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SUMMARY

This paper considersmixed, or random coe�cients, multinomial logit (MMNL)models for discrete response,
and establishes the following results.Undermild regularity conditions, anydiscrete choicemodel derived from
random utility maximization has choice probabilities that can be approximated as closely as one pleases by a
MMNLmodel. Practical estimation of a parametricmixing family can be carried out byMaximumSimulated
LikelihoodEstimation orMethod of SimulatedMoments, and easily computed instruments are provided that
make the latter procedure fairly e�cient. The adequacy of a mixing speci®cation can be tested simply as an
omitted variable testwith appropriately de®ned arti®cial variables.Anapplication toaproblemofdemand for
alternative vehicles shows thatMMNLprovides a ¯exible and computationally practical approach to discrete
response analysis. Copyright# 2000 John Wiley & Sons, Ltd.

1. INTRODUCTION

De®ne a mixed multinomial logit (MMNL) model as a MNL model with random coe�cients a
drawn from a cumulative distribution function G(a;y):

PC�i j xxxxx; y� �
Z

LC�i; xxxxx; a��G�da; y� with LC�i;xxxxx; a� � e
xia=

X
j2C

e
xja �1�

In this setup, C � f1; . . . ; Jg is the choice set; the xi are 1 � K vectors of functions of observed
attributes of alternative i and observed characteristics of the decision maker, with
xxxxx � �x1; . . . ; xJ�; a is a K � 1 vector of random parameters; LC�i; xxxxx; a� is a MNL model for
the choice set C; and y is a vector of deep parameters of the mixing distribution G. The random
parameters a may be interpreted as arising from taste heterogeneity in a population of MNL
decision makers. If the xi contain alternative-speci®c variables, then the corresponding
components of a can be treated as alternative-speci®c random e�ects. Alternately, the model
may simply be interpreted as a ¯exible approximation to choice probabilities generated by a
random utility model. The mixing distribution Gmay come from a continuous parametric family,
such as multivariate normal or log normal, or it may have a ®nite support. When G has ®nite
support, MMNL models are also called latent class models. Equation (1) describes a single
decision, but extension to dynamic choice models with multiple decisions is straightforward, by
mixing over the parameters of a product of MNL models for each component decision.
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The MMNL model was introduced by Boyd and Mellman (1980) and Cardell and Dunbar
(1980), although an earlier literature had considered the mathematically similar problem of
aggregating the MNL model over a distribution of explanatory variables; see Talvitie (1972),
Westin (1974), McFadden and Reid (1975), and Westin and Gillen (1978). There is a lengthy
literature investigating various aspects of the MMNL model; see Beggs (1988), BoÈ rsch-Supan
(1990), Brownstone and Train (1999), Chavas and Segerson (1986), Dubin and Zeng (1991),
Enberg, Gottschalk, and Wolf (1990), Follman and Lambert (1989), Formann (1992), Gonul
and Srinivasan (1993), Jain, Vilcassim, and Chintagunta (1994), Montgomery, Richards, and
Braun (1986), Reader (1993), Revelt and Train (1998), Steckel and Vanhonacker (1988), Train,
McFadden, and Goett (1987), and Train (1998, 1999). Chesher and Santos-Silva (1995) have
developed speci®cation tests for MMNL that are relatives of ones proposed here. This paper
establishes the following results:

. Under mild regularity conditions, MMNL models are random utility maximization (RUM)
models, and any discrete choice model derived from a RUM model has choice probabilities
that can be approximated as closely as one pleases by a MMNL model (Section 2).

. Numerical integration or approximation by simulation is usually required to evaluate MMNL
probabilities. Maximum Simulated Likelihood (MSLE) or Method of Simulated Moments
(MSM) can be used to estimate the MMNL model (Section 3).

. The adequacy of a mixing speci®cation can be tested simply as an omitted variable test with
appropriately de®ned arti®cial variables (Section 4).

. An application to a problem of demand for alternative vehicles shows that MMNL provides a
¯exible and computationally practical approach to discrete response analysis (Section 5).

2. A GENERAL APPROXIMATION PROPERTY OF MMNL

Economic theory often suggests that discrete responses are the result of optimization of payo�s to
decision makers: utility for consumers, pro®t for ®rms. The following discussion will be phrased
in terms of utility-maximizing consumers. When unobserved heterogeneity in the population of
consumers is accounted for, this will lead to a class of response models based on random utility
maximization (RUM). A resource allocation to a consumer will specify quantities of goods and
leisure, and for our particular interest the attributes of a discrete alternative, such as an
automobile model. We will consider two sources of unobserved heterogeneity: features of
alternatives that are not recorded by the analyst, and unmeasured consumer characteristics that
determine preferences.

Let q � �g; l; z; z� denote a consumer's resource allocation, where z is a vector of observed
attributes and z is a vector of unobserved attributes of a discrete alternative, g is a vector of
quantities of other goods, and l is leisure. Assume that the domain of q is a compact rectangle in a
®nite-dimensional Euclidean space. Consumers have a vector of observed characteristics s and a
vector of unobserved characteristics &; with (s,&) determining preferences over resource
allocations. Assume that the domain of (s,&) is a compact subset of a ®nite-dimensional
Euclidean space. This is not a substantive restriction for discrete choice analysis when the number
of choice alternatives is bounded. Assume that consumer preferences over resource allocations,
�s;&, are complete and transitive, with the continuity property that if a sequence of allocations
and consumer characteristics converges, �q10; q20; s0; & 0� ! �q1; q2; s; &�, and satis®es q10 �s0;& 0 q

20,
then q1 �s;& q

2. For ®xed (s,&), this is the standard continuity condition on preferences. Our
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condition extends this to require that consumers with similar characteristics will also have similar
preferences. Together, these assumptions imply that preferences can be represented by a utility
function U�g; l; z; z; s; &� that is continuous in its arguments; see Appendix Lemma 1.

We next consider the stochastic properties of unobserved elements in this formulation of the
consumer's problem. Let (O,W,p) denote a fundamental probability space, whereW is the s-®eld
of measurable subsets and p is a probability measure. Let T denote a subset of Rm, and
X : O � T! Rn denote a continuous random ®eld; i.e., for each t 2 T;X��; t� is a random vector,
measurable with respect to W, and for a set of o occurring with probability one, X�o; �� is a
continuous function on T. We will often suppress the dependence of the random ®eld on o, and
write it as X�t�. A continuous random ®eld has limt0!tX�t0� � X�t� with probability one, implying
that X�t0� converges in distribution to X�t� as t0 ! t. The CDF of X�t� is
F�x; t� � p�fo 2 O jX�o; t�4 xg�. We say that X has a regular canonical representation if there
exists a continuous function h : �0; 1�n � T! Rn and a uniformly distributed continuous random
®eld " : O � T! �0; 1�n such that X�t� � h�"�t�; t� with probability one.1 We show in the
Appendix that a continuous random ®eld whose CDF admits a positive continuous density has a
regular canonical representation. For example, if X�t� is a mean-zero Gaussian continuous
random ®eld with a de®nite covariance matrix O(t), and F denotes the standard normal CDF,
then O(t) has a continuous Cholesky factor L(t) and the mapping "�t� � F�L�t�ÿ1X�t�� is a
uniformly distributed continuous random ®eld that inverts to the regular canonical
representation X�t� � L�t�Fÿ1�"�t��.

A primitive postulate of preference theory is that tastes are established prior to assignment of
resource allocations. Then, the distribution of & cannot depend on q, although in general it will
depend on s. We assume that & � &�s� is a continuous random ®eld with a regular canonical
representation, and write it as &�s� � h0�u�s�; s�, where u(s) is a uniformly distributed continuous
random ®eld. Then consumers with similar observed characteristics will have similar distributions
of unobserved characteristics. Another primitive postulate of consumer theory is that the
descriptionof a resource allocationdoesnot dependon consumercharacteristics.Thus, consumers'
tastes and perceptions do not enter the `objective' description of a resource allocation, although
theywill obviously enter the consumer's evaluation of the allocation.This postulate implies that the
distribution of x cannot depend on (s,�), although it may depend on z. We will assume that z is
speci®ed as a continuous random ®eld with a regular canonical representation, and write it as
z�z� � h�"�z�; z�, where "(s) is a uniformly distributed continuous random ®eld. Then discrete
alternatives that are similar in their observed attributes will have similar distributions of
unobserved attributes. Substituting the transformations h0 and h into the de®nition of U, we can
consider a canonical random utility model U�g; l; z; s; "�z�; u�s�� that is continuous in its arguments,
with "(z) and u(s) independently uniformly distributed continuous random ®elds.

Economic consumers make choices subject to dollar and time budgets. For discrete choice, if
assigned a discrete alternative z, the consumer will choose goods g and leisure l to maximize
utility subject to these budgets. If the alternative requires time t � t�z�, the consumer's 24-hour/
day time budget is 24 � l� � e� t, where e is hours worked and l� is hours of pure leisure. If only
a portion l of the time t devoted to the alternative is equivalent to work, then l � l� � �1ÿ l�t is
the e�ective leisure entering the utility function. Suppose the consumer faces a dollar budget

a� w�e � p�g� c �2�

1A random ®eld " is uniformly distributed if "(t) has a uniform distribution on [0,1]n for each t$T; see Appendix Lemma 3.
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where a is non-wage income, c is the cost of the discrete alternative, w is the wage, and p is the
vector of goods prices. For the assigned alternative, maximum utility then satis®es

U
0�aÿ c; p;w; tl; z; s; "�z�; u�s�� � maxe;gU�g; 24ÿ eÿ tl; z; s; "�z�; u�s��

subject to a� w�e � p�g� c

This is a conditional indirect utility function, given the discrete alternative.2 With a monotone
transformation, we can assume that the range of utility is contained in the unit interval. For
economic applications, it will be important to distinguish the market variables a, p, and w, which
can be altered by economic policy, from the observed consumer characteristics included in s.
Similarly, the market cost c of the discrete alternative which can be altered by policy is
distinguished from z, while t is a component of z. An important implication of these distinctions
is that for each realization of "(z) and u(s), the conditional indirect utility function is characterized
by the standard economic properties that it is increasing in aÿc, non-increasing in (p,w), and
homogeneous of degree zero and quasi-convex in �aÿ c; p;w�. It will be convenient as a
shorthand in the following analysis to rede®ne z and s to absorb the market variables, and write
the conditional indirect utility function asU�z; s; "�z�; u�s��, keeping in mind that "(z) and u(s) will
not depend on the market variable components of z and s. Let Z and S denote the domains of z
and s, respectively, and note that they are assumed to be compact subsets of ®nite-dimensional
spaces.

Consider choice over ®nite sets of discrete alternatives C � fz1; . . . ; zJg, distinguished by the
consumer (and the observer) in terms of their observed attributes zj which may include `brand
names' or other alternative-speci®c identi®ers that in¯uence the consumer's evaluation. We will
interpret C as an ordered sequence, and denote the family of possible J-element choice sets by
CJ � ZJ. By construction, all the elements of C 2 CJ must be distinct. We assume that CJ is
compact; this excludes cases where alternatives are observationally indistinguishable in the limit.
We assume that there is an upper bound J� on the number of elements in a choice set. Then
C� � C2 [ � � � [ CJ� is the universe of possible choice sets. We assume that proper subsets of
possible choice sets are also possible; in particular, if C 2 CJ contains elements z0 and z00, then
fz0; z00g 2 C2. For brevity, C � fz1; . . . ; zJg will sometimes be written as C � f1; . . . ; Jg.

In a well-speci®ed RUM model, there will be zero probability of ties in a choice set
C � fz1; . . . ; zJg, so that a realization u � u�s� and "j � "�zj� for j � 1; . . . ; J of the random
elements in the model almost surely determines a unique choice. When U is continuously
di�erentiable, a su�cient condition for this is that the Jacobian

@U�z1; s; "1; u�=@u @U�z1; s; "1; u�=@"1 . . . 0
. . . . . . . . . . . .

@U�zJ; s; "J; u�=@u 0 . . . @U�zJ; s; "J; u�=@"J

24 35
have rank at least Jÿ1, and that the support of �u; "1; . . . ; "J� contain the space spanned by the
Jacobian. Ways to guarantee no ties include taste factors (determined by u) of the required
dimension that interact with a full-rank array of alternative attributes, or a full set of alternative-
speci®c e�ects (determined by the "j), or some combination. The following result establishes that

2The conditional indirect utility function (3) is modi®ed in obvious ways if the consumer cannot choose work hours e, the
time requirement t for the discrete alternative is absent, or time required for consumption of other goods enters the time
budget.
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MNL mixtures can closely approximate a very broad class of RUM models that have zero

probability of ties:

Theorem 1. Let z 2 Z, with Z compact, denote the vector of observed attributes of a discrete

alternative, and s 2 S, with S compact, denote the vector of observed characteristics of the

consumer. Suppose discrete choices are made from choice sets C � fz1; . . . ; zJg, with at most J�

alternatives, contained in a compact universe C� in which all alternatives are distinct. Let

z � �z1; . . . ; zJ�, and as a shorthand let C � f1; . . . ; Jg. Suppose discrete responses maximize a

canonical conditional indirect utility functionU��zj; s; "j; u� that is a bounded continuous function
of its arguments, where "j � "�zj� and u � u�s� are uniformly distributed continuous random ®elds.

Assume there is zero probability of ties. LetP�C�i j z; s� denote the choice probabilities generated by
maximization of U� over C. If Z is a small positive scalar, then there exists a continuous function

x � x�z; s� of dimension 1 � k for some integer k, with x � �x�z1; s�; . . . ; x�zJ; s��, and a random

utility model with choice probabilities PC�i j x; y� of theMMNL form (1), such that P�C�i j z; s� and
PC�i j x; y� di�er by at most Z for all s 2 S and z 2 C�.

The proof is given in the Appendix. The construction in the proof shows that the random

coe�cients a in equation (1) can be taken to be continuous polynomial transformations of the

uniformly distributed continuous random ®elds "�z� and u�s�, and from the earlier discussion

the indexing of these ®elds will exclude economic market variables. Then, the distribution of a
will not depend on observed variables except through the correlations across similar

alternatives. One implication of the theorem is that MMNL can be used to approximate

computationally di�cult parametric random utility models simply by taking the distributions

underlying these models, suitably scaled, as the mixing distributions. These can be interpreted

as simulation approximations using a MNL kernel. For multinomial probit models,

Brownstone and Train (1999) and Ben-Akiva and Bolduc (1996) ®nd in Monte Carlo

experiments that MMNL gives approximations that are as accurate and quick as direct

simulation alternatives such as the Geweke±Hajivassiliou±Keane (GHK) simulator; see

Hajivassiliou and Ruud (1994).

The theorem is stated for a single choice, but applies by reinterpretation to multiple or dynamic

choice applications by treating each possible portfolio of choices as a distinct alternative.

Alternately, the theorem extends easily to a time series of serially correlated RUM models

approximated by serially correlated mixtures of a product of MNL models for the individual

decisions: MMNL probabilities for a sequence of choices it from sets Ct for t � 1; . . . ;T will have

the form PC�i1; . . . ; iT j x; y� �
R

Pt4TLCt�it; xt; a��G�da; y�, where LCt�it;xt; a� is a MNL

probability for period t choice, with xt a vector of functions of alternative attributes and

consumer characteristics that may include state dependence on historical choices, and G is a

distribution that can in general include the e�ects of unobserved heterogeneity and serial

correlation. When both state dependence and unobserved heterogeneity are present, this model

su�ers from Heckman's initial values problem, and a latent class form of the model with G

depending on initial state can be interpreted as the Heckman±Singer semiparametric treatment

for this problem; see Heckman (1981), Heckman and Singer (1984, 1986), and Heckman,

Lochner, and Taber (1998). In particular, a MMNL model in this form can approximate a

dynamic choice model generated by a RUM model with a multivariate normal distribution of

unobserved factors.
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In the proof of the theorem, a polynomial approximation to the true random utility

function is perturbed by adding scaled i.i.d. Extreme Value Type I disturbances �, yielding
MNL as the base model to which mixing is applied. At this step, one could have used other

distributions for the �, although most alternatives are not as computationally tractable as

MNL. For example, one might take the � to be scaled i.i.d. standard normal. When the mixing

distribution is multivariate normal, this can be interpreted as the method for simulation of the

MNP model proposed by Stern (1994). Adopting i.i.d. standard normals for the base model

adds one dimension of numerical integration, and requires computation of a product of

univariate normal CDF's for each integration point and each decision maker. This requires

more computation than a MNL base model; see Train (1995). One can use classical

orthogonal polynomials, Fourier series, neural nets, or wavelets as a basis xk�z; s�; k � 1; 2; . . .

for the approximation. Judicious choice of a basis can make the approximation more

parsimonious and easier to identify econometrically than simple polynomials, and may make

it easier to impose or check monotonicity and quasi-convexity properties of a conditional

indirect RUM. In applications, it is often desirable to make the leading terms in the basis

expressions that occur in standard parametric economic consumer models such as a Stone±

Geary speci®cation. Then, a satisfactory approximation may be achieved without a large

number of additional terms.

There are two approximation results available in the literature that are somewhat di�erent

from Theorem 1. Discrete choice models continuous in their arguments can be approximated by

MNL models in which the scale value of each alternative is a general function of all variables for

all choices; see McFadden (1984). This approximation, sometimes called `mother logit', does not

require that the discrete choice model come from a random utility model, and the MNL

approximation is not guaranteed to be consistent with RUM. Thus, this approximation can be

useful for testing a RUM/MNL speci®cation against alternative models that are not necessarily

RUM, but is not useful for approximations within the RUM family. Dagsvik (1994) establishes,

for a general class of RUM that have a representation in which the random e�ect is additive and

independent of �z; s�, that the random utility process can be approximated by a generalized

extreme value process. Specialized to the current problem, this shows that this class of random

utility models can be approximated by generalized Extreme Value RUM. This is a powerful

theoretical result, but its practical econometric application is limited by the di�culty of

specifying, estimating, and testing the consistency of relatively abstract generalized Extreme

Value RUM.

One limitation of Theorem 1 is that it provides no practical indication of how to choose

parsimonious mixing families, or how many terms are needed to obtain acceptable

approximations to PC�i j z; s�. However, Monte Carlo studies indicate that fairly simple mixing

structures, with random coe�cients following a factor analytic structure of relatively low

dimension, and relatively simple mixing families, such as latent class models with relatively few

classes, are su�ciently ¯exible to capture quite complex patterns of heterogeneity; see Bolduc,

Fortin and Gordon (1996) and Brownstone and Train (1999). The speci®cation tests described in

Section 4 are one practical adaptive approach to obtaining satisfactory approximations. In

principle, one can combine a method of sieves for speci®cation of the xi variables with a latent

class structure for the mixing distribution G to develop a fully non-parametric approach to

estimation of random utility models for discrete choice.
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A second limitation of the theorem is that while it guarantees the existence of a satisfactory
MMNL approximation, it leaves open the possibility that identi®cation conditions for regular
maximum likelihood estimates of the MMNL model may fail, or that estimates may blow up.
The ®rst possibility is the usual local and global identi®cation problem, reduced but not
eliminated by judicious choice of the basis and careful global search in estimation. The second
possibility of estimates blowing up arises if the linear approximation and mixing distribution
happen to be exact, so that the true random utility model satis®es U��zi; s; "; u� � xi�a with xi a
vector of polynomials in zi and s and a distributed G�a; y�. Then by scaling down the i.i.d.
Extreme Value perturbations toU��zi; s; "; u�, one can make the MMNL approximation converge
to P�C�i j z; s�. This corresponds to approaching the maximum likelihood by scaling the MNL
coe�cients by a factor c!1 in PC�i j x; y;c� �

R
LC�i j x; a�c��G�da; y�; a ®nite maximand

does not exist. This is rarely a practical problem, since any speci®cation of x and G adopted in an
application will almost certainly miss features of the true random utility model, and c will be
determined by a search to achieve a best approximation to the in¯uence of these omitted factors.
Alternatively, if the exact model contains additive i.i.d. Extreme Value I components, the
problem cannot arise. Suppose a random utility model U��z; s; "; u� and C � fz1; . . . ; zJg. Let
F�u j z; s� be the CDF of �U��z1; s; ��; . . . ;U��zJ; s; ���. A necessary and su�cient condition for
additive i.i.d. Extreme Value I components is that F�ÿlog�t1�; . . . ;ÿlog�tJ�� have the properties of
a multivariate Laplace Transform: derivatives of all orders with

�ÿ1�n1�����nJ �@n1�����nJF�ÿlog�t1�; . . . ;ÿlog�tJ��=@n1t1 . . . @nJ tJ 5 0

See Appendix Lemma 4. In practice, it is di�cult to ®nd CDFs satisfying this condition, and
di�cult to test the condition, so that the likely possibility that the model is not exact is the best
guarantee for convergence of estimators.

3. SIMULATION OF THE MMNL MODEL

A tractable empirical form for the MMNL model PC�i j x; y� �
R
LC�i;x; a��G�da; y� is obtained

by taking a � b� Lz, where b is a K � 1 vector of `mean' coe�cients, L is a K �M matrix of
factor loadings, with exclusion restrictions for identi®cation, and z is an M � 1 vector of factor
levels that are independently distributed with a `standard' density f�z�. (This speci®cation includes
models with alternative-speci®c random e�ects: take xj to include alternative-speci®c dummies
and introduce factors that load on these dummies.) Let vec(B) denote the operation that stacks
the columns of an array B into a vector, de®ne g � vec�L0�, let y0 � �b0; g0� denote the vector of
parameters of this model, and let y0 denote the true value of y. De®ne
xC�z� � Sj2Cxj�LC�j; x; b� Lz� and let xiC�z� � xi ÿ xC�z�. Let Ez j i denote an expectation with
respect to the density of z conditioned on the event that i is chosen; i.e., the density
LC�i;x; b� Lz��f�z�= R LC�i; x; b� Lz��f�z�dz. Then PC�i jx; y� � EzLC�i; x; b� Lz�;
HblogPC�i j x; y� � Ez j ixiC�z�0 and Hglog PC�i j x; y� � vec�Ez j i zxiC�z��.

3.1. Simulation of the MMNL Probabilities and Their Derivatives

If the integral PC�i j x; y� � EzLC�i; x; b� Lz� can be obtained analytically, or by computation-
ally feasible numerical integration of low dimension, then conventional maximum likelihood can
be used to estimate y. Otherwise, it is possible to simulate PC�i j x; y� and its derivatives, and use
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these simulation approximations for statistical inference. Make Monte Carlo draws
zp; p � 1; . . . ; r, from f(z). Let Er denote an empirical expectation with respect to a simulation
sample of size r. Then,

P
r
C�i j x; y� �

Xr
p�1

LC�i;x; b� Lzp� � ErLC�i;x; b� Lz� �4�

is a positive, unbiased estimator of PC�i j x; y� that is continuous and continuously di�erentiable
to all orders in y. The derivatives of log PC�i j x; y� involve conditional expectations
Ez j ib�z� � fEzb�z��LC�i;x; b� Lz�g=PC�i j x; y� for various functions b(z). These expectations
are simulated by

Er j ib�z� � fErb�z� � LC�i; x; b� Lz�g=Pr
C�i j x; y� �5�

which is again continuously di�erentiable to all orders in y. This can be interpreted as importance
sampling with draws from f(z) as the comparison density. The simulator Er j ib�z� is not unbiased
in general because of the appearance of the simulator Pr

C�i j x; y� in the denominator. Similarly,
the simulator log Pr

C�i j x; y� of log PC�i j x; y� is not unbiased because of the non-linear
transformation. However, all the simulators above are consistent when r!1. It is possible to
get unbiased, but no longer continuous, estimates of Er j ib�z� using an acceptance/rejection
procedure that accepts draws that would produce i as the choice. Some computations require the
second derivatives of log PC�i jx; y�; these are given in Appendix Lemma 5. In applications, these
second derivatives can alternately be obtained by numerical di�erentiation of the formulas for
the ®rst derivatives.

In the statistical procedures to be discussed next, it will be critical that the simulators satisfy a
condition of stochastic equicontinuity, which requires that they not `chatter' as y changes. This is
easily accomplished by keeping the draws zp ®xed during iterative procedures that adjust y; this
can be done by storing the zp or by regenerating them from ®xed seeds.

3.2. Maximum Simulated Likelihood Estimation (MSLE)

Maximum Simulated Likelihood Estimation (MSLE) ®nds an estimator yN that maximizes the
simulated log likelihood, EN logPr

C�i j x; y�, with EN denoting empirical expectation for a random
sample of size N. Hajivassiliou and McFadden (1997) show that under mild regularity
conditions, a stochastic equicontinuity property, and r�Nÿ1=2!1 as N!1, the MSLE
estimator yN is asymptotically equivalent to the classical maximum likelihood estimator.
However, estimators that are relatively free of simulation bias in moderate samples are likely to
require r considerably larger than N1/2. Monte Carlo draws need not be independent across
observations, or across the simulators of di�erent derivatives that may be used in iterative search
for yN. It is also possible to allow dependence across the di�erent simulation draws, provided
there is su�cient mixing for them to satisfy a central limit property. In particular, Train (1999)
has found that patterned pseudo-random numbers such as Halton sequences give estimators that
in Monte Carlo studies give lower mean square errors than independent random draws. We give
an estimator for the asymptotic covariance matrix of yN only for the case of independent
simulators across observations. De®ne the arrays
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GN�y� � ÿENHyy0 logP
r
C�i j x; y� and DN�y� � ENfHy logP

r
C�i j x; y�gfHy logP

r
C�i j x; y�g0 �6�

As r!1, both GN�yN� and DN�yN� converge to ON�yo� � ENfHy logPC�i jx; yo�g
fHy logPC�i j x; yo�g0, so that GN�yN�ÿ1 and DN�yN�ÿ1 are consistent estimators of the asymptotic
covariance estimator. However, for ®nite r, DN�yN� is larger than GN�yN� due to simulation noise,
and DN�yN� decreases as r increases. Consequently, DN�yN�ÿ1 may substantially underestimate the
covariance of the estimator when r is ®nite, and may suggest erroneously that increasing r
decreases the precision of the estimator. For this reason, we recommend the robust asymptotic
covariance matrix estimator GN�yN�ÿ1DN�yN�GN�yN�ÿ1 that is associated with quasi-maximum
likelihood estimation; see Newey and McFadden (1994, p. 2160).

3.3. Method of Simulated Moments

Let di denote an indicator that is one when i is chosen, zero otherwise, and let d � �d1; . . . ; dJ�. A
classical method of moments estimator for y can be based on the condition that the generalized
residual di ÿ EzLC�i; x; b� Lz�, evaluated at the true parameters, is orthogonal in the population
to any instrument vector Wi�x; y� that has the dimension of y. Write this moment as

m�y; d; x� �
X
i2C
fdi ÿ EzLC�i; x; b� Lz�g�Wi�x; y� �7�

De®ne si�y; x� � Hy logPC�i j x; y�. WhenWi�x; y� � si�y;x�; m�y; d; x� reduces to the score of an
observation and the classical method of moments estimator coincides with the maximum
likelihood estimator. However, any instrument vector Wi�x; y� whose covariance matrix with
si�y; x� is of maximum rank can be used to obtain estimators that are consistent and N1/2

asymptotically normal, but in general less than fully e�cient. A Method of Simulated Moments
(MSM) estimator for MMNL is obtained by replacing PC�i jx; y� in the generalized residual by
the unbiased simulator Pr

C�i jx; y� and using statistically independent simulators (as necessary) to
obtain the instrument vector Wi�x; y� for a simulator mr�y; d; x� of m�y; d; x�. The MSM
estimator yN is a root of ENm

r�y; d; x�. McFadden (1989, 1996) shows that under mild regularity
conditions, including stochastic equicontinuity, the MSM estimator yN is consistent and
asymptotically normal. It is not necessary for this result that r increase with N, so long as the
simulators of the generalized residuals are independent or satisfy a weaker condition that is
su�cient for a central limit theorem to operate across observations. The array
CN�yN�ÿ1SN�yN�CN�yN�ÿ1 consistently estimates the asymptotic covariance matrix of yN, where

CN�y� � ÿEN

X
i2C
fHyP

r
C�i j x; y�gW0i � ÿEN

X
i2C

Er

xiC�z�0
vec�zxiC�z��

" #
LC�i; x; b� Lz�

( )
W
0
i

SN�y� � EN

�X
i2C

WiP
r
C�i j x; y�W0i ÿ

�X
i2C

WiP
r
C�i j x; y�

��X
i2C

WiP
r
C�i j x; y�

�0�
The MSLE method is asymptotically e�cient, but the computational advantages of the MSM
method may o�set the loss of statistical e�ciency. The more highly correlated Wi�x; y� with
si�y0;x�, the more e�cient the MSM estimator. An obvious candidate for Wi�x; y� is the
simulated score sri �y;x�. Large r will be needed to simulate si�y0; x� accurately and achieve high
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e�ciency. However, it is possible to obtain a computationally convenient instrument vector that
is fairly highly correlated with si�y; x�, and will as a consequence yield moderately e�cient MSM
estimates at low computational cost. Using the approach of Talvitie (1972), make a second-order
Taylor's expansion of the multinomial logit function LC�i; x; b� Lz� in z around z � 0, and take
the expectation of this approximation with respect to z,

EzLC�i; x; ; b� Lz� � LC�i; x; b��f1� 1
2tr�L0QicL�g �8�

where QiC � x0iCxiC ÿ Sj2CLC�j; x; b�x0jCxjC and xiC � xi ÿ Sj2CxjLC�j; x; b�. Because the Taylor
expansion is not uniformly convergent, this is a poor approximation to the MMNL response
probability itself. However, it provides an easily computed approximation to si�yo;x�: Make a
linear approximation log f1� 1

2tr�L0QiCL�g � 1
2trfL0QiCLg, and take the gradient of the log of

equation (8) with respect to y, ignoring the dependence of QiC on b, to obtain
Wi�x; y�0 � �xiCvec�QiCL�0�. For preliminary estimation, b can be set to simple MNL
coe�cient estimates and L can be any matrix of full column rank that respects the exclusion
restrictions present in the model. Limited Monte Carlo evidence suggests that use of these
easily computed instruments will often yield MSM estimators with asymptotic e�ciencies over
90%.3

4. SPECIFICATION TESTING

Because the MMNL model requires use of simulation methods, it is useful to have a speci®cation
test based solely on MNL model estimates that determine if mixing is needed. The next result
describes a Lagrange Multiplier test for this purpose. This test has the pivotal property that its
asymptotic distribution, under the null hypothesis that the correct speci®cation is MNL, does not
depend on the parameterization of the mixing distribution under the alternative.

Theorem 2. Consider choice from a set C � f1; . . . ; Jg. Let xi be a 1 � K vector of attributes of
alternative i. From a random sample n � 1; . . . ;N, estimate the parameter a in the simple MNL
model LC�i; x; a� � exia=Sj2Ce

xja using maximum likelihood; construct arti®cial variables

zti � 1
2�xti ÿ xtC�2 with xtC �

X
j2C

xtj�LC�j;x; â� �9�

for selected components t of xi, and use a Wald or Likelihood Ratio test for the hypothesis that
the arti®cial variables zti should be omitted from the MNL model. This test is asymptotically
equivalent to a Lagrange multiplier test of the hypothesis of no mixing against the alternative of a
MMNL model PC�i j x; y� �

R
LC�i;x; a��G�da; y� with mixing in the selected components t of a.

The degrees of freedom equals the number of arti®cial variables zti that are linearly independent
of x.

The proof is given in the Appendix. To examine the operating characteristics of the test, we
carried out two simple Monte Carlo experiments for choice among three alternatives, with
random utility functions ui � a1x1i � a2x2i � "i. The disturbances "i were i.i.d. Extreme Value
Type I. In the ®rst experiment, the covariates were distributed as described below:

3These instruments are similar to instruments for the multinomial probit model proposed independently by Ruud (1996).
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Variable Alternative 1 Alternative 2 Alternative 3
x1 + 1

2 w:p:
1
2 0 0

x2 + 1
2 w:p:

1
2 + 1

2 w:p: 0

The parameter a2 � 1 under both the null and the alternative. The parameter a1 � 0:5
under the null hypothesis, and under the alternative a1 � 0:5+ 1 w:p: 12. We carried out
1000 repetitions of the test procedure for a sample of size N � 1000 and choices generated
alternately under the null hypothesis and under the alternative just described, using
likelihood ratio tests for the omitted variable z1i. The results are given below:

Nominal signi®cance level Actual signi®cance level Power against the alternative
10% 8.2% 15.6%
5% 5.0% 8.2%

The nominal and actual signi®cance levels of the test agree well. The power of the test is
low, and an examination of the estimated coe�cients reveals that the degree of
heterogeneity in tastes present in this experiment gives estimated coe�cients close to their
expected values. Put another way, this pattern of heterogeneity is di�cult to distinguish
from added extreme value noise.

In the second experiment, the covariates are distributed as shown below:

Variable Alternative 1 Alternative 2 Alternative 3
x1 + 1

2 w:p:
1
2 + 1

2 w:p:
1
2 0

x2 + 1
2 w:p:

1
2 + 1

2 w:p:
1
2 0

The utility function is again ui � a1x1i � a2x2i � "i. Under the null hypothesis, a1 � a2 � 1, while
under the alternative �a1; a2� � �2; 0� w:p: 12 and �0; 2� w:p: 12. Again, 1000 repetitions of the tests
are made for N � 1000 under the null and the alternative; the results are given below:

Nominal signi®cance level Actual signi®cance level Power against the alternative
10% 9.7% 52.4%
5% 3.9% 39.8%

In this case where mixing is across utility functions of di�erent variables, the test is moderately
powerful. It remains the case in this example that the estimated coe�cients in the MNL model
without mixing are close to their expected values.

4.1. Testing the Adequacy of a Mixing Distribution

Suppose one has estimated aMMNLmodel in which the MNL parameters a � b� Lz are mixed
by a base density f(z), and the object is to test whether additionalmixing is needed to describe the
sample. The choice probability under the alternative is
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PC�i jx; y; l� �
Z � Z

LC�i; x; b� Lz� l1=2 � ���f�z�dz
�
�h���d� �10�

where b is a K � 1 vector, L is a factor loading matrix, � is K � 1 with mean zero and unit
variances, l is a k � 1 vector of variances, Kÿ T of which are maintained at zero, l1/2 denotes the
component-wise square root, and � denotes the component by component direct product. The
null hypothesis is that the data are generated by this model with l � 0; i.e., a mixed MNL model
with latent factors z determining the choice probabilities, versus the alternative that up to T
additional factors, with density h(.), are needed. The following theorem, proved in the Appendix,
gives a Lagrange Multiplier test for this hypothesis:

Theorem 3. Suppose the base model PC�i j x; y� �
R
LC�i;x; b� Lz��f�z�dz has been estimated by

MSLE, using Monte Carlo draws zk from f��� for k � 1; . . . ; r. Construct the quantities

x
k
C �

X
j2C

xj�LC�j; x; b� Lzk�; zkti � 1
2�xti ÿ x

k
tC�2; zktC �

X
j2C

z
k
tj�LC�j; x; b� Lzk�

�i �
1

r�Pr
C�i j x; y�

�
Xr
k�1
�xi ÿ x

k
C��LC�i; x; b� Lzk�

wi �
1

r�Pr
C�i j x; y�

Xr
k�1

vec�zk�xi ÿ x
k
C��0LC�i; x; b� Lzk�

yti �
1

r�Pr
C�i j x; y�

Xr
k�1
�zti ÿ z

k
tC��LC�i;x; b� Lzk�

where all parameters are set to the base model estimates. A regression over alternatives and
observations of the integer 1 on the variables �i;wi, and yti for t � 1; . . . ;T and an F-test for the
signi®cance of the variables in this regression is asymptotically equivalent to a Lagrange
Multiplier test of the hypothesis of no additional mixing in the coe�cients of xti for t � 1; . . . ;T.

In light of the Monte Carlo results in the base case of no mixing, one can expect this test to
have relatively low power. Hence, for use as a diagnostic for model speci®cation, one will want to
err on the side of admitting too much potential heterogeneity, and use a rejection region with a
large nominal signi®cance level.

5. AN APPLICATION: DEMAND FOR ALTERNATIVE VEHICLES

The State of California su�ers from air pollution generated by conventional gasoline-powered
vehicles, and the State is in the process of mandating quotas for alternative-fuelled vehicles:
methanol, compressed natural gas (CNG), or electric. An important policy question is consumer
acceptance of these alternative vehicles, and the extent to which subsidies will be necessary to
stimulate consumer demand to the levels required by the quotas. Brownstone et al. (1996) have
carried out a conjoint analysis study of preferences between alternative vehicles. The study has
4654 respondents, each of whom was asked to choose among six alternatives. The alternatives
were described in terms of the variables de®ned in Table I. We do not alter the variable
transformations used in the original study, but note that the dependence of their speci®cation on
the price of an alternative and on income fails the quasi-convexity condition for conditional
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indirect utility that comes from economic consumer theory. An experimental design was used to

select the o�erings of six alternatives from 120 possible pro®les, distinguished by four fuels

(gasoline, methanol, CNG, electric), ®ve sizes (mini, subcompact, compact, midsize, large), and

six body types (regular car, sports car, truck, van, station wagon, sports utility vehicle).

Table II gives a MMNL model estimated by Brownstone and Train (1999). This model

includes four random e�ects, associated with the following variables: Dummy for non-EV,

Dummy for non-CNG, Size, and Luggage Space. The segment of the table headed `Variables'

gives estimates of the b parameters, and the segment headed `Random E�ects' gives the factor

loading L on standard normal factors, with an independent factor for each of the random e�ects

above. Then, the coe�cients are estimates of the standard deviations of these random e�ects. The

estimation uses 250 replications per observation, and MSLE. The parameter estimates show

strong random e�ects, with magnitudes large enough to suggest that they are capturing

correlation structure in unobservables in addition to variation in tastes. The variables and

random e�ects included in this model are the result of a classical selection procedure that

estimated alternative MMNL models and used a likelihood ratio test to select from them. A

likelihood ratio test at the 5% level shows that this model ®ts signi®cantly better than a simple

MNL model (given in Table III). The table gives estimates of the standard errors of the

coe�cients for 250 replications, and also for 50 replications. The columns headed `Asymptotic'

give standard errors using DN�yN�ÿ1. As noted in Section 3, while this estimator is consistent, for

moderate r it can underestimate covariances and lead to the perverse conclusion that standard

errors increase when the number of simulation draws rises. The columns headed `Robust' give

Table I. Variable de®nitions

Variable De®nition

Price/log(income) Purchase price (in thousands of dollars) divided by log(household income in
thousands)

Range Hundreds of miles vehicle can travel between refuellings/rechargings
Acceleration Tens of seconds required to reach 30 mph from stop
Top speed Highest attainable speed in hundreds of MPH
Pollution Tailpipe emissions as fraction of those for new gas vehicle
Size 0�mini, 0.1�subcompact, 0.2�compact, 0.3�mid-size or large
`Big enough' 1 if household size � and vehicle is mid or large
Luggage space Fraction of luggage space in comparable new gas vehicle
Operating cost Cost per mile of travel (tens of cents): home recharging for electric vehicle,

station refuelling otherwise
Station availability Fraction of stations that can refuel/recharge vehicle
Sports utility vehicle 1 if sports utility vehicle, 0 otherwise
Sports car 1 if sports car
Station wagon 1 if station wagon
Truck 1 if truck
Van 1 if van
EV 1 if electric vehicle (EV)
Commute 55 & EV 1 if electric vehicle and commute 55 miles/day
College & EV 1 if electric vehicle and some college education
CNG 1 if compressed natural gas (CNG) vehicle
Methanol 1 if methanol vehicle
College & Methanol 1 if methanol vehicle and some college education

MIXED MNL MODELS 459

Copyright # 2000 John Wiley & Sons, Ltd. J. Appl. Econ. 15: 447±470 (2000)



standard errors using the recommended covariance matrix estimator GN�yN�ÿ1DN�yN�GN�yN�ÿ1.
The `Robust' standard errors fall with number of repetitions, as expected. In general, using the

`Asymptotic' covariance formula with 250 replications results in a 10±20% underestimate of

standard errors of coe�cients, compared to the `Robust' formula.

Table III, Model 1, is a simple MNL model LC�i; x; b� ®tted to the data; these estimates are

taken from Brownstone and Train (1999). Model 2 adds the arti®cial variables de®ned in

Theorem 2; i.e. given the base MNL model LC�i; x; b� and xC � Sj2Cxj�LC�j;x; b�, with b set

equal to its MNL estimator, de®ne the arti®cial variables zti � 1
2�xti ÿ xtC�2 for variables t where

heterogeneity is suspected, and estimate the MNL model with the original x variables and the

additional arti®cial variables. The list of arti®cial variables may include variables t which have

the coe�cient bt constrained to zero in the base MNL model; these are interpreted as pure

random e�ects. A likelihood ratio test at the 5% signi®cance level rejects the null hypothesis of no

mixing. The individual T-statistics for the arti®cial variables are not necessarily a reliable guide to

Table II. Mixed logit for alternative-fuelled vehicle choice

Parameter estimates Standard error:
250 replications

Standard error:
50 replications

Asymptotic Robust Asymptotic Robust

Variables
Price/log(income) ÿ0.264 0.0435 0.0452 0.0412 0.0525
Range 0.517 0.0581 0.0685 0.0511 0.1022
Acceleration ÿ1.062 0.1859 0.1990 0.1738 0.2519
Top speed 0.307 0.1150 0.1184 0.1131 0.1188
Pollution ÿ0.608 0.1392 0.1420 0.1357 0.1546
Size 1.435 0.5082 0.4991 0.4945 0.5156
`Big enough' 0.224 0.1126 0.1166 0.1113 0.1220
Luggage space 1.702 0.4822 0.5854 0.4314 0.8971
Operating cost ÿ1.224 0.1593 0.2069 0.1393 0.2998
Station availability 0.615 0.1452 0.1536 0.1410 0.1757
Sports utility vehicle 0.901 0.1484 0.1486 0.1482 0.1493
Sports car 0.700 0.1625 0.1513 0.1626 0.1518
Station wagon ÿ1.500 0.0674 0.0645 0.0674 0.0659
Truck ÿ1.086 0.0556 0.0520 0.0555 0.0556
Van ÿ0.816 0.0558 0.0468 0.0557 0.0471
EV ÿ1.032 0.4249 0.5022 0.3777 0.6035
Commute 55 & EV 0.372 0.1660 0.1763 0.1608 0.1927
College & EV 0.766 0.2182 0.2374 0.2073 0.2796
CNG 0.626 0.1482 0.1670 0.1391 0.2139
Methanol 0.415 0.1464 0.1474 0.1440 0.1534
College & Methanol 0.313 0.1243 0.1256 0.1223 0.1308

Random e�ects
Non-EV 2.464 0.5414 0.7184 0.4428 1.0252
Non-CNG 1.072 0.3773 0.4109 0.2781 0.5711
Size 7.455 1.8194 2.0408 1.5538 2.4734
Luggage Space 5.994 1.2483 1.6617 1.0483 2.7719

Log likelihood ÿ7375.34
Note: Parameter estimates are from Brownstone and Train (1999); standard error estimates are from this study.
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the location of signi®cant mixing, due to lack of independence, and to the possibility of
correlation across alternatives in unobserved attributes. However, the results (based on T-
statistics exceeding one in magnitude) suggest that there may be taste variation in the following
variable coe�cients: Non-EV, Non-CNG, Size, Luggage space, Operating Cost, and Station
Availability. The ®rst four of these were included in the Brownstone±Train model in Table II; the
last two are additional factors where mixing may be present. Our speci®cation testing procedure

Table III. Multinomial logit model

Variables Model 1 Model 2
Parameter estimate SE Parameter estimate SE

Price/log(income) ÿ0.185 0.027 ÿ0.4240 0.0298
Range 0.350 0.027 0.5036 0.0447
Acceleration ÿ0.716 0.111 ÿ0.9771 0.1263
Top speed 0.261 0.080 0.3592 0.0814
Pollution ÿ0.444 0.100 ÿ0.6567 0.1161
Size 0.935 0.311 1.4179 0.3430
`Big enough' 0.143 0.076 0.2248 0.0845
Luggage space 0.501 0.188 1.0161 0.2574
Operating cost ÿ0.768 0.073 ÿ1.1447 0.0897
Station availability 0.413 0.097 0.6350 0.1074
Sports utility vehicle 0.820 0.144 0.8806 0.1458
Sports car 0.637 0.156 0.6869 0.1580
Station wagon ÿ1.437 0.065 ÿ1.5229 0.0663
Truck ÿ1.017 0.055 ÿ1.0776 0.0551
Van ÿ0.799 0.053 ÿ0.8272 0.0542
EV ÿ0.179 0.169 ÿ0.6979 0.2384
Commute 55 & EV 0.198 0.082 0.3102 0.0840
College & EV 0.443 0.108 0.6863 0.1145
CNG 0.345 0.091 0.4216 0.1056
Methanol 0.313 0.103 0.4886 0.1105
College & Methanol 0.228 0.089 0.3070 0.0903

Arti®cial variables
Price/log(income) 0.0019 0.0927
Range ÿ0.0349 0.0551
Acceleration ÿ1.3728 2.1388
Top speed ÿ0.2071 0.6383
Pollution 0.0977 0.6764
Size 21.5773� 9.5000
`Big enough' 0.2837 0.3832
Luggage space 3.8731� 3.4638
Operating cost 4.2245� 0.8369
Station availability 0.6741� 0.3781
EV 2.3476� 0.5704
CNG 1.2364� 0.4798

Log likelihood ÿ7391.83 ÿ7356.61
Notes: Model 1 is from Brownstone and Train (1999).
�denotes the arti®cial variables with jT j41.
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is easier and quicker than the Brownstone±Train method. All the factors identi®ed in their search

were picked up by our procedure, as were some additional candidates.

Table IV gives a MMNL model which includes the six random e�ects identi®ed as possibly

signi®cant by the arti®cial variable test in Table III, using T-statistics greater than one in

magnitude as the selection criterion. The MMNL estimates show that there is signi®cant

mixing in each of these factors. Likelihood ratio tests show that this model is a signi®cant

improvement on the model in Table II. Further exploration with additional factors in the

MMNL model ®nds that there are several factor combinations that will ®t as well or

marginally better than the model in Table IV, and that some of these combinations will place

weight on factors that were excluded by the arti®cial variable selection procedure, and will

lower the signi®cance of some of the factors previously included. These results re¯ect the

inherent di�culty of identifying the factor structure of unobserved utility from observed data

on discrete choices, but may also indicate more conventional speci®cation issues such as

omitted observed variables or interactions.

Table IV. Mixed multinomial logit model

Parameter estimates SE

Variables
Price/log(income) ÿ0.3622 0.0669
Range 0.6753 0.0965
Acceleration ÿ1.2688 0.2591
Top speed 0.4027 0.1553
Pollution ÿ0.7929 0.1980
Size 1.7351 0.6694
`Big enough' 0.2695 0.1468
Luggage space 2.2631 0.6426
Operating cost ÿ1.8056 0.2912
Station availability 0.7029 0.1896
Sports utility vehicle 0.9234 0.1498
Sports car 0.7270 0.1645
Station wagon ÿ1.5246 0.0681
Truck ÿ1.1195 0.0559
Van ÿ0.8191 0.0564
EV ÿ1.5733 0.5819
Commute 55 & EV 0.4793 0.2242
College & EV 1.0534 0.3114
CNG 0.7709 0.2018
Methanol 0.5435 0.1922
College & Methanol 0.3849 0.1542

Random e�ects
Non-EV 3.3802 0.7647
Non-CNG 1.1042 0.4990
Size 8.0788 2.7021
Luggage space 7.6220 1.7153
Operating cost 4.4532 0.8014
Station availability 1.3987 0.5730

Log likelihood ÿ7358.93
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6. CONCLUSIONS

This paper has established thatMMNLmodels, estimated usingMSLEorMSM, provide a¯exible
and computationally practical econometric method for economic discrete choice that is postulated
to come fromutilitymaximization. First, a general approximation property is established. Second,
estimation of parametric MMNL models by MSLE or MSM is shown to provide estimates with
good statistical properties, and easily computed fairly e�cient instruments are provided forMSM.
Third, simply computed speci®cation tests are developed that allow one to test for the presence of
mixing, or for the presence of omitted mixing factors. Finally, an application to the demand for
alternatively-fuelled vehicles shows that the method can detect and estimate signi®cant mixing
e�ects which can have a strong e�ect on the pattern of substitutability across alternatives.

APPENDIX: PROOFS OF THEOREMS

Lemma 1. Suppose consumers with tastes de®ned by points s in a compact topological space S
have preferences over objects z in a compact topological space Z, with z0 �s z

00 meaning z0 is at
least as good as z00 for a consumer with tastes s. Suppose �s is complete and transitive, and has
the continuity property that if a sequence of triples �z0k; z00k; sk� converges to a limit �z00; z000; s0�
and satis®es z0k �sk z

00k, then z00 �s z
000. Then there exists a utility function U�z; s�, continuous in

its arguments, that represents �s for s 2 S.

Proof: A standard construction for ®xed s due to Rader and Debreu de®nes a utility function
U�z; s� which is continuous in z for each s; see Barten and Bohm (1982, pp. 388±390). But the
level sets f�z0; s0� jU�z0; s0�5U�z; s�g and f�z0; s0� jU�z0; s0�4U�z; s�g are then closed by the
hypothesized continuity property, implying that U is continuous on Z � S.

Lemma 2. Consider a random variable X with CDF F. De®ne F�xÿ� � lim"&0F�xÿ "� and the
right-continuous inverse Fÿ1�p� � supfx 2 R jF�x�4 pg for p 2 �0; 1�. De®ne the random
variable Z � U�F�X� � �1ÿU��F�Xÿ�, where U is a uniformly distributed random variable on
[0,1] that is independent of X. De®ne X� � Fÿ1�Z�. Then Z is uniformly distributed on (0,1), the
function Fÿ1 is almost surely continuous, and X� � X almost surely. If, in addition, F is strictly
increasing, then Fÿ1 is continuous and X� � X.

Proof: De®ne A � fx 2 RjF�x� "� � F�x� for some "4 0g, and B � F�A�. The set A is a
countable union of disjoint half-open intervals of the form [a,b) with F�a� � F�bÿ�, so that A
occurs with probability zero. For c 2 �0; 1�, let x � Fÿ1�c�. Then, for all "4 0,
F�xÿ "�4F�xÿ�4 c4F�x�5F�x� "�. Hence, the event fZ4 cg occurs if and only if one of
the disjoint events fX5 xg or fX � x & F�xÿ� �U��F�x� ÿ F�xÿ�� < c} occurs. But
P�X5 x� � F�xÿ� and P�X � x & F�xÿ� �U��F�x� ÿ F�xÿ��5 c� � cÿ F�xÿ�, implying
P�Z4 c� � c. Thus, Z is uniformly distributed on (0,1). If x=2A and F�xÿ�4 c4F�x�, then
Fÿ1�c� � x. Then, in the event X=2A, which occurs with probability one, one has X � X� � F�Z�.
Finally, Fÿ1�p� is a monotone right-continuous function that is also left-continuous except at
jumps when p 2 B, a countable set that contains Z with probability zero. Then, Fÿ1 is almost
surely continuous. If F is strictly increasing, then A and B are empty. &

Let (O,W,p) denote a probability space, T a subset of Rm, and X : O � T! Rn a random ®eld,
measurable with respect toW for each t 2 T, and almost surely measurable on T. We say that X
admits a coordinate conditional probability structure at t if there exist conditional CDF functions
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Fi�xi j x1; . . . ; xiÿ1; t�, measurable in their arguments, such that for all y 2 Rn, the CDF of X�t�
can be written

F�y; t� �
Z y1

ÿ1

Z y2

ÿ1
. . .

Z yn

ÿ1
F1�dx1 j t��F2�dx2 j x1; t�� . . . �Fn�dxn j x1; . . . ; xnÿ1; t�

This condition follows from Fubini's theorem if F�x; t� has a density f�x; t�, and will hold
automatically if F is built up from conditional CDF functions. It can fail in pathological cases;
see Billingsley (1986, p. 458).

Lemma 3. Suppose X is a random ®eld from T � Rm into Rn that admits a coordinate conditional
probability structure for each t 2 T. Then there exists a uniformly distributed random ®eld
Z : O � T! �0; 1�n and measurable functions hi : �0; 1�i � T! R for i � 1; . . . ; n such that
Xi�t� � hi�Z1�t�; . . . ;Zi�t�; t� almost surely. If in addition, there is a rectangle X � Rn such that
X�t� has a density f�x; t� that is continuous in its arguments and strictly positive on the interior of
X, with F�X; t� � 1, then the hi are continuous in their arguments and Z is a continuous random
®eld.

Proof: For n � 1, Lemma 2 gives the result for each t 2 T that X1�t� � h1�z1�t�; t� almost surely.
Proceed by induction. Suppose the result has been established for nÿ 1, with Zi�t� independently
distributed uniformly on [0,1] for i � 1; . . . ; nÿ 1 and Xi�t� � hi�Z1�t�; . . . ;Zi�t�; t� almost surely.
Apply Lemma 2 to the random variable Xn�t� with measurable conditional distribution function
Fn�xn j h1�Z1�t�; t�; . . . ; hnÿ1�Z1�t�; . . . ;Znÿ1�t�; t�; t�. This yields a function satisfying
Xn�t� � hn�Z1�t�; . . . ;Zn�t�; t� almost surely. This completes the induction step. Finally, since X
is a random ®eld, almost sure continuity assures that the pointwise construction for each t 2 T is
measurable in t.

When X has a positive continuous density f�x; t� on the interior of the rectangle X, the
conditional CDF Fi�xi j x1; . . . ; xiÿ1; t� is strictly increasing in xi and continuous in all its
arguments, so that an implicit function theorem implies that the inverse function
xi � Fÿ1i �zi j x1; . . . ; xiÿ1; t� is continuous in all its arguments, giving the last result of the lemma.
&

Lemma 4. A necessary and su�cient condition for a random utility function over J alternatives
with a multivariate CDF F�u� to have a representationU �W� ", where the components of " are
independent of W and independent identically distributed Extreme Value I, is that
F�ÿ log �t1�; . . . ;ÿ log �tJ�� be a multivariate Laplace Transform; i.e. F treated as a function of
�t1; . . . ; tJ� is analytic and has derivatives satisfying the sign condition

�ÿ1�n1�����nJ �@n1�����nJF�ÿ log �t1�; . . . ;ÿlog �tJ��=@n1t1 . . . @nJ tJ 5 0

Proof: Suppose U has the representation. Then, F must satisfy the convolution formula

F�u1; . . . ; uJ� �
Z �1
ÿ1

exp�ÿ�eÿu1�w1 � � � � � e
ÿuJ�wJ ���G�dw�

where G is the CDF ofW. Make the transformations tk � exp�ÿuk� and Vk � exp�Wk�, and letH
be the CDF of V. Then,
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F�ÿlog�t1�; . . . ;ÿlog�tJ�� �
Z �1
0

exp�ÿ�t1�1 � � � � � tJ�J���H�d��

This is a multivariate Laplace Transform. Conversely, if F�ÿlog�t1�; . . . ;ÿlog�tJ�� is a
multivariate Laplace Transform, then it satis®es F�ÿ1� � 0, F��1� � 1, and from the
derivative property of Laplace Transforms, @JF=@u1 . . . @uJ 5 0, so that it is a multivariate CDF;
see Feller (1966, p. 415). &

Lemma 5. If PC�i j x; y� � EzLC�i; x; b� Lz� is given by equation (5), then

Hbb0 logPC�i j x; y� � Ez j i
�
xiC�z�0xiC�z� ÿ Sj2CxjC�z�0xjC�z�LC�j;x; b� Lz�	

ÿ�Hb logPC�i j x; y�
	�
Hb logPC�i j x; y�

	0
Hgb0 logPC�i j x; y� � Ez j i

�
vec�zxiC�z��xiC�z� ÿ Sj2Cvec�zxjC�z��xjC�z�LC�j; x; b� Lz�	

ÿ�Hg logPC�i j x; y�
	�
Hb logPC�i j x; y�

	0
Hgg0 logPC�i j x; y� � Ez j i

�
vec�zxiC�z��vec�zxjC�l��0 ÿ Sj2Cvec�zxjC�l��vec�zxjC�l��0LC�j; x; b� Lz�	
ÿ�Hg logPC�i j x; y�

	�
Hg logPC�i j x; y�

	0
Proof: Direct computation. &

Proof of Theorem 1: Consider the random utility model U��z; s; "�o; z�; u�o; s��, where
"�o; z� 2 �0; 1�p and u�o; s� 2 �0; 1�r are uniformly distributed continuous random ®elds
de®ned for o in a fundamental probability space �O;W; p�. For �z0; z00� 2 C2 and s 2 S, de®ne
the set

Ak�z0; z00; s� � fo 2 O j ��U��z0; s; "�o; z0�; u�o; s�� ÿU
��z00; s; "�o; z00�; u�o; s����5 5=kg

The continuity of U� and the measurability of the random ®elds implies that Ak�z0; z00; s� is
measurable. This set is monotone increasing as k!1 to the set of o for which the alternatives
�z0; z00� 2 C2 are not tied. By hypothesis, this set has probability one, implying that there exists
k � k�z0; z00; s� such that p�Ak�z0; z00; s��4 1ÿ Z=4J�.

The uniform continuity of U� on Z � S � �0; 1�p � �0; 1�r implies that given k�z0; z00; s�, there
exists d�z0; z00; s�4 0 such that in a neighbourhood of this radius U� varies by less than
1=k�z0; z00; s�. The almost certain continuity of "�o; z� and u�o; s� imply that the set

Bm�z0; s� � fo 2 O j sup j z�ÿz0 j 5 1=m j "�o; z�� ÿ "�o; z0� j � sup j s�ÿs j 5 1=m j u�o; s��

ÿ u�o; s� j 5 d�z0; z00; s�g

and the corresponding set Bm�z00; s�, are monotone increasing as m!1 to limiting sets that
occur with probability one. Then there exists m � m�z0; z00; s� such that p�Bm�z0; s��4 1ÿ Z=4J�

and p�Bm�z00; s��4 1ÿ Z=4J�. Therefore with probability at least 1ÿ 3Z=4J�,
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o 2 Ak�z0; z00; s� \ Bm�z0; s� \ Bm�z00; s�, implying that for �z�0; z�00; s�� in an open neighbourhood
of �z0; z00; s� 2 C2 � S of radius d�z0; z00; s�, one has

jU��z�0; s�; "�o; z�0�; u�o; s��� ÿU
��z�00; s�; "�o; z�00�; u�o; s��� j 5 1=k

These neighbourhoods cover the compact set C2 � S. Therefore, there exists a ®nite subcovering.
Let k� be the larger of ÿlog�Z=4J�� and the maximum value of k�z0; z00; s� for the centres of the
®nite subcover. We have now established that each point �z�0; z�00; s�� 2 C2 � S falls in some
neighbourhood in a ®nite cover with centre �z0; z00; s�, and satis®es
jU��z�0; s�; "�o; z�0�; u�o; s��� ÿU��z�00; s�; "�o; z�00�; u�o; s��� j 5 3=k�z0; z00; s�5 3=k� on a set
of o that occurs with probability at least 1ÿ 3Z=4J�.

The continuous function U� has a Bernstein±Weierstrauss polynomial approximation U�k on
Z � S � �0; 1�p�r that satis®es jU� ÿU�k j 4 1=k�. Consider a choice set C � fz1; . . . ; zJg 2 C�
and let z � �z1; . . . ; zJ�. Form Uk�zi; s; "�zi�; u�s�� � U�k�zi; s; "�zi�; u�s�� � �i=k�2, where the �i
are i.i.d. Extreme Value Type I random variables. Consider the event of a preference reversal
between U� and Uk for a pair �zi; zj� � C and s 2 S; i.e. the set of o 2 O and � 2 R2 such
that U��zi; s; "�o; zi�; u�o; s��4U��zj; s; "�o; zj�; u�o; s�� and Uk�zi; s; "�o; zi�; u�o; s��5
Uk�zj; s; "�o; zj�; u�o; s��. If jU��zi; s; "�o; zi�; u�o; s�� ÿU��zj; s; "�o; zj�; u�o; s�� j 4 3=k�, then

04U
k�zi; s; "�o; zi�; u�o; s�� ÿU

k�zj; s; "�o; zj�; u�o; s��
� U

�k�zi; s; "�o; zi�; u�o; s�� ÿU
�k�zj; s; "�o; zj�; u�o; s�� � ��i ÿ �j�=k�2

5U
��zi; s; "�o; zi�; u�o; s�� ÿU

��zj; s; "�o; zj�; u�o; s�� ÿ 2=k� � ��i ÿ �j�=k�2

5 1=k� � ��i ÿ �j�=k�2

and hence �0 ÿ �005 ÿ 1=k�. The probability of this last event is �1� ek
� �ÿ1 5 Z=4J�, and from

the previous argument the probability that the conditioning event does not occur is at most
3Z=4J�. Then the probability of a preference reversal at �zi; zj; s� is at most Z=J�. Therefore, the
probability of the event that the alternative in C that maximizes Uk di�ers from the alternative
that maximizes U� is at most ZJ=J�4Z.

Write the polynomial approximation Uk in the form Uk�z; s; "�z�; u�s�� � x�z; s��a�z; s� � �=k�2,
where x�z; s� is a vector of the z and s components of the terms in the polynomial and a�z; s�
is a vector of the corresponding "(z) and u(s) components. Finally, for a choice set
C � fz1; . . . ; zJg 2 C�, de®ne a � �a�z1; s�; . . . ; a�zJ; s�� and xi � �0; . . . ; 0; x�zi; s�; 0; . . . ; 0�,
so that Uk�zi; s; "i� � xi�a� �i=k�2. This is a MMNL model of the form of equation (1),
and the construction guarantees that with probability at least 1ÿ Z, U� and Uk are maximized
at the same alternative in C. Therefore, P�C�i j z; s� from U� and PC�i jx; y� from Uk di�er by at
most Z. &

Proof of Theorem 2: Write theMMNLmodel as PC�i jx; y; l� �
R
LC�i; x; b� l1=2 � z��G�dz; y�,

where b and l are vectors of parameters, l1/2 is the vectorof square roots of the components of l, z is
avectorof randomvariables that hasmean zero, component variances of one, and full rankover the
speci®ed components r, and l1=2 � z denotes the component-by-component direct product. The
parameterization l1/2 is chosen to circumvent the problem that a natural parameterization in terms
of the standard deviations of the mixing density leads to a score that is identically zero under the
null, as in Lee and Chesher (1986), McFadden (1987), and Newey and McFadden (1994). Then

466 D. MCFADDEN AND K. TRAIN

Copyright # 2000 John Wiley & Sons, Ltd. J. Appl. Econ. 15: 447±470 (2000)



HbPC�i j x; y; l� �
Z

LC�i;x; b� l1=2 � z���xi ÿ xC��G�dz; y�

with xC � Sj2Cxj�LC�j;x; b� l1=2 � z�

Hlt
PC�i j x; y; l� � 1

2�lÿ1=2�
Z

LC�i; x; b� l1=2 � z���xi ÿ xC��zt�G�dz; y�

Taking the limit as the lt ! 0, and using L'HoÃ pital's rule on Hlt
PC�i j x; y; l�, one obtains

HbPC�i j x; y; l� � LC�i;x; be���xi ÿ xC� and Hlt
logPC�i j x; y� � LC�i;x; be���zti ÿ ztC�

where zti � 1
2�xti ÿ xtC�2 and ztC � Sj2Cztj�LC�j;x; â�. The sample mean of Hb logPC�i j x; y� is zero

at the maximum likelihood estimator be of the simple MNL model, and the Lagrange Multiplier
statistic tests whether the vector of samplemeans ofHlt

logPC�i j x; y� for the selected t are zero. As
inMcFadden (1987), this test is equivalent to aLagrangeMultiplier test for the null hypothesis that
the variables zri have zero coe�cients in the MNLmodel, and thus asymptotically equivalent to a
Likelihood Ratio or Wald test for this hypothesis. &

Proof of Theorem 3: Consider PC�i j x; y� �
R fR LC�i; x; b� Lz� l1=2 � ���f�z�d�g

H�d��. Di�erentiating, HbPC�i j x; y� �
R fR �xi ÿ xC�LC�i;x; b� Lz� l1=2 � ���f�z�d�gH�d��,

HL0PC�i j x; y� �
R fR z�xi ÿ xC�LC�i; x; b� Lz� l1=2 � ���f�z�d�gH�d��, and Hlt

PC�i j x; y� �
1
2l
ÿ1=2
t

R fR �xti ÿ xtC�LC�i; x; b� Lzl1=2 � ���f�z�dzg��t�H�d��; with xC � xC�z� � Sj2CxjLC

�j;x; b� Lz� l1=2 � ��. To evaluate the last derivative under the null, use L'HoÃ pital's rule.
The derivative of 2l1=2t Hlt

PC�i j x; y� with respect to lt is

1
2l
ÿ1=2
t

Z � Z
�xti ÿ xtC�2LC�i; x; b� Lz� l1=2 � ���f�z�dz

�
��2t �H�d��

ÿ1
2l
ÿ1=2
t

Z � Z X
j2Cxtj�xtj ÿ xtC�LC�j;x; b� Lz� l1=2 � ��LC�i;x; b� GZ� l1=2 � ���f�z�dz

�
��2t �H�d��

� 1
2l
ÿ1=2
t

Z � Z
�zti ÿ ztC�2LC�i;x; b� Lz� l1=2 � ���f�z�dz

�
��2t �H�d��;

with zti � zti�z� � �xti ÿ xtC�z��2=2 and ztC � ztC�z� � Sj2Cztj�z��LC�j j x; b� Lz� l1=2 � ��.
Hence, at d � 0,

PC�i j x; y� �
Z

LC�i;x; b� Lz��f�z�dz;

HbPC�i j x; y� �
Z
�xi ÿ xC�z��LC�i;x; b� Lz��f�z�dz;

HL0PC�i j x; y� �
Z

z�xi ÿ xC�z��LC�i;x; b� Lz��f�z�dz; and

Hlt
PC�i jx; y� �

Z
�zti�z� ÿ ztC�z��LC�i; x; b� Lz��f�z�dz:

For comparison, suppose one had the base model in variables x and wanted to test whether
additional variables zti belong in the model. The model under the alternative is
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PC�i j x; z; y; a� �
R
LC�i; x; z�z�; b� Lz; a��f�z�dz. The derivatives under the null hypothesis

a � 0 are the same as before for HbPC�i j x; z; y; a� and for HL0PC�i j x; z; y; a�. Finally,
HaPC�i jx; z; y; a� �

R �zi�z� ÿ zC�z��LC�i; x; b� Lz��f�z�dz, also as before. Therefore, a LM test
for the hypothesis l � 0 is equivalent to a LM test for the hypothesis a � 0 for the auxiliary
variables zi�z�. This test is readily computed by ®rst estimating the base model using a simulation
procedure with speci®ed starting seeds, then regressing (over observations and alternatives) the
integer 1 on the scores Hb logP

r
C�i j x; y�, vec�HL0 logP

r
C�i j x; y��, and Hlt

logPr
C�i j x; y� for

t � 1; . . .T, and testing whether the sum of squared residuals is signi®cant according to a chi-
square distribution with T degrees of freedom. &
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