In Section 5, we
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give several concrete examples from empirical economics with this characteristic. Formally, for each unit i,

in addition to the outcome of interest Y p0q

i , we assume that we also observe a collection Y p1q

i , . . . , Y
pdq

i of d

auxiliary, post-treatment outcomes. Let εpjq

i and ε̂pjq

i denote the population and empirical residuals associated

with unit i when outcome Y pjq

i replaces Y p0q

i in the linear model (3.1), respectively.

The basic idea is to use the auxiliary outcomes to estimate the residual correlation matrix associated with

the outcome of interest. To rationalize this approach, we must impose some conditions. First, we impose a

restriction that implies that the residual correlation matrix is shared across outcomes. We call a collection of

outcomes with this property proportional.

Assumption 3.1 (Proportionality). There exist matrices Λn “ pλi,i1qni,i1“1 and Γd “ pγj,j1qdj,j1“0 such that

σ
p0q

j,j1 “ Covpε
pjq

i , ε
pj1q

i1 | W q “ γi,i1λj,j1 , (3.4)

for each pair of units i, i1 and outcomes j, j1, respectively. By convention, we set γ0,0 “ 1.

The restriction (3.4) means that the covariance between the residuals associated with two units and a pair of,

potentially distinct, outcomes depends only on the outcomes through a constant factor.7

As a consequence, the empirical residuals for the auxiliary outcomes can be used to estimate the residual

covariance matrix Σp0q. In particular, let ε̃pjq

i denote a version of the empirical residual ε̂pjq

i that has been

normalized to have variance one across units. That is, the normalized residual ε̃pjq

i is given by

ε̃
pjq

i “ ε̂
pjq

i γ̂
´1{2
j , where γ̂j “

1

n

n
ÿ

i“1

pε̂
pjq

i q2 (3.5)

denotes the sample variance of the residuals for the jth outcome. The covariance between these, normalized,

residuals for units i and i1, across outcomes, is given by

λ̂i,i1 “
1

d

d
ÿ

j“1

pε̃
pjq

i ´ εiqpε̃
pjq

i1 ´ εi1q , where εi “
1

d

d
ÿ

j“1

ε̃
pjq

i (3.6)

denotes the average normalized residual for ith unit. The associated correlation is given by

ρ̂i,i1 “
λ̂i,i1

b

λ̂i,iλ̂i1,i1

. (3.7)

The statistics ρ̂i,i1 are exactly the correlation estimates considered in Section 2. Under Assumption 3.1, the

correlation estimates ρ̂i,i1 recover the residual covariances σp0q

j,j1 up to a scale factor.

Proportionality is a highly stylized condition and should be viewed as only ever holding approximately

for any given collection of outcomes. The same holds, of course, for assumptions that decompose spatial

correlation into clusters or parameterize spatial correlation in terms of geography. From a practical perspective,

by imposing Assumption 3.1, we appeal to the intuition that the cross-sectional correlation exhibited by the

7Assumption 3.1 is testable. Guggenberger et al. (2023) propose a computationally efficient test and illustrate its application to a
setting related to identification robust inference for linear instrumental variables regression.
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auxiliary outcomes captures the main features of the cross-sectional correlation of the outcome of interest. On

the other hand, we are ignoring aspects of spatial correlation that might be particular to any given outcome.

Moreover, we are assuming that these particularities are idiosyncratic and, when considered in aggregate,

negligible. Assumptions equivalent to proportionality have been considered in other fields of applied statistics.

In particular, a literature in the analysis of micro-array experiments, initiated by Efron (2010), develops

procedures for multiple hypothesis testing in proportional data. See, e.g., Muralidharan (2010), Allen and

Tibshirani (2012), and Hoff (2016) for further discussion.8

Proportionality, however, is not enough. In fact, in the absence of further restrictions, any estimator of the

conditional variance (3.2) can still be made arbitrarily inaccurate. We formalize this statement as follows.

Theorem 3.1. Let qV pY,W q be any measurable, locally bounded function of the outcomes Y “ pY pjqqdj“0

and treatments W . For any constants 0 ă η ă 1 and 0 ă K and W with WJW ‰ 0, there exists a

conditional distribution for Y , that satisfies Assumption 3.1, such that either

P
!

qV pY,W q ´ V pΣp0qq ľ K | W
)

ľ 1 ´ η or P
!

V pΣp0qq ´ qV pY,W q ľ K | W
)

ľ 1 ´ η (3.8)

holds.

This result can be understood with a simple example. If we observe a single realization of a random variable

X , then there is no way to estimate its variance. Translated to our context, without further conditions, there is

no way to recover changes in residual covariance matrix Σp0q that are proportional to WWJ. Thus, some

further restriction must be made for the standard error of the least squares estimator τ̂ p0q to be estimable.

3.2 Sparsity and Thresholding

Our approach is based on the hypothesis that, in many settings of practical interest in applied economics,

the residuals for most pairs of units are not meaningfully correlated. That is, pairs of units can be effectively

categorized as “nulls” and “non-nulls.” The components of the residual covariance matrix Σp0q that correspond

to the null pairs are equal to zero, the components that correspond to non-nulls can be large, and the nulls

outnumber the non-nulls. In other words, the covariance matrix Σp0q is sparse. This is the same idea that

underlies clustering. There, pairs of units in the same cluster are known to be non-null a priori. Here, we use

the auxiliary outcomes to determine the pairs of units that are non-nulls.

There are many ways that one might make such a determination. We propose to choose the pairs of units

whose empirical residual correlation ρ̂i,i1 is large in absolute value.9 There are two reasons for this. First,

correlation coefficients are self-normalized. That is, the covariances λ̂i,i1 and λ̂i,i2 could be very different

8More generally, Dawid (1981) gives a classical discussion of applications of models satisfying Assumption 3.1 to Bayesian inference.
Gupta and Nagar (1999) gives a textbook treatment of related distributions. See also Zhou (2014) and Hornstein et al. (2018) for
more recent analyses of related settings.
9An alternative approach, not pursued in this paper, is to use the estimates ρ̂i,i1 to learn clusters of units. This is worth further
consideration, although it has the disadvantage that, necessarily, some geographically proximate units are determined to not correlate.
Cao et al. (2024) pursue a related idea using a single outcome.
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simply because the residuals for unit i are are much noisier than the residuals for unit i2. The correlations

ρ̂i,i1 and ρ̂i,i2 , by contrast, are comparable. Second, if the pair of units i, i1 is a null, i.e., the associated

residuals are not correlated, then the distribution of the statistic ρ̂i,i1 can be characterized. Knowledge of the

null distribution, then, allows us to discriminate between nulls and non-nulls. We treat this point in detail in

Sections 3.3 and 3.4.

Before turning to this, however, we spell out how we can use the identified non-nulls to adjust standard

errors. Suppose that we were willing to determine that all pairs of units whose absolute residual correlation

is greater than some threshold δ are non-nulls. That is, we say that the pair of units i, i1 is a non-null if

|ρ̂i,i1 | ľ δ. How should this inform how we construct standard errors for the regression problem (3.1)? One

sensible estimator of the covariance is given by

σ̂
p0q

i,i1 pδq “

$

&

%

ε̂
p0q

i ε̂
p0q

i , i “ i1,

ε̂
p0q

i ε̂
p0q

i1 It|ρ̂i,i1 | ľ δu , i ‰ i1 .
(3.9)

Recall that the outcomes Y p0q

i are not used to construct the correlations ρ̂i,i1 . Collect these estimates into the

matrix pΣp0qpδq and plug this matrix into the expression (3.2), giving the estimator

pV pδq “ S´2
n

´

WJ
pΣp0qpδqW

¯

, (3.10)

where we recall that Sn “ WJW .

Written differently, the components of the covariance matrix pΣp0q for the null pairs are set to zero; the

components for the non-null pairs are determined entirely by the empirical residuals associated with the

outcome of interest. This is analogous to standard heteroskedasticity or cluster robust standard errors which

use term like ε̂p0q

i ε̂
p0q

i1 to estimate non-zero elements of residual covariance matrices (White, 1980; Liang and

Zeger, 1986). The only difference is that, here, the auxiliary outcomes are used to determine which elements

of the residual covariance matrix will be non-zero. As a consequence, the estimator (3.10) is minimally

sensitive to Assumption 3.1—its value is affected by the auxiliary outcomes only through the choice of which

covariances to zero out. We refer to the estimator (3.10) as the “TMO” variance estimator, for “Thresholding

Multiple Outcomes.”

In the formulation (3.9), the TMO estimator (3.10) does not threshold diagonal elements of the residual

covariance matrix. That is, in effect, we augment the standard White (1980) heteroskedasticity consistent

variance estimate. The same idea can be applied to wrap our approach around other existing variance

estimators, particularly those that explicitly model cross-section dependence in terms of distance. For

instance, an analogous estimator could be constructed, where elements that correspond to pairs of units in

the same cluster, e.g., state, are never thresholded to zero. The spatial standard errors proposed by Conley

(1999) and Müller and Watson (2022, 2023) can be augmented analogously. See Appendix B.4 for further

discussion. We give a detailed comparison of the practical performance of these alternatives in Section 5.
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3.3 Threshold Choice

How should we choose the threshold δ? Many estimators of sparse covariance matrices considered in the

literature involve thresholding each element of an initial estimate at critical values analogous to standard

corrections for multiple hypothesis testing, such as the Bonferroni procedure (Cai et al., 2010; Cai and Liu,

2011; Bailey et al., 2019). That is, in these formulations, δ is chosen so that the probability of mistakenly

retaining even one null correlation is kept below a fixed level. If the objective is to consistently estimate a

growing covariance matrix, then this is reasonable. If too many nulls are never thresholded, the aggregate

error in the estimate will never converge.

In this section, we argue that, in fixed samples, thresholds constructed in this way can be too large to be

practically useful. That is, rather than targeting consistent estimation of Σp0q, per se, we seek to choose a

threshold δ that improves the downstream estimate of the regression variance V pΣp0qq for a fixed collection

of units and outcomes. This task entails balancing the contributions of the null and non-null pairs of units to

the error of the resultant estimator. To see this, consider the decomposition

pV pδq ´ V pΣp0qq “ S´2
n

˜

n
ÿ

i“1

W 2
i pε̂

p0q

i ε̂
p0q

i ´ σ
p0q

i,i q ` Tpδq ` Fpδq

¸

, where (3.11)

Tpδq “
ÿ

i,i1PT
WiWi1

´

pε̂
p0q

i ε̂
p0q

i1 ´ σ
p0q

i,i1 qIt|ρ̂i,i1 | ľ δu ´ σ
p0q

i,i1 It|ρ̂i,i1 | ĺ δu

¯

and

Fpδq “
ÿ

i,i1PF
WiWi1 ε̂

p0q

i ε̂
p0q

i1 It|ρ̂i,i1 | ľ δu .

Here, the sets T and F collect non-null and null pairs of units, respectively.

Optimization of the expectation, or any higher order moment, of the error (3.11) requires knowledge of

several unknown quantities, e.g., the distribution of the statistics ρ̂i,i1 and the values of the true residual

covariances σp0q

i,i . To make this problem tractable, we apply several, heuristic, approximations. Taken in

aggregate, these approximations will bias our analysis toward smaller values of δ, giving, more often than

not, more conservative downstream standard errors. Let p0 denote the proportion of pairs of units that are

nulls. Let f0p¨q denote the density the absolute empirical correlation |ρ̂i,i1 | for a randomly selected null pair

i, i1. Let f1p¨q denote the analogous density for the non-null pairs. Consider the loss function

Lpδq “ rTpδq ` rFpδq, where (3.12)

rTpδq “ p1 ´ p0q

ż δ

0
t df1ptq and rFpδq “ p0

ż 8

δ
t df0ptq .

The function (3.12) abstracts away, or ignores, several features of the error (3.11). First, any heterogeneity

across pairs i, i1 generated by differences in the term WiWi1 is dropped. Moreover, for the non-nulls, when
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|ρ̂i,i1 | ľ δ, the difference ε̂p0q

i ε̂
p0q

i1 ´ σ
p0q

i,i1 is taken, in effect, to be zero.10 In turn, when |ρ̂i,i1 | ĺ δ, we ignore

the fact that the distributions of ρ̂i,i1 and σp0q

i,i1 are not the same. For the nulls, likewise, we ignore the fact

that the distributions of ρ̂i,i1 and ε̂p0q

i ε̂
p0q

i1 are not the same.11 Finally, we drop the signs of the terms σp0q

i,i1 and

ε̂
p0q

i ε̂
p0q

i1 , letting each contribute to the loss only in absolute value.12

Nevertheless, (3.12) captures, in a parsimonious and tractable way, many features of the structure encoded

in (3.11). Including a non-null reduces the error in proportion to the population covariance σp0q

i,i1 . Including

a null increases the error in proportion to the empirical covariance ε̂p0q

i ε̂
p0q

i1 . Under Assumption 3.1, these

objects can be proxied by the correlation ρ̂i,i1 . The following Theorem characterizes the threshold δ that

minimizes the loss (3.12), under a collection of simple conditions.

Theorem 3.2. Assume that the densities f0p¨q and f1p¨q are continuously differentiable. Moreover, assume

that the distribution associated with f1p¨q is stochastically larger than the distribution associated with f0p¨q.

Define the local false discovery rate

fdrpδq “ P
␣

pi, i1q P F | |ρ̂i,i1 | “ δ
(

, (3.13)

where F denotes the set of null pairs of units. The loss Lpδq, defined in (3.12), has a unique minimum at the

threshold δ‹ that solves the equality fdrpδq “ 0.5.

We refer to the point that δ‹ solves fdrpδq “ 0.5 as “the point of equalized classification.” We aim to set the

threshold δ at δ‹. The intuition underlying Theorem 3.2 is simple. Suppose that we choose a very large value

of δ, e.g., 0.9. This far out in the tail, almost all of the pairs with |ρ̂i,i1 | ľ δ will be non-nulls. Most of the

non-null pairs, however, won’t have correlations this large and so won’t have been included in the variance

estimate. Consider the decision to incrementally reduce the threshold. We are willing to do this as long as we

are letting in more non-nulls than nulls. Iterating this process, we stop at the point where the proportion of

new non-nulls and nulls is equalized.

It remains, then, to specify a procedure for estimating δ‹. For the time being, assume that we know of

the distribution function F0p¨q of the empirical correlations ρ̂i,i1 for the null pairs of units. We treat the

construction of an estimate of this quantity in the following subsection. Let F`
0 p¨q “ 2p1 ´ F0p¨qq denote

the associated right distribution function for the absolute correlations |ρ̂i,i1 |. Analogously, let F`pδq “

P t|ρ̂i,i1 | ľ δu denote the unconditional right distribution function of the absolute correlations. Observe that

P
␣

pi, i1q P T | |ρ̂i,i1 | ľ δ
(

“ pF`pδq ´ p0F
`
0 pδqq{F`pδq and

10As the statistics ε̂p0q

i ε̂
p0q

i1 and ρ̂i,i1 are likely to be positively correlated, on the event |ρ̂i,i1 | ľ δ, the statistic |ε̂
p0q

i ε̂
p0q

i1 | is likely to be
be positively biased for |σ

p0q

i,i1 |. We are ignoring this bias, appealing to the intuition that when ρ̂i,i1 is reasonably precisely estimated,

its correlation with ε̂
p0q

i ε̂
p0q

i1 should not be very big, and so the resultant bias will not overwhelm the other contributions to the error.
11The correlation estimates ρ̂i,i1 are more disperse than the true covariances σp0q

i,i1 , but less disperse than the statistics ε̂p0q

i ε̂
p0q

i1 . Thus,
in our approximation, we overestimate the contribution from the non-nulls and underestimate the contribution from the nulls. Both
factors make the threshold smaller than would be optimal, and thereby yield, more often than not, a more conservative standard error.
12By letting the terms ε̂p0q

i ε̂
p0q

i1 contribute only in absolute value, we rule out situations where positive and negative contributions
from the nulls cancel each other out, as it would be undesirable to rely on this sort of cancellation in practice.
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P
␣

pi, i1q P F | |ρ̂i,i1 | ľ δ
(

“ p0F
`
0 pδq{F`pδq (3.14)

give the probabilities of being non-null and null, conditional on the absolute correlation being larger than δ,

respectively. The difference between these probabilities is proportional to the function

Qpδq “ pF`pδq ´ p0F
`
0 pδqq ´ p0F

`
0 pδq “ F`pδq ´ 2p0F

`
0 pδq . (3.15)

The function Qpδq is increasing as δ decreases if and only if more non-nulls are being let in than nulls. Thus,

the point of equalized classification can be recovered by maximizing the function Qpδq.

An an unbiased, but infeasible, estimate of Qpδq is given by

Q̃n,dpδq “ pFn,dpδq ´ 2p0F
`
0 pδq , (3.16)

where
pFn,dpδq “

2

npn´ 1q

n
ÿ

i“1

ÿ

i1ăi

It|ρ̂i,i1 | ľ δu (3.17)

denotes the empirical right distribution function of the absolute correlations. Constructing a feasible version

of the estimator (3.16) requires an estimate of the proportion of nulls p0. There is a large literature that studies

estimators of this quantity (see e.g., Langaas et al. 2005, Efron 2007, Jin and Cai 2007, and Cai and Jin

2010). For the most part, these estimators are quite complicated. Again, we take a simpler approach. In many

applications of interest, the proportion of null pairs p0 is close to one. In this case, the feasible estimator

pQn,dpδq “ pFn,dpδq ´ 2F`
0 pδq , (3.18)

will be accurate. Our preferred approach chooses the threshold δ̂‹ as the maximizer of (3.18).13

3.4 Estimating the Null Distribution

To close the procedure, it remains to specify an estimator of the null distribution F0p¨q. If the outcomes

Y
p1q

i , ..., Y
pdq

i were independent, this would be straightforward. In particular, in this case, if the pair i, i1 is a

null, then the correlation coefficient ρ̂i,i1 will be approximately Gaussian with mean zero and variance 1{d

(see e.g., Example 11.3.6, Lehmann and Romano, 2022). In practice, of course, outcomes are unlikely to be

independently distributed. Correlation among the outcomes reduces the effective sample size associated with

the estimator ρ̂i,i1 , increasing its variance. To see this, we return to the collection of outcomes considered

in Section 2. Like Figure 2, Panel A of Figure 3 displays a histogram of the correlation estimates ρ̂i,i1

across pairs of U.S. counties. A Gaussian density with mean zero and variance 1{d is overlaid in black; the

dispersion in the empirical correlations is severely underestimated.

Consequently, to estimate a reasonable null distribution, we must account for the correlation across

outcomes. One way to do this would involve estimating this correlation directly. We propose a simpler

13Setting p0 to one when approximating the local false discovery rate is adopted, implicitly, by Benjamini and Hochberg (1995),
proposed explicitly by Efron (2004), and has subsequently become commonplace (see e.g., Section 15.2 of Efron and Hastie, 2021).
An infeasible threshold chosen by maximizing the function (3.16) would be smaller than δ̂‹, as p0 ĺ 1.
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FIGURE 3. Estimating the Null Distribution and Choosing a Threshold

Panel A: Correlation Between Pairs of U.S. Counties, Revisited

Panel B: Approximation to Non-Nulls Minus Nulls
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0.000

0.001

0.002
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Threshold δ

Notes: Panel A of Figure 3 reproduces Figure 2. A mean-zero, Gaussian density function with variance 1{d is overlaid in black. A
mean-zero, Gaussian density function with variance v̂ is overlaid in blue. Panel B displays the estimator estimator pQn,dpδq, defined
in (3.18), over a grid of values of δ, where we have replaced the the null distribution F0p¨q with its Gaussian approximation Φv̂p¨q.
The solid vertical red line displays the threshold δ̂‹, defined as the maximizer of pQn,dpδq. The dashed vertical black line displays the
Bonferroni threshold Φ´1

v̂ p1 ´ 0.05{n2
q.
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approach, motivated by methods developed in Efron (2007), that works by directly inspecting the empirical

distribution of the correlations. In particular, we assume the center of the distribution largely consists of

correlations associated with null pairs. Accordingly, we fit the variance of a mean-zero Gaussian distribution

to the center of the empirical distribution of the correlation estimates. Formally, let Φvp¨q denote the

cumulative distribution function of a mean-zero Gaussian random variable with variance v and let Φ´1
v p¨q

and IQRv,0 “ Φ´1
v p0.75q ´ Φ´1

v p0.25q denote the associated quantile function and interquartile range,

respectively. In parallel, let

Gn,dpδq “
2

npn´ 1q

n
ÿ

i“1

ÿ

i1ăi

Itρ̂i,i1 ă δu (3.19)

denote the empirical distribution of the correlation estimates and let G´1
n,dp¨q and yIQR “ G´1

n,dp0.75q ´

G´1
n,dp0.25q denote the associated quantile function and interquartile range. We let v̂ denote the value that

equates the Gaussian and empirical interquartile ranges, i.e., IQRv̂,0 “ yIQR. We refer to the estimate pdf “ 1{v̂

as the effective sample size or degrees of freedom.

There is an extensive statistical literature that develops more sophisticated approaches for estimating null

distributions in large-scale multiple testing problems, with an emphasis on applications to analysis of DNA

microarray data (see e.g., Efron 2007, Jin and Cai 2007, and Cai and Jin 2010). Efron (2012) gives an

influential textbook treatment. We adopt the approach outlined above, because it is computationally simple,

i.e., it does not require any nonparametric density estimation, and performs well in our applications. In

Appendix B.5, we assess the sensitivity of our results to alternative null distribution estimators.

The density function associated with a mean-zero Gaussian with variance v̂ is overlaid on Panel A of

Figure 3 in blue. The fit at the center of the distribution is remarkably accurate. The right-tail of the Gaussian

density underestimates the empirical distribution of the correlation estimates. That is, if our estimate of the

null distribution is accurate, then there is evidence of a substantial number of non-null pairs of units whose

residuals are significantly positively correlated.

Panel B of Figure 3 displays the values of the estimator pQn,dpδq, defined in (3.18), over a grid of values

of δ, where we have replaced the null distribution F0p¨q with its Gaussian approximation Φv̂p¨q. A vertical

red line denotes the maximizer of this curve, i.e., δ̂‹, at roughly 0.4. It is worth highlighting that the

threshold δ̂‹ is much smaller than the threshold that would be chosen with a standard correction for multiple

hypothesis testing. The threshold that would be used in an application of a Bonferroni correction, i.e.,

Φ´1
v̂ p1 ´ 0.05{n2q « 0.73, is displayed with a vertical black line.

We conclude by noting that, in small samples, correlation coefficients have a highly skewed distribution

away from the null. In other words, correlation coefficients are not pivotal—even in Gaussian data their

variances depend on the true underlying correlation. Fisher (1915) shows that correlation coefficients can be

made approximately Gaussian through the transformation

ρ̃i,i1 “
1

2
log

ˆ

1 ` ρ̂i,i1

1 ´ ρ̂i,i1

˙

. (3.20)
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See Hotelling (1953) and Efron (1982) for further discussion.14 In our applications, we find that estimating a

null distribution by using a Gaussian approximation to the Fisher transformed correlations ρ̃i,i1 , rather than

the empirical correlations ρ̂i,i1 , is more robust. In practice, we recommend using the Fisher transformed

correlation in place of the empirical correlation when implementing the construction proposed in this section.

We have centered our discussion around correlation coefficients to ease exposition.

3.5 Performance

We now return to the calibrated simulation considered in Section 2. We show that the TMO estimator,

implemented with the threshold δ̂‹, exhibits smaller bias and has more accurate rejection rates than standard

methods for constructing spatial standard errors. In particular, the fifth row of Table 2 displays estimates of

the bias and rejection rate of the TMO estimator when used to construct standard errors for the two regressions

considered in Section 2. The biases are substantially smaller, and the associated rejection rates are closer to

the nominal Type I error rate, i.e., α “ 0.05.

It is worth acknowledging, however, that this simulation environment is particularly suited to the TMO

estimator, as the underlying spatial correlation structure is determined by the same set of outcomes used

by TMO. Moreover, the spatial correlation structure used in the simulation is quite sparse. More diffuse,

geographically structured correlation patterns may be better suited for the alternative methods. Despite this,

the good performance of the TMO estimator in this environment can be interpreted as demonstrating that it is

able to adjust for forms of spatial correlation that are not captured by existing methods.

There may be some concern that these results are driven by the two choices of treatments considered

in Section 2, i.e., the change in the percentage of the population in county i that has completed a college

degree and the change in the per-acre value of farm-land. To address this concern, we replicate the Monte

Carlo experiment, setting each of the 91 outcome variables discussed in Section 2 as the treatment variable.

Figure 4 displays the distribution functions of the bias and rejection rate associated with each method across

these specifications. The TMO standard errors have uniformly better bias, and more accurate rejection rates,

than the HC1 standard errors, robust standard errors clustered at the state level, and Conley (1999) standard

errors. In Panel A, we display two forms of the SCPC standard errors. These differ according to whether

or not the alternative critical value associated with this procedure is incorporated into the standard error.15

The SCPC standard errors, once adjusted in this way, more closely approximate the TMO correction, though,

unlike the TMO correction, they under-reject in about 20% of the specifications.

4. CONSISTENCY AND GAUSSIAN APPROXIMATION ACROSS CORRELATED OUTCOMES

The main non-standard feature of our setting is that the data under consideration are correlated across

both locations and outcomes. In this section, we consider how both sources of correlation affect the methods

14Muralidharan (2010) shows that the Fisher transformation maintains it normalizing property in data satisfying Assumption 3.1.
15Unless otherwise specified, when reporting results associated with SCPC, we incorporate the critical value into the estimate of the
standard error.
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FIGURE 4. Distributional Comparison of Performance Across Treatments

Panel A: Bias in standard errors Panel B: Rejection Rate
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Notes: Figure 4 displays CDFs of the bias and rejection rates associated with various methods across several specifications of the
calibrated simulation experiment outlined in Section 2.2. In particular, the distributions are taken across the specifications where each
of the 91 outcome variables discussed in Section 2 is set as the treatment variable. For each specification, we take 1,000 simulation
draws. In Panels A and B, the vertical red lines display the hypothetical performance of an unbiased estimator and an unbiased test,
respectively. In Panel A, we display two forms of the SCPC standard errors. The label “SCPC (Adj.)” denotes that the alternative
critical value associated with the SCPC procedure has been incorporated into the standard error.

developed in Section 3. We have two objectives. First, we give sufficient conditions under which the spatial

correlation across units is consistently estimable. In particular, we give a quantitative description of the extent

of the correlation across outcomes and units allowed by our estimator. Second, we give sufficient conditions

for the validity of a Gaussian approximation to the empirical distribution of residual correlations of null pairs

of units. Here, we highlight how the extent of the correlation across outcomes impacts the dispersion of the

null distribution and the quality of the Gaussian approximation.

4.1 Sparsity and Consistency

We begin by imposing a series of simplifications that will greatly ease the notational burden, while

preserving the key features of our setting. First, we focus our attention on inference for the mean τ p0q “

ErY
p0q

i s. That is, we set Wi “ 1 for all units. Second, we impose the normalization ErY
pjq

i s “ 0 for all units
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i and outcomes j and consider the simplified estimators

λ̂i,i1 “
1

d

d
ÿ

j“1

Ỹ
pjq

i Ỹ
pjq

i1 , where Ỹ
pjq

i “ γ̂
´1{2
j Y

pjq

i and γ̂j “
1

n

n
ÿ

i“1

pY
pjq

i q2 . (4.1)

That is, relative to the feasible estimators (3.5) and (3.6), the infeasible estimators (4.1) have been centered

with the true values of the unknown parameters ErY
pjq

i s.

The variance estimator proposed in Section 3 is premised on the assumption that there is not too much

dependence across either locations or outcomes. Here, we describe this assumption formally. That is, we give

sufficient conditions on the scope of the dependence across units and outcomes under which we can recover

the spatial correlation across units.

Our results are expressed in terms of the matrices Λn and Γd introduced in Assumption 3.1. Recall that

the matrix Λn parametrizes the structure of the dependence across units. We assume that the rows of this

matrix are sparse, in the following sense.

Assumption 4.1 (Sparsity). There exists a constant 0 ĺ q ă 1 and a sequence κn such that the components

of Λn satisfy

max
iPt1,...,nu

n
ÿ

i1“1

|λi,i1 |q ĺ κn (4.2)

for each integer n, where we adopt the convention that 00 “ 0.

In the extreme case that q “ 0, Assumption 4.1 means that at most κn elements of any row of Λn are non-zero.

Non-zero values of q accommodate less stringent forms of sparsity.16 In turn, the matrix Γd parametrizes

the structure of the dependence across outcomes. We place no a priori restrictions on this quantity. In the

statement of our results we will reference the matrix

Ωd “ Γ
1{2
d ΞdΓ

1{2
d , where Ξd “ diagp1{γ1,1, . . . , 1{γd,dq (4.3)

and A1{2 denotes the square root of the matrix A. Observe that Ωd can be interpreted as the correlation matrix

across outcomes. Let ωj,j1 denote the j, j1th element of Ωd.

The following Theorem characterizes the rate of convergence of the estimator γ̂0λ̂i,i1 , where we normalize

the covariance estimator λ̂i,i1 by the variance estimate γ̂0 to fix the scale. To ease exposition, throughout

the main text, we allow the constants c and C to depend on the largest and smallest diagonal terms of the

matrices Λn and Γd as well as the maximum sub-Gaussian norm of the data Y pjq

i . We track the dependence

of the rate of convergence on these quantities in the proof.

16A version of Assumption 4.1 was first considered in the normal-means problem by Abramovich et al. (2006). It has been applied to
estimation of covariance matrices in independent data by Bickel and Levina (2008) and Cai and Liu (2011), among others.
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Theorem 4.1 (Consistency). Suppose that a strengthened version of Assumption 3.1, stated in Appendix C.3,

and Assumption 4.1 hold. Fix a constant 0 ă ϕ ă 1 and define the sequence

φn,d “

¨

˝

1

d

g

f

f

e

d
ÿ

j“1

d
ÿ

j1“1

ω2
j,j1 `

c

κn
n

˛

‚log3{2pnd{ϕq . (4.4)

There exist constants c ă 1 and C such that if φn,d ă c, then

max
i,i1Pt1,...,nu

|γ̂0λ̂i,i1 ´ λi,i1 | ĺ Cφn,d (4.5)

with probability greater than 1 ´ Cϕ.

Theorem 4.1 bounds the error in our estimate of cross-sectional dependence in terms of two quantities:

1

d

g

f

f

e

d
ÿ

j“1

d
ÿ

j1“1

ω2
j,j1 and

c

κn
n
. (4.6)

The former parametrizes the extent of the correlation across outcomes. Observe that if the matrix Ωd is

diagonal, then this term is equal to d´1{2, i.e., the parametric rate. As the correlation across outcomes

increases, this term becomes larger, and the precision of our estimate decreases.

Consequently, when constructing collections of outcomes, researchers face an essential trade-off. Outcomes

that more credibly reflect the same underlying correlation structure might tend to be highly correlated. If

outcomes are too similar, the resultant estimate of cross-sectional dependence will be imprecise. If outcomes

are too different, they might not capture the same cross-sectional correlation, and estimates of cross-sectional

dependence will be biased. We test approaches for navigating this trade-off in the applications considered in

Section 5. We summarize our recommendations in Section 6.

The second term in (4.6) describes the sparsity of the matrix Λn, and arises due to the error in variance

estimator γ̂j . The interpretation of this quantity is cleanest when Assumption 4.1 holds with q “ 0. In this

case, our estimate of cross-sectional dependence is accurate so long as the maximal number of non-zero

elements of any row of Γn is small relative to the total number of units n. As a result, there is less scope

to apply our procedure in settings where the number of units is small, e.g., in cases where the units of

observation are U.S. states. This situation echos results in the literature on estimation of clustered standard

errors. For example, Hansen and Lee (2019) show that standard estimators of clustered standard errors are

consistent only if the number of units in each cluster is small relative to the sample size.

4.2 Gaussian Approximation

In Section 3.4, we apply a Gaussian approximation to the empirical distribution of the correlations of the

residuals of the null pairs of units. Approximations of this sort are widely applied in independent data (see

e.g., Efron 2007 for discussion). However, in our context, there are two forms of dependence that complicate

this program. First, outcomes are likely to be highly correlated with each other. Second, the correlations ρ̂i,i1
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and ρ̂i,i2 will be dependent. In this section, we characterize how dependence across outcomes, and across

correlations taken with the same unit, impact a Gaussian approximation to the null distribution.17

In particular, continuing with the simplifications introduced in the previous subsection, we give a bound

on the difference between the cumulative distribution

Gn,dpδq “
2

npn´ 1q

n
ÿ

i“1

ÿ

i1ăi

Itγ̂0λ̂i,i1 ĺ δu . (4.7)

and an appropriately scaled Gaussian distribution function. For the sake of simplicity, we assume that all pairs

of units are nulls. Further, as the distribution function (4.7) is taken over covariances, rather than correlations,

we assume that the data are homoskedastic. That is, we assume that the matrix Λn is given by λIn for some

constant λ, where In is the n ˆ n identity matrix. Moreover, we assume that the underlying data Y pjq

i are

Gaussian. Even in this highly stylized case, the calculations involved are non-standard.

Theorem 4.2 (Gaussian Approximation). Suppose that Assumption 3.1 holds, Λn “ λIn for some constant

λ, and that the data Y pjq

i are normally distributed. Let η1, . . . , ηd denote the eigenvalues of Ωd, defined in

(4.3). Fix the parameter

v‹ “
λ2

d2

d
ÿ

j“1

d
ÿ

j1“1

ω2
j,j1 (4.8)

and recall that Φvp¨q denotes the cumulative distribution function of a mean-zero Gaussian random variable

with variance v. Fix a constant 0 ă ϕ ă 1. For each threshold δ in R, it holds that

|Gn,dpδq ´ Φv‹pδq| ĺ C

¨

˝

řd
j“1 η

3
j

p
řd

j“1 η
2
j q3{2

`

d

log3pdn{ϕq

n

˛

‚ (4.9)

with probability greater than 1 ´ ϕ.

Theorem 4.2 establishes that the empirical distribution of the null covariances fluctuates around a Gaussian

distribution whose variance v‹ is given by (4.8). Observe that the square-root of v‹ appears in the bound (4.4).

Written differently, given a collection of outcomes with correlation matrix Ωd, the true “effective sample-size”

or “degrees of freedom“ is given by

df‹ “
1

v‹
“

1

λ2
d2

řd
j“1

řd
j1“1 ω

2
j,j1

. (4.10)

If the outcomes are mutually independent, then df‹ “ d{λ2. As the correlation across outcomes increases,

the effective sample size decreases, and the dispersion of the null distribution increases.

Correlation across outcomes also reduces the quality of the Gaussian approximation. Consider the term
řd

j“1 η
3
j

p
řd

j“1 η
2
j q3{2

(4.11)

17Efron (2010) and Azriel and Schwartzman (2015) give less specialized methods for approximating the empirical distribution of
correlated observations.
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appearing in the bound (4.9). If the outcomes are mutually independent, then all of the eigenvalues of the

correlation matrix Ωd are equal to one, and the error (4.11) is equal to d´1{2. Indeed, this is the order of

the error that we should expect in independent data. As the correlation across outcomes increases, this

term becomes larger. In the extreme, when Ωd is rank one, having a single eigenvalue equal to d, the error

(4.11) is equal to one. In sum, correlation across outcomes impacts both our ability to discriminate nulls

from non-nulls, through the dispersion of the null distribution, and our ability to accurately recover the null

distribution through a Gaussian approximation.

5. APPLICATIONS

We now examine the impact of applying the TMO variance estimator, as well as alternative spatial standard

error estimators, to a sample of recently published papers in applied economics. We find that the proposed

estimator can make a substantial difference in practice.

5.1 Spatial Correlation in Applied Economics

We start off by documenting the prevalence of the potential for spatial correlation in a set of recently

published papers. We review all 370 papers published in 2023 in the American Economic Review, Econometrica,

the Journal of Political Economy, the Quarterly Journal of Economics, and the Review of Economic Studies.

We hand-code each paper as belonging to four (overlapping) categories: Econometrics (26 papers), Economic

Theory (108 papers), Macroeconomics (66 papers), and Empirical work (197 papers). We take an expansive

view of the latter category, including macroeconomic, econometric, or theoretical papers with empirical

applications. Within the 197 papers with empirical content, there are 17 laboratory experiments, 28 field

experiments (RCTs), and 23 descriptive papers (e.g., measures of inequality or inter-generational mobility).

Empirical studies in these three categories do not typically give rise to the issue of spatial correlation in the

errors, due to the experimental design or to the nature of the issue being studied.

We classify the remaining 128 papers, a third of the original sample, as belonging to an “observational”

category, which includes all (non-randomized) studies of how variation in a variable Wi affects an outcome

variable Yi. This category includes difference-in-difference designs, structural papers, and shift-share

instruments, among other designs. Within these 128 papers, we code whether a main specification of the

paper can be affected by spatial correlation of the observations. If so, we record the geographical level of

such correlation. In our assessment, spatial correlation of the errors plays a role in a striking number of

cases: 61 cases out of 128, or 48 percent, of observational papers. These spatial designs are present in all five

journals and especially common in the Review of Economic Studies (21 papers), the American Economic

Review (18 papers), and the Quarterly Journal of Economics (12 papers). Our categorization is likely a lower

bound of the importance for spatial correlation because in some papers the analysis has a spatial aspect, but it

is not emphasized, e.g., the study of establishment-level productivity in cases in which the location of the

establishment is not recorded.
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TABLE 3. Survey of Papers Published in Leading Economics Journals

All AER ECTA JPE QJE RES
All papers (N ) 370 93 66 71 48 92
Fields (not mutually exclusive)
Economic Theory 108 18 23 34 6 27
Econometrics 26 4 12 2 2 6
Macroeconomics 66 15 12 15 7 17
Empirical 197 67 20 30 33 47

Method
Descriptive 23 5 1 3 4 10
Randomized control trial 28 11 4 5 4 4
Lab experiment 17 8 2 2 3 2
Observational 128 41 13 19 22 33

Potential for spatial correlation
No 67 23 10 12 10 12
Yes 61 18 3 7 12 21

U.S. unit of observation 31 9 2 2 7 11
Most common: County 15 4 1 1 6 3
Second most common: State 6 1 1 1 1 2

Non-U.S. unit of observation 30 9 1 5 5 10
Most common: Country 6 2 1 2 1 0
Second most common: Chinese county 2 1 0 0 1 0

Notes: Table 3 gives the results of a survey of papers published in the American Economic Review, Econometrica, Journal of Political
Economy, Review of Economic Studies, and Quarterly Journal of Economics in 2023. Each paper is categorized by field. Empirical
papers are categorized according to their primary methodology. Observational papers are categorized according to whether their
primary analyses have the potential to be affected by spatial correlation. For these papers, the geographic level of such correlation is
coded.

The most common geographic unit at which the correlation is likely to occur is the U.S. county, with

15 papers in this category. For papers examining outcomes in the United States (31 papers overall), the

next most common geographic units are states (6 papers), census blocks (2 papers), zip codes (2 papers),

and commuting zones (2 papers). For papers with coverage outside the United States (30 papers), the most

common levels of geography are the country (6 papers), Chinese counties (2 papers), followed by a variety of

other local data units (e.g., French municipalities, Austrian regions, and Ukrainian districts). Given that the

most common spatial-based setting in this sample is the county-level spatial design, accounting for 8 percent

of all empirical papers, in the next subsection we focus on this category of papers, systematically revisiting

the estimates in the 15 county-level papers.
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5.2 Results

For the 15 papers that use U.S. county-level observations, we query replication packages and, where

necessary, authors to access underlying data. For eight out of the 15 papers, we are not able to reproduce a

main specification, due to a key variable being confidential. In the remaining seven cases, we identify and

reproduce a main empirical specification. Panel A of Table 4 displays the point estimate, original standard

error, and level of clustering used for each of these papers. For the majority, there is no clustering at a higher

level of geographic aggregation. (Online appendices often include additional corrections, typically a Conley

(1999) standard error.) The papers differ in a number of ways, ranging from cross-sections to panel data (as

indicated by the number of periods in Column 7), from modern to historical outcome data, and span the most

common observational designs. For each of the papers, to apply the TMO correction we construct a collection

of auxiliary outcome variables, typically from replication packages associated with the papers themselves. In

several cases, these outcomes are supplemented with additional variables obtained from external sources.

Column 8 reports the number of outcomes obtained for each paper. Further details on how we handle the data

associated with each paper, and construct a relevant set of auxiliary outcomes, are given in Appendix E.

Column 1 presents the key finding: the ratio of the TMO standard error (Column 2) to the original

standard error (Column 3). For each paper, we use the TMO procedure to augment the original level of

clustering (Column 4). That is, a county pair pi, i1q is never thresholded if counties i and i1 are elements of

the same cluster. Written differently, the TMO procedure augments the original standard error by allowing

for dependence between pairs of counties, from different clusters, whose absolute correlation |ρ̂i,i1 | is above

the threshold δ̂‹ (Column 10). Column 11 reports the proportion of location pairs that meet this criteria and

contribute to the TMO standard error. The proportion varies from 0.18% to 4.06%. TMO leaves the standard

error unaltered in one case, and increases the remaining six. The median increase is 37% percent.

To illustrate that TMO is applicable to geographic units beyond U.S. counties, we consider two additional,

prominent, non-county papers: Chetty et al. (2014), which consider U.S. commuting zone level data, and

Acemoglu et al. (2019), which studies country level data.18 The findings are broadly consistent, although the

magnitude of the corrections are both on the lower end of the U.S. county-level corrections.

As a concrete example, Bernini et al. (2023) studies the impact of the Voting Rights Act on the racial

makeup of local governments in the Southern U.S. We obtain 60 outcome variables from the replication

package, which we standardize and use to compute the correlation across counties. Given the correlation

across outcomes, find that the null distribution has approximately 26 degrees of freedom (as reported in

Column 9), stressing the importance of starting with a large number of outcomes. For this paper, the optimal

threshold is set at 0.54, keeping only 0.7% of county-pairs (as reported in Columns 10 and 11). The TMO

method increases the standard error by 37% relative to the estimate reported in the paper.

18Müller and Watson (2024) also consider the data from Chetty et al. (2014).
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TABLE 4. Ratio of TMO to Original Standard Errors in Nine Recent Papers

SE Ratio (TMO/Orig.) TMO Original SE Clustering Coefficient Units n Periods Outcomes d pdf δ̂‹ % ě δ̂‹

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Panel A. County-level papers from 2023 survey

Cook et al. (2023): Effect of White casualties in WWII on Green Book establishments (Table 3 Column 4)

3.50 0.03 0.01 County 0.06 3104 12 78 36.7 0.42 3.57

Caprettini and Voth (2023): Effect of New Deal grants on purchase of WWII bonds (Table 2 Column 1)

2.10 0.05 0.02 County 0.19 3022 1 44 26.1 0.51 1.25

Esposito et al. (2023): Effect of The Birth of a Nation screening on patriotic vs. divisive language in newspapers (Table 3 Column 3)

1.76 0.13 0.07 County 1.09 786 132 172 192.3 0.19 4.06

Bernini et al. (2023): Effect of Black % ˆ Voting Rights Act on share of black elected officials (Table 2 Column 4)

1.37 0.06 0.04 Judicial div. 0.10 971 1 60 25.8 0.54 0.70

Bazzi et al. (2023): Effect of Southern Whites % on 2016 Trump vote-share (Table 2 Column 4)

1.20 0.20 0.17 60mi2 1.03 1886 1 60 21.7 0.54 1.99

Calderon et al. (2023): Effect of Black population on Democratic vote-share (Table 2 Column 6)

1.09 0.49 0.45 County 1.88 1263 3 78 21.4 0.55 1.59

Moscona and Sastry (2023): Effect of extreme temperature exposure ˆ innovation on price per agricultural land acre (Table 3 Column 1)

1.00 0.09 0.09 State 0.25 3000 2 39 17.1 0.67 0.18

Panel B. Prominent non-county examples

Chetty et al. (2014): Correlation between share of African American and upward mobility (Figure 8 Row 1)

1.11 0.05 0.05 State -0.36 693 1 158 14.8 0.68 0.35

Acemoglu et al. (2019): Effect of democracy on log GDP per capita (Table 2 Column 3)

1.06 0.24 0.23 Country 0.79 175 47 79 79.1 0.27 5.97

Notes: Panel A of Table 4 shows the results from applying TMO to seven recent county-level papers surveyed in Table 3. Panel B shows the results for two prominent non-county
examples, Chetty et al. (2014) at the commuting-zone level and Acemoglu et al. (2019) at the country level. Column 1 reports the ratio of the TMO standard error estimate (Column 2)
relative to the original standard error in each paper (Column 3). The TMO standard error in Column 2 is combined with the original level of clustering in the paper (Column 4). The
table also shows the coefficient on the main regressor of interest (Column 5), the number of locations in each sample (Column 6), the number of time periods (Column 7), the number of
outcomes used in the TMO procedure (Column 8), the estimated degrees of freedom for the null distribution (Column 9), the optimal threshold δ̂‹ that maximizes (3.18) (Column 10),
and the percent of location pairs pi, i1

q that have a correlation ρ̂i,i1 greater than δ̂‹ in absolute value, out of all location pairs pi, i1
q where i and i1 are in different clusters (Column 11).
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Figure 5 provides further details concerning the application to Bernini et al. (2023). Panel A shows the

distribution of the correlation estimates ρ̂i,i1 . The solid curve corresponds to the estimate of the null density,

proposed in Section 3.4. Panel B plots the ratio of the TMO standard error and the original standard error, as

the threshold δ varies. At low thresholds (ă 0.3), the standard error ratio hovers around 1, indicating the high

prevalence of noise, relative to signal, added to the standard error. In the neighborhood around the optimal

threshold δ̂‹ “ 0.54, the TMO estimate is relatively stable. As the threshold increases, the standard error

reverts to the the value reported in the paper.

5.3 Comparison

How does TMO compare, in practice, to other popular corrections for spatial correlation? Column 1 of

Table 5 displays the ratio of the TMO standard error to the original standard error. Here, unlike Column 1

of Table 4, TMO does not augment the original level of clustering. That is, TMO is permitted to threshold

pairs of counties in the same cluster. Column 2 gives the analogous ratio, where now TMO augments state

level clusters, i.e., pairs of counties in the same state are never thresholded. In most cases, the standard

error increases moderately, although the increase tends not to be dramatic. Combining TMO with state level

clustering, in this way, is well suited for settings where policies are adopted at the state level.19

Columns 3 and 5 display analogous results for two leading alternatives: Conley (1999) standard errors,

constructed with a 150 mile bandwidth, and Müller and Watson (2022, 2023) SCPC standard errors. For each

procedure, we report the ratio of the adjusted standard error to the original standard error. In several cases,

the Conley (1999) and SCPC are similar to the TMO. In others, they are qualitatively different. Columns 4

and 6 display analogous ratios, where now TMO has been applied to augment the Conley (1999) and SCPC,

respectively. Combining the two forms of correction tends to lead to further increases in the resultant standard

error. This is intuitive—distance-based methods are better suited to capture more diffuse, geographically

driven, dependencies. The TMO standard errors, by contrast, will better capture strong dependencies that are

not driven by geographic proximity.

The applications that we have considered thus far exhibit spatial correlation predicted well by both

geographic and non-geographic factors. In an exercise similar to Table 1, Table A.1 displays, for each of

the U.S. county or commuting zone level papers, the proportion of highly correlated pairs of locations that

are similar along observable characteristics. Pairs of locations with strong positive correlations tend to be

close (within the top 10%) in at least one of these observable characteristics. While geographic proximity is

typically the first or second most predictive dimension, there are still a significant proportions of location

pairs that are highly correlated, but not necessarily close in geographic distance.

19Clustering by state can be problematic in samples with a small number of states. For example, the data used in Bernini et al. (2023)
cover only 12 states. There, 12% of county pairs are in the same state.
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FIGURE 5. Details for Application to Bernini et al. (2023)

Panel A: Correlation Between Pairs of Counties

Panel B: TMO across Thresholds

Notes: Figure 5 gives details concerning the application of TMO to Bernini et al. (2023). In Panel A, we plot the distribution of the
pairwise correlation estimates, ρ̃i,i1 , constructed using 60 auxiliary outcomes obtained from the paper’s replication package. The
solid curve denotes the null density estimate, obtained with the procedure outlined in Section 3.4. Panel B shows the ratio of the
TMO standard error to the original standard error as the threshold δ varies. In both panels, the vertical line marks the estimate of the
optimal threshold δ̂‹.
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TABLE 5. Comparison with Alternative Spatial Standard Errors

TMO Conley 150mi SCPC

+State Clusters +TMO +TMO

(1) (2) (3) (4) (5) (6)

Cook et al. (2023) 3.50 [3.6%] 3.57 [6.2%] 0.97 [3.1%] 3.40 [7.5%] 1.37 4.09

Caprettini and Voth (2023) 2.10 [1.3%] 2.37 [4.1%] 2.16 [3.2%] 2.48 [4.2%] 1.81 3.01

Esposito et al. (2023) 1.76 [4.1%] 1.88 [7.4%] 1.79 [3.9%] 2.16 [7.6%] 0.86 2.29

Bernini et al. (2023) 1.32 [0.7%] 1.72 [12.3%] 1.40 [9.0%] 1.51 [9.6%] 2.02 2.26

Bazzi et al. (2023) 1.15 [2.1%] 1.43 [5.4%] 1.47 [4.5%] 1.46 [6.0%] 1.12 1.58

Calderon et al. (2023) 1.09 [1.6%] 0.45 [5.5%] 0.95 [5.2%] 0.96 [6.2%] 2.79† 2.40†

Moscona and Sastry (2023) 0.64 [0.3%] 1.00 [3.3%] 0.96 [3.2%] 0.95 [3.4%] 0.95 1.08

Chetty et al. (2014) 0.77 [0.4%] 1.11 [3.2%] 0.97 [2.6%] 1.07 [3.0%] 2.70 2.71

Acemoglu et al. (2019) 1.06 [6.0%] - 1.03 [2.9%] 1.07 [8.1%] 1.01 1.10

Notes: Table 5 compares the behavior of several methods for adjusting standard errors for spatial correlation. Each entry gives the
ratio of the standard error produced by the method denoted in each column to the original standard error. Wherever applicable,
the proportion of location pairs that are allowed to correlate is displayed in brackets. Column 1 reports the TMO estimates. Here,
TMO does not augment the original level of clustering in the paper (which leads to differences from Column 1 in Table 4). Column
2 gives the analogous ratio when TMO augments U.S. state-level clusters (which does not apply to the country-level Acemoglu
et al. (2019) paper). Column 3 reports the adjustment associated with Conley (1999) standard errors using a 150-mile bandwidth.
Column 4 combines TMO with the Conley correction. For the country-level Acemoglu et al. (2019) paper, the bandwidth is set to
650 miles, which covers 3% of all country-pairs. Column 5 displays the results from the Müller and Watson (2022, 2023) SCPC
method. Column 6 integrates TMO with the SCPC estimates. Columns 5 and 6 do not report the proportion of location pairs that are
allowed to correlate, as SCPC does not directly “zero out” terms as in the (3.10) formula. †Calderon et al. (2023) conduct a weighted
regression, which is not supported by the current SCPC Stata package; these estimates show the adjustment for the unweighted
specification.

6. RECOMMENDATIONS FOR PRACTICE

Economic outcomes are often linked across locations. Statistical inferences that do not account for these

linkages can exhibit substantial biases. This paper introduces a method for adjusting standard errors for

spatial correlation. We call this method “Thresholding Multiple Outcomes” (TMO). The essential input

is a collection of auxiliary outcome variables. The main assumption is that the spatial correlation in the

residuals for a regression problem of interest is shared by the analogous residuals constructed using these

auxiliary outcomes. Under this assumption, the auxiliary outcomes can be used to estimate spatial correlation.

We propose to use the empirical distribution of these estimates to determine pairs of locations that are very

correlated. Standard errors in the original regression problem can then be adjusted by allowing for correlation

among these pairs. The method is summarized in Algorithm 1.
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Algorithm 1: Thresholding Multiple Outcomes (TMO)

Input: Outcome Y p0q

i and treatment Wi for units i in 1, ..., n

Result: Estimate of the variance of τ̂ p0q, the least-squares regression coefficient of Y p0q

i on Wi

1 Identify a collection of auxiliary outcomes Y p1q

i , . . . , Y
pdq

i

2 For each unit i and outcome j, compute the normalized residuals ε̃pjq

i , defined in (3.5)

3 For each pair of units i ‰ i1, measure the correlation ρ̂i,i1 , defined in (3.7)

4 Approximate the null distribution of ρ̂i,i1 with Np0, v̂q, where v̂ solves

Φ´1
v p0.75q ´ Φ´1

v p0.25q “ G´1
n,dp0.75q ´G´1

n,dp0.25q ,

the function Φvp¨q is the CDF of Np0, vq, and Gn,dp¨q is defined in (3.19)

5 Choose the threshold δ̂‹ by minimizing

Q̂n,dpδq “ pF̂n,dpδq ´ F`
0 pδqq ´ F`

0 pδq

over δ ą 0, where F`
0 p¨q “ 2p1 ´ Φv̂p¨qq and F̂n,dp¨q is defined in (3.17)

6 Collect the estimates

σ̂
p0q

i,i1 pδ̂
‹q “

$

&

%

ε̂
p0q

i ε̂
p0q

i , i “ i1,

ε̂
p0q

i ε̂
p0q

i1 It|ρ̂i,i1 | ľ δ̂‹u , i ‰ i1 ,

into the matrix pΣp0qpδ̂‹q

Return the variance estimate

pV pδ̂‹q “
`

WJW
˘´1

´

WJ
pΣp0qpδ̂‹qW

¯

`

WJW
˘´1

Notes: Algorithm 1 details the Thresholding Multiple Outcomes (TMO) estimator proposed in this paper. Extensions of this
procedure to settings with covariates, instrumental variables, and panel data are given in Appendix B.3.

It is worth emphasizing that we view the TMO procedure as as a complement, not a substitute, to standard

error corrections based on geographic distance. Indeed, in the examples above, combining the TMO estimator

with clustered, Conley (1999), or SCPC standard errors often impacts the resultant estimate. In practice,

combinations of this form are straightforward to implement and are likely to offer the greatest robustness to

different forms of spatial correlation.

We conclude by detailing some recommendations for practice. We focus our discussion on the construction

of a relevant set of auxiliary outcomes. We again use Bernini et al. (2023) as a running example to

contextualize our recommendations. Figure 6 shows the ratio of the TMO standard error to the original

standard error across different choices of the set of auxiliary outcomes. We conduct two experiments.

First, we compute the TMO standard error using random subsamples of the 60 outcome variables sourced

from the replication package associated with this paper. The circular points denote the average adjustment,

where the size of the subsample varies along the x-axis. The intervals around each point show the 25-75th
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FIGURE 6. TMO Adjustment for Different Sets of Auxiliary Outcomes

Internal (Baseline)

External
Int + ExtChanges

Levels

Same area
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//
1.1

1.2

1.3

1.4

1.5

20 30 40 50 60 65 120
Number of outcomes

Random subset of Internal Interquartile range of random subset
Same area vs. Different area Levels vs. Changes
Internal (replication file) vs. External sources

Type of outcomes used

Ratio of TMO standard error to original

Notes: Figure 6 shows the ratio of the TMO standard error to the original standard error in Bernini et al. (2023), for different choices
of auxiliary outcomes. The baseline TMO estimate uses the set of 60 Internal outcomes from the Bernini et al. (2023) replication
file. The circular points show the average TMO adjustment across 20 randomly drawn subsets of the Internal outcomes, where the
number of randomly drawn outcomes in each subset is shown on the x-axis. For example, the circular point at x “ 30 indicates the
average adjustment across 20 rounds of drawing 30 of the Internal outcomes randomly and running TMO with those 30 outcomes.
The intervals correspond to the interquartile range of the TMO adjustment across the 20 rounds. Same area refers to the subset of
Internal outcomes that have a racial, demographic, or political characteristic like the main outcome of interest (the change in the
share of black elected officials), while Different area represents the subset of the remaining Internal outcomes. The Changes subset
includes the Internal outcomes that are expressed in differences, whereas the Levels set includes those expressed in levels. The set of
External outcomes are from external sources such as the Census and are based on data from more recent time periods. Int + Ext is
the union of the Internal and External outcomes.

percentiles of the adjustment, over 20 random draws. The size of the adjustment increases with the number of

outcomes.20 With fewer outcomes, the null distribution has a higher variance and fewer degrees of freedom,

making the optimal threshold higher, and reducing our ability to detect non-nulls. Ultimately, with a limited

number of outcomes, the procedure has low power to distinguish true correlations from noise. This exercise

highlights the importance of using a sufficiently large number of outcomes, so that the correlation estimates

are sufficiently precise to distinguish pairs of locations with correlated errors.

Second, we change various characteristics of the auxiliary outcomes. In Bernini et al. (2023), the outcome

of interest is the change in the share of black elected officials in a long-difference regression. Among the 60

“Internal” outcomes taken from the replication file, around half are “Similar” with either a racial, demographic,

or political component (e.g., change in NAACP branches), and the remaining half are “Different” outcomes

20Figure A.3 reproduces Panel A of Figure 5 using a random subset of 20 outcomes.
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that cover other areas (e.g., the unemployment rate). Though both sets have roughly 30 outcomes each,

using the “Similar” set of outcomes produces a much stronger adjustment. Furthermore, using outcomes

that are expressed in changes, like the outcome of interest, also generates a higher adjustment than using

outcomes in levels. This exercise demonstrates the importance of identifying outcomes whose underlying

spatial correlation is relevant for the outcome of interest.

These two experiments illustrate a fundamental trade-off between the number of auxiliary outcomes and

their relevance to the outcome of interest. Adding more outcomes can lead to less informative estimates of the

standard error if the additional outcomes do not reflect the structure of correlation in the outcome of interest.

For example, Figure 6 shows that adding a set of around 60 “External” outcomes (e.g., median age from

Census data) reduces the adjustment to the standard error, relative to using only the 60 “Internal” outcomes.

In cases where researchers can choose from a large set of outcomes, we recommend that they aim to select

the most relevant ones that provide at least 20 degrees of freedom.21

Of course, in the application to Bernini et al. (2023), we do not know what the standard error should be, i.e.,

whether larger adjustments are in fact indicative of better performance. Figure A.4 displays the results of a

set of experiments analogous to the results displayed in Figure 6, but in the context of the simulation exercise

considered in Section 2. Reassuringly, similar patterns emerge: the size of the adjustment increases—toward

the true standard error—with both the number of auxiliary outcomes and the relevance of the outcomes to the

underlying correlation structure.

We also recommend two diagnostic exercises. The first is to plot the distribution of the correlation

estimates and to check that the central mass of this distribution is well-approximated by a Gaussian. Heavily

skewed distributions suggest that there is too much correlation across outcomes and that a larger sample of

outcomes should be used. The second is to ensure that the function (3.18) varies smoothly with the threshold.

Otherwise, the estimate for the optimal threshold may be unreliable. These issues are more prevalent in cases

with fewer locations, such as U.S. state or country level analyses. For example, Funke et al. (2023) study

the effect of populist leaders on GDP per capita growth rates for 60 countries. Figure A.5 displays these

diagnostics implemented with data from this paper. We find that the Gaussian approximation to the null

distribution is poor and that the estimate of the optimal threshold is unstable.

Finally, we stress that we see more avenues for further research along the lines outlined in this paper.

For example, although our estimator can be applied to panel settings, as we have done in some of the

examples discussed above, data sets with panel structures have special features which merit their own analysis.

Furthermore, there may be alternative ways to use information on spatial correlations obtained from multiple

outcomes. For instance, this information could be used to identify clusters of outcomes which share a similar

spatial correlation structure, as opposed to assuming a common correlation among all outcomes considered.

21We have found that larger degrees of freedom are necessary for reliable results in panel data settings.
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APPENDIX A. AUXILIARY FIGURES AND TABLES

A.1 Figures

FIGURE A.1. Spatial Dependence Across Counties in Selected States

Notes: Figure A.1 displays a correllogram reflecting the measurements ρ̂i,i1 for each pair of U.S. counties in California, North
Dakota, and New York State. Counties are sorted by population within each state.
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FIGURE A.2. Spatial Dependence Across U.S. Counties

Notes: Figure A.2 displays a correllogram reflecting the measurements ρ̂i,i1 for each pair of U.S. counties. Counties are sorted by
region, state, and population within each state.
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FIGURE A.3. Correlation Between Pairs of Counties (20 vs. 60 Auxiliary Outcomes)

Notes: Figure A.3 builds on Panel A of Figure 5. As in Panel A of Figure 5, we plot the distribution of the pairwise correlation
estimates, ρ̃i,i1 , in green constructed using 60 auxiliary outcomes obtained from the replication package associated with Bernini
et al. (2023). The solid curve denotes the null density estimate, obtained with the procedure outlined in Section 3.4. The analogous
histogram, constructed from a subsample of 20 randomly drawn outcomes, is displayed in red. In both cases, the associated optimal
thresholds are displayed with vertical lines.



4

FIGURE A.4. Recommendations for Outcome Selection

Recent changes

Recent changes

Recent changes

(20 outcomes)

(30 outcomes)

(40 outcomes)

Recent changes (baseline)

Recent levels

Historical changes

Recent + Historical changes

//0.4

0.5

0.6

0.7

0.8

20 30 40 50 100
Number of outcomes

Ratio of TMO estimate to true standard error

Notes: Figure A.4 shows the average ratio of the TMO standard error to the true standard error in the simulation developed in
Section 2. We vary the set of auxiliary outcomes used to construct the TMO estimator. The treatment variable is the change in the
percentage of the population in county i that has completed a college degree from 1980 to 2009. In each of the 1000 simulation
rounds, the outcome of interest is a randomly drawn vector from a covariance structure based on recent changes in various economic,
health, demographic, agricultural, and environmental variables in the last few decades (see Appendix B.1 and Appendix B.2 for
details). The baseline Recent changes TMO adjustment uses 50 randomly drawn outcomes from the same covariance structure as
the outcome of interest. The other Recent changes adjustments use fewer randomly drawn outcomes as shown on the x-axis, but
still from the same covariance structure. The outcomes for Recent levels are drawn from a covariance structure based on the same
outcomes listed in Appendix B.1, but the procedure in Appendix B.2 is performed on the average levels of these outcomes across
years, rather than the changes between the years. The outcomes for Historical changes are drawn from a covariance structure built
using the changes in different outcomes from the early to mid 1900s, rather than recent decades. Recent + Historical changes is the
union of 50 randomly drawn outcomes from the Recent changes covariance structure and 50 randomly drawn outcomes from the
Historical changes covariance structure.
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FIGURE A.5. Diagnostic Tests for TMO Assumptions (Funke et al., 2023)
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Notes: Figure A.5 is analogous to Figure 5, but is constructed using data from Funke et al. (2023). Panel A plots the distribution of
the pairwise correlation estimates, ρ̃i,i1 . Panel B shows the shows the value of the estimator (3.18) over a range of values of the
threshold δ.
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A.2 Tables

TABLE A.1. Predicting Significant Positive Correlations Between Locations in U.S. Applications

Among county/CZ pairs pi, i1q with ρ̂i,i1 ě δ̂‹,

percentage in which i ranks among the 10% closest to i1 in:

δ̂˚ % ě δ̂‹ Distance Population Urban % Median income Non-white % Vote-share Any of Ð

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Cook et al. (2023) 0.42 2.89 46 23 27 22 21 16 81

Caprettini and Voth (2023) 0.51 0.88 35 16 16 15 16 15 64

Esposito et al. (2023) 0.19 3.22 25 16 15 16 15 14 61

Bernini et al. (2023) 0.54 0.67 34 17 18 20 20 16 68

Bazzi et al. (2023) 0.54 1.27 50 23 21 17 16 23 75

Calderon et al. (2023) 0.55 1.33 57 22 20 16 22 20 81

Moscona and Sastry (2023) 0.67 0.25 55 31 29 34 31 23 87

Chetty et al. (2014) 0.68 0.58 35 53 47 36 34 28 88

Notes: Table A.1 displays the results of exercise analogous to results reported in Table 4. Column 1 reports the optimal threshold estimated for each paper. Column 2 shows the percent
of county/CZ-pairs that have a positive correlation (i.e., not in absolute value) above the threshold. Columns 3-9 show the percent of county/CZ-pairs pi, i1

q in which county/CZ i is
within the top 10% of those closest to i1 in the observable characteristic listed in the column header, among the pairs that have a correlation greater than a threshold δ̂‹.
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APPENDIX B. DETAILS AND EXTENSIONS

B.1 Outcome Selection and Cleaning

We construct a dataset of 91 county variables that reflect typical variables used in empirical research. We

take these variables from the following sources:

‚ The Social Determinants of Health Database from the Agency for Healthcare Research https:

//www.ahrq.gov/sdoh/data-analytics/sdoh-data.html#download

‚ Bailey et al. (2016). “U.S. County-Level Natality and Mortality Data, 1915-2007.” Inter-university

Consortium for Political and Social Research [distributor]. https://doi.org/10.3886/E100229V4

‚ U.S. Census Bureau. (2012). “Consolidated File: County Data, 1947-1977.” Inter-university

Consortium for Political and Social Research [distributor]. https://doi.org/10.3886/ICPSR07736.v2

‚ U.S. Census Bureau. (2011). “USA Counties.” Statistical Compendia. https://www.census.gov/

library/publications/2011/compendia/usa-counties-2011.html

The set of variables are listed in Tables B.2a-B.2e. They cover a range of policy areas, including economics

(e.g., income and labor force participation), health (e.g., life expectancy and health insurance coverage),

demographics (e.g., population density and percent black), agriculture (e.g., cropland and percent employed

in agriculture), and environment (e.g., water use and air pollution).

We perform the following data processing steps. For variables that scale with population (e.g., the number

of black residents, public school enrollment, and manufacturing establishments), we normalize by the county

population. We take the logarithm for all positive variables that do not have negative values or are not in

percentages. Then for each variable, we keep the first and last years for which there are data for at least 3000

counties. We then standardize the variable to have mean zero and unit standard deviation within each year

and winsorize at the 0.1 and 99.9 percentiles to prevent results being skewed by outliers. Finally, to construct

the long-difference outcomes, we take the difference between the first and last years for which there are data.

https://www.ahrq.gov/sdoh/data-analytics/sdoh-data.html#download
https://www.ahrq.gov/sdoh/data-analytics/sdoh-data.html#download
https://doi.org/10.3886/E100229V4
https://doi.org/10.3886/ICPSR07736.v2
https://www.census.gov/library/publications/2011/compendia/usa-counties-2011.html
https://www.census.gov/library/publications/2011/compendia/usa-counties-2011.html
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TABLE B.2A. County outcomes used in simulation

Description Source First year Last year No. counties
1. Annual mean of Particulate Matter (PM2.5) concentration (g/m3) AHRQ 2009 2018 3106
2. Average household size AHRQ 2009 2018 3105
3. Gini index of income inequality AHRQ 2009 2018 3105
4. Median distance in miles to the nearest emergency department, calculated using population weighted tract centroids in
the county

AHRQ 2009 2018 3105

5. Median distance in miles to the nearest obstetrics department, calculated using population weighted tract centroids in
the county

AHRQ 2009 2018 3105

6. Median distance in miles to the nearest pediatric ICU, calculated using population weighted tract centroids in the
county

AHRQ 2009 2018 3105

7. Median selected monthly owner costs for houses with a mortgage (dollars) AHRQ 2009 2018 3103
8. Percentage of families with children that are single-parent families AHRQ 2009 2018 3106
9. Percentage of households with same-sex unmarried partner AHRQ 2009 2018 3106
10. Percentage of limited English speaking households AHRQ 2009 2018 3106
11. Percentage of occupied housing units with utility gas heating AHRQ 2009 2018 3106
12. Percentage of population reporting American Indian and Alaska Native race alone AHRQ 2009 2018 3106
13. Percentage of population reporting multiple races AHRQ 2009 2018 3106
14. Percentage of population that speaks Spanish (ages 5 and over) AHRQ 2009 2018 3106
15. Percentage of unmarried partner households that received food stamps/SNAP benefits AHRQ 2009 2018 3102
16. Total cardiovascular disease deaths per 100,000 population (ages 35 and over) AHRQ 2009 2018 3106
17. Total expenditure (Dollars) per student AHRQ 2009 2018 3100
18. Total number of days with daily maximum heat index, absolute threshold: 90F AHRQ 2009 2018 3106
19. Total number of hospital beds per 1,000 population AHRQ 2009 2018 3106
20. Total number of hospitals per 1,000 population AHRQ 2009 2018 3106

Sources: AHRQ: Agency for Healthcare Research and Quality, Bailey et al. (2016): www.doi.org/10.3886/E100229V4, Country Data Book: www.doi.org/10.
3886/ICPSR07736.v2, IHME: Institute For Health Metrics and Evaluation, U.S. Census Bureau: USA Counties. USA Counties variables based on complete counts are
indicated in the description.

www.ahrq.gov/sdoh/data-analytics/sdoh-data.html#download
www.doi.org/10.3886/E100229V4
www.doi.org/10.3886/ICPSR07736.v2
www.doi.org/10.3886/ICPSR07736.v2
www.census.gov/library/publications/2011/compendia/usa-counties-2011.html
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TABLE B.2B. County outcomes used in simulation

Description Source First year Last year No. counties
21. Total standardized Medicare costs, fee for service (dollars) AHRQ 2009 2018 3104
22. Total stroke deaths per 100,000 population (ages 35 and over) AHRQ 2009 2018 3102
23. Birth Weight by Residence (2500 grams or less) Bailey et al. (2016) 1982 1988 3108
24. Nonmarital births by place of residence Bailey et al. (2016) 1968 1988 3097
25. Civilian Labor Force.Pct.Male County Data Book 1960 1970 3094
26. Divorce Rate Per 1000 Pop. County Data Book 1970 1975 3044
27. Employed.Pct.In Manfgr County Data Book 1950 1970 3053
28. Loc.Gov.Dir.Gen.Exp.Pct.Educ County Data Book 1967 1972 3090
29. Loc.Gov.Dir.Gen.Exp.Pct.Hghway County Data Book 1967 1972 3075
30. Loc.Gov.Prop.Tax.Per.Capita USD County Data Book 1962 1972 3088
31. Manfgr.Estab. County Data Book 1947 1972 3088
32. Marriage Rate Per 1000 Pop. County Data Book 1970 1975 3101
33. Oasdhi Payments Per Mon. USD1000 County Data Book 1971 1976 3104
34. Ou.Pct.Owner Occupied County Data Book 1940 1970 3087
35. Population Pct Foreign Stock County Data Book 1960 1970 3095
36. Population Pct. Urban County Data Book 1960 1970 3026
37. Population Rank County Data Book 1950 1960 3092
38. Pub.Assis.Recipients.Afdc. County Data Book 1972 1976 3079
39. Retail Trade Estab. County Data Book 1954 1972 3096
40. Retail Trade Estab.Sales USD1000 County Data Book 1948 1972 3076

Sources: AHRQ: Agency for Healthcare Research and Quality, Bailey et al. (2016): www.doi.org/10.3886/E100229V4, Country Data Book: www.doi.org/10.
3886/ICPSR07736.v2, IHME: Institute For Health Metrics and Evaluation, U.S. Census Bureau: USA Counties. USA Counties variables based on complete counts are
indicated in the description.

www.ahrq.gov/sdoh/data-analytics/sdoh-data.html#download
www.doi.org/10.3886/E100229V4
www.doi.org/10.3886/ICPSR07736.v2
www.doi.org/10.3886/ICPSR07736.v2
www.census.gov/library/publications/2011/compendia/usa-counties-2011.html
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Description Source First year Last year No. counties
41. Workers.Pct.Used Pub.Trans County Data Book 1960 1970 3095
42. Life expectancy IHME 1999 2019 3113
43. All persons 18 to 64 years without health insurance, percent U.S. Census Bureau 2005 2007 3108
44. All persons under 18 years without health insurance, percent U.S. Census Bureau 2005 2007 3108
45. Average age of farm operators (NAICS) U.S. Census Bureau 2002 2007 3064
46. Average travel time to work for workers 16 years and over who did not work at home U.S. Census Bureau 1990 2009 3107
47. Average value of land and buildings per acre (NAICS) U.S. Census Bureau 2002 2007 3058
48. Average value of land and buildings per farm (NAICS) U.S. Census Bureau 2002 2007 3058
49. Births per 1,000 population U.S. Census Bureau 1970 2007 3102
50. Black population (complete count) U.S. Census Bureau 1990 2010 3106
51. Civilian labor force U.S. Census Bureau 1990 2010 3106
52. Civilian labor force unemployment rate U.S. Census Bureau 1990 2010 3107
53. Commercial banks and savings institutions (FDIC-insured) - total deposits U.S. Census Bureau 1980 2010 3103
54. Cropland - harvested cropland (NAICS) (acres) U.S. Census Bureau 2002 2007 2963
55. Cropland - total (NAICS) (acres) U.S. Census Bureau 2002 2007 3051
56. Deaths per 1,000 population U.S. Census Bureau 1970 2007 3102
57. Earnings in retail trade (NAICS 44-45) U.S. Census Bureau 2001 2007 2989
58. Educational attainment - persons 25 years and over - percent bachelor’s degree or higher U.S. Census Bureau 1980 2009 3105
59. Educational attainment - persons 25 years and over - percent high school graduate or higher U.S. Census Bureau 1980 2009 3105
60. Employment in farming (NAICS) U.S. Census Bureau 2001 2007 3077

Sources: AHRQ: Agency for Healthcare Research and Quality, Bailey et al. (2016): www.doi.org/10.3886/E100229V4, Country Data Book: www.doi.org/10.
3886/ICPSR07736.v2, IHME: Institute For Health Metrics and Evaluation, U.S. Census Bureau: USA Counties. USA Counties variables based on complete counts are
indicated in the description.

www.ahrq.gov/sdoh/data-analytics/sdoh-data.html#download
www.doi.org/10.3886/E100229V4
www.doi.org/10.3886/ICPSR07736.v2
www.doi.org/10.3886/ICPSR07736.v2
www.census.gov/library/publications/2011/compendia/usa-counties-2011.html
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TABLE B.2D. County outcomes used in simulation

Description Source First year Last year No. counties
61. Employment in government - state and local (NAICS) U.S. Census Bureau 2001 2007 3078
62. Employment in retail trade (NAICS 44-45) U.S. Census Bureau 2001 2007 2988
63. Federal Government direct loans FY U.S. Census Bureau 1983 2010 3087
64. Hospital insurance and/or supplemental medical insurance (Medicare) - aged persons enrolled U.S. Census Bureau 1998 2007 3084
65. Infant deaths per 1,000 live births U.S. Census Bureau 1990 2007 3107
66. Land in farms (NAICS) (acres) U.S. Census Bureau 2002 2007 3026
67. Median contract rent of specified renter-occupied housing units paying cash rent (complete count) U.S. Census Bureau 1980 2009 3105
68. Median household income U.S. Census Bureau 1995 2009 3107
69. Median selected monthly owner costs of specified owner-occupied housing units with a mortgage U.S. Census Bureau 1980 2000 3106
70. Median value of specified owner-occupied housing units (complete count) U.S. Census Bureau 1980 2009 3105
71. New private housing units authorized by building permits - total U.S. Census Bureau 2004 2010 3107
72. People of all ages in poverty - percent U.S. Census Bureau 1995 2009 3107
73. People under age 18 in poverty - percent U.S. Census Bureau 1995 2009 3107
74. Per capita personal income U.S. Census Bureau 1969 2000 3075
75. Persons 16 to 19 years not enrolled in school and not a high school graduate U.S. Census Bureau 1990 2000 3108
76. Population per square mile U.S. Census Bureau 1980 2010 3105
77. Private nonfarm establishments U.S. Census Bureau 1990 2009 3107
78. Private nonfarm establishments - arts, entertainment and recreation (NAICS 71) U.S. Census Bureau 2002 2009 3108
79. Public school enrollment Fall U.S. Census Bureau 1987 2009 3088
80. Related children age 5 to 17 in families in poverty - percent U.S. Census Bureau 1995 2009 3107

Sources: AHRQ: Agency for Healthcare Research and Quality, Bailey et al. (2016): www.doi.org/10.3886/E100229V4, Country Data Book: www.doi.org/10.
3886/ICPSR07736.v2, IHME: Institute For Health Metrics and Evaluation, U.S. Census Bureau: USA Counties. USA Counties variables based on complete counts are
indicated in the description.

www.ahrq.gov/sdoh/data-analytics/sdoh-data.html#download
www.doi.org/10.3886/E100229V4
www.doi.org/10.3886/ICPSR07736.v2
www.doi.org/10.3886/ICPSR07736.v2
www.census.gov/library/publications/2011/compendia/usa-counties-2011.html
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Description Source First year Last year No. counties
81. Renter-occupied housing units (complete count) U.S. Census Bureau 1990 2010 3106
82. Resident population under 18 years, percent U.S. Census Bureau 2000 2009 3108
83. Resident population: Black alone, percent U.S. Census Bureau 2000 2009 3059
84. Resident population: Median age (complete count) U.S. Census Bureau 1980 2010 3105
85. Resident population: total females, percent U.S. Census Bureau 2000 2009 3108
86. Total physicians U.S. Census Bureau 2004 2009 3108
87. Valuation of new private housing units authorized by building permits U.S. Census Bureau 2004 2010 3108
88. Value of farm products sold - total (NAICS) U.S. Census Bureau 2002 2007 3003
89. Vehicles available per occupied housing unit U.S. Census Bureau 1990 2000 3108
90. Vote cast for president- percent Republican U.S. Census Bureau 1980 2008 3105
91. Water use: per capita use U.S. Census Bureau 1990 2005 3107

Sources: AHRQ: Agency for Healthcare Research and Quality, Bailey et al. (2016): www.doi.org/10.3886/E100229V4, Country Data Book: www.doi.org/10.
3886/ICPSR07736.v2, IHME: Institute For Health Metrics and Evaluation, U.S. Census Bureau: USA Counties. USA Counties variables based on complete counts are
indicated in the description.

www.ahrq.gov/sdoh/data-analytics/sdoh-data.html#download
www.doi.org/10.3886/E100229V4
www.doi.org/10.3886/ICPSR07736.v2
www.doi.org/10.3886/ICPSR07736.v2
www.census.gov/library/publications/2011/compendia/usa-counties-2011.html
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B.2 Simulation Design

For the simulation considered in Section 2.2, we construct covariance matrix Σ for the residual vector ε.

Our aim is to ensure that the off-diagonal elements of Σ primarily consist of “non-null” pairs of counties,

while maintaining positive definiteness.

To meet these objectives, we take as input the correlation matrix of the standardized outcomes. Next, we

set a threshold δ, above which, we believe most pairs of counties with larger correlations should be non-nulls.

After some experimentation, we set δ “ 0.45. We then find a “central” county that has the highest number of

correlations with other counties that are above 0.45 in absolute value. That central county and all the counties

with which it is sufficiently correlated are designated as a cluster. We find the next “central” county, among

those that have not been assigned to a cluster, that has the highest number of correlations above 0.45 with

other counties that have also yet to be assigned to a cluster. Note that once a county has been assigned to a

cluster (as the central one or not), then it cannot be assigned to another cluster. We repeat the process, and

once all the correlations above 0.45 have been exhausted, we set all correlations between counties outside the

clusters to 0, and keep all the correlations within clusters intact. The resulting correlation matrix, ordered by

clusters, has a block-diagonal structure that fulfills the objectives.

B.3 Alternative Estimators and Data Structures

In this section, we detail several extensions to the method proposed in Section 3. We keep the same

notation. That is, we consider the linear model

Y
p0q

i “ α ` τ p0qWi ` θJXiε
p0q

i , i “ 1, . . . , n , (B.1)

where Y p0q

i measures some outcome of interest, Wi denotes some treatment of interest, and Xi denotes

a k-vector of covariates. The variables Y p1q

i , . . . , Y
pdq

i denote d auxiliary, post-treatment outcomes. The

variables εpjq

i and ε̂pjq

i denote the population and empirical residuals associated with the regression of the

outcome Y pjq

i on the treatment Wi, respectively.

B.3.1 Covariates. In the main text, for ease of exposition, we treat the case where there are no covariates.

The extension to the case with covariates is straightforward, by the Frisch-Waugh-Lovell theorem. In

particular, let W̃i and Ỹ pjq

i denote the residuals from regressing Wi and Ỹ pjq

i on Xi, respectively. A standard

error for τ̂ can then be constructed as before, by using these data.

B.3.2 Weighted regression. Throughout the main text, we study the construction of standard errors for

ordinary least squares estimators. The proposed method can be easily adapted to weighted least squares

estimators. In particular, suppose that we are interested in the estimator τ̂ p0q

h defined by

τ̂
p0q

h “ argmin
τ

#

n
ÿ

i“1

hipY
p0q

i ´ τWiq
2

+

, (B.2)
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where h “ phiq
n
i“1 is an exogenous weight vector. Observe that, in this case, we have that

Varpτ̂
p0q

h | W q “ Snphq´2pWJHΣ0HW q, where

Snphq “ WJHW and H “ diagphq . (B.3)

In other words, the problem again reduces to the estimation of the residual covariance matrix Σ0 “ Varpεp0qq

and our method for estimating this matrix applies.

B.3.3 Instrumental Variables Regression. For each unit i, suppose that we observe the instrumental variable

Zi. If we are interested in constructing a standard error for the two-stage least squares estimator, we can

simply apply our method to the second-stage regression. We caution that this approach is not robust to weak

identification. The construction of identification robust standard error estimates for settings with spatial

correlation is an interesting direction for future research. See Andrews et al. (2019) for a recent review of

identification robust standard errors for linear instrumental variables regression in non-homoskedastic data.

B.3.4 Panel Regressions. Suppose that we observe the collection of outcomes across t time periods. That

is, we observe pY
p0q

i,s , Y
p1q

i,s , . . . , Y
pdq

i,s q for each unit i in 1, . . . , n and period s in 1, . . . , t. Here, we are often

interested in constructing standard errors for coefficients in regressions of the form

Y
p0q

i,s “ α ` τ p0qWi,s ` θJXi,sε
p0q

i,s , (B.4)

where, in many cases, the covariatesXi,s contain various fixed effects. To adjust standard errors for correlation

across units, there are at least two options. First, we might account for the correlation between the units i and

i1 only within each time period. That is, the residuals pε
pjq

i,s , ε
pjq

i1,sq are allowed to be correlate, but the residuals

pε
pjq

i,s , ε
pjq

i1,s1 q, for s‰s1, are not. We note that an analogous assumption is widely applied in treatments of

two-way or multi-way clustered data (Menzel, 2021). An alternative option would be to allow for correlation

across time periods as well. For the purposes of this paper, we adopt the latter approach. A more thorough

consideration of the construction of standard errors for panel data, that accommodates spatial correlation

across units is useful direction for further research.

In our treatment, we estimate the covariance between residuals associated with units i and i1 with the

estimator

λ̂i,i1 “
1

dt

d
ÿ

j“1

t
ÿ

s“1

pε̃
pjq

i,t ´ εiqpε̃
pjq

i1,t ´ εi1q (B.5)

That is, in effect, we treat each outcome-period pair as a distinct outcome. These estimates are then be used

to determine which pairs of units are “non-nulls” with the procedure developed in the main text. Standard

errors are then adjusted, as before, allowing for correlation across units and across time periods.
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B.4 Augmenting Distance-Based Estimators

The TMO estimator can be used to augment existing spatial standard errors that are based on modeling

dependence in terms of geographic distance. Recall that, for the method detailed in Section 3.2, the covariance

σ
p0q

i,i1 is estimated by the quantity

σ̂
p0q

i,i1 pδ̂
‹q “

$

&

%

ε̂
p0q

i ε̂
p0q

i , i “ i1,

ε̂
p0q

i ε̂
p0q

i1 It|ρ̂i,i1 | ľ δ̂‹u , i ‰ i1 .
(B.6)

That is, the TMO estimator does not threshold diagonal elements of the residual covariance matrix—in effect,

augmenting the standard White (1980) heteroskedasticity consistent variance estimate.

The same idea can be applied to augment alternative standard error estimates. Let C Ď rns2 denote a subset

of the pairs of units pi, i1q that includes all pairs of the form pi, iq. These might be pairs of units in the same

cluster, or pairs of units whose geographic distance is smaller than some threshold. Suppose that, moreover,

we have at our disposal an alternative estimator of the covariance σp0q

i,i1 for each pair pi, i1q in C. Denote this

estimator by σ̃p0q

i,i1 . This estimator could be simply σ̃p0q

i,i1 “ ε̂
p0q

i ε̂
p0q

i1 or it could be, e.g., the estimator associated

with a Conley (1999) standard error with a chosen kernel and bandwidth. We can construct the covariance

matrix estimate Σ̂pδq by collecting the estimates

σ̂
p0q

i,i1 pδ̂
‹q “

$

&

%

σ̃
p0q

i,i1 , pi, i1q P C,

ε̂
p0q

i ε̂
p0q

i1 It|ρ̂i,i1 | ľ δ̂‹u , pi, i1q R C .
(B.7)

In this case, the optimal threshold δ̂‹ should be estimated by considering the distribution of only those pairs

of units pi, i1q not in C.

A similar approach can be taken to use TMO to augment the Müller and Watson (2022, 2023) SCPC

standard error estimator. Müller and Watson (2022, 2023) estimate the variance V pΣp0qq with an estimator of

the form

V̂SCPCpqq “
S´2
n

q

q
ÿ

j“1

rJ
j pWJε̂p0qpε̂p0qqJW qrJ

j , (B.8)

where rj is an approximation to the jth principal component ofWJ VarpεqW . SCPC can, thus, be augmented

with the TMO standard error by taking

V̂SCPC`TMPpδ, qq “
S´2
n

q

q
ÿ

j“1

rJ
j pWJΣ̂SCPCpδqW qrJ

j ` S´2
n pWJΣ̂pδqW q (B.9)

where Σ̂SCPCpδq collects

σ̂SCPC
i,i1, pδq “

$

&

%

ε̂
p0q

i ε̂
p0q

i1 , |ρ̂i,i1 | ĺ δ,

0 , |ρ̂i,i1 | ľ δ ,
(B.10)

and Σ̂pδq collects the estimates (B.7), as before.
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FIGURE B.6. Robustness to Alternative Null Distribution Estimators

Notes: Figure B.6 builds on Panel A of Figure 5. As in Panel A of Figure 5, we plot the distribution of the pairwise correlation
estimates, ρ̃i,i1 using 60 auxiliary outcomes obtained from the replication package associated with Bernini et al. (2023). The solid
black curve denotes the null density estimate, obtained with the procedure outlined in Section 3.4. The blue and red curves display the
fits using the methods outlined in Appendix B.5 that give the largest and smallest threshold. A χ2 approximation is also displayed.

B.5 Alternative Null Distribution Estimators

In this section, we consider alternative methods for estimating the null distribution. The methods we

consider use the entire vector of off-diagonal correlations between the q and 1 ´ q percentiles, where we vary

q P t0.1, 0.2, 0.25u. We group the correlations into granular bins. For a candidate variance v, we calculate the

“distance” between the empirical and null distributions in one of two ways. The first computes the difference

in the density at the center of each bin versus the null density at the midpoints. The second calculates the

difference in the mass within each bin versus the mass within the endpoints of each bin under the null.

Differences are calculated using either ℓ1, ℓ2, or ℓ8 norms. We compute the variance v that minimizes the

difference. Figure B.6 is analogous to Panel A of Figure 5, but additionally displays the fits to the null

distribution and maximize and minimize the resultant threshold. We also display a approximation to the null

distribution based on a χ2 distribution. The quality of the approximation, and the resultant threshold are

insensitive to how the null distribution is estimated.
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APPENDIX C. PROOFS FOR RESULTS STATED IN THE MAIN TEXT

C.1 Proof of Theorem 3.1

Throughout, we let the operator „ denote equality in distribution. Fix any constant b ą 0 and define the

matrix

Σb “ b ¨R , where R “ W pWJW q´1WJ . (C.1)

Suppose that, conditional onW , each pair of population residual vectors εpjq and εpj1q had the joint distribution
ˆ

εpjq

εpj1q

˙

„ N

ˆˆ

0n
0n

˙

,

ˆ

Σb Σb

Σb Σb

˙˙

. (C.2)

In this case, the data Y are jointly Gaussian conditional on W and Assumption 3.1 holds. Fix τ pjq “ 0 for all

j in 0, 1, ..., d. The parameter of interest is given by

V pΣbq “ pWJW q´1WJΣbW pWJW q´1 “ bpWJW q´1 . (C.3)

Observe that the collection

pY,W q “ pY p0q, Y p1q, . . . , Y pdq,W q (C.4)

can be reconstructed from

pŶ , ε̂,W q “ pŶ p0q, ε̂p0q, Ŷ p1q, ε̂p1q, . . . , Ŷ pdq, ε̂pdq,W q (C.5)

where

Ŷ pjq “ RY pjq and ε̂pjq “ pIn ´RqY pjq . (C.6)

Moreover, conditional on W , we have that

pŶ pjq, Ŷ pj1q, ε̂pj2q, ε̂pj3qqJ „ N

ˆˆ

02n
02n

˙

,

ˆ

bR b 12ˆ2 02nˆ2n

02nˆ2n 02nˆ2n

˙˙

, (C.7)

where we have used the facts that

MΣ
p0q

b M “ bMRM “ 0nˆn and bRJRR “ bR . (C.8)

Here, the operator b denotes the Kronecker product. Thus, there exists some locally bounded, measurable

function qV 1p¨q such that
qV 1pŶ ,W q “ qV pY,W q (C.9)

almost surely.

Let r denote the component of R that is largest in absolute value. Observe that there exists a constant c,

that does not depend on n, d, or W such that the set

Apbq “

"

ŷ “ pŷpjqqdj“0 P Rpd`1qˆn : max
i“1...n

max
j“0,...,d

t|ŷ
pjq

i |u ĺ c
a

br logpdnq

*

(C.10)
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satisfies

P
!

Ŷ P Apbq
)

ľ 1 ´ η . (C.11)

for all b ą 0. Define the functions

Mpbq “ suptqV 1pŷ,W q : ŷ P Apbqu and mpbq “ inftqV 1pŷ,W q : ŷ P Apbqu , (C.12)

respectively. Both functions are finite, as qV 1p¨q is locally bounded.

Suppose that for each b ą 0, we have both

bpWJW q´1 ´Mpbq ĺ K and mpbq ´ bpWJW q´1 ĺ K . (C.13)

In this case, it would hold that
qV 1pŷ,W q P bpWJW q´1 ˘K (C.14)

for each ŷ P Apbq and every b ą 0, where we recall that V pΣbq “ bpWJW q´1 . Now, for any fixed ŷ0, the

parameter b0 can be chosen such that ŷ0 P Apbq for all b greater than b0. But then, it would be the case that

qV 1pŷ0,W q P bpWJW q´1 ˘K (C.15)

for all b greater than b0. However, this must fail for some sufficiently large b, giving a contradiction.

Consequently, there exists b ą 0 such that

bpWJW q´1 ´Mpbq ĺ K or mpbq ´ bpWJW q´1 ĺ K . (C.16)

In the first case, for all ŷ P Apnq, we have that qV 1pŷ0,W q ă V pΣbq ´K, and so

P
!

qV pY,W q ´ V pΣbq ă ´K
)

ľ P tApbqu ľ 1 ´ η . (C.17)

In the second case, for all ŷ P Apnq, we have that qV 1pŷ0,W q ą V pΣbq `K, and so

P
!

qV pY,W q ´ V pΣbq ą K
)

ľ P tApbqu ľ 1 ´ η , (C.18)

which completes the proof.

C.2 Proof of Theorem 3.2

Consider the loss

Lpδq “ p1 ´ p0q

ż δ

0
t df1ptq ` p0

ż 8

δ
t df0ptq . (C.19)

As we have assumed that the functions f0ptq and f1ptq are continuously differentiable, we can evaluate

d
dδ

ˆ

p1 ´ p0q

ż δ

0
t df1ptq

˙

“ p1 ´ p0qδf1pδq and
d
dδ

ˆ

p0

ż 8

δ
t df0ptq

˙

“ ´p0δf0pδq , (C.20)

by Leibniz’s rule. Thus, we find that

dLpδq

dδ
“ δpp1 ´ p0qf1pδq ´ p0f0pδqq . (C.21)
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For δ ą 0, equalizing the derivative (C.21) with zero gives

p1 ´ p0qf1pδq “ p0f0pδq , (C.22)

or equivalently

fdrpδq “
p0f0pδq

p0f0pδq ` p1 ´ p0qf1pδq
“

1

2
. (C.23)

Hence, it will suffice to show that fdrpδq is strictly decreasing and continuous, as, in this case, there is a

unique δ‹ that solves the first-order condition (C.23).

Observe that the continuity of fdrpδq follows immediately from the continuity of f0ptq and f1ptq. To verify

that it is strictly decreasing, observe that

d
dδ

fdrpδq “
p0p1 ´ p0qpf 1

0pδqf1pδq ´ f0pδqf 1
1pδqq

pp0f0pδq ´ p1 ´ p0qf1pδqq2
. (C.24)

The assumption that the distribution of the non-nulls is stochastically larger than the distribution of the nulls,

implies that the likelihood ratio f0pδq{f1pδq is decreasing. But notice that

d
dδ

log

ˆ

f0pδq

f1pδq

˙

“
f 1
0pδq

f0pδq
´
f 1
1pδq

f1pδq
. (C.25)

and that the sign of (C.24) is determined by the term

f 1
0pδqf1pδq ´ f0pδqf 1

1pδqq “ f0pδqf1pδq

ˆ

f 1
0pδq

f0pδq
´
f 1
1pδq

f1pδq

˙

. (C.26)

Hence, the function fdrpδq is decreasing, which completes the proof.

C.3 Proof of Theorem 4.1

Let Y and denote the n ˆ d matrix whose pi, jqth element is given by Y pjq

i . Throughout, we let } ¨ }F

and } ¨ }op denote the matrix Frobenius and ℓ2-operator norms, respectively. Theorem 4.1 requires a slightly

strengthened version of Assumption 3.1, stated as follows.

Assumption C.1 (Sub-Gaussian Proportionality). Let Z denote an n ˆ d matrix whose components are

independent, mean-zero, and sub-Gaussian with parameter M ľ 1. There exist positive semi-definite

matrices Λn “ pλi,i1qni,i1“1 and Γd “ pγj,j1qdj,j1“1 such that

Y “ 1nτ
J ` Λ1{2

n ZΓ1{2
n , (C.27)

where A1{2 denotes the square-root of the matrix A.

In addition to the restriction

CovpY
pjq

i , Y
pj1q

i1 q “ λi,i1γj,j1 (C.28)

specified by Assumption 3.1, Assumption C.1 implies that (i) the elements of Y are sub-Gaussian and

that (ii) Y can be normalized to have fully independent, rather than just uncorrelated, entries by taking
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Λ
´1{2
n pY ´ 1nτ

JqΓ
´1{2
n . Analogous versions of this assumption appear elsewhere in the literature (see e.g.,

Hoff, 2016).

Define the quantities

γ “ max
jPrds

γj,j , γ “ min
jPrds

γj,j , λ “ max
iPrns

λi,i, and λ “ max
iPrns

λi,i . (C.29)

To ease exposition, in the statement of Theorem 4.1, the constants c and C are allowed to depend on the

constants (C.29) as well as the sub-Gaussian constant M defined in Assumption C.1. For the sake of

completeness, we track the dependence on these terms throughout the proof.

The result follows from the following two large deviation bounds. Throughout, we write ξj “ 1{γj,j and

ξ̂j “ γ̂0{γ̂j . Recall that we have normalized γ0,0 “ 1. Let Ξd and pΞd denote the diagonal matrices with

entries pξjq
d
j“1 and pξ̂jq

d
j“1, respectively. Let pΛn,d denote the matrix whose pi, i1qth component is γ̂0λ̂i,i1 .

Define the analogous infeasible estimator

Λ̃n,d “
1

d
Y ΞdY

J (C.30)

and let λ̃i,i1 denote its pi, i1qth component.

Lemma C.1. Fix a constant 0 ă ϕ ă 1.

(i) Suppose that Assumptions 4.1 and C.1 hold. There exist constants c and C such that if

λ
1´q{2

λ

γ2

γ

c

κn
n

logpd{ϕq ă c (C.31)

then the inequality

max
jPrds

|ξ̂j ´ ξj | ĺ C
λ
1´q{2

λ

d

M
γ

γ

κn
n

logpd{ϕq (C.32)

holds with probability greater than 1 ´ Cϕ.

(ii) Suppose that Assumption C.1 holds. The inequality

max
i,i1Prns

|λ̃i,i1 ´ λi,i1 | ĺ C
1

d
}Ωd}F logpn{ϕq (C.33)

holds with probability greater than 1 ´ Cϕ.

We apply Lemma C.1 to bound each of the terms in the decomposition

pΛn ´ Λn “ ppΛn,d ´ Λ̃n,dq ´ pΛ̃n,d ´ Λnq . (C.34)

We begin by considering the first term. Observe that

max
i,i1Prns

|γ̂0λ̂i,i1 ´ λ̃i,i1 | “ max
i,i1Prns

|
1

d

d
ÿ

j“1

pξ̂pjq ´ ξpjqqY
pjq

i Y
pjq

i1 |

ĺ

ˆ

max
jPrds

|ξ̂j ´ ξj |

˙ˆ

max
i,i1Prns

|Y
pjq

i Y
pjq

i1 |

˙

. (C.35)
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The random variable Y pjq

i Y
pjq

i1 has expectation smaller than λγ by Assumption C.1. Moreover, it has has

sub-Exponential norm smaller than pλγMq2 (see e.g., Lemma 2.7.6 of Vershynin 2018). Hence, it holds that

max
i,i1Prns

|Y
pjq

i Y
pjq

i1 | ĺ λγ ` 2pλγMq2 logpn{ϕq (C.36)

with probability greater than 1 ´ ϕ. Thus, Lemma C.1, Part (i), and the condition φn,d ă c (allowing the

constant c to depend on the terms (C.29) and M ) imply that

max
i,i1Prns

|γ̂0λ̂i,i1 ´ λ̃i,i1 | ĺ C

˜

λ
2´q{2

γ3{2

λγ1{2
`
λ
3´q{2

γ5{2

λγ1{2

¸

M5{2

c

κn
n

log3{2pdn{ϕq . (C.37)

with probability greater than 1 ´ Cϕ. To control the second term in the decomposition (C.34), we can apply

Lemma C.1, Part (ii), directly. Putting the pieces together, we find that

max
i,i1Prns

|γ̂0λ̂i,i1 ´ λi,i1 |

ĺ C

˜

λ
2´q{2

γ3{2

λγ1{2
`
λ
3´q{2

γ5{2

λγ1{2

¸

M5{2

ˆ

1

d
}Ωd}F `

c

κn
n

˙

log3{2pdn{ϕq . (C.38)

with probability greater than 1 ´ Cϕ. Absorbing the terms (C.29) and M into C gives the desired result.

C.4 Proof of Theorem 4.2

Recall the definition of the matrix Frobenius norm } ¨ }F. Observe that

v‹ “
λ2

d2

d
ÿ

j“1

η2j “
λ2

d2
}Ωd}2F. (C.39)

We are interested in establishing the bound
ˇ

ˇ

ˇ

ˇ

2

npn´ 1q

n
ÿ

i“1

ÿ

i1ăi

Itγ̂0λ̂i,i1 ĺ δu ´ Φ

ˆ

d

λ

1

}Ωd}F
δ

˙ ˇ

ˇ

ˇ

ˇ

ĺ C

¨

˝

řd
j“1 η

3
j

p
řd

j“1 η
2
j q3{2

`

d

log3pdn{ϕq

n

˛

‚ . (C.40)

To ease exposition, we provide the details for the proof of the upper bound encoded in (C.40). The analogous

lower bound will follow from a similar argument. Recall the definition of the infeasible estimator λ̃i,i1

introduced in Appendix C.3. Observe that, on the event that

max
i,i1Prns

|γ̂0λ̂i,i1 ´ λ̃i,i1 | ĺ t , (C.41)

we have that

2

npn´ 1q

n
ÿ

i“1

ÿ

i1ăi

Itγ̂0λ̂i,i1 ĺ δu ´ Φ

ˆ

d

λ

1

}Ωd}F
δ

˙
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ĺ
2

npn´ 1q

n
ÿ

i“1

ÿ

i1ăi

Itλ̃i,i1 ĺ δ ` tu ´ Φ

ˆ

d

λ

1

}Ωd}F
δ ` t

˙

` Φ

ˆ

d

λ

1

}Ωd}F
δ ` t

˙

´ Φ

ˆ

d

λ

1

}Ωd}F
δ

˙

ĺ

˜

2

npn´ 1q

n
ÿ

i“1

ÿ

i1ăi

Itλ̃i,i1 ĺ δ ` tu ´ Φ

ˆ

d

λ

1

}Ωd}F
δ ` t

˙

¸

` t , (C.42)

where the second inequality follows from the fact that the Gaussian cumulative distribution function has

Lipschitz constant less than one. Thus, the result will follow by bounding the first term in (C.42) and choosing

a suitable value of t such that the the event (C.41) holds with high probability.

To this end, we obtain a bound for the term (C.42) from the following Lemma.

Lemma C.2. Suppose that Assumption 3.1 holds, that Λn “ λIn for some constant λ, and that the data Y pjq

i

are Gaussian. Let η1, . . . , ηd denote the eigenvalues of Ωd. Fix a constant 0 ă ϕ ă 1. It holds that
ˇ

ˇ

ˇ

ˇ

2

npn´ 1q

n
ÿ

i“1

ÿ

i1ăi

Itλ̃i,i1 ĺ δu ´ Φ

ˆ

d

λ

1

}Ωd}F
δ

˙
ˇ

ˇ

ˇ

ˇ

ĺ C

˜

řd
j“1 η

3
j

p
řd

j“1 η
2
j q3{2

`
logp1{ϕq

?
n

¸

(C.43)

with probability greater than 1 ´ ϕ.

Moreover, observe that as Λn “ λIn and the sub-Gaussian norm of a standard Gaussian random variable is

less than 2, the inequality (C.37) implies that, by setting

t “ C

˜

λ1´q{2γ3{2

γ1{2
`
λ2´q{2γ5{2

γ1{2

¸

d

log3pdn{ϕq

n
, (C.44)

the event (C.41) holds with probability greater than 1´Cϕ. Hence, the decomposition (C.42) and Lemma C.2

imply that the bound (C.40) holds with probability greater than 1 ´ Cϕ, where we have subsumed λ and γ

into the constant C.

APPENDIX D. PROOFS FOR AUXILIARY RESULTS

D.1 Proof of Lemma C.1. Part (i)

The result follows from an application of the Hanson and Wright (1971) inequality for sub-Gaussian

quadratic forms. See e.g., Rudelson and Vershynin (2013) for a modern treatment.

Lemma D.1 (Theorem 1.1, Rudelson and Vershynin 2013). Let X “ pX1, . . . , Xmq be a random vector with

independent, centered, and M -sub-Gaussian components. Let A be an mˆm deterministic matrix. There

exists a constant C ą 0 such that

P
␣

|XJAX ´ E
“

XJAX
‰

| ľ t
(

ĺ 2 exp

ˆ

´Cmin

"

t2

M4}A}2F
,

t

M2}A}op

*˙

(D.1)

for every t ľ 0.
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In particular, we apply Lemma D.1 to the statistic γ̂j . To this end, collect the observations of the jth outcome

into the vector Y pjq “ pY
pjq

i qni“1. Recall the matrix Z defined in Assumption C.1. Observe that the matrix

Z̃ “ ZΓ
1{2
d (D.2)

has independent rows and has components whose sub-Gaussian norm is at most Mγ. Let Z̃pjq denote its jth

column. Observe that we can write

γ̂j “
1

n
pY pjqqJY pjq “

1

n
pZ̃pjqqJΛnZ̃

pjq , (D.3)

by Assumption C.1. Moreover, we can evaluate

Erγ̂js “ γj,jLn , where Ln “
1

n

n
ÿ

i“1

λi,i . (D.4)

Thus, Lemma D.1 implies that

P t|γ̂j ´ γj,jLn| ľ tu ĺ 2 exp

˜

´Cmin

#

t2

γ4M4} 1
nΛn}2F

,
t

γ2M2} 1
nΛn}op

+¸

(D.5)

for all t ľ 0. Now, observe that Assumption 4.1 implies that

}Λn}op ĺ max
iPrns

1

n

n
ÿ

i1“1

|λi,i1 | ĺ
λ
1´q

n
κn and (D.6)

}Λn}2F ĺ
1

n2

n
ÿ

i“1

n
ÿ

i1“1

λ2i,i1 ĺ λ
2´q 1

n2

n
ÿ

i“1

n
ÿ

i1“1

|λi,i1 |q ĺ
λ
2´q

n
κn, (D.7)

respectively. Consequently, the inequalities (D.5), (D.6), and (D.7) imply that

P t|γ̂j ´ γj,jLn| ľ tu ĺ 2 exp

˜

´
C

γ4M4λ
2´q

t2n

κn

¸

(D.8)

for all t ĺ γ2M2λ. Thus, so long as n´1κn logpd{ϕq ă 1, by choosing

t “ cλ
1´q{2

γ2M2

c

κn
n

logpd{ϕq (D.9)

for a sufficiently small constant c, the inequality (D.8) implies that

max
jPrds

ˇ

ˇ

ˇ
γ̂j ´ γj,jLn

ˇ

ˇ

ˇ
ĺ cλ

1´q{2
γ2M2

c

κn
n

logpd{ϕq (D.10)

with probability 1 ´ ϕ, by a union bound.

To conclude the proof, we translate our large deviation bound for γ̂j into a large deviation bound for γ̂j .

To this end, observe that, on the event

max
jPrds

"ˇ

ˇ

ˇ

ˇ

γ̂j
γj,jLn

´ 1

ˇ

ˇ

ˇ

ˇ

*

ĺ
1

2
(D.11)
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it holds that
ˇ

ˇ

ˇ

ˇ

γ̂1
γ̂j

´
1

γj,j

ˇ

ˇ

ˇ

ˇ

ĺ
Ln

γ̂j

ˇ

ˇ

ˇ

ˇ

γ̂1
Ln

´ 1

ˇ

ˇ

ˇ

ˇ

`
1

γj,j

ˇ

ˇ

ˇ

ˇ

γj,jLn

γ̂j
´ 1

ˇ

ˇ

ˇ

ˇ

ĺ 2

ˆ

Ln

γ̂j

ˇ

ˇ

ˇ

ˇ

γ̂1
Ln

´ 1

ˇ

ˇ

ˇ

ˇ

`
1

γj,j

ˇ

ˇ

ˇ

ˇ

γ̂j
γj,jLn

´ 1

ˇ

ˇ

ˇ

ˇ

˙

ĺ 2

ˆˆ

1

γj,j
`

ˇ

ˇ

ˇ

ˇ

1

γj,j
´
Ln

γ̂j

ˇ

ˇ

ˇ

ˇ

˙
ˇ

ˇ

ˇ

ˇ

γ̂1
Ln

´ 1

ˇ

ˇ

ˇ

ˇ

`
1

γj,j

ˇ

ˇ

ˇ

ˇ

γ̂j
γj,jLn

´ 1

ˇ

ˇ

ˇ

ˇ

˙

ĺ 2

ˆˆ

1

γj,j
`

1

γj,j

ˇ

ˇ

ˇ

ˇ

1 ´
γj,jLn

γ̂j

ˇ

ˇ

ˇ

ˇ

˙ ˇ

ˇ

ˇ

ˇ

γ̂1
Ln

´ 1

ˇ

ˇ

ˇ

ˇ

`
1

γj,j

ˇ

ˇ

ˇ

ˇ

γ̂j
γj,jLn

´ 1

ˇ

ˇ

ˇ

ˇ

˙

ĺ 4

ˆˆ

1

γj,j
`

1

γj,j

ˇ

ˇ

ˇ

ˇ

1 ´
γ̂j

γj,jLn

ˇ

ˇ

ˇ

ˇ

˙ ˇ

ˇ

ˇ

ˇ

γ̂1
Ln

´ 1

ˇ

ˇ

ˇ

ˇ

`
1

γj,j

ˇ

ˇ

ˇ

ˇ

γ̂j
γj,jLn

´ 1

ˇ

ˇ

ˇ

ˇ

˙

ĺ
4

γj,j

ˆ
ˇ

ˇ

ˇ

ˇ

γ̂1
Ln

´ 1

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

1 ´
γ̂j

γj,jLn

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

γ̂1
Ln

´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 ´
γ̂j

γj,jLn

ˇ

ˇ

ˇ

ˇ

˙

, (D.12)

where we have applied the elementary inequality

|z´1 ´ 1| ĺ 2|z ´ 1| , for |z ´ 1| ĺ 1{2 , (D.13)

to obtain the second and fifth inequalities. Now, observe that
ˇ

ˇ

ˇ

ˇ

γ̂j
γj,jLn

´ 1

ˇ

ˇ

ˇ

ˇ

ĺ c
λ
1´q{2

γ2

γj,jLn

c

M
κn
n

logpdϕq

ĺ c
λ
1´q{2

λ

γ2

γ

c

M
κn
n

logpd{ϕq (D.14)

with probability greater than 1 ´ ϕ{d, by the inequality (D.10). The condition (C.31) implies that

c
λ
1´q{2

λ

γ2

γ

c

M
κn
n

logpd{ϕq ĺ
1

2
(D.15)

with probability greater than 1 ´ ϕ{d. Consequently, the union bound implies that the event (D.11) holds for

every j in rds with probability greater than 1 ´ ϕ. Thus, the inequality (D.12) implies that

max
jPrds

|ξ̂j ´ ξj | ĺ max
jPrds

"

Cγj,j

ˆˇ

ˇ

ˇ

ˇ

γ̂1
Ln

´ 1

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

1 ´
γ̂j

γj,jLn

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

γ̂1
Ln

´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 ´
γ̂j

γj,jLn

ˇ

ˇ

ˇ

ˇ

˙*

, (D.16)

with probability greater than 1 ´ ϕ. Appealing, again, to the fact that the event (D.11) holds for every j in rds

with probability greater than 1 ´ ϕ, and applying the bound (D.14), we can conclude that the inequality

max
jPrds

|ξ̂j ´ ξj | ĺ C
λ
1´q{2

λ

d

M
γ

γ

κn
n

logpd{ϕq (D.17)

holds with probability greater than 1 ´ Cϕ, as desired.
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D.2 Proof of Lemma C.1. Part (ii)

The result again follows from an application of Lemma D.1. Recall the matrixZ defined in Assumption C.1.

Observe that the matrix
qZ “ Λ1{2

n Z (D.18)

has independent columns and has components whose sub-Gaussian norm is at most Mλ. Let qZi denote its

ith column. By Assumption C.1, we have that

λ̃i,i1 “
1

d
YiΞdY

J
i “

1

d
qZiΛ

1{2
d ΞdΛ

1{2
d

qZJ
i . (D.19)

Thus, Lemma D.1 and a union bound imply that

P

"

max
i,i1Prns

|λ̃i,i1 ´ λi,i1 | ľ t

*

ĺ 2n2 exp

ˆ

´Ctdmin

"

td

}Ωd}2F
,

1

}Ωd}op

*˙

. (D.20)

Re-expressing this bound, we find that the inequality

max
i,i1Prns

|λ̃i,i1 ´ λi,i1 | ĺ C
1

d

´

}Ωd}F
a

logpn{ϕq ` }Ωd}op logpn{ϕq

¯

ĺ C
1

d
}Ωd}F logpn{ϕq (D.21)

holds with probability greater than 1 ´ Cϕ, as desired.

D.3 Proof of Lemma C.2

Throughout, we let the operator „ denote equality in distribution. The result relies on the following

distributional decomposition of Gaussian quadratic forms. Let WqpΣ, pq denote the q-variate Wishart

distribution, with parameter Σ and degrees of freedom p.

Lemma D.2 (Corollary 2.3, Singull and Koski (2012)). Fix an n ˆ n positive semi-definite matrix Λn “

pλi,i1qni,i1“1 and a d ˆ d full-rank matrix Γd “ pγj,j1qdj,j1“1. Let X denote a mean-zero, Gaussian random

matrix, whose pi, jqth component is given by Xpjq

i and that satisfies

CovpX
pjq

i , X
pj1q

i1 q “ λi,i1γj,j1 . (D.22)

LetA denote a deterministic, symmetric, full-rank dˆdmatrix. The statisticQ “ XAXJ has the distribution

Q „

d
ÿ

j“1

ηjSj , (D.23)

where η1, . . . , ηd are the eigenvalues of Γ1{2
d AΓ

1{2
d and S1, . . . , Sd are independent random matrices with

distribution WdpΛn, 1q.
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As the data are Gaussian, and satisfy Assumption 3.1, Lemma D.2 implies that

Λ̃n,d “
1

d
Y ΞdY

J „
1

d

d
ÿ

j“1

ηjSj , (D.24)

where η1, . . . , ηd are the eigenvalues of Ωd “ Γ
1{2
d ΞdΓ

1{2
d and S1, . . . , Sd are independent random matrices

with distribution WdpΛn, 1q.

Let Z denote a mean-zero, Gaussian random matrix whose components are mutually independent. Let

Zpjq denote the jth column of Z and set VarpZpjqq “ λIn. Likewise, let Zpjq

i and Zi denote the pi, jqth

component and ith row of Z, respectively. By the definition of the Wishart distribution, it holds that

Sj „ ZpjqpZpjqqJ (D.25)

for each j in rds. Thus, the characterization (D.24) implies that

λ̃i,i1 „
1

d

d
ÿ

j“1

ηjZ
pjq

i Z
pjq

i1 (D.26)

for each i, i1 in rns. Therefore, the statistic

2

npn´ 1q

n
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i“1
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i1ăi

ˆ

Itλ̃i,i1 ĺ δu ´ Φ

ˆ

d

λ

1

}Ωd}F
δ

˙˙

(D.27)

is equi-distributed with

2

npn´ 1q

n
ÿ

i“1

ÿ

i1ăi

ψδpZi, Zi1q (D.28)

where

ψδpZi, Zi1q “ I

#

1

d

d
ÿ

j“1

ηjZ
pjq

i Z
pjq

i1 ĺ δ

+

´ Φ

ˆ

d

λ

1

}Ωd}F
δ

˙

. (D.29)

The random variable (D.28) can be recognized as a U -statistic of order 2.

Thus, we apply the following large-deviation bound, due to Hoeffding (1963).

Lemma D.3 (Lemma A.5, Song et al. (2019)). Let X1, . . . , Xn denote a collection of independent and

identically distributed random variables. Suppose that ψp¨, ¨q is a real-valued function that is symmetric in its

two components and satisfies

E rψpX1, X2qs “ 0 , VarpψpX1, X2qq “ ν , and |ψpX1, X2q| ĺ θ (D.30)

almost surely. Fix a constant 0 ă ϕ ă 1. The inequality
ˇ

ˇ

ˇ

ˇ

2

npn´ 1q

n
ÿ

i“1

ÿ

i1ăi

ψpXi, Xi1q

ˇ

ˇ

ˇ

ˇ

ĺ C

˜

c

ν logp1{ϕq

n
`
θ logp1{ϕq

n

¸

(D.31)

holds with probability greater than 1 ´ ϕ.
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Observe that, as Λn “ λIn and the components of Z are independent, the random variables Z1, . . . , Zn are

independent and identically distributed. Moreover, we have that

VarpψδpZi, Zi1qq ĺ 1 and |ψδpZi, Zi1q ´ E rψδpZi, Zi1qs | ĺ 1 (D.32)

almost surely. Thus, Lemma D.3 implies that the inequality
ˇ

ˇ

ˇ

ˇ

2

npn´ 1q

n
ÿ

i“1

ÿ

i1ăi

pψδpZi, Zi1q ´ E rψδpZi, Zi1qsq

ˇ

ˇ

ˇ

ˇ

ĺ C
logp1{ϕq

?
n

(D.33)

holds with probability greater than 1 ´ ϕ.

Hence, it suffices to bound the expectation

E rψδpZi, Zi1qs “ P

#

1

d

d
ÿ

j“1

ηjZ
pjq

i Z
pjq

i1 ĺ δ

+

´ Φ

ˆ

d

λ

1

}Ωd}F
δ

˙

. (D.34)

To do this, we apply the following Berry-Esseen inequality for non-identically distributed sums

Lemma D.4 (Theorem XVI.5.2, Feller (1991)). Let X1, . . . , Xn be independent variables such that

E rXks “ 0, E
“

|Xk|2
‰

“ σ2k, and E
“

|Xk|3
‰

“ θk . (D.35)

Define the sequences

s2n “

n
ÿ

i“1

σ2i and rn “

n
ÿ

i“1

θi (D.36)

For all δ and n, the inequality
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ˇ

ˇ

ˇ

P
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+
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holds.

Consider the sum
d
ÿ

j“1

1

d
ηjZ

pjq

i Z
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Observe that

E
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1
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i Z
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i Z
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where we have used facts about the second and third moments of Gaussian distributions for the second and

third relations. Consequently, Lemma D.4 implies that
ˇ

ˇ

ˇ

ˇ
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Hence, by combining the inequalities (D.33) and (D.40), we can conclude that
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holds with probability greater than 1 ´ ϕ, as required.

APPENDIX E. FURTHER DETAILS FOR EMPIRICAL APPLICATIONS

E.1 Bazzi et al. (2023)

Bazzi et al. (2023) examine the impact of the migration of millions of Southern whites in the twentieth

century. They use cross-sectional data concerning the demographic and political characteristics of 1,888 U.S.

counties. The main finding is that the Southern white migration in the early twentieth century is associated

with significantly higher Republican vote shares in the twenty-first century. Bazzi et al. (2023) consider the

model

Votec “ β ¨ Southern Whitesc,1940 `Xc ` αs ` εc , (E.1)

where c indexes counties and s indexes states. The main outcome, Votec, is the vote share received by Donald

Trump in 2016. The regressor of interest, Southern Whitesc,1940, is the Southern-born white population share

in 1940. The regression is instrumented by a shift-share variable constructed with predetermined Southern

white migration networks as of 1900 and predicted aggregate migration flows out of the South for each

decade from 1900 to 1940. The control variables Xc are historical economic factors (population density,

manufacturing employment, average farm values), ideological factors (Union Army enlistment, mortality

rates from the U.S. Civil War), and the vote share for Woodrow Wilson in 1912. The variable αs denotes a

state fixed effect. Standard errors are clustered across counties in 60 ˆ 60 mile grid cells.

The main result are displayed in their Table 2, Panel A, Column (4).22 The authors implement several

adjustments for spatial correlation. They report alternative standard errors, constructed with the methods

22The authors do not explicitly indicate the preferred specification. However, on page 1591, they write “Our main estimating
equation takes the following form.” Thus, we infer that Table 2 displays their “main” results. On Page 1595, they write ”Secondary
specifications control for additional potential sorting correlates,” and so columns 5 and 7 are not the main specifications. Therefore,
we use Panel A column 4 as the main specification.
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proposed by Conley (1999), Colella et al. (2023), and Adao et al. (2019), as well as through a wild bootstrap

with clustering by state. The corrections of the main specification are shown in their Column (4) of Table A.3.

The standard error based on the Conley (1999), with a cutoff at 500 km, is the largest and is 68% larger than

the baseline result.

For the set of auxiliary outcomes in the TMO procedure, we collect all feasible variables available in the

replication package. We exclude outcomes that are highly correlated with the main outcome, the regressor

of interest, or the primary controls variables. We also exclude outcomes that are missing for over 50% of

observations or are collinear with right hand side of the model. The auxiliary outcomes are all from the

replication package and include variables such as the Republican vote share in earlier years and the percent

of Southern blacks.

E.2 Bernini et al. (2023)

Bernini et al. (2023) study the impact of the Voting Rights Act (VRA) on the racial makeup of local

governments in the U.S. South. They consider cross-sectional data consisting of 971 counties in 11 states.

They find that federal scrutiny over Southern states post VRA had a sizable impact on the extent to which

enfranchisement led to Black office holding. Bernini et al. (2023) consider the long differences regression

model

∆Share Black Electedcs “ γPercent Black1960 ` θPercent Black1960 ˚ Coveredcs

`Xcs `Xcs ˚ Coveredcs ` Is ` ϵcs ,

where c denote county and s denotes state. The main outcome, ∆Share Black Electedcs, is the change in

the share of Black elected officials between 1964 and 1980. The regressor of interest, Percent Black1960 ˚

Coveredcs, is the interaction of the Black share in 1960 and a dummy for federal scrutiny. Control variables

Xcs are pre-VRA county characteristics (unemployment rate, the percent of families below the poverty

line, the percent of unskilled workers, agricultural productivity, population (ln), percent urban population,

cotton share, pro- and anti-Black activism, Republican share), Is is state dummies. Standard errors are

clustered by judicial division. Results are shown in Table 2 Column 4, which is stated as the paper’s preferred

specification23.

For the set of auxiliary outcomes in the TMO procedure, we collect all feasible variables available in the

replication package. We exclude outcomes that are highly correlated with the main outcome, the regressor

of interest, or the primary controls variables. We also exclude outcomes that are missing for over 50% of

observations or are collinear with right hand side of the model. The auxiliary outcomes are all from the

replication package and include variables such as the change in the log turnout for governor elections from

1940 to 1960 and the change in NAACP branches from 1942 to 1964.

23On page 1019-1020, Bernini et al. (2023) write “Our preferred specification in column 4 of table 2”
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E.3 Caprettini and Voth (2023)

Caprettini and Voth (2023) study the complementarity between patriotism in World War II and public-good

provision in the New Deal. They consider cross-sectional data considering 2329 counties. They find that

higher government spending at the county level in the 1930s is positively correlated with more patriotic

actions during World War II. Caprettini and Voth (2023) consider the OLS regression model

WWII Patriotismi “ βNew Deal Grantsi ` γWWI Patriotismi ` δXi ` ξs ` ui ,

where i denotes county. The main outcome, WWII Patriotismi denotes the average purchases of war bonds

per capita in 1944. The regressor of interest, New Deal Grantsi denotes the New Deal grants per 1930

population. Control variables WWI Patriotismi and Xi are WWI volunteering rate, WWI medals per 1000

inhabitants, socioeconomic characteristics in 1930 (log of population, unemployment rate, share of veterans,

share of African Americans, and share of people born in major Axis countries), share of people living on

a farm in 1930, 1929 farm income, an urban dummy, 1898-1928 average Democratic vote share, value of

WWII war contracts per capita, average 1939 wage of employees, and 1930 share of men. The variables ξs

denote state fixed effects. Heteroskedasticity-robust standard errors are used.

Results are shown in Table 2 Panel A Column 1.24 Caprettini and Voth (2023) discuss spatial error

correlation. They report Conley (1999) standard errors in Table 2 Panel B and Table 3. The Conley (1999)

standard errors are between 0% and 171% larger than the heteroskedasticity-robust standard errors.

For the set of auxiliary outcomes in the TMO procedure, we collect all feasible variables available in the

replication package. We exclude outcomes that are highly correlated with the main outcome, the regressor

of interest, and the primary controls variables. We also exclude outcomes that are missing for over 50%

of observations or are collinear with right hand side of the model. The auxiliary outcomes are all from

the replication package and include variables such as the number of WW2 volunteers per 100 people and

quantiles of 1940 FDR vote share.

E.4 Moscona and Sastry (2023)

Moscona and Sastry (2023) study how innovation shapes the economic impact of climate change. They

consider panel data consisting of 3000 counties between 1950 and 2010. They find that that counties’

exposure to climate-change-induced innovation significantly decreases the local economic damage from

extreme temperatures. Moscona and Sastry (2023) consider the regression model

log Agr Land Pricei,t “ δi ` αspiq,t ` βExtreme Exposurei,t ` γInnovation Exposurei,t

` ϕpExtreme Exposurei,t ˚ Innovation Exposurei,tq ` ϵi,t

24On Page 481, Caprettini and Voth (2023) write “Figure I summarizes our main result”. Similarly, on Page 483 they write “to go
beyond the graphical evidence”, suggest results in this section (Table 2) are the main results. The first three columns report results
for three equally important measures of patriotism, so we randomly choose the first as the main specification
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where i denotes county, s denotes state, and t denotes time (1959 or 2017). The main outcome, log Agr

Land Pricei,t, is the price per acre of cultivated land. The regressor of interest, Extreme Exposurei,t ˚

Innovation Exposurei,t, is the interaction of measures of a county’s exposures to extreme temperature and

innovation, respectively. The variable δi denote county fixed effects. The variables αspiq,t denote state by

year fixed effects. Standard errors are double clustered at the county and state-by-year levels. Results are

shown in Table 3 Column 1 in the paper.25 Moscona and Sastry (2023) report Conley (1999) standard errors

in Table A21. The Conley (1999) standard errors are smaller than the clustered standard errors reported in the

main text.

As there are a limited number of variables in the replication package, we construct the set of auxiliary

outcomes using external sources. Given the agricultural context of this study, we take county-level outcomes

from the United States Censuses of Agriculture compiled in Haines et al. (2018), such as the number of farms.

We also collect outcomes that are in both the historical County Data Book dataset26 and the contemporary

USA Counties dataset27 such as employment in the agricultural sector. We use the outcomes for which there

are data in both 1950 and 2010, which are the years of interest in this study.

E.5 Esposito et al. (2023)

Esposito et al. (2023) study the effect of the Lost Cause narrative—a revisionist and racist retelling of the

U.S. Civil War—on national reunification and racial discrimination. They consider a panel dataset consisting

of 786 counties between 1910 to 1920. They find that screenings of The Birth of a Nation shifted public

discourse toward more patriotic and less divisive language, increased military enlistment, and fostered cultural

convergence. This paper considers an instrumental variables regression model

Reconciliationct “ βBONct `Xct ` αc ` αt ` ϵct

where c is county and t is year-month. The main outcome, Reconciliationct, represents the relative log

frequencies of patriotic keywords to divisive ones in local newspapers. The regressor of interest, BONct, is

equal to 1 after the screening of The Birth of a Nation. The regression is instrumented with the screening

of an another movie, The Million Dollar Mystery. The control, Xct, is total number of newspaper pages

available in data. Standard errors are clustered at the county level. Results are shown in Table 3 Panel A

Column 3.28 We choose the specification reported in Panel A Column 3 because the authors specify that

25The authors do not explicitly indicate the preferred specification. However, on page 645, they write “Sections IV and V present our
main results.” Thus, we conclude that Table 3 displays the paper’s main county level results. Within Table 3, we pick Column 1
as the main specification, because the authors choose this specification to perform down-stream analysis. For example, on Page
680, they write “Figure VI reports the marginal effect of exposure to extreme heat (y-axis) for quantiles of the innovation exposure
distribution (x-axis), using the specification from column (1)”.
26https://doi.org/10.3886/ICPSR07736.v2
27https://www.census.gov/library/publications/2011/compendia/usa-counties-2011.html
28On page 1479, the authors write “In our baseline analysis....” Likewise, on page 1479, they write “we compute our main dependent
variable, Reconciliationct.”

https://doi.org/10.3886/ICPSR07736.v2
https://www.census.gov/library/publications/2011/compendia/usa-counties-2011.html
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this specification is their preferred model.29 The paper also clusters the standard errors at the state level and

applies the estimator proposed in Colella et al. (2023) (see Table B34 Panel C Column 1). Clustering at the

state level increases the standard error by 34%, while the correction based on Colella et al. (2023) decreases

the standard error.

For the set of auxiliary outcomes in the TMO procedure, we begin with all feasible variables available in

the replication package, such as whether ”White-only” is observed in a newspaper job advertisement in a

given month. With only the variables in the replication package, however, the set of auxiliary outcomes does

not have enough power for the TMO procedure. We therefore supplement the set of auxiliary outcomes using

general economic and demographic variables aggregated to the county level from the U.S. Cenus Bureau via

IPUMS30 such as the proportion of foreign-born population in the county. For years between 1910 and 1920,

we interpolate the Census outcomes. We exclude outcomes that are highly correlated with the main outcome,

the regressor of interest, and the primary controls variables. We also exclude outcomes that are missing for

over 50% of observations or are collinear with right hand side of the model.

E.6 Calderon et al. (2023)

Calderon et al. (2023) study the political effects of the migration of four million African Americans from

the South to the North. They consider with a panel data consisting of 1263 non-southern counties from 1940

to 1960. Calderon et al. (2023) find that the great migration increased support for the Democratic Party,

increased Congress members’ propensity to promote civil rights legislation, and encouraged pro-civil rights

activism outside the US South. This paper considers the instrumental variables regression model

∆demshcτ “ δsτ ` β∆Blcτ ` γXcτ ` ucτ ,

where c is county and τ is decade. The main outcome, ∆demshcτ , is the change in the Democratic vote share

during decade τ . The regressor of interest, ∆Blcτ , is the change in the Black population share. The regression

is instrumented with a shift-share predictor of Black inflow. Control variables Xcτ are interactions between

decade dummies and 1940 county characteristics (Black population share and Democratic incumbency in

Congressional elections). The variable δsτ collects interactions between decade and state dummies. The

regression is weighed by 1940 county population. Standard errors are clustered at the county level. Results are

displayed in Table 2 Column 6. The authors note that this is the paper’s preferred specification 31. Calderon

et al. (2023) additionally clusters their standard errors at the commuting zone level and reports the confidence

interval constructed with the method of Adao et al. (2019). These results are displayed in Table D.21 and

D.22. Clustering at the commuting zone level increases the standard errors by 1%.

29On page 1472, Esposito et al. (2023) write “our preferred solution is to instrument the treatment in a two-stage least squares (2SLS)
version of equation (1).”
30https://usa.ipums.org/usa/
31On page 179, Calderon et al. (2023) write ”especially for our preferred specification (Column 6)”

https://usa.ipums.org/usa/
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For the set of auxiliary outcomes in the TMO procedure, we begin with all feasible variables available

in the replication package, such as the share of manufacturing. With only the variables in the replication

package, however, the set of auxiliary outcomes does not have enough power for the TMO procedure. We

therefore supplement the set of auxiliary outcomes using outcomes from the other historical county-level

papers in Table 4, such as total manufacturing wages. We also exclude outcomes that are missing for over

50% of observations, are collinear with right hand side of the model, or are outside the time period in the

paper.

E.7 Cook et al. (2023)

Cook et al. (2023) study factors correlated with the provision of nondiscriminatory services. They consider

a panel dataset consisting of 3092 counties between 1939 to 1955. They find that declines white population

led to increases in the number of nondiscriminatory businesses. This paper considers the linear regression

model

AsinhpN0ctq “ β0 ` β1Asinhpcasualtiescq ˚ postWWIIt ` ϕc ` ξt ` ϵct

where c denotes county and t denotes year. The main outcome, N0ct, is the number of Green Book

establishments in county c at time t. The regressor of interest, Asinhpcasualtiescq ˚ postWWIIt, is the

interaction of the number of white casualties in World War II and a post-war indicator. The variables ϕc and

ξt denote county and year fixed effects. Standard errors are clustered at the county level. Results are shown

in Table 3 Panel A Column 4 in the paper, which is stated as the paper’s preferred specification.32

For the set of auxiliary outcomes in the TMO procedure, we begin with all feasible variables available

in the replication package, such as the number of other establishments including barber shops, restaurants,

and hotels. With only the variables in the replication package, however, the set of auxiliary outcomes does

not have enough power for the TMO procedure. We therefore supplement the set of auxiliary outcomes

using outcomes from the historical County Data Book dataset33 that are available from 1939 to 1955, such as

employment in services and retail sales. We interpolate the County Data Book outcomes between the survey

years.

E.8 Chetty et al. (2014)

Chetty et al. (2014) study features of inter-generational mobility in the United States. One of the findings

of this paper is that the absolute upward mobility (the expected income rank of children from families at

the 25 percentile of the national parent income distribution) is negatively correlated with the proportion in a

commuting zone that is African American. This paper considers the linear regression model

absmobc “ β0 ` β1frac blackc ` δs ` ϵc

32On page 77, the authors write “our preferred specification uses county and year fixed effects”.
33https://doi.org/10.3886/ICPSR07736.v2

https://doi.org/10.3886/ICPSR07736.v2
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where s denotes state and c denotes commuting zone. The main outcome, absmobc, is the measure of absolute

upward mobility in commuting zone c. The regressor of interest, frac blackc is the share of African American

people in commuting zone c. Standard errors are clustered at the state level. Results are shown in the first

row of Figure VIII in the paper34.

For the set of auxiliary outcomes in the TMO procedure, we begin with all feasible variables available

in the replication package, such as the CZ-level Gini coefficient and labor force participation rate. With

only the variables in the replication package, however, the set of auxiliary outcomes does not have enough

power for the TMO procedure. We therefore supplement the set of auxiliary outcomes using contemporary

county-level outcomes from the USA Counties dataset35 aggregated to the CZ level, such as the enrollment in

public schools and the divorce rate.

E.9 Acemoglu et al. (2019)

Acemoglu et al. (2019) estimates the impact of democracy on economic growth. They consider panel data

of 175 countries between 1960 to 2010. They find that democratization increases GDP per capita in the long

run. This paper considers the linear regression model

lgdppcc,t “ βdemoc,t `

4
ÿ

j“1

γj lgdppcc,t´j ` αc ` δt ` ϵc,t

where c denotes country and t denotes year. Results are shown in Table 2 Column 3, which is stated as the

paper’s preferred specification36. The main outcome, lgdppcc,t, is the log of GDP per capita. The regressor

of interest, democ,t, is a dichotomous measure of democracy. Control variables are the lags of log GDP per

capita. The quantities δt and αc are year and country fixed effects. Standard errors are clustered at the country

level.

For the set of auxiliary outcomes in the TMO procedure, we begin with all feasible variables available in

the replication package, such as the percentage of population with at most primary education and an index

measure of market reforms. With only the variables in the replication package, however, the set of auxiliary

outcomes does not have enough power for the TMO procedure. We therefore supplement the set of auxiliary

outcomes using publicly available sources such as the UN and the World Bank, including variables such as

the Gini index and central government debt as a percentage of GDP.

34We pick this specification because the authors write “Perhaps the most obvious pattern from the maps in Figure VI is that
inter-generational mobility is lower in areas with larger African American populations, such as the Southeast” on Page 1605.
35https://www.census.gov/library/publications/2011/compendia/usa-counties-2011.html
36On page 59, Acemoglu et al. (2019) write “Column 3, which is our preferred specification, includes four lags of GDP per capita”.

https://www.census.gov/library/publications/2011/compendia/usa-counties-2011.html
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FIGURE E.7. Distribution of Correlations Between Locations in Applications

Cook et al. (2023)

Caprettini and Voth (2023)

Esposito et al. (2023)
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FIGURE E.7. Distribution of Correlations Between Locations in Applications

Bernini et al. (2023)

Bazzi et al. (2023)

Calderon et al. (2023)
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FIGURE E.7. Distribution of Correlations Between Locations in Applications

Moscona and Sastry (2023)

Chetty et al. (2014)

Acemoglu et al. (2019)

Notes: Figure E.8 displays a histogram of the Fisher-transformed correlations ρ̃i,i1 between each pair of locations in each
of the empirical applications in Table 4. The density curve denotes the null density estimate, obtained with the procedure
outlined in Section 3.4. The vertical line marks the optimal threshold δ̂˚.
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FIGURE E.8. TMO Relative to Original Standard Error across Thresholds in
Applications

Cook et al. (2023)
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FIGURE E.8. Distribution of Correlations Between Locations in Applications

Bernini et al. (2023)
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FIGURE E.8. Distribution of Correlations Between Locations in Applications

Moscona and Sastry (2023)
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Notes: Figure E.8 plots the ratio of the TMO standard error relative to the original standard error in the papers as the
threshold δ varies. The vertical line marks the estimate of the optimal threshold δ̂˚.


