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Abstract The use of a joint normal distribution for partworths is computationally attrac-
tive, particularly with Bayesian MCMC procedures, and yet is unrealistic for
any attribute whose partworth is logically bounded (e.g., is necessarily positive
or cannot be unboundedly large). A mixed logit is specified with partworths
that are transformations of normally distributed terms, where the transforma-
tion induces bounds; examples include censored normals, log-normals, and SB

distributions which are bounded on both sides. The model retains the compu-
tational advantages of joint normals while providing greater flexibility for the
distributions of correlated partworths. The method is applied to data on cus-
tomers’ choice among vehicles in stated choice experiments. The flexibility that
the transformations allow is found to greatly improve the model, both in terms
of fit and plausibility, without appreciably increasing the computational burden.

∗A Gauss routine and manual to implement the procedures described in this paper are available on Train’s
website at http:\\elsa.berkeley.edu\ ∼train. We are grateful for comments from Peter Rossi on an earlier
version of this paper.
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1. Introduction

Mixed logit is a flexible discrete choice model that incorporates random
variation in partworths.1 McFadden and Train (2000) show that mixed logit
can approximate any random utility choice model to any degree of accuracy
through appropriate specification of distributions of the partworths. Procedures
for estimating mixed logits have been developed within both the classical (e.g.,
Revelt and Train, 1998, Brownstone and Train, 1999) and Bayesian (Allenby,
1997; Sawtooth Software, 1999) traditions.

Mixed logit models have been used for environmental analysis in numer-
ous contexts, including: households’ response to rebates on energy-efficient
appliances (Revelt and Train, 1998); the impact of fish stock, which is af-
fected by water quality, on anglers’ choice of fishing site (Train, 1998); the de-
mand for wind, hydro and other forms of renewable power generation (Goett et
al., 2000); and consumers’ willingness to pay for water service improvements
(Hensher et al., 2004). Consumers’ choice of vehicle, which is the applica-
tion in the current paper, is particularly important for environmental analysis
since energy consumption and emissions are largely dependent on this choice.
Mixed logits of vehicle choice have been previously estimated by Brownstone
and Train (1999), Brownstone et al. (2000), and Train and Winston (2004).

The distribution of partworths is critical in any application. Normal dis-
tributions are relatively easy to implement in both the classical and Bayesian
methods. However, since the normal is unbounded on each side of zero, its
use in many setting is inappropriate. A normal distribution for a price coeffi-
cient implies that some share of the population actually prefer higher prices.
Also, since the normal distribution overlaps zero, its use for a price coefficient
can preclude the calculation of willingness-to-pay statistics: The willingness-
to-pay for an attribute is the partworth of that attribute divided by the price
coefficient. Since division by zero is undefined, and division by a number ar-
bitrarily close to zero gives an arbitrarily large result, the mean and variance of
willingness-to-pay need not exist when the price coefficient is normal.2 A nor-
mal distribution is also inappropriate for the partworth of a desirable attribute
that is valued (or, at worst, ignored) by all customers or an undesirable attribute
that is disliked (or ignored) by all customers. Similarly, when an attribute con-

1The partworth of an attribute is the coefficient of the attribute in the utility function. The term is used
extensively in marketing, and we adopt it here because it is more succinct than “utility coefficient” and
more specific than “coefficient.”
2The applications cited in the previous paragraph specify the price coefficient to be fixed or log-normal in
order to avoid this issue. See, e.g., Merrill (1928), Geary (1930), Fieller (1932), Marsaglia (1965), and
Hinkley (1969) on the distribution of a ratio of two normally distributed terms.
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sists of various levels, the partworth for each higher level must logically be
no smaller than the partworth for each lower level; normal distributions do not
embody this requirement.

Bounded distributions can and have been used in mixed logits estimated by
both the classical and Bayesian procedures (e.g., Bhat, 1998, 2000; Revelt and
Train, 1998; Train, 1998; Revelt, 1999; Boatwright et al., 1999; Brownstone
and Train, 2000; Johnson, 2000; Train 2001). However, each estimation proce-
dure, while feasible with bounded distributions, entails numerical difficulties
that are intrinsic to its form, as described and illustrated by Train (2001). In
particular: Classical procedures handle triangular, truncated normal, and sim-
ilarly bounded distributions easily while Bayesian procedures are relatively
slow with these distributions. On the other hand, fully correlated partworths
are difficult to handle in classical procedures due to the proliferation of param-
eters, while the Bayesian procedures accommodate these correlations readily.
Obtaining partworths that are bounded and correlated has been relatively diffi-
cult with either procedure.

Bayesian procedures operate effectively with normals because of the conve-
nient posteriors that arise with normals. In this paper, we build upon the obser-
vation in Train (2001) that the Bayesian procedures operate as effectively with
log-normals as normals because the log-normal is simply a transformation of
the normal that does not entail any other parameters. This concept is expanded
by using other transformations that provide various types of bounded distri-
butions. These transformations can operate on correlated normals to provide
correlated partworths with bounded distributions. The numerical advantages
of the Bayesian procedures with correlated normals are retained while having
partworths whose distributions are bounded.

Many useful distributions can be obtained as transformations of normals.
Let scalar β be normally distributed with mean b and variance ω. Bounded dis-
tributions are obtained through the following kinds of transformations. These
transformations are weakly monotonic (non-decreasing in β) and depend only
on β without utilizing b and ω.

Log-normal. The transformation is c = exp(β). The distribution is
bounded below by zero. It is useful for the partworths of attributes that
are liked by all customers. The sign is reversed for undesirable attributes,
such as a price variable, such that the partworth is necessarily negative.

Normal censored from below at zero. The transformation is c =
max(0, β). There is a mass at zero, with the density above zero being the
same as the normal density of β. The share at zero is Φ(−b/ω), where
Φ is the standard normal cumulative distribution. This transformation
is useful for partworths of an attribute that some customers do not care
about (i.e., are indifferent to its presence and simply ignore) and other
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customers find desirable. The estimation of b and ω determines the share
massed at zero and the share distributed above zero.

Johnson’s (1949) SB distribution.3 The transformation c = eβ/(1 + eβ)
creates a partworth that is distributed between zero and one, with mean,
variance and shape determined by the mean and variance of β. 4

For a distribution that has support from � to u, the transformation is
c = �+(u−�)×eβ/(1+eβ). The SB distribution is useful for a variety
of purposes. SB densities can be shaped like log-normals but with an
upper bound and with thinner tails below the bound. SB densities are
more flexible than log-normals: they can be shaped like a plateau with
a fairly flat area between drop-offs on each side (as in Figure 2 for our
application) and can even be bi-modal. When a lower bound other than
zero is specified, the distribution is useful for an attribute that some peo-
ple like and others dislike but for which there is a limit for how much
the person values having or avoiding the attribute.

For multiple partworths, β is generalized to be a vector with length equal
to the number of partworths, with mean vector b and variance matrix Ω. Each
partworth is defined as a transformation of the corresponding element of β. The
covariance among the elements of β induces covariance among the partworths.
As such, the procedure allows for correlated partworths under any combination
of the above distributions.

Numerous authors have implemented log-normal distributions within mixed
logit, though usually without allowing full correlation; see, e.g., Bhat (1998,
2000), Train (1998), and Revelt and Train (1998).5 R. Johnson (2000) exam-
ined censored normals and found that they provided more reasonable results
and better fit than uncensored normals in his application. The use of the SB

distribution seems to be new. We will investigate its usefulness in the context
of our application.

The computational advantage of the method rests on the simplicity of the
posteriors on b and Ω that arise, as described in the next section, when the
transformation of β does not depend on b and Ω. Transformations that depend
on b and Ω can be useful in some settings, but do not provide the same sim-
plicity. For example, truncated normals cannot be accommodated within our
procedure because the necessary transformation entails b and Ω rather than de-

3See also Johnson and Kotz, 1970, p. 23.
4As Johnson and Kotz note, the formulas for the moments are very complex. We calculate them through
simulation as described section 4. The median is 1/(1 + exp(b/

√
ω)).

5Experience indicates that the parameters of log-normal distributions are hard to estimate with classical
procedures, due to the fact that the log-likelihood surface is highly non-quadratic. The Bayesian procedure
avoids this difficulty.
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pending only on β.6 Since b and Ω affect the utility of each customer through
this transformation, the posteriors for b and Ω conditional on the β’s depend
on the choices of the respondents and no longer have the convenient form that
we utilize. Boatwright et al. (1999) provide MCMC methods for truncated
normals. These methods, which can be generalized to essentially any bounded
distribution, are considerably more difficult and slower computationally than
those we utilize in this paper. The question for the researcher for a particu-
lar application is whether transformations of normals that do not depend on
b and Ω can adequately represent the relevant distributions of partworths. If
so, the simple methods in this paper can be exploited; if not, the methods of
Boatwright et al. can be used.7

While the estimation procedure that we describe is Bayesian, the results can
be interpreted from either a Bayesian or classical perspective. Bayesian inter-
pretation is of course straightforward since the procedure itself is Bayesian.
Classical interpretation is less well recognized. The Bernstein-von Mises the-
orem (see, e.g., Train, 2003, for a discussion with historical references) estab-
lishes that, under conditions that are maintained in our specification, the mean
of the Bayesian posterior is a classical estimator that is asymptotically equiv-
alent to the maximum likelihood estimator. The theorem also establishes that
the covariance of the posterior is the asymptotic sampling covariance of this es-
timator. The results from the Bayesian procedures can therefore be interpreted
by a classical researcher in the same way that the researcher would interpret
estimates obtained by maximum likelihood. To facilitate this interpretation,
we present our results in the format that is standard for classically estimated
models, namely by reporting the parameter estimates (which are the posterior
means) and their standard errors (the posterior standard deviations).

In section 2, we describe Bayesian estimation of a mixed logit with nor-
mally distributed partworths. We then show in section 3 how this procedure is
changed to accommodate transformations of the normal. We apply the method
in section 4 to data on customers’ choice among vehicles.

2. Mixed logit with normally distributed partworths

The behavioral derivation of mixed logit with repeated choices is given by
Revelt and Train (1998) and Train (1998) for general distributions of part-
worths. The Bayesian procedure for estimating the model with normally dis-
tributed partworths was developed by Allenby (1997) and implemented by

6E.g., a one-dimensional normal truncated below at zero is created as c = Φ−1(m(1 − z) + z) · ω + b
where z = Φ((β − b)/ω) and m = Φ(−b/ω).
7Classical estimation procedures accommodate truncated normals as readily as normals; see, e.g., Revelt
(1999.) However, as stated above, classical procedure have difficulty dealing with correlated partworths due
to the proliferation of parameters.
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Sawtooth Software (1999).8 We give the derivation and Bayesian procedure
under normally distributed partworths in this section. The generalization to
transformation of normals is described in the following section.

Person n faces a choice among J alternatives in each of T time periods. J
can be as small as 2, and T can be as small as 1. The person’s utility from
alternative j in period t is

Unjt = β′
nxnjt + εnjt,

where εnjt ∼ iid extreme value and βn ∼ N(b, Ω). The vectors of variables
xnjt and partworths βn have length K. Person n chooses alternative i in period
t if Unit > Unjt ∀j �= i. Denote the person’s chosen alternative in period t
as ynt, the person’s sequence of choices over the T time periods as yn =
〈yn1, . . . , ynT 〉, and the set of yn∀n as Y . Conditional on βn, the probability
of person n’s sequence of choices is the product of standard logit formulas:

L(yn | βn) =
∏

t

eβ′
nxnyntt

∑
j eβ′

nxnjt
.

The unconditional probability is the integral of L(yn | βn) over all values of
βn weighted by the density of βn:

Pn(yn | b, Ω) =
∫

L(yn | βn)g(βn | b, Ω)dβn. (2.1)

where g(·) is the multivariate normal density. This unconditional probability is
called the mixed logit choice probability, since it is a product of logits mixed
over a density of partworths.

For Bayesian analysis, it is necessary to specify the priors on the model
parameters b, Ω, and βn∀n. Since we have already specified βn to be normal
with mean b and variance Ω, the prior on each βn is proportional to this density
times the prior on b and Ω.9 We specify the prior on b to be a diffuse normal,
denoted N(b | 0, Θ), which has zero mean and variance Θ sufficiently large
that the density is effectively flat from a numerical perspective. The advantage

8Related methods for probit models were developed by Albert and Chib (1993), McColluch and Rossi
(1994), and Allenby and Rossi (1999). Bayesian procedures for non-mixed logits are discussed by Koop
and Poirier (1993, 1996) and Poirier (1994, 1996).
9Several terms have been used for these parameters. (1) Often, b and Ω are called population parameters
that describe the distribution of customer-level βn’s in the population. With this usage, the distribution
g(βn | b, Ω) is interpreted as the actual distribution of partworths in the population. (2) In Bayesian
analyses especially, b and Ω are often called hyper-parameters, since the prior on each βn depends on b
and Ω which themselves have priors. Under this usage, g(βn | b, Ω) is interpreted as an aspect of the
researcher’s prior information about βn. (3) Sometimes, the βn’s are called nuisance parameters, to reflect
the concept that they are incorporated into the analysis simply (under this usage) to facilitate estimation of
b and Ω.
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of a normal prior on b is that it provides a conditional posterior on b (i.e.,
conditional on βn∀n and Ω) that is normal and hence easy to draw from, while
the large variance assures that the prior has minimal (effectively no) influence
on the posterior. The standard diffuse prior on Ω is inverted Wishart with K
degrees of freedom and parameter KI where I is the K-dimensional identity
matrix. This density is denoted IW (Ω | K, KI). It provides a conditional
posterior on Ω that is IW and hence easy to draw from. The joint posterior on
βn∀n , b and Ω is

Λ(βn∀n, b, Ω | Y ) ∝
∏

n

L(yn | βn)·g(βn | b, Ω)·N(b | 0, Θ)·IW (Ω | K, KI).

Information about the posterior is obtained by taking draws from the pos-
terior and calculating relevant statistics, such as moments, over these draws.
Gibbs sampling is used to facilitate the taking of draws (see Casella and
George, 1992, for a general explanation of Gibbs sampling.) In particular,
draws are taken sequentially from the conditional posterior of each parameter
given the previous draw of the other parameters. The sequence of draws from
the conditional posteriors converges to draws from the joint posterior.

The conditional posterior distributions in this model are especially con-
venient. Given β and Ω, the posterior on b is N(β̄, Ω/N) with β̄ =
(1/N)

∑
βn.10 This distribution is easy to draw from: A draw of b is cre-

ated as b̃ = β̄ + Lη, where L is the lower-triangular Choleski factor of Ω/N
and η is K-dimensional vector of independent draws from a standard normal
density. A draw of the vector b requires only K draws from a random number
generator, K means over N terms each, and a few arithmetic calculations. It
takes a tiny fraction of a second.

Given b and β, the conditional posterior of Ω is IW (Ω | K+N, KI+NV̄ ),
where V̄ = (1/N)

∑
(βn − b)(βn − b)′. Draws from the inverted Wishart are

easily obtained. Take K + N draws of K-dimensional vectors of iid standard
normal deviates. Calculate the Choleski factor, M , of (KI + NV̄ )−1. Create
S =

∑
r(Mηr)(Mηr)′. Then Ω̃ = S−1 is a draw. This calculation is also

extremely fast.
The only computationally intensive part is drawing βn∀n. Given b and Ω,

the conditional posterior for βn is proportional to L(yn | βn)g(βn | b, Ω). The
Metropolis-Hasting (M-H) algorithm is used to take draws from this distribu-
tion. (See Chib and Greenberg, 1995, for a general explanation of the M-H
algorithm.) The previous draw is labeled β0

n and the new one is β1
n. The new

draw is obtained as follows.

10More precisely, the posterior on b approaches N(β̄, Ω/N) as the variance of the prior on b rises without
bound. This variance is specified to be sufficiently high such that the posterior is numerically indistinguish-
able from N(β̄, Ω/N).
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1. Calculate d = σLη, where η is a draw of a K-dimensional vector of iid
standard normal deviates, L is the Choleski factor of Ω, and σ is a scalar that
the researcher sets in a way to be described below.

2. Create a ”trial” value of β1
n as β̃1

n = β0
n + d.

3. Evaluate the posterior at this trial value and compare it with the posterior
at the previous draw. That is, calculate the ratio

R =
L(yn | β̃1

n)g(β̃1
n | b, Ω)

L(yn | β0
n)g(β0

n | b, Ω)
.

4. Take a draw from a standard uniform and label the draw µ.
5. If µ < R, accept the trial draw. Otherwise, reject the trial draw and use

the previous draw as the current draw. That is, set β1
n = β̃1

n if µ < R and set
β1

n = β0
n otherwise.

A sequence of draws taken by the M-H algorithm converges to draws from
the target distribution, in this case the conditional posterior. One draw of βn

within the M-H algorithm for each person is taken in each iteration of the
Gibbs sampling over b, Ω, and βn∀n. Movement to convergence in the M-H
algorithm for each person and in the overall Gibbs sampling is thereby attained
simultaneously. In our application we used 30,000 iterations for “burn-in” (i.e.,
movement toward convergence) followed by 20,000 iterations, of which the
draws in every 10-th iteration were retained. (Run-times were only 1.5 hours,
even with this large number of iterations.) The 2,000 retained draws are used
to conduct inference. For example, the average of these draws is the simulated
mean of the posterior, which, from a classical perspective, is the estimate of
the parameters. The standard deviation of the draws is the simulated standard
deviation of the posterior and the classicists’ standard error of the estimate.

The value of σ in step (1) affects the acceptance rate in the M-H algorithm.
For smaller values of σ, the acceptance rate is generally higher but the jumps
between draws is smaller so that more draws are needed for the algorithm to
reach convergence and, once at convergence, to traverse the conditional pos-
terior. Gelman et al. (1995) found that the optimal acceptance rate is .4 for
K = 1 and decreases to .23 for higher dimensions. They recommend an adap-
tive acceptance rate to achieve optimality. This adaptation is implemented by
changing σ in each iteration of the Gibbs sampling based on the acceptance
rate among the N trial draws of βn∀n in the previous iteration. Following
Sawtooth Software (1999) and in accordance with the optimal rate found by
Gelman et al., we lower σ if the acceptance rate is below .3 and raise it if the
rate is above .3.

3. Transformation of normals

Denote the partworths of person n as cn, which is a vector with the same
length as βn. The partworths are defined by cn = T (βn), where T is a
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transformation that depends only on βn and is weakly monotonic (such that
∂ck

n/∂βk
n ≥ 0 for each element k of cn and βn). The distribution of cn is

determined by the transformation.
Little is changed in the estimation procedure by this transformation. Nor-

mally distributed βn’s are drawn as before but then transformed to cn’s when
they enter utility. Utility is specified as

Unjt = T (βn)′xnjt + εnjt.

The probability of the person’s choice sequence given βn is

L(yn | βn) =
∏

t

eT (βn)′xnyntt

∑
j eT (βn)′xnjt

.

This probability is used in step 3 of the M-H algorithm instead of the probabil-
ity based on untransformed βn. The rest of the procedure is same.

In this set-up, βn can be considered a latent value that determines the per-
son’s partworths. This latent value is normally distributed, with mean b and
covariance Ω. The conditional posteriors for b and Ω are the same as before,
and the conditional posterior of βn changes only by the transformation that
occurs in utility in the logit formula. The advantages of normal distributions
within a Bayesian procedure are maintained while allowing the partworths to
take other distributions. For any given value of βn, the partworths cn are cal-
culated, and the distribution of βn induces a distribution of cn.

4. Application

We present an analysis of customers’ choice among gas, electric, and hybrid
gas-electric vehicles. We apply the methods described above to investigate
the use of various bounded distributions of partworths, all of which involve
transformations of normals.

Stated choice experiments were designed to elicit customers’ choice among
gas, electric, and hybrid vehicles under various prices, operating costs, and
other attributes. The experiments were conducted as part of a survey of vehicle
owners in California. The state of California is particularly relevant for electric
and hybrid vehicles because the state’s Air Resources Board has implemented,
and is continually revising, regulations that promote these vehicles. Survey
respondents were contacted through random-digit dialing throughout the state.
Respondents intending to purchase a new vehicle within the next three years
were asked to participate in the study. Those who were willing to participate
in the study were sent a packet of materials, including information sheets that
described the new vehicles and the choice experiments. The respondents were
later called to go over the information, obtain their choices in the experiments,
and ask demographic and other questions. A total of 500 respondents were
obtained.
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4.1 Choice experiments

Each choice experiment consisted of three vehicles. For each vehicle, the
following information was listed:

Body type, such as midsize car

Engine type: gasoline, electric, or hybrid

Purchase price

Operating cost in dollars per month

Performance

Range: miles between refueling/recharging.

The respondent was asked to consider the attributes of all three vehicles and
state which one he/she would buy if making the purchase today. Each respon-
dent was presented with 15 choice experiments, with each experiment contain-
ing different vehicles with different attributes.

The choice experiments were designed to provide as wide variation in each
attribute, and as little covariance among attributes, as possible while maintain-
ing plausibility. Ten body types were considered in the experiments: mini car,
small car, midsize car, large car, small SUV, midsize SUV, large SUV, com-
pact pick-up, large pick-up, mini-van. Respondents were given examples of
vehicles with that body type.

Each vehicle in each experiment was listed as being gasoline, electric, or
hybrid. In any one experiment, the respondent might face a choice among two
electric and one hybrid vehicle, among three gasoline vehicles, or any other
combination.

The purchase price and operating cost of each vehicle were chosen randomly
from a range of possible prices and operating costs.

The performance of each vehicle was described in terms of top speed and
the number of seconds required to go from zero to 60 mph. These two perfor-
mance measures were not varied independently, since respondents know that
they are linked. Rather, three performance levels were specified, and each ve-
hicle was randomly assigned one of the three performance levels. The three
levels were: (1) Top speed of 120 mph, and 8 seconds to reach 60 mph. This
level is called “high” performance in the discussions below; however, the re-
spondent did not see the word “high”. The respondent saw the numbers for top
speed and seconds to 60. (2) Top speed of 100 mph, and 12 seconds to reach
60 mph. This level is called “mid” in the discussions below. (3) Top speed
of 80 mph, and 16 seconds to reach 60 mph. This level is called “low.” The
performance for gas and hybrid vehicles was randomly chosen from all three



Mixed Logit with Bounded Distributions of Correlated Partworths 127

levels. The performance for electric vehicles was randomly chosen from the
mid and low levels.

For the miles between refueling/recharging, a range of miles was given for
each vehicle. The miles between refueling was given as “300-500” miles for
gas vehicles and “400-700” miles for hybrid vehicles in all the experiments.
A constant level was used for these vehicles because the study did not intend
to estimate the value of increasing the range of vehicles that are refueled con-
ventionally. The goal was to estimate the value to customers of increasing the
range of electric vehicles. The range for gas and hybrid vehicles was stated
so that the experiments would not place undue emphasis on the electric ve-
hicle range in the eyes of the respondent. (If the range of electric vehicles
was stated in the experiment but not the range of gas or hybrid vehicles, then
respondents might be induced to place more importance on this aspect of elec-
tric vehicles than they otherwise would.) For electric vehicles, the possible
ranges included every 10 mile increment starting with 60-70 and going up to
190-200. The range for each electric vehicles in the choice experiments was
chosen randomly from these levels.

4.2 Models

Price, operating cost, and range are linearized, such that their partworths
represent the value of a one-unit increment. The negative of price and oper-
ating cost are entered, such that their partworths are expected to be positive
(so that log-normal distributions, which have positive support, can be used.)
For performance, the low level is taken as the base and the medium and high
levels are represented in increments. That is, two variables are entered for
performance: a dummy indicating that the vehicle has either medium or high
performance, and a dummy indicating that the vehicle has high performance.
For engine types, gas is taken as the base, such that the partworths of the elec-
tric and hybrid vehicles are the value of these engine types relative to that of
a gas engine. Similarly, the large car is taken as the base body type, with the
partworths for the others representing value relative to the large car.

We start with a model in which all the partworths are distributed jointly nor-
mal N(b, Ω). As stated above, 2000 draws of b, Ω and βn ∀n are obtained
from their posterior distribution. The means of the 2000 draws of b and of
the diagonal elements of Ω are given in Table 7.1. (The partworths for body
types are omitted from this and subsequent tables to save space and because
they contain relatively less interpretable content.) From a classical perspective,
these figures represent the estimated mean and variance of the βn’s in the pop-
ulation. And since the βn’s are untransformed, the figures also represent the
mean and variance of partworths in the population. The standard deviations of
the draws of b and the diagonal elements of Ω are given in parentheses. From
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a classical perspective, these are the standard errors of the estimated mean and
variance of βn’s in the population.

Table 7.1. Model of vehicle choice with all normal distributions.

βn’s and partworths for: Mean Variance Share>0

Price (negative): .1900 .0632 .78
(.0127) (.0048)

Operating cost (negative): .0716 .0467 .63
(.0127) (.0032)

Range: 1.213 4.050 .73
(.2442) (.7190)

Electric vehicle: –3.554 16.95 .19
(.4120) (3.096)

Hybrid vehicle: 1.498 6.483 .72
(.1584) (.9729)

High performance: .3092 1.425 .60
(.1004) (.2545)

Mid and high performance: .8056 1.298 .76
(.1030) (.2384)

Log-likehood –6,835.5

For example, for our first model, the partworth associated with range is
normally distributed in the population with an estimated mean of 1.213 and
estimated variance of 4.050. These estimates imply that 73 percent of the pop-
ulation have positive partworth for range while the other 27 percent have a
negative partworth. (These negative partworths for range are of course im-
plausible and the basis for our exploration of other distributions below.) The
standard error on the estimated mean is 0.2442, which gives a t-statistic of
4.97, implying that the mean is significantly different from zero. Similarly,
the standard error on the estimated variance is 0.7190, for a t-statistic of 5.63,
implying that the variance is also significant (that is, the hypothesis of no vari-
ance can be rejected.) The classical log-likelihood of the model is given at the
bottom of the Table. This value is the log-likelihood of the observed choices
calculated at the estimated values of b and Ω (that is, at the mean of the draws
of b and Ω.) We give this statistic, which is not used in Bayesian inference
but is standard in classical analysis, to emphasize the ability of the Bayesian
procedures to provide results that are interpretable classically.

The mean partworth associated with moving from low to medium or high
performance (0.8056) is greater than that for moving from medium to high
performance (0.3092), which is consistent with decreasing marginal utility of
performance. The estimates for the other partworths are self-explanatory.
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The model is implausible in several regards. The estimates imply that 22
percent of the population prefer higher prices. The existence of price co-
efficients with the wrong sign renders the model un-useable for calculation
of willingness to pay and other welfare measures. The estimates also imply
that 37 percent of people prefer higher operating costs, 27 percent prefer elec-
tric vehicles with shorter ranges over those that can be driven further between
recharging, 24 percent prefer low performance over medium or high perfor-
mance, and 40 percent prefer medium performance over high performance.
Also, for any arbitrarily large value in either direction, the model implies that
some people have a partworth in excess of this value. The model therefore
implies that some people would buy a vehicle that is worse in all features than
any other currently-offered vehicle. These implications are the result of using
normal distributions for partworths when actual partworths have known signs
and limited magnitudes.

Table 7.2 gives the correlation among the partworths implied by the estimate
of Ω. The largest correlation (in magnitude) is between the partworths for
range and electric vehicle: the correlation of –0.64 implies that people who
are concerned about the range of an electric vehicle tend not to like electric
vehicles at any range. This result is questionable. It is probably true that
people who are concerned about range tend not to like electric vehicles, since
electric vehicles generally have short ranges. However, the range of the electric
vehicle is explicitly included in the experiments and the model. The negative
correlation in partworths therefore implies that people who care about range
tend to not like electric vehicles for reasons beyond range. It is not clear what
these reasons might be or why they relate to concern about range.

Table 7.2. Correlations among partworths with all normal distributions.

Price 1.00 0.11 –0.10 0.05 –0.18 –0.07 –0.01
Operating cost 1.00 –0.05 0.15 0.01 0.01 –0.01
Range 1.00 –0.64 0.36 –0.01 0.15
Electric vehicle 1.00 0.12 0.02 –0.19
Hybrid vehicle 1.00 0.19 0.06
High performance 1.00 0.17
Med and high performance 1.00

We estimate two models under other distributional assumptions that are easy
to accommodate within our estimation procedure. For the first of these two
models, the two performance variables are given normal distributions that are
censored from below at zero. With this distribution, a share of the population
is completely unconcerned about performance (i.e., have a partworth of zero)
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Table 7.3. Model of vehicle choice with transformations of normals.

βn Partworths
Mean Variance Mean Variance

Price (negative): –2.531 0.9012 0.1204 0.0170
(.0614) (.1045)

Operating cost (negative): –3.572 1.015 0.0455 0.0031
(.1100) (.1600)

Range: –1.222 1.370 0.5658 0.8965
(.2761) (.3368)

Electric vehicle: –1.940 2.651 –1.9006 2.6735
(.1916) (.4965)

Hybrid vehicle: 0.9994 2.870 1.0003 2.8803
(.1267) (.4174)

High performance: –.7400 2.358 0.3111 0.3877
(.2953) (.7324)

Mid and high performance: –.0263 1.859 0.5089 0.5849
(.1538) (.3781)

Log-likehood –6,171.5

while the other share of the population places a positive value of higher perfor-
mance with this value varying over people. The coefficients of price, operating
cost, and range are given log-normal distributions (with the negative of price
and operating cost entering the model.)

The mean and standard deviation of b and the diagonal elements of Ω are
given in Table 7.3. Note that the log-likelihood of this model is consider-
ably higher than that for the model with all normals: –6,171.5 compared to
–6,835.5. As stated above, b and Ω are the mean and variance of the βn in the
population, which are transformed to obtain the partworths. The distribution
of partworths is obtained through simulation on the estimated values of b and
Ω.

In particular, draws of βn are taken from a normal distribution with mean
equal to the estimated value of b and variance equal to the estimated value of
Ω. Each draw of βn is then transformed to obtain a draw of partworths.11 The
mean and variance of these partworths are given in the latter columns of Table
7.3. The specification of the distributions assures that no one in the popula-
tion dislikes (i.e., has a strictly negative partworth for) price reductions, oper-

11An alternative procedure, which is more consistent with Bayesian concepts and less consistent with clas-
sical concepts, is to retain the draw of the partworths (i.e., the transformation of the draw of βn) for each
person in each iteration of the MCMC procedure after convergence and calculate statistics such as means
and variances over these draws.
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ating cost reductions, range improvements, or either of the two performance
improvements.12 The mean partworths are smaller in this model than in the
model with all normal distribution.13 This difference is evidence of how the
use of normal distribution can distort the estimated mean partworths. In par-
ticular: For a desirable attribute, the normal distribution gives an implausible
negative sign for some share of customers; in estimation, the distribution is
moved “up” to avoid the poor fit that these implausible values imply. With
distributions that do not contain implausible values, the estimation procedure
is not distorted to avoid implausible values.

The estimates imply that 51 percent of the population do not care about an
improvement from low to mid-level performance, and 69 percent of the popu-
lation do not care about an improvement from mid-level to high performance.
These shares seem larger than expected (at least what we expected.) However,
this result might simply indicate that the other attributes that were included
in the choice experiments are more important to a large share of respondents,
such that the partworth for performance appears to be zero for these respon-
dents. If attributes that were considered less important than performance had
been included in the experiments, with variation only over performance and
these less important attributes, then a positive partworth for performance might
have been evidenced.

Table 7.4. Correlations among partworths with transformations of normals.

Price 1.00 0.25 0.14 0.00 0.35 0.12 0.05
Operating cost 1.00 0.08 –0.10 0.17 0.02 –0.04
Range 1.00 –0.05 0.27 0.03 0.02
Electric vehicle 1.00 0.38 0.04 –0.11
Hybrid vehicle 1.00 0.22 0.09
High performance 1.00 0.14
Med and high performance 1.00

Table 7.4 gives the correlation among partworths implied by the estimated
model. The implications are generally more reasonable that for the model
with all normal distributions. People who are concerned about price are also
concerned about operating cost. People who like electric vehicles also tend

12The mean βn is negative for many of these attributes, even though the partworths themselves are positive.
For log-normal distributions, βn is exponentiated such that the partworth is positive even if βn is negative.
In this case, a negative mean for βn implies that the median partworth is between zero and one. Similarly,
if the partworth is a normal censored at zero, a negative mean for βn implies than more than half of the
population does not care about the attribute.
13Even though the means drop, the ratios of means move in both directions relative to those with all normal
distributions.
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to like hybrid vehicles. This result suggests that customers have a willingness
or unwillingness to consider new technologies that transcends the particular
technology. The questionable correlation between the partworths of range and
electric vehicles that arose in the model with all normal distributions is not
evidenced in the model with transformations of normals.

As specified, the partworths for price, operating cost and range have log-
normal distributions, which allow unboundedly large partworths and have
fairly thick tails. It might be more appropriate to give these partworths a SB

distribution. To investigate this question, and to illustrate how various distri-
butions can be tested, we estimated a model that is the same as the one just
described except that the partworths for these three variables are specified as
SB with a lower bound of zero and a high upper bound for each. The up-
per bounds are 1.0 for price and operating cost, and 2.0 for range, which are
high enough to accommodate nearly all of the cumulative distribution under
the respective log-normals and yet allow a different shape of the distribution
within the relevant range. The log-likelihood for this model is higher than
for the previous one: –6,159.7 compared to –6,171.5. For price and operat-
ing cost, the mean and variance of the partworths are about the same with the
SB distribution as the log-normal; however, the shape differed, with the tail
of the SB distribution being considerably smaller even within the support of
the SB . Figure 7.1 illustrates the difference for the price coefficient, with the
solid line representing the SB distribution and the dashed line representing the
log-normal.

For the partworths associated with range, using the SB distribution instead
of the log-normal had a substantial effect. Figure 7.2 shows the estimated
densities under the SB distribution (solid line) and log-normal (dashed line).
The SB distribution provides a plateau shape that cannot be accommodated
with a log-normal. The question arises of whether this shape is the result of
placing a maximum of 2.0 on the SB distribution when the estimated log-
normal distribution gives a non-negligible share above 2. We re-estimated the
model with the maximum of the range coefficient set at 5.0 instead of 2.0.
The estimated SB density with this maximum takes a shape that is similar
to the log-normal. However, the log-likelihood dropped considerably, from
–6,159.7 with the maximum set at 2.0 to –6,163.1 with the maximum set at
5.0. Apparently the improvement in fit that arises from using SB distribution
instead of the log-normal is due to the plateau shape that the SB distribution
takes when its maximum is set at 2.0 for this partworth.

The bounds of the SB distribution can be estimated as parameters, rather
than specified by the researcher. Doing so requires an extra layer of Gibbs
sampling, with the bounds drawn from their posterior distribution conditional
on βn ∀n. The conditional posterior is proportional to the logit likelihood
for the entire sample,

∏
n L(yn | βn), times the prior on the bounds, where the



Mixed Logit with Bounded Distributions of Correlated Partworths 133

Figure 7.1. Price coefficients under the SB distribution (solid line) and log-normal (dashed
line).

Figure 7.2. Range coefficients under the SB distribution (solid line) and log-normal (dashed
line).
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utility that is used to calculate the logit formulas in L(·) depends on the bounds
of the SB distributions. A M-H algorithm is used to take draws from this
conditional posterior, similar to that used by Train (2001) for fixed coefficients.

We estimated a model with the upper bound of the SB distribution for
the range coefficient treated as a parameter. Using a flat prior, the estimated
value was 2.86 with a standard error of 0.42. The log-likelihood of the model
dropped slightly from –6,159.7 with the upper bound set at 2.0 to –6,160.56
with the estimated bound. Run time approximately doubled, since the M-H al-
gorithm for the bounds of the SB distribution requires about the same amount
of calculation as the M-H algorithm for βn ∀n. As noted above, run times
are fairly short with the procedure such that doubling them is not a burden.
However, identification becomes an issue when the bounds are treated as pa-
rameters, since the difference between the upper and lower bounds, u − �, is
closely related to the variance ω of the latent normal term. An important area
for further work is whether the SB distributions can be re-parameterized in a
way that improves identification of each parameter when the researcher does
not specify the bounds.
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