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Abstract In models with unobserved taste heterogeneity, distributional assumptions can be
placed in two ways: (1) by specifying the distribution of coefficients in the util-
ity function and deriving the distribution of willingness to pay (WTP), or (2) by
specifying the distribution of WTP and deriving the distribution of coefficients.
In general the two approaches are equivalent, in that any mutually compatible
distributions for coefficients and WTP can be represented in either way. How-
ever, in practice, convenient distributions, such as normal or log-normal, are
usually specified, and these convenient distributions have different implications
when placed on WTP’s than on coefficients. We compare models that use normal
and log-normal distributions for coefficients (called models in preference space)
with models using these distributions for WTP (called models in WTP space).
We find that the models in preference space fit the data better but provide less
reasonable distributions of WTP than the models in WTP space. Our findings
suggests that further work is needed to identify distributions that either fit bet-
ter when applied in WTP space or imply more reasonable distributions of WTP
when applied in preference space.

Keywords: Mixed logit, random parameters, random willingness to pay.
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1. Introduction

In many applications of discrete choice models with random coefficients,
the price coefficient is held constant, especially when the goal is to estimate
the distribution of consumers’ willingness to pay for alternative attributes (e.g.,
Revelt and Train, 1998; Goett et al., 2000; Layton and Brown, 2000; Scarpa
et al., 2002; Hensher et al., 2004) and/or to infer the willingess to pay of indi-
vidual consumers from their observed choices and the population distribution
(Train, 2003, Ch. 11; Scarpa et al., 2005; Greene et al., 2005.) This re-
striction allows the distributions of willingness to pay (WTP) to be calculated
easily from the distributions of the non-price coefficients, since the two distri-
butions take the same form. For example, if the coefficient of an attribute is
distributed normally, then WTP for that attribute, which is the attribute’s coef-
ficient divided by the price coefficient, is also normally distributed. The mean
and standard deviation of WTP is simply the mean and standard deviation of
the attribute coefficient scaled by the inverse of the (fixed) price coefficient.
The restriction also facilitates estimation. As Ruud (1996) points out, a model
with all random coefficients, including the price coefficient, can be practically
unidentified empirically, especially in datasets with only one observed choice
for each decision-maker.

A fixed price coefficient,1 however, implies that the standard deviation of
unobserved utility, which is called the scale parameter, is the same for all ob-
servations. Louviere (2003) discusses the importance of recognizing that the
scale parameter can, and in many situations clearly does, vary randomly over
observations and that ignoring this variation in estimation can lead to erro-
neous interpretation and conclusions. For example, if the price coefficient is
constrained to be fixed when in fact scale varies over observations, then the
variation in scale will be erroneously attributed to variation in WTP.

In this paper we investigate alternative ways to specify random coefficients
and WTP when the price coefficient varies. Cameron and James (1987) and
Cameron (1988) introduced the concept of parameterizing a fixed-coefficient
model in terms of WTP rather than coefficients. We extend their analysis to
models with random coefficients, where distributional assumptions and restric-
tions can be placed on the coefficients or on the WTP’s. The two approaches
are formally equivalent, in the sense that any distribution of coefficients trans-
lates into some derivable distribution of WTP’s, and vice-versa. However, the
two approaches differ in terms of numerical convenience under any given dis-
tributional assumptions. For example, a model with an attribute coefficient that
is normally distributed and a price coefficient that is log-normal implies that
WTP for the attribute is distributed as the ratio of a normal to a log-normal.

1Or, more generally, any fixed coefficient, or uncorrelated random coefficients.
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A researcher working directly in WTP space is unlikely to choose this incon-
venient distribution for WTP’s. Conversely, a model with normal WTP and
log-normal price coefficient implies that the attribute coefficient is the prod-
uct of a normal and log-normal, which is a distribution that has never, to our
knowledge, been applied in preference space. Restrictions are also asymmet-
ric. For example, uncorrelated preference coefficients translate into WTP’s that
are correlated in a particular way that would be hard to implement and test in
the context of WTP distributions, and vice-versa.

We estimate and compare models that are parameterized in terms of coeffi-
cients, called “models in preference space,” and models parameterized in terms
of WTP, called “models in WTP space.” For the models in preference space, a
convenient distribution is specified for the coefficients, and the parameters of
this distribution (such as its mean and variance) are estimated. The distribution
of WTP’s is then derived from the estimated distribution of coefficients. This is
currently the standard practice for application of choice models. For the mod-
els in WTP space, convenient distributions are specified for the WTP’s and the
price coefficient. The parameters of this distribution are estimated, from which
the estimated distribution of utility coefficients is derived.

We find that models using convenient distributions in preference space fit
the data better, both within sample and out-of-sample, than models using con-
venient distributions in WTP space. However, the distributions of WTP that are
derived from these models have unreasonably large variance, which translates
into an untenable implication that many people are willing to pay an enormous
amount of money to have or avoid an attribute. Stating the conclusions in com-
bination: the models that fit better give less reasonable distributions for WTP.
These results suggests that alternative distributional specifications are needed
that either fit the data better when applied in WTP space or imply more reason-
able WTP distributions when applied in preference space.

Our analysis and findings mirror those of Sonnier, Ainslee, and Otter (2003),
with one exception. In similar comparisons as ours they find that their models
in preference space fit the within-sample data better than their models in WTP
space but provide unreasonably large variances in WTP. In these regards, their
results match ours. However, they find that their models in WTP space attain
better out-of-sample fit than their models in preference space, which is oppo-
site of what we find. Sonnier et al. (2003) use a different method for evaluating
out-of-sample fit than we do, which might account for the difference. How-
ever, differences like this one are to be expected over different datasets, since
the issue under investigation is the performance of various distributional spec-
ifications and the appropriate distribution is necessarily situation-dependent.
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2. Specification

In this section we describe the two types of models. Decision-makers are
indexed by n, alternatives by j, and choice situations by t. To facilitate dis-
cussion, we specify utility as separable in price, p, and non-price attributes,
x:

Unjt = −αnpnjt + β′
nxnjt + εnjt (2.1)

where αn and βn vary randomly over decision-makers and εnjt is i.i.d. We as-
sume εnjt is distributed extreme value, though the analysis is the analogous for
other distributions. The variance of εnjt can be different for different decision-
makers: V ar(εnjt) = k2

n(π2/6), where kn is the scale parameter for decision-
maker n.

Though the utility specification is not yet normalized, the current formu-
lation allows us to clarify the circumstances under which the scale parameter
can be expected to vary over decision-makers. A random scale parameter is
conceptually different from random values for α and β. αn and βn represent
the tastes of person n, and these parameters vary over decision-makers because
different people have different tastes. In contrast, the scale parameter does not
represent a term within the utility function in any given choice situation but
rather the standard deviation of utility over different choice situations. By al-
lowing the scale parameter to be random, the researcher gives a variance to
a variance. The question arises: what would cause the variance of ε to vary?
Two prominent situations arise:

1 The unobserved term ε might reflect factors that are actually random
or quixotic from the decision-maker’s perspective, rather than, as in the
usual derivation, factors that are known to the decision-maker but un-
known by the researcher. In this situation, the variance of ε reflects the
degree of randomness in the decision-maker’s process, which can be
expected to differ over decision-makers. This concept of randomness
is particularly relevant with stated preference data, where respondents
differ in their attention to the task and in their constructs of unlisted
attributes. However, randomness in behavior can arise in revealed pref-
erence data as well.

2 In panel data settings, each decision-maker faces a sequence of choice
situations with unobserved factors differing in each choice situation. It
is reasonable to believe in this situation that the variance of these unob-
served factors over choice situations for each decision-maker is differ-
ent for different decision-makers, even when the unobserved factors are
known to the decision-maker and unobserved only by the researcher.

These two situations also clarify the converse: When ε represents factors that
are known to the decision-maker but unknown by the researcher, and only one
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choice situation is observed for each decision-maker such that each observation
represents a different decision-maker, there is perhaps little need or meaning
to allowing the scale parameter to vary over decision-makers. In this circum-
stance, the scale parameter captures variance over observations in factors that
the researcher does not observe; this variance is defined on the researcher, not
the decision-maker, and takes a given (i.e., fixed) value for the researcher.

Dividing utility (2.1) by the scale parameter does not affect behavior and yet
results in a new error term that has the same variance for all decision-makers:

Unjt = −(αn/kn)pnjt + (βn/kn)′xnjt + εnjt (2.2)

where εnjt is i.i.d. type-one extreme value, with constant variance π2/6. The
utility coefficients are defined as λn = (αn/kn) and cn = (βn/kn), such that
utility is written:

Unjt = −λnpnjt + c′nxnjt + εnjt (2.3)

Note that if kn varies randomly, then the utility coefficients are correlated,
since kn enters the denominator of each coefficient. Specifying the utility
coefficients to be independent implicitly constrains the scale parameter to be
constant. If the scale parameter varies and αn and βn are fixed, then the utility
coefficients vary with perfect correlation. If the utility coefficients have corre-
lation less than unity, then αn and βn are necessarily varying in addition to, or
instead of, the scale parameter.

Equation (2.3) is called the model in preference space. Willingness to pay
for an attribute is the ratio of the attribute’s coefficient to the price coefficient:
wn = cn/λn. Using this definition, utility can be rewritten as

Unjt = −λnpnjt + (λnwn)′xnjt + εnjt, (2.4)

which is called utility in WTP space. Under this parameterization, the variation
in WTP, which is independent of scale, is distinguished from the variation in
the price coefficient, which incorporates scale.2

The utility expressions are equivalent of course. Any distribution of λn and
cn in (2.3) implies a distribution of λn and wn in (2.4), and vice-versa. The
general practice has been to specify distributions in preference space, estimate
the parameters of those distributions, and derive the distributions of WTP from
these estimated distributions in preference space (e.g., Train, 1998.) While
fully general in theory, this practice is usually limited in implementation by
the use of convenient distributions for utility coefficients. Convenient distribu-
tions for utility coefficients do not imply convenient distributions for WTP, and

2Any coefficient can be used as the base that incorporates scale, with each other coefficient expressed as
the product of this coefficient and a term that is independent of scale. The only reason to use the price
coefficient as the base is that the scale-free terms become WTP’s, which are easy to interpret.
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vice-versa. As stated above, if the price coefficient is distributed log-normal
and the coefficients of non-price attributes are normal, then WTP is the ratio of
a normal term to a log-normal term. Similarly, normal distributions for WTP
and a log-normal for the price coefficient implies that the utility coefficients are
the product of a normal term and a log-normal term. The placement of restric-
tions is similarly asymmetric. It is fairly common for researchers to specify
uncorrelated utility coefficients; however, this restriction implies that scale is
constant, as stated above, and moreover that WTP is correlated in a particular
way. It is doubtful that a researcher in specifying uncorrelated coefficients is
actually thinking that WTP is correlated in this way. Similarly, uncorrelated
WTP, which the researcher might want to assume or test, implies a pattern
of correlation in utility coefficients that is difficult to implement in preference
space.

The issue becomes: does the use of convenient distributions and restric-
tions in preference space or WTP space result in more accurate and reasonable
models? The answer is necessarily situationally dependent, since the true dis-
tributions differ in different applications. However, some insight into the issue
can be obtained by comparisons on a given dataset. This is the topic of the next
section.

3. Data

We use the stated-preference data collected by Train and Hudson (2000)
on households’ choice among alternative-fueled vehicles, including gas, elec-
tric, and hybrid gas-electric vehicles. 500 respondents were presented with 15
choice situations apiece. For each choice situation, the respondent was given
a card that described three vehicles and was asked to state which of the vehi-
cles he/she would choose to buy. Each vehicle was described in terms of the
following variables:

Engine type (gas, electric, or hybrid),

Purchase price, in dollars,

Operating cost, in dollars per month,

Performance (grouped into three levels, which we call “low,” “medium,”
and “high,” 3

Range between recharging/refueling, in hundreds of miles,

3Performance was described on the card in terms of top speed and seconds required to reach 60 mph.
However, these two components were not varied independently, and only three combinations of the two
components were utilized.
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Body type (10 types ranging from mini car to large van).

Each of the attributes varied over choice situations and over respondents. Range
varied for electric vehicles but was constant for gas and hybrid vehicles, since
the purpose of this variable was to determine consumers’ response to the rela-
tively restricted range of electric vehicles. All but a few respondents completed
the fifteen choice tasks, giving a total of 7,437 observations for estimation.
These data have been previously used by Hess et al. (2003) and Train and
Sonnier (2003) for other purposes. We use the data to compare specifications
in preference and WTP space.

4. Estimation

4.1 Uncorrelated coefficients in preference space

Our first model is specified in preference space with a random coefficient
for each variable and no correlation over coefficients. As discussed above,
uncorrelated coefficients implies that the scale parameter is fixed. This model
can therefore be seen as a version that does not allow for random scale. It is
compared with models, described below, that allow random scale.

For this and other models in preference space, the attributes that are desir-
able, or undesirable, for everyone are given log-normally distributed coeffi-
cients. These attributes are: price, operating cost, range, a dummy for medium
performance or higher, and a dummy for high performance. The coefficient
for the first of the performance variables captures the extra utility associated
with increasing performance from low to medium, while the coefficient for the
second performance variable reflects the extra utility associated with increas-
ing performance from medium to high. Price and operating cost are entered as
negative, since the log-normal distribution implies positive coefficients. The
other attributes can be either desirable or undesirable, depending on the views
and tastes of the consumer. These attributes are: dummies for electric and hy-
brid engines, whose coefficients reflect the value of these engine types relative
to gas; and dummies for each body type except mid-sized car, whose coeffi-
cients reflect the value of these body types relative to a mid-sized car (holding
other attributes constant, of course.) The coefficients of these variables are
given normal distributions.

The model, and all the ones which follow, was estimated by Bayesian MCMC
procedures, using diffuse priors. These procedures for mixed logit models are
described by Train (2003) in general and by Train and Sonnier (2003) in re-
lation to these particular data. 10,000 iterations were used as “burn-in” after
which every tenth draw was retained from 10,000 additional iterations, pro-
viding a total 1,000 draws from the posterior distribution of the parameters.
Previous analysis of these data by Train and Sonnier, as well as our own anal-
ysis, indicates that the MCMC sequences converged within the burn-in period.
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Table 1.1. Model in Preference Space with Uncorrelated Coefficients

Attribute Parameter Estimate St. error

Price in $10,000’s
Mean of ln(–coeff.) –0.2233 0.0508
Variance of ln(–coeff.) 0.5442 0.0635

Operating cost in $/month
Mean of ln(–coeff.) –3.5540 0.0993
Variance of ln(–coeff.) 0.7727 0.1449

Range in 100’s of miles
Mean of ln(coeff.) –0.7272 0.1298
Variance of ln(coeff.) 0.3317 0.1209

Electric engine
Mean of coeff. –1.9453 0.1354
Variance of coeff. 1.6492 0.2820

Hybrid engine
Mean of coeff. 0.8331 0.1102
Variance of coeff. 1.4089 0.1797

High performance
Mean of ln(coeff.) –3.0639 0.3546
Variance of ln(coeff.) 3.3681 0.8493

Medium or high performance
Mean of ln(coeff.) –1.3030 0.2630
Variance of ln(coeff.) 1.4041 0.5204

Mini car
Mean of coeff. –3.0325 0.1767
Variance of coeff. 3.5540 1.0535

Small car
Mean of coeff. –1.3966 0.1240
Variance of coeff. 1.3086 0.4290

Large car
Mean of coeff. –0.4008 0.1272
Variance of coeff. 1.3084 0.7080

Small SUV
Mean of coeff. –0.8499 0.1072
Variance of coeff. 0.7032 0.3655

Midsize SUV
Mean of coeff. 0.2490 0.1449
Variance of coeff. 0.9772 0.3548

Large SUV
Mean of coeff. –0.1295 0.1765
Variance of coeff. 2.4334 0.9578

Compact pickup
Mean of coeff. –1.3201 0.1507
Variance of coeff. 1.3209 0.4484

Full-sized pickup
Mean of coeff. –0.7908 0.1544
Variance of coeff. 3.1370 0.8326

Minivan
Mean of coeff. –0.5219 0.1441
Variance of coeff. 2.6569 0.6334

Log likelihood at convergence –6,297.81

The Bernstein-von Mises theorem states that, under fairly benign conditions,
the mean of the Bayesian posterior is a classical estimator that is asymptotically
equivalent to the maximum likelihood estimator. Also, the variance of the
posterior is the asymptotic variance of this estimator. See Train (2003) for
an explanation with citations. Therefore, even though the model is estimated
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Table 1.2. Mean and standard deviations of coefficients and WTP, implied by estimated
parameters of model in preference space (Table 1.1)

Attribute Coefficient Coefficient WTP WTP
Mean Std. dev. Mean Std. dev.

Price in $10,000’s –1.0499 0.8948
Operating cost in $/month –0.0421 0.0453 –0.0690 0.1130
Range in 100’s of miles 0.5701 0.3576 0.9365 1.1077
Electric engine –1.9453 1.2842 –3.1957 3.8605
Hybrid engine 0.8331 1.1870 1.3703 2.8062
High performance 0.2518 1.1829 0.4164 2.7611
Medium or high performance 0.5483 0.9581 0.9004 2.1917
Mini car –3.0325 1.8852 –4.9773 5.8563
Small car –1.3966 1.1439 –2.2938 3.1446
Large car –0.4008 1.1439 –0.6598 2.5314
Small SUV –0.8499 0.8386 –1.3952 2.1607
Midsize SUV 0.2490 0.9885 0.4060 2.1527
Large SUV –0.1295 1.5599 –0.2120 3.3620
Compact pickup –1.3201 1.1493 –2.1702 3.0874
Full-sized pickup –0.7908 1.7712 –1.3032 3.9653
Minivan –0.5219 1.6300 –0.8621 3.5859

by Bayesian procedures, the results can be interpreted from a purely classical
perspective.

Table 1.1 gives estimation results for our model in preference space with
uncorrelated coefficients. The estimate for each parameter is the mean of the
1,000 draws from the posterior, and the standard error of the estimate is the
standard deviation of these draws. Presenting the results in this way facili-
tates interpretation by researchers who maintain a classical perspective: the
estimates and standard errors can be interpreted the same as if they had been
obtained by maximum likelihood procedures. The results can also, of course,
be interpreted from a Bayesian perspective, with the mean and standard devi-
ation of the draws providing summary information about the posterior. The
log-likelihood value given at the bottom of table 1.1 is calculated in the classi-
cal way at the parameter estimates.4

For the log-normally distributed coefficients, the estimates in Table 1.1 are
the mean and variance of the log of coefficient, which are difficult to interpret
directly. Table 1.2 gives the estimated mean and standard deviation of the co-

4A Bayesian log-likelihood would be calculated by integrating the log-likelihood over the posterior or, as
described by Sonnier et al. (2003), by integrating the inverse of the log-likelihood over the posterior and
then taking the inverse.
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efficients themselves, derived from the estimated parameters in Table 1.1. The
estimates seem generally reasonable. Electric vehicles are considered worse
than gas vehicles by the vast majority of the population, even if the two types
of vehicles could cost the same and have the same range. The mean and stan-
dard deviation of the electric vehicle coefficient imply that 94 percent of the
population place a negative value of electric vehicles relative to gas. Hybrid
vehicles, on the other hand, are preferred to gas vehicles by most consumers, if
they were to cost the same. The estimated mean and standard deviation imply
that 75 percent have a positive coefficient for the hybrid dummy. Performance
is valued at a decreasing rate, as expected. The average utility associated with
moving from low to medium performance is greater than that for moving from
medium to high performance (0.5483 and 0.2518 respectively.) The standard
deviation of the range coefficient is much lower than of the two performance
variables. This difference indicates that consumers are more similar in their
desire for extra range than in their value for higher top speed and acceleration.
The body type coefficients seem reasonable, with mid-sized cars and SUVs
being preferred, on average, to either smaller or larger versions (holding price
and operating cost constant). And pickups are valued less, on average, than
comparably sized SUVs.

The estimated parameters in preference space imply distributions of WTP.
A draw from the estimated distribution of WTP for an attribute is simulated
by taking a draw from the estimated distribution of the attribute’s coefficient
and dividing by a draw from the estimated distribution of the price coefficient.
Statistics for the distribution of WTP are obtained by taking numerous such
draws and calculating the requisite statistic for these draws. The estimated
mean and standard deviation of the WTP for each attribute is given in the final
two columns of Table 1.2.

The most distinguishing aspect of the estimated distributions of WTP is the
prevalence of large standard deviations. The standard deviation exceeds the
mean for all WTP’s, and are more than twice the means for eight of the fif-
teen. These large standard deviations imply that a nontrivial share of people
are willing to pay enormous amounts of money to obtain/avoid some attributes.
For example, ten percent the population is estimated to have a WTP for range
that exceeds 2. Given the units for price and range, a WTP over 2 means that
the consumer is willing to pay more than $20,000 to have an extra 100 miles
of range. Similarly, ten percent of the population is estimated to be willing to
pay over $20,000 to move from low to medium performance. We return to this
issue after presenting results of a model estimated in WTP space, where the
distribution of WTP is estimated directly rather than derived from estimated
coefficient distributions.

As stated above, a model with uncorrelated coefficients in preference space
implies correlated WTP, with the correlation being the fairly arbitrary outcome
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Table 1.3. Correlations between WTP for attributes, implied by
estimated parameters of model in preference space (Table 1.1)

Attribute Op. cost Range Electric Hybrid Hi Perf Med Perf

Operating cost 1.0000 0.3687 –0.3627 0.2129 0.0679 0.1784
Range 0.3687 1.0000 –0.5029 0.2965 0.0958 0.2496
Electric –0.3627 –0.5029 1.0000 –0.2855 –0.0929 –0.2411
Hybrid 0.2129 0.2965 –0.2855 1.0000 0.0584 0.1433
High perf 0.0679 0.0958 –0.0929 0.0584 1.0000 0.0439
Med–hi Perf 0.1784 0.2496 –0.2411 0.1433 0.0439 1.0000

(in the sense that the researcher does not specify it directly) of the estimated
means and variances of the coefficients themselves. The correlation of WTP
over attributes is given in Table 1.3. To conserve space, the correlation matrix
does not contain the body types. As the table indicates, correlations among
WTP’s are fairly large; researchers assuming uncorrelated coefficients might
not be aware that they are implicitly assuming fairly large correlations among
WTP’s.

4.2 Uncorrelated WTP’s in WTP space

We estimated a model with utility specified as in equation (2.4), where the
coefficient of each non-price attribute is the product of the WTP for that at-
tribute times the price coefficient. This model allows for random scale. If
only scale varies, then the correlation between each pair of coefficients is one;
correlations below one in coefficients imply that WTP varies as well as scale.

The price coefficient −λn is given a log-normal distribution. The elements
of ωn (WTP’s) associated with operating cost, range, and the two performance
variables are also specified to be log-normal, while the elements of ωn associ-
ated with engine and body types are, instead, normal. The WTP’s are assumed
to be uncorrelated over attributes. Note, of course, that when WTP for an at-
tribute is normally distributed and the price coefficient is log-normal, the coef-
ficient of the attribute is not normal (as in the previous model). Also, as stated
above, uncorrelated WTP implies correlated coefficients (unlike the previous
model), due to the common influence of the price coefficient on each other
coefficient. The current model differs from the previous one in both of these
ways.

Table 1.4 gives the estimation results. The log-likelihood is considerably
lower than that for the model in Table 1.1. However, the distributions of WTP
seem more reasonable. Comparing Table 1.5 with Table 1.2, the main dis-
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Table 1.4. Model in WTP Space with Uncorrelated WTP’s

Attribute Parameter Estimate St. error

Price in $10,000’s
Mean of ln(–coeff.) –0.0498 0.0602
Variance of ln(–coeff.) 0.9014 0.1234

Operating cost in $/month
Mean of ln(WTP) –3.4106 0.1100
Variance of ln(WTP) 0.7847 0.1530

Range in 100’s of miles
Mean of ln(WTP) –0.4045 0.1286
Variance of ln(WTP) 0.2706 0.0939

Electric engine
Mean of WTP –2.5353 0.2369
Variance of WTP 1.9828 0.4443

Hybrid engine
Mean of WTP 0.8738 0.1090
Variance of WTP 2.1181 0.2745

High performance
Mean of ln(WTP) –1.8854 0.2840
Variance of ln(WTP) 1.7172 0.5898

Medium or high performance
Mean of ln(WTP) –1.7380 0.2917
Variance of ln(WTP) 2.4701 0.7310

Mini car
Mean of WTP –3.4645 0.1894
Variance of WTP 6.5767 1.3889

Small car
Mean of WTP –1.5992 0.1451
Variance of WTP 1.7010 0.5337

Large car
Mean of WTP –0.6148 0.1716
Variance of WTP 1.9353 0.6750

Small SUV
Mean of WTP –1.0671 0.1287
Variance of WTP 0.8203 0.5776

Midsize SUV
Mean of WTP 0.2173 0.1611
Variance of WTP 1.8544 0.4389

Large SUV
Mean of WTP –0.7559 0.2923
Variance of WTP 8.2263 2.3072

Compact pickup
Mean of WTP –1.4752 0.1398
Variance of WTP 1.2675 0.5266

Full-sized pickup
Mean of WTP –1.1230 0.1843
Variance of WTP 5.7762 1.2558

Minivan
Mean of WTP –0.7406 0.1827
Variance of WTP 3.9847 0.9252

Log likelihood at convergence –6,362.13

tinction is that the means and especially the standard deviations of WTP’s are
smaller for the model in WTP space than the model in preference space. This
difference means that there is a smaller share with unreasonably large WTP’s.
For example, the model in WTP space implies that 1.7 percent are estimated
to be willing to pay more than $20,000 for 100 miles of extra range, while,
as stated above, the model in preference space implies over 10 percent. Sim-
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Table 1.5. Mean and standard of preference coefficients and WTP, implied by
estimated parameters of model in WTP space (Table 1.4)

Attribute Coefficient Coefficient WTP WTP
Mean Std. dev. Mean Std. dev.

Price in $10,000’s –1.4934 1.8123
Operating cost in $/month –0.0732 0.1616 –0.0489 0.0531
Range in 100’s of miles 1.1406 1.7027 0.7636 0.4257
Electric engine –3.7870 5.6565 –2.5353 1.4081
Hybrid engine 1.3053 3.7585 0.8738 1.4554
High performance 0.5335 1.7974 0.3584 0.7563
Medium or high performance 0.8951 4.5679 0.6047 1.9542
Mini car –5.1712 8.6579 –3.4645 2.5645
Small car –2.3849 4.1887 –1.5992 1.3042
Large car –0.9180 3.4259 –0.6148 1.3912
Small SUV –1.5914 2.8561 –1.0671 0.9057
Midsize SUV 0.3151 3.1997 0.2173 1.3618
Large SUV –1.1336 6.8725 –0.7559 2.8682
Compact pickup –2.2029 3.7700 –1.4752 1.1258
Full-sized pickup –1.6858 5.9893 –1.1230 2.4034
Minivan –1.1161 4.8729 –0.7406 1.9962

ilarly, but not as dramatically, the share who are willing to pay over $20,000
to move from low to medium performance is estimated to be 6 percent in the
model in WTP space, which is less than the 10 percent implied by the model
in preference space.

In conclusion, for both preference coefficients and WTP values, the indirect
way of estimating the distributions results in larger means and standard devi-
ations than when the distributions are estimated directly. As discussed above,
the larger standard deviations in WTP imply implausible shares of the popula-
tion willing to pay large amounts for an attribute. The meaning of larger means
and standard deviations of coefficients is not clear.

Table 1.6 gives the correlations between coefficients that are implied by
the estimated distributions of WTP and the price coefficient. The correlations
are fairly high, due to the fact that each WTP is multiplied by the common
price coefficient. These high correlations suggest that models with uncorre-
lated coefficients in preference space are incompatible empirically (as well as
theoretically, of course) with independent WTP’s and price coefficient. Re-
searchers, when considering independence over attributes, must be careful in
distinguishing whether they want to assume that WTP’s are independent or
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Table 1.6. Correlations between preference coefficients of attributes, implied by estimated
parameters of model in WTP space (Table 1.4)

Attribute Price Op. cost Range Electric Hybrid Hi Perf Med Perf

Price 1.0000 0.5526 0.8117 –0.8080 0.4157 0.3570 0.2242
Op cost 0.5526 1.0000 0.4481 -0.4456 0.2322 0.2087 0.1281
Range 0.8117 0.4481 1.0000 -0.6532 0.3375 0.2895 0.1796
Electric –0.8080 –0.4456 –0.6532 1.0000 –0.3343 –0.2853 –0.1857
Hybrid 0.4157 0.2322 0.3375 -0.3343 1.0000 0.1439 0.0945
Hi perf 0.3570 0.2087 0.2895 -0.2853 0.1439 1.0000 0.0794
Med/Hi Perf 0.2242 0.1281 0.1796 –0.1857 0.0945 0.0794 1.0000

that utility coefficients are independent, since independence of one implies
non-independence of the other.

4.3 Correlated coefficients and WTP

In general, neither coefficients nor WTP’s are independent. We estimated
a model in preference space with correlated coefficients and a model in WTP
space with correlated WTP’s. The model in preference space incorporates ran-
dom scale, since it allows correlation between all coefficients. The two models
(in preference space and WTP space) are therefore the same in allowing for
random scale and differ only in the distributional assumptions for coefficients
and WTP. Both models assume a log-normal price coefficient. The model in
preference space assumes normal and log-normal non-price coefficients, which
implies that WTP’s are distributed as the ratio of a normal or log-normal to a
log-normal. The model in WTP space assumes normal and log-normal WTP’s,
which implies coefficients that are the product of a log-normal with a normal
or log-normal.

To save space, we do not present the estimates of these model; they are avail-
able to interested readers upon request. The results are consistent with those
obtained above, namely: (1) the model in preference space obtains a higher
log-likelihood, but (2) the estimated distribution of WTP is more reasonable
(with smaller means and variances) for the model in WTP space. In addition,
several conclusions can be drawn concerning correlations:

The hypothesis that coefficients in preference space are uncorrelated can
be rejected. The model in preference space attains a log-likelihood of
-6,178.12 with correlated coefficients, compared to -6,297.81 for the
model given in Table 1.1 with uncorrelated coefficients. The likelihood
ratio test statistic is therefore 239.4 for the hypothesis that all 120 co-
variances are zero, which is greater than the 99-percentile value of the
chi-square with 120 degrees of freedom.
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The estimated correlations among coefficients are generally small or
moderate in size. 47 of the 160 correlations are below 0.1 in magnitude,
and only 12 are above .4 in magnitude.

The model in WTP space attains a log-likelihood of -6,228.31 when
the WTP’s and price coefficient are all allowed to be correlated and -
6,362.13 when they are constrained to be uncorrelated. The hypothesis
of no correlation can be rejected.

The estimated correlations between WTP’s for the model in WTP space
are generally small or moderate, similar to the estimated correlations
between coefficients for the model in preference space.

The correlations among coefficients that are derived from the model in
WTP space are considerably larger in magnitude than those estimated
directly in the model in preference space. Similarly, the correlations
among WTP’s that are derived from the model in preference space are
considerably larger than those estimated directly in the model in WTP
space. These findings are similar to those given above for variances, i.e.,
that larger variances in coefficients are obtained when they are estimated
indirectly instead of directly, and larger variances in WTP’s are obtained
when estimated indirectly than directly. It seems that the process of
combining estimated distributions (dividing a normal by a log-normal
for WTP or multiplying a normal by a log-normal for a coefficient) tends
to inflate the estimated variances and covariances.

Sonnier et al. (2003) estimated models in preference space and WTP space,
using the terms “linear models” and “nonlinear models” instead of our ter-
minology to denote that the random customer-level parameters enter utility
linearly in the former and nonlinearly in the later. Their results are consis-
tent with our main conclusions, in that they obtained better within-sample fit
for their model in preference space but more reasonable WTP distributions for
their model in WTP space. However, their results differ from ours in one re-
gard. They performed out-of-sample analysis and concluded that their model
in WTP space fits better out-of-sample, even though it fits worse in-sample.

To examine this issue, we divided our sampled respondents into two equal-
sized sub-samples, estimated each model on one sub-sample, and evaluated
the log-likelihood of the estimated models on the other sub-sample. In each
comparison (estimation on first half with evaluation on the second half, and
estimation on the second half with evaluation on the first half), the model in
preference space obtained a higher log-likelihood than the model in WTP space
on the out-of-estimation sub-sample.

Our results therefore differ in this regard from those of Sonnier et al. (2003).
The difference can perhaps be explained by the fact that we used a somewhat
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different method to evaluate out-of-sample fit than they did. We estimated on
half the respondents using all of their choice situations and then calculated the
log-likelihood for all the choice situations for the other half of the respondents,
while they estimated the model on all but one choice situation for each re-
spondent and then calculated the log-likelihood for this one “hold-out” choice
situation for each respondent.

However, there is no reason to expect the same results in different settings,
since the answer to the question “Which distributions fit better?” is necessarily
situation-dependent. The purpose of the explorations is to focus our attention
on the relation between distributions of coefficients and distributions of WTP,
rather than to attempt to identify the appropriate distributions to use in all situ-
ations.

5. Conclusions

This paper examines consumer choice among alternative-fueled vehicles,
including gas, electric, and gas/electric hybrids. The empirical results indicate
that the vast majority of consumers would need to be compensated through
a lower price (i.e., have a negative willingness to pay) for electric vehicles
relative to gas vehicles, even if operating cost, performance, and range were the
same. In contrast, most consumers are willing to pay extra for a hybrid relative
to a gas vehicle with the same non-price attributes. This result is consistent
with the market experience in the U.S. The few electric cars that have been
introduced in the U.S. have fared poorly in the market, and models are being
discontinued. In contrast, the initial offerings of hybrids have been relatively
popular, and more models, such as hybrid SUVs, are being launched.

Discrete choice models were estimated with convenient distributions (nor-
mal and log-normal) in preference space and in willingness-to-pay WTP space.
The models in preference space were found to fit the data better, both within-
sample and out-of-sample, than the models in WTP space. However, the mod-
els in WTP space provided more reasonable distributions of WTP, with fewer
consumers having untenably large WTP’s, than the models in preference space.
This comparison implies that research is needed to identify distributions that
fit the data better when applied in WTP space and/or provide more reasonable
distributions of WTP when applied in preference space.
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