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1 Introduction

A common perception among economists is that market forces naturally limit the influence of

behavioral biases on economic decision-making. In markets, high-stake incentives and repeated

transactions discipline deviations (Stigler 1958; Becker 1957). Opportunities to learn from past

mistakes and to sort into areas of specialization further reduce the impact of biases among market

participants relative to the general population. The impact of any remaining behavioral participants

is likely to be small because market outcomes are determined by the large mass of rational agents.

These arguments suggest that behavioral biases may not have a large effect on prices and quantities,

and on which market participant transacts with whom.

Some of the more recent empirical literature in behavioral economics challenges this perception

and provides evidence of behavioral biases affecting outcomes in important markets, including

high-stake and repeated decisions such as health-plan and other insurance choices, educational

investment, and credit-card borrowing (Bhargava et al. 2017; Barseghyan et al. 2013; Bursztyn and

Jensen 2015; Meier and Sprenger 2010). The evidence extends even to professional agents such

a fund managers, central bankers, and CEOs (Puetz and Ruenzi 2011; Malmendier, Nagel, and

Yan 2017; Malmendier and Tate 2005). Moreover, some of the literature has shown that it can be

profitable for firms to target behavioral consumers (Grubb 2009, 2015; Hastings and Washington

2010; DellaVigna and Malmendier 2006; Eliaz and Spiegler 2006).

In this paper, we identify a new channel through which markets exacerbate rather than ame-

liorate the impact of biases: the ability of market mechanisms to “fish for fools.” We argue that

commonly-used selling mechanisms such as auctions or posted prices induce selection towards con-

sumers with (more) biased beliefs. Key to this channel is heterogeneity in biases: Not everybody’s

decision making is distorted, and within the subset of biased agents, some are more biased than

others. Intuitively, buyers who overestimate the value of a good are more likely to submit the high-

est bid in an auction, or enter a high-price market, and hence are more likely to transact than other,

unbiased agents. Through this selection, biases can have oversized impacts on market outcomes.

One reason why this selection aspect has not featured prominently in previous analyses of

“biases in markets” is the lack of consumer heterogeneity in many theoretical models. Much of the
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prior theoretical literature has focused on contrasting “the rational agent” with “the behavioral

agent,” assuming homogeneity within each type. Empirically, this approach leads to analyzing

average behavior and testing for its consistency with the prediction of neoclassical economics.

In this paper, we argue that, by accounting for heterogeneity in biases, we uncover an important

market force that works in the opposite direction of the presumed market-discipline effect: Market

mechanisms help sellers “fish for fools.”

First, we formalize the above intuition. We show that two commonly used market mechanisms,

fixed-price markets and auctions, amplify rather than reduce the effect of behavioral biases. The

reason is that these selling mechanisms induce selection in favor of buyers with biased beliefs. While

a buyer who overestimates the value of an item is willing to overpay in any type of trade situation,

also a non-market setting like a negotiation, markets increase the impact of biased beliefs on prices

because biased buyers transact more frequently.

Second, we compare this amplification effect across different market settings. We show that,

in auctions, even a small share of overbidding behavioral agents has a large effect on profits. The

reason is that, by design, auctions select the highest bidder, and thus often a behavioral buyer, as

winner. In fixed-price markets, “fishing for fools” tends to occur only at a higher share of behavioral

agents, i. e., once the number of buyers willing to act on an inflated willingness to pay has exceeded

a higher threshold.

Third, market forces further strengthen the amplification effect when sellers have a choice of

market mechanism. Namely, sellers will choose the selling mechanism that amplifies the impact

of behavioral types since they maximize their profits by exploiting these agents. For example, in

a setting where fixed-price markets would be the efficient choice, sellers may nevertheless shift to

auctions if only a small share of agents tend to overbid. Adding to this inefficiency, sellers may also

overproduce the overvalued item and expend costs to attract additional buyers. As a result of these

mechanisms, behavioral biases can have substantial influence on market outcomes and welfare.

In Section 2 we motivate the two key assumptions of our theoretical analysis—the presence

of overbidding and of substantial heterogeneity in valuations and biases—with empirical evidence

from various markets. We provide stylized facts and prior empirical findings from eBay, real-estate
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markets, and IPOs which show that a significant fraction of participants consistently overbid. These

observations raise the question of whether the market mechanisms employed here help maximize

profits, not only by identifying the bidder who values the good the most and is thus willing to

pay the highest price, but also by identifying “over-bidders.” At the same time, the micro-level

data reveals that not every market participant bids above a rational upper bound. Instead, there

is substantial heterogeneity and often only a small minority are “over-bidders.”

In Section 3, we introduce a theoretical framework to illustrate how even a small share of over-

bidders may exert a large influence on market outcomes. We first consider a simple market setting

where a single seller sells one unit of a good to one of n agents. The intrinsic value v of the good

is identical for all potential buyers, but with probability π an agent becomes a “fool,” i. e., exerts

upward bias, possibly due to bidding fever or rather factor inducing over-excitement about acquiring

the item, and wrongly perceives the value to be vB > v.1 We consider two selling mechanisms, a

second-price auction and a fixed-price market, and show that in both cases the market mechanism

amplifies the effect of overestimation. That is, relative to a non-market setting such as a one-to-one

negotiation between random agents, upward bias (“being a fool”) has a stronger impact on prices

and revenues. The amplification reflects that upward bias affects not only the willingness to pay in

case of a transaction, but also the selection of buyers, i. e., the probability of entering a transaction.

Both the auction and the market “fish for fools.”

Second, we show that the selection effect increases revenues in the auction by more than in the

fixed-price market for low probabilities π of bias. The reason is that the auction setting ensures a

sale at a high (foolish) price as soon as there are “at least two fools.” In the market, instead, a low

π implies a high risk of no sale if the good is offered at a high price. In other words, while both

the auction and the market fish for fools, the auction is more effective at fishing in that it allows

the seller to take advantage of fools for lower values of π. The fixed-price market is a cruder tool

that only allows for fishing when there are enough fools. This argument also implies that there is

a range of π for which fools yield a higher profit in the auction.

We derive two further implications that reinforce the amplification result and point to its welfare

1To make our model broadly applicable, we model overvaluation generically and do not assume differential bias
across markets.
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implications. First, because of the efficiency of auctions in “fishing for fools” the seller has incentives

to switch to the auction mechanism even when it is (cost) efficient to use the fixed-price mechanism.

Second, a similar logic applies to the seller’s other decisions, such as how much to produce and how

much money to spend on attracting additional potential buyers. Both actions pay off even when

they are inefficient as they allow the seller to better take advantage of the fishing effect. The key

insight is that amplification gives the seller incentives to pursue inefficient actions.

Next, in Section 4, we present a richer model in which we allow for heterogeneous valuations of

the good among the n agents. As before, there is heterogeneity in biases and agents become biased

with independent probability π. In that case, they perceive their value of the good to be vB > vH ,

irrespective of their actual value.

All results from the simple model generalize to the richer model, albeit with some additional

insights and subtleties. The revenue amplification effect remains essentially unchanged: “Fools”

transact with a higher probability also under heterogeneous values. In addition, the richer setting

allows us to show that the effect of biases on allocations is also amplified in both the auction and the

fixed-price market: “Fools” win the object with amplified probability relative to their population

share. Since this does not happen because of a high valuation, but because of their bias, their

winnings can result in substantial misallocation and welfare loss.

The comparison between auction and fixed-price markets becomes more subtle with heteroge-

neous values. This is because, in the richer model, foolish misperception increases revenues via

two channels, “demand shifting” and “price setting.” The demand-shifting channel, which is only

observed in the richer model, describes the effect of biased agents who are infra-marginal but whose

presence still tilts the demand curve, which then results in a price increase. The price-setting chan-

nel, which is also present in the simple model, applies when fools are marginal and set the price

(at vB). We show that the auction continues to raise more revenue for a range of π, essentially

because the price-setting channel is already active for low π in the auction, as two fools suffice to

raise the price to vB. In the fixed-price market, instead, the seller does not want to raise the price

to vB for the same low π. Thus only the the demand-shifting channel is active and its strength is

merely proportional to π: a tilt in the demand of magnitude π will result in a price increase that
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is proportional to π. We also show that the results about sellers choosing the auction format “too

often,” producing “too much” of the good, and attracting “too many” potential buyers continue to

hold in the richer setting.

Taken together, our theoretical results suggest that, due to market mechanisms overselecting

them, a small share of biased agents can have large effects on prices, allocations, market choices,

and welfare.

To support our model’s predictions and gain insight into the magnitude of the effects, we present

empirical results from online and offline auctions. We first turn to field evidence from the online

auction site eBay. We study the unique case of board-game auctions for which a fixed-price listing

was available simultaneously. Following Malmendier and Lee (2011), we say that a person overbids

if he submits a bid above the simultaneously available fixed price. We find that only 17% of bidders

overbid, but 43% of auctions conclude at a price that exceeds the fixed price. A simple calibration

shows that this degree of amplification is fully consistent with our model. The same calibration also

predicts that in about 73% of auctions the winner is biased, a finding consistent with our theoretical

result on amplification in allocations, which suggests substantial misallocation. More broadly, we

show evidence consistent with overbidding for several other products sold on eBay, suggesting that

our theoretical predictions on amplification are relevant for a range of goods.

We then explore empirical evidence related to the other novel predictions of the model. Here,

the existing evidence is suggestive, but indicates worthwhile paths for future data collection. For

example, using data from both eBay and off-line auctions, we show that auctions are more common

for unique items such as collectibles, and less common for commodity-type items. To the extent

that biases are more prevalent in acquisitions of the former types of items, as implied by research

on emotions affecting bidding in auctions (cf. Adam et al. 2011), these patterns are consistent

with our prediction about sellers’ choice of market mechanism. Another example is evidence from

housing markets indicating that seller strategies to attract additional auction bidders are especially

common in the presence of biased buyers, a pattern consistent with our prediction on attracting

new buyers. These and other stylized facts indicate that both the basic amplification mechanism

and its implications for allocations and welfare might be relevant in a broad set of markets.
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Our work relates to several strands of literature. We build on theoretical work studying auctions

and other selling mechanisms with rational agents. Reviews of theoretical and practical issues in

auction design include Krishna (2010) and Klemperer (2002), among others. Most closely related

is the research agenda emanating from Bulow and Klemperer (1996), that compares auctions with

different types of negotiations, including Bulow and Klemperer (2009), Asker and Cantillon (2010),

Bajari et al. (2001), and Bajari et al. (2008). This work demonstrates the benefits of auctions,

but also those of other selling mechanisms under certain conditions, such as multidimensional

heterogeneity or incomplete product design. We contribute to this work by exploring the impact

of a small share of biased agents, and highlighting the new amplification mechanism.

Our approach and findings also relate to the behavioral mechanism design literature that studies

other types of biased agents in auctions. Crawford and Iriberri (2007), for example, consider level-k

agents as proposed by Nagel (1995), Stahl and Wilson (1994), Stahl and Wilson (1995). They find

that agents following the random L1 rule tend to overbid in first-price auctions because they do

not expect others to shade their bids; however, in contrast to our fools, these agents do not overbid

in a second-price auction. Crawford, Kugler, Neeman, and Pauzner (2009) show that sellers prefer

first-price auctions to second-price auctions when they believe buyers are predominantly following

the L1 rule, similar in spirit to our result comparing second-price auctions and fixed price markets.

The mechanism design literature also explores heterogeneous biases in other mechanisms. Saran

(2011) studies the effect of naive traders, who report their true types without regard to incentives,

in bilateral trading. He finds that the expropriation of naive traders’ surplus to subsidize additional

trading is a condition for constrained efficiency. Crawford (2019) finds similar results for level-k

agents in bilateral trading. Our analysis provides parallels to this literature, and contributes by

identifying and exploring the implications of a novel amplification mechanism.

Our paper also connects to the literatures on behavioral industrial organization and behavioral

public economics. Much of this work, starting from DellaVigna and Malmendier (2004, 2006) and

Eliaz and Spiegler (2006), and reviewed in Koszegi (2014) contrast the contract choice of sophis-

ticated and naive agents. More closely related is the work on sellers’ contract or product design

when selling to both naive and sophisticated agents, which builds on Gabaix and Laibson (2006)
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and includes Heidhues, Kőszegi, and Murooka (2016), Heidhues and Kőszegi (2017), Schumacher

(2016), and Heidhues and Koszegi (2018) among others.2 Our emphasis on heterogeneity in biases

is most closely tied to research in public economics documenting heterogeneity in attention and

its implications for welfare and optimal taxation, including Taubinsky and Rees-Jones (2017) and

Farhi and Gabaix (2019). Our contribution to this work is to identify and study the implications

of the new amplification mechanism that emerges with heterogeneity in biases.

Finally, we build on experimental and field evidence documenting overbidding in auctions and

markets, which we review in the next Section, where we motivate the key assumptions of our model.

2 Empirical Motivation

Our model is built on two key assumptions that differentiate our approach from much of the

prior literature. First, we allow for buyers to overvalue goods and overbid. Second, we allow for

heterogeneity in the existence and extent of the overvaluation bias. Before delving into the theory

and intuition of how market mechanisms exacerbate, rather than ameliorate, the impact of biased

behavior, we provide a selective overview of the empirical literature supporting both assumptions.

Overvaluation. The notion of overbidding in auctions is age-old. Already in ancient Rome,

legal scholars debated whether a bid for public work provision was legally binding when the bidder

suffered from “calor licitantis,” bidder’s heat (Malmendier 2002).3 Much of the modern evidence

comes from the laboratory. Several studies have found large and persistent overbidding in second-

price auctions (e.g., Kagel and Levin 1993; Cooper and Fang 2008). There is also evidence on

overbidding in laboratory ascending auctions, albeit smaller and less persistent (cf. Kagel, Harstad,

and Levin 1987). Several studies explore the determinants and remedies of the laboratory over-

bidding.4 In terms of field evidence, perhaps the most well-known and most studied example is

2 Other models with heterogeneous biases include the studies of heterogeneity in naivete about time inconsistency
by Eliaz and Spiegler (2006) and Grubb (2009).

3 As argued by the Roman legal scholar Paulus, a winning bid for the right to collect taxes (which the Roman
government farmed out) may not be valid if it has been “inflated beyond the usual sum due to bidding fever” (Corpus
Iuris Civilis, D. 39,4,9 pr.).

4Kirchkamp, Poen, and Reiss (2009) find that outside options increase bidding in laboratory first-price auctions but
have no impact on laboratory second-price auctions. Armantier and Treich (2009) attribute overbidding in first-price
auctions to biased beliefs about the probability of winning. Kagel, Harstad, and Levin (1987) find that overbidding
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overbidding in eBay auctions. Ever since eBay’s founding and quick rise in popularity, studies and

discussions of overbidding have abounded (Simonsohn and Ariely 2008; Malmendier and Lee 2011;

Garratt, Walker, and Wooders 2012). In a particularly striking example, Jones (2011) shows that

buyers systematically bid above the face value of Amazon gift cards.

Another market where overvaluation has been extensively documented is the market for initial

public offerings. This market has both auction-like and fixed-price features as it combines book-

building and price-setting. A widely studied empirical puzzle in this market is that, after an initial

price jump during the first day of trading, issuing firms frequently underperform in the long run,

suggesting that early buyers might be overbidding. For example, Ritter (1991) shows that, in the

1970s and 1980s, new issues underperformed a comparable set of listed stocks by 27.4 percent over

the next three years. Similarly, Loughran and Ritter (1995) show that stocks issued in 1970-1990

have been poor long-run investments, both in initial public offering and in seasoned equity offering.

In a review article, Ritter and Welch (2002) find that the average IPO underperforms the CRSP

value-weighted market index by 23.4 percent, and underperforms seasoned companies with the same

market capitalization and book-to-market ratio by 5.1 percent over the next three years. Similar

patterns have been documented in several countries.5 All of this evidence has been interpreted as

an indication of initial buyers being too optimistic about the prospect of new shares and hence

“overbidding” in the IPO.

A third market that features frequent discussions of overvaluation is real estate. This market

also combines auction-like and fixed-price features. Several papers document evidence consistent

with overexuberance and bubbles.6 Most recently, Mian and Sufi (2019) argue that optimistic

speculators played a key role in the 2002-2006 US housing boom, when recent home buyers had

high expectations of house price growth, relative to the general population. An interesting example

and auction revenue increase when bidders are given information about their opponents’ values, while Goeree and
Offerman (2002) document that increased information about the common value of a good reduces overbidding. Filiz-
Ozbay and Ozbay (2007), building on Engelbrecht-Wiggans (1989), find evidence of overbidding to avoid regret from
losing. Cooper and Fang (2008) identify both ‘joy of winning’ and ‘spite’ as motivators for overbidding.

5 Ljungqvist (1997) finds that German IPOs lose more than 12 percent over their first three years of trading
relative to the market. Levis (1993) shows that IPOs in the UK underperform a number of relevant benchmarks
over three years. And Lee, Taylor, and Walter (1996) show that Australian IPOs significantly underperform market
movements in the three-year period subsequent to listing.

6Cf. Stiglitz 1990; Kim and Suh 1993; Himmelberg et al. 2005; Hui and Yue 2006; Goodman and Thibodeau 2008;
Glaeser et al. 2008; Yiu et al. 2013; Bourassa et al. 2016; Fabozzi and Xiao 2016.
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comes from Ashenfelter and Genesove (1992) who examine the case of 83 units sold in a pooled

condominium auction. When the sales of 31 units fell through afterwards, these units were resold

in negotiated sales within a few weeks. The authors document that the negotiated sales occured at

87% of the original auction prices and the discount was highest for those units that were originally

auctioned towards the beginning of the pooled auction, i. e., at the highest prices.

A final example is the market for corporate mergers, which is neither a pure auction nor a

fixed-price market, but shares some common features with both. Roll (1986) and Malmendier and

Tate (2005), among others, show that overconfident managers overpay for target companies and

undertake value-destroying mergers. Based on this evidence from various contexts, we conclude

that overvaluation plausibly exists across a wide range of markets.

Heterogeneity. In each of the markets discussed above, we also have evidence on heterogeneity

in overvaluation.

For auctions, the above-mentioned study by Jones (2011) shows that 41% of closing bids ex-

ceeded the face value of the Amazon gift card, while the remaining 59% led to a price below the

card’s face value. The study also reveals significant variation in the extent (amount) of overbidding.

Casari, Ham, and Kagel (2007) document heterogeneity in that women along with economics and

business majors are more likely to overbid. Finally, in their study on the ‘joy of winning’ and ‘spite’

in overbidding, Cooper and Fang (2008) also show that, while some subjects closely follow rational

predictions, others heavily deviate by paying for costly information about other bidders’ valuations

and overbid as a result of this information.

For IPOs, Chiang, Qian, and Sherman (2009) show that individual investors are more prone to

overvaluation. In their analysis of Taiwanese IPOs, initial abnormal returns are significantly lower

when the entry of individual investors into IPO auctions is high. Chiang, Hirshleifer, Qian, and

Sherman (2011) complement these findings by showing that individual investors’ returns steadily

decrease as they gain more “experience,” seemingly since they increasingly “overbid” after having

experienced positive IPO returns. Thus there appears to be heterogeneity in overvaluation both

by investor type and within investor.

In real estate markets, Mian and Sufi (2019) show that, in the period before the great recession,
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optimistic speculators represented less than 1.5% of the population but drove 40-70% of the increase

in trading volume. Transactions of traditional home buyers with high credit scores, instead, declined

in markets more exposed to speculation. This evidence suggests heterogeneity in overvaluation also

in real-estate markets.

Finally, in the corporate merger market, Malmendier and Tate (2005) show that there is signifi-

cant heterogeneity in overvaluation. Their widely used Longholder proxy identifies between 10% to

25% of CEOs as overconfident pre-2000, and a higher fraction in later sample periods. Longholder

CEOs display significantly different investment, merger, financing behavior.

We conclude that there is robust evidence on heterogeneity in overvaluation across multiple

markets; yet it does not feature in the existing theoretical frameworks. Our model in Sections 3

and 4 incorporates both overvaluation and heterogeneity in biases as key features. Consistent with

the patterns described above, the model will show that even a small share of biased agents can

have large effects on market outcomes, in addition to generating new predictions.

3 Simple Model

In this section, we develop a simple setting that allows us to identify the key forces emerging from

the presence of biased agents in auctions and markets as well as heterogeneity in biased behavior

across buyers. Specifically, we consider agents who, while engaged in the process of acquiring a

good, overestimate its value and might overbid (and overpay) relative to their true willingness to

pay (“fools”). Such a bias could reflect bidding fever, as in Ehrhart, Ott, and Abele (2015),7 limited

attention paid to alternative, lower-priced buying opportunities, as in Malmendier and Lee (2011),

or other non-standard beliefs or cognitive limitations. We only consider upward bias, which has

been the focus of the auction literature and, as documented in Section 2, is an empirically relevant

phenomenon; however, we note that downward bias might also be relevant in some settings.

We start from a stylized model where the intrinsic value of the good to all buyers is identical.

The only source of heterogeneity is whether a buyer is biased. We will show that selection amplifies

7 See also Cooper and Fang (2008), Jones (2011), Heyman, Orhun, and Ariely (2004), and Ku, Malhotra, and
Murnighan (2005).
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the effect of overestimation in both auctions and fixed-price markets, that the impact of the bias is

more prominent in auctions, and that sellers act on this difference by choosing the most-amplifying

selling mechanism and inefficiently overproducing the good. In the next section, we will generalize

these insights to a model with heterogeneity in intrinsic values, which also allows us to derive finer

results regarding misallocation and hence welfare.

3.1 Setting

A single seller sells one unit of a good to one of n potential buyers. In our initial, simple setting,

each buyer assigns the same value v to the good. With probability π, independently drawn across

buyers, a buyer wrongly perceives the value of the good to be vB > v. This bias affects the buyer’s

perception and willingness to pay while he is trying to acquire the item and he realizes his mistake

afterwards. If he obtains the good, his consumption utility equals his true valuation v.

The seller has the choice to sell the good via an auction or at a fixed price. The auction is a

second-price sealed-bid auction without a reservation value. We assume that bidders coordinate

on the natural, (weakly) dominant “truth-telling equilibrium” and bid their perceived values. In

the fixed-price market, the seller sets a price, and, if there is a buyer with valuation at or above

the price, a sale is made. If there are multiple buyers with a high enough willingness to pay, one

of them is chosen uniformly at random. We can think about this mechanism as a process where

the seller sets the price, then buyers arrive at random times, and the first buyer with a sufficient

willingness to pay obtains the good. The fixed cost of setting up an auction is ca, and the fixed

cost of setting up a fixed-price market is cf . We usually assume ca > cf .

The timing of the game is illustrated in Figure 1. At t1, the seller chooses the selling mechanism

and pays its fixed cost. If she chooses the fixed-price market, she sets the price at t2; else she sets up

the auction. Biases are realized and buyers submit bids (in the auction) or express their willingness

to buy (in the fixed-price market) at t3. Finally, the good is allocated and all parties realize their

payoffs at t4. We are interested in the seller’s optimal strategy in the perfect Bayesian equilibrium

of this game when agents bid and are willing to pay their perceived values.

Discussion of modeling assumptions. Our model assumes that the potential bias affects buyers

11



Figure 1: Timing of the Game
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in the auction and in the fixed-price market equally. We view this assumption to be a natural

starting point. However, as the notion of “bidding fever” indicates, the occurrence of upward bias

in buyers’ willingness to pay might be more frequent in the auction. When this is the case, our

results below understate the revenue benefit to sellers from using the auction format.

We also assume that the degree of misperception is the same for all biased buyers. We make

this assumption for simplicity, to be able to starkly characterize the effect of biased bidders.

3.2 Results

We begin the analysis by characterizing expected revenue. In the second-price auction, all unbiased

bidders submit bids of v, while all biased bidders bid vB. Denoting by qnk (π) the probability of

at least k biased agents out of n people, the expected revenue of the seller in the auction is

v+qn2 (π)(vB−v). In the fixed-price market, the seller posts a price of either v or vB. In the former

case, the revenue is v, and in the latter case the expected revenue is qn1 (π)vB = (1 − (1 − π)n)vB.

It is easy to see that there is a cutoff such that, when π is below the cutoff, the optimal price is v,

and otherwise it is vB.
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To assess the magnitude of revenues under the different selling mechanisms, and their depen-

dence on the probability of bias, it is helpful to consider a benchmark where the selection of the

buyer is not influenced by whether that person is a fool. Specifically, suppose a randomly selected

buyer meets up with the seller, and the two then split their (perceived) surplus in some fixed

proportion, akin to a negotiation. With probability π the randomly selected buyer is biased, and

the additional perceived surplus in that event is vB − v. We dub the outcome of the negotiation

with a randomly chosen buyer the no-selection benchmark. Under this benchmark, the presence of

biased agents increases the seller’s expected revenue by at most π(vB − v), and thus (at most) in

proportion to the likelihood of bias π. As we will see, the result is different when agents are not

only willing to pay more, but also more likely to obtain the product, if they are biased which is the

case in both auctions and fixed-price markets.

Definition 1. We say that the revenue impact of biased buyers is amplified relative to the no-

selection benchmark if it exceeds π(vB − v).

How do revenues in the auction and the fixed-price market compare to this benchmark? The

following proposition provides the answer. In this and all future propositions, constants κ1, κ2,

etc. do not depend on π or n, and thus remain fixed when we vary these parameters to examine

comparative statics.8

Proposition 1. The effect of biased buyers on expected revenue is amplified, relative to the no-

selection benchmark,

(a) in the auction for all π above a low bound (of order 1/n2), κ1
(n−1)2

≤ π < 1, and

(b) in the fixed-price market for all π above a high bound (of order 1/n), κ2
n−1 ≤ π < 1.

The proofs of this and all subsequent results are in Appendix A.

Part (a) of Proposition 1 states that auctions amplify revenues when there are biased agents

among the bidders as soon as the probability π of bias exceeds a low bound, κ1
(n−1)2

. The key to

understanding the amplification result is the insight that biases induce not only overbidding, but

8 The parameters κi may depend on other model parameters, though, such as v or vB . We give explicit formulas
for the κi in the Appendix.
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also selection: They influence who wins the auction and who sets the price. This force acts towards

biased agents having an overproportional effect on prices relative to their frequency, or likelihood of

bias, π, and thus relative to the no-selection benchmark. The auction “fishes for fools” in the sense

that the influence of the bias on auction revenues exceeds the maximum influence the bias could

have in a negotiation, π(vB − v), where biases affect buyers’ willingness to pay, but not selection.

The bound in part (a), κ1
(n−1)2

, is ‘low’ in the sense that it is of order 1/n2, i. e., goes to zero

rapidly in n. For a more precise intuition, note that, as long as there are at least two biased agents,

the two highest bids in a second-price auction come from biased agents, and hence the price will

be vB. The probability of at least two biased agents, in turn, is of order π2n2 for small π.9 This

expression is proportional to n2 and thus grows rapidly in n: Having two biased bidders in a slightly

larger pool is much more likely. When π is of order 1/n2 or larger, the probability of having two

biased agents exceeds π, and we get amplification.

Part (b) of the Proposition states that the fixed-price market also amplifies the revenue impact

of biases when π exceeds a certain bound. The reason is that, when there are enough biased

agents, it is optimal to set the fixed price at vB and “start fishing.” When this happens, the pricing

generates selection, and hence amplifies revenues relative to the no-selection benchmark.

However, the threshold above which this selection is optimal, κ2/(n−1), is ‘larger’ in the fixed-

price market in the sense that it is of order 1/n. Intuitively, fishing for fools is harder under the

fixed-price mechanism since setting the price at vB may result in the costly outcome of no sale. For

a more precise logic, note that for π small the probability of having at least one biased agent is of

order nπ.10 Thus the fishing strategy generates expected profits of (approximately) nπvB, while

setting the price at v generates profits of v. Only for π above some constant times 1/n (where the

constant is governed by the ratio v/vB) the fishing strategy becomes more attractive.

So far, we have seen that distortions in valuation among some buyers affect prices and revenues,

both because of such buyers’ inflated willingness to pay and because of selection—biased agents

9 To a second-order approximation in π, the probability of at least two biased agents is π2 ·n(n−1)/2. Intuitively,
the probability that two given agents are biased is π2, there are n(n − 1)/2 ways of choosing these two agents, and
for π small the event in which more than two agents are biased can be ignored.

10 Each of the n agents has the bias with probability π, and the event in which multiple agents have the bias can
be ignored in a first-order approximation.
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Figure 2: Impact of Bias on Expected Revenue in the Simple Model
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Note: The figure calculates the expected revenue in the simple model from auctions and the fixed-price
market, less the expected revenue when π = 0, for different values of π. The parameters used for this graph
are v = 10, vB = 13, and n = 5.

are more likely to acquire the item. The latter force amplifies the effect relative to a non-market,

negotiation-like setting. Next we compare the revenue increase due to bias between the auction

and the fixed-price market.

Proposition 2. Biased buyers generate a larger revenue increase in the auction than in the fixed-

price market for a range of low π, 0 < π ≤ 1
κ3·n .

The proof builds on the intuitions described above. In the fixed-price market, for π < 1/(κ3n),

the fishing strategy is too risky and hence the seller sets the price at v. Thus, biased agents do not

affect revenues, and the seller earns revenue v, for π in this range. In contrast, in the auction even a

small positive π increases revenue. Intuitively, the auction is “more effective” at fishing even when

π is small, while the fixed-price market is a cruder tool that only allows for fishing when there are

enough “fools.”

This result is illustrated in Figure 2, which plots the revenue impact of fools in both the auction
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and the fixed-price market as a function of π. The figure shows that expected revenue in the auction

responds to the bias already at lower values of π, but eventually the bias impacts revenue in both

environments. The figure also indicates that, for very high π, the amplification will be larger in the

fixed-price market than in the auction. In this range of high π’s, the probability that at least one

agent is biased, and thus the revenue is vB in the fixed-price market, is very high. The probability

of at least two biased agents, and thus revenue vB in the auction, instead, is less high.

Choice of mechanism. The revenue difference between the two selling mechanisms gives rise to

an additional level of selection that further increases the impact of biases: the selection of the

mechanism by the seller. Generally speaking, if different transactional formats, or forms of market

organization, allow sellers to exploit the biases of buyers to a different extent, we would expect this

difference to influence what format we see predominantly employed in transactions. In our context,

if a seller can sell her product either in an auction or at a fixed price, which route will she choose,

and how does her choice depend on the presence and extent of upward bias among buyers?

The optimality of a selling mechanism depends on its net revenues. Under our initial assumption

that it is more costly to organize an auction than to offer the good at a fixed price, ca > cf , the fixed-

price mechanism is socially more efficient than the auction: Both mechanisms allocate the good

equally well, but organizing an auction is more expensive. In a world without distorted valuations,

i. e., for π = 0, the seller chooses the socially efficient fixed-price mechanism as she earns revenue v

under both mechanisms but only pays the lower cost cf under the fixed-price mechanism.

The following corollary characterizes the seller’s choice when π > 0, i. e., when buyers might

overestimate the value of the good. Here, and for the rest of the section, we assume that ca − cf is

“sufficiently small” in the sense that it does not exceed a positive threshold, which is independent of

π.11 The upper bound ensures that neither the auction nor the fixed-price market is “too expensive”

relative to the other, so that both choices can be optimal depending on the value of π.

Corollary 1. The seller chooses the auction over the socially efficient fixed-price market for a

range of values π > 0 and ca − cf sufficiently small.

11 The precise specification of the bound is in Appendix A.
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Corollary 1 is a direct consequence of Proposition 2: Since the auction is better at fishing, the

seller decides to use it for some levels of π > 0, despite its higher fixed cost. This switch to auctions

is inefficient; the lower-cost fixed price mechanism would have allocated the good just as efficiently.

Production and Marketing. The amplified revenue of the auction also incentivizes inefficient actions

that complement selling the good. Here, we explore two examples: production and marketing.

First, consider the production decision. Suppose the cost of producing the good is kp, drawn

from some distribution with full support on kp ≥ 0. After observing the realization of kp the seller

decides whether to produce, and if she does, the game unfolds as before. If she chooses not to

produce, the game ends and all parties get zero payoffs. Since cf < ca, efficiency dictates that the

good is produced only if kp ≤ v − cf . We say that the seller overproduces the good relative to the

welfare-maximizing outcome if there is a kp > v − cf for which she chooses to produce.

Biased buyers can distort the incentives of the seller, as shown by the following result.

Corollary 2. There is a range of π > 0 for which the seller would produce efficiently under the

fixed-price mechanism, but chooses the auction and overproduces.

The result identifies a new force through which the presence of biased agents reduces social

welfare as it alters the seller’s choice of market mechanism. Biased bidders make the auction “too

profitable” and hence induce the seller to overproduce the good.

Next, consider a complementary marketing decision. Suppose that the seller can attract one

additional potential buyer if she expends a cost kb. Note that, in the current setting, recruiting

another buyer is socially inefficient as all buyers value the good the same ex ante. Indeed, for π = 0

the seller chooses the fixed-price mechanism and does not recruit.

Corollary 3. There is a range of π > 0 for which the seller would not incur costs to attract

additional buyers under the fixed-price mechanism, but chooses the auction and inefficiently incurs

the cost to attract additional buyers, as long as kb sufficiently small (given n).

This result is based on the observation that the fishing effect arises “earlier,” i. e., for lower π, in

the auction than in the fixed-price market. The observation implies both that the seller prefers the
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auction as it generates higher revenue and that she has a stronger preference to attract additional

interested buyers to the auction in order to further take advantage of the fishing effect. Note that

we need kb to be small enough given n because the value of one additional buyer becomes arbitrarily

small as n grows.

In summary, the simple model with heterogeneous biases, but homogeneity in (true) valuations,

illustrates how distortions in buyers’ perception of the value of a good can interact with market

forces to exacerbate the impact of the bias: Not only will biased agents tend to overpay, they are

also particularly likely to transact with the seller. Sellers anticipate these effects and fine-tune

their selection of a selling mechanism as well as their production and marketing to leverage the

amplification effect.

4 Full Model with Heterogeneous Values

We next consider a more general framework where buyers’ intrinsic values of the good are hetero-

geneous. This additional layer of heterogeneity sheds light on the intensive-margin effect of biases:

The presence of biased agents can change the identity of the marginal unbiased agent who sets the

price and who will have a higher valuation in the presence of biased agents. Moreover, because of

this new channel, the bias increases revenue already for smaller frequencies π > 0, not just in the

auction but also in the fixed-price market. This intensive-margin effect thus improves the “fishing

for fools” in the fixed-price market already for small π > 0. Nevertheless, as we show below, the

results of the previous section continue to hold qualitatively, including the stronger amplification

in the auction, because the “extensive-margin” effect identified earlier is stronger than the new

intensive-margin effect.

4.1 Setting

Assume that buyers’ valuations of the good are distributed i. i. d. according to F (v), which has

support on [vL, vH ]. As before, each of the n buyers becomes biased with independent probability

π, and in that case perceives the value of the good during the auction to be vB > vH , irrespective
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of his true value v.12 To simplify the analysis we make the following assumption about F :

Assumption 1. (a) F (v) has density f(v), and for some 0 < f < f̄ it satisfies f ≤ f(v) ≤ f̄

∀v ∈ [vL, vH ]. (b) In addition tf(t) is increasing for t ∈ [vL, vH ].

Part (a) of the assumption ensures that F has a well-behaved density. Part (b) is a regularity

condition which guarantees that the seller’s objective function in the fixed-price market is concave

in the price. That condition is related to Myerson’s regularity condition, versions of which are

often used in auction theory to ensure that the seller’s marginal revenue curve is downward sloping

(Bulow and Klemperer 1996) and which, in our setting, would imply that the seller’s problem is

quasi-concave when n = 1 and π = 0. Our condition ensures concavity for all n and π. Assumption

1 holds for example when F is uniform on [vL, vH ].

As before, we compare a sealed-bid second-price auction and a fixed-price market. In the auction

we continue to focus on the equilibrium in which agents bid their perceived values. In the market,

the seller sets a fixed price p which, in the optimum, is either vB (which would yield expected

revenue vB(1− (1− π)n)) or the maximizer of

p · (1− (1− π)nF (p)n) (1)

over [vL, vH ], where (1 − π)nF (p)n is the probability that there are no biased buyers and that all

buyers’ values are below p.

4.2 Results

We structure our results as in Section 3, and first establish amplification.

As before, we would like to interpret the magnitude of the revenue impact relative to a bench-

mark where the selection of the buyer is not influenced by the bias. Mirroring our approach in the

simple model, we consider a situation where a buyer meets up with the seller, the buyer becomes

biased with probability π, and the two split the perceived surplus in some fixed proportion, akin to

12 For simplicity, we continue to model biased agents as having identical perceived values vB . The results are
qualitatively unaffected if we draw perceived values from a small range around vB .
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a negotiation. As before the additional perceived surplus from bias is vB − v, and the impact on

the seller’s expected revenue thus at most π(vB − v). Since the additional surplus now varies with

v, there are several possible no-selection benchmarks, such as π(vB − E[v]) or π(vB − vL). To err

on the conservative side, we allow for a maximum non-amplification benchmark of π(vB − vL).

Definition 2. In the model with heterogeneous v ∼ F [vL, vH ], we say that the revenue impact of

biased buyers is amplified relative to the no-selection benchmark if it exceeds π(vB − vL).

How do auction and fixed-price revenues compare to this benchmark? The following propositions

provide the answer. Similar to our notation before, constants κ̃1, κ̃2, etc. do not depend on π or n

and thus remain fixed when we vary these parameters for comparative statics.13

Proposition 3. The effect of biased buyers on expected revenue is amplified, relative to the no-

selection benchmark, both

(a) in the auction, for all κ̃1
(n−1)2

≤ π ≤ 1
κ̃1

, and

(b) in the fixed-price market, for all κ̃2
n−1 ≤ π ≤

1
κ̃2

.

Proposition 3 establishes amplification in both the auction and the fixed-price market. The

result and the proof are analogous to Proposition 1. Part (a) states that the lower bound for

amplification in the auction goes to zero at a fast quadratic rate in n, implying that the auction

generates amplification for relatively low values of π. Part (b) establishes that the lower bound for

amplification in the fixed-price market is relatively large, of order 1/n, and the intuition parallels

that of the earlier result: Only when there are enough biased agents is it optimal to set the price

at vB and “start fishing.”

The main difference relative to Proposition 1 is that the constants κ̃1 and κ̃2 are new. The

difference reflects that we are using an even more conservative (i. e., higher) no-selection benchmark

in the setting with heterogeneous values than in the setting with homogeneous values, and thus

meeting it requires different bounds on π. For the same reason, Proposition 3 requires an upper

bound on π in both parts of the Proposition. The upper bound ensures that there is enough

13 The κ̃i may depend on other model parameters such as v or vB .
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“room” for amplification. For example, when π is close to one, amplification beyond the no-

selection benchmark of π(vB − vL) is not feasible as the no-selection bound is strictly larger than

the potential gain from biased agents in either mechanism. (Assumption 1 ensures that absent bias

revenue is strictly above vL because the density is positive anywhere in [vL, vH ].)

In the richer environment of this section, we can also discuss the implications of the bias for

allocational efficiency and show that bias can have oversized effects. To formalize the basic idea

in simple terms, we introduce the notion that biased buyers have an amplified effect on allocations

if the probability that a biased buyer gets the good exceeds their expected population share π.

Amplified allocation effects, in turn, can lead to large welfare effects: When a biased agent gets

the good, his expected valuation is only E[v], while absent bias the allocational welfare of both the

auction and the market asymptotes to vH > E[v] as n grows.

Corollary 4. The effect of biased buyers on allocations is amplified both in the auction and in the

fixed-price market under the conditions stated in Proposition 3.

The intuition is straightforward. In the auction, revenue amplification emerges because the

probability of at least two biased agents exceeds π and, in that case, the person winning the good

must be biased. In the fixed-price market, revenue amplification, i. e., a revenue gain exceeding

π(vB−vL), emerges when the seller sets the price at vB which implies that a biased agent must get

the good with probability exceeding π. In summary, the heterogenous-values model reveals that

biases can have oversize effects not only on revenue but also on allocational efficiency.

The next result shows that the auction remains more effective in exploiting biased agents for a

range of π also in the current setting.

Proposition 4. Biased buyers generate a larger revenue increase in the auction than in the fixed-

price market for a range of low π, κ̃3
(n−1)2

≤ π ≤ 1
κ̃3·n .

The Proposition is analogous to Proposition 2 in the previous section, with the key novelty

that, now, the interval for the range of π where the auction dominates the fixed-price market has a

positive lower bound.14 To understand this result, it is useful to distinguish between two channels

14 As a result of this positive bound, the interval for π specified in the Proposition may be empty for n low, but
will be non-empty for n sufficiently large.
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through which biases impact revenues in a setting with heterogeneous values: price setting and

demand shifting. Biased valuations affect revenues via the price-setting channel when the marginal

agent is biased, and hence the price is vB. Biased valuations affect revenues via the demand-shifting

channel when the biased agents are infra-marginal and hence do not directly set the price. In that

case, their presence still shifts the demand curve and generates a price increase.

The second channel is absent in the homogenous-values model of the previous section because

F (v), and hence the demand curve, is degenerate. But it is present in the current heterogeneous-

values model, and the reason of the positive lower bound for π. More specifically, the range of π

specified in Proposition 4 implies that the seller does not find it optimal to set the price equal to

vB in the fixed-price market. Even so—and unlike the case of the simple model—biased agents still

generate a revenue increase because their presence encourages the seller to increase p within the

range [vL, vH ]. This is the “demand-shifting” effect: Although biased agents do not set the price

(p < vB), their presence changes the identity of the marginal agent (the buyer with v = p), who

sets the price. A higher-value unbiased agent becomes marginal and thus acts to increase revenue.

The key part of the proof is to show that in spite of the demand-shifting effect, the revenue gain

from the bias is higher in the auction than in the market (over a range of π). To see the logic for

this, consider the seller’s problem, and suppose that π is increased from zero to some positive level

within the range specified in Proposition 4. By the logic of the envelope theorem, the first-order

revenue impact of this increase in π comes from the increase in the probability of a sale. (The

effect coming from a change in the optimal price is second-order). Such an increase arises from the

event in which (i) one buyer becomes biased while (ii) at π = 0 no potential buyer was interested in

buying. The probability of (i) is proportional to nπ and thus quite high; the probability of (ii) is of

order 1/n and thus quite low because, at π = 0, the seller sets the price such that the probability

of no sale, a costly outcome, is low. The product of these terms is bounded by a constant times π.

In contrast, the revenue gain in the auction can be made higher than any constant times π for an

appropriate κ̃3, similar to the proof of Proposition 1(a).

Figure 3 illustrates these effects by plotting the (total) revenue gains in the auction and in the

fixed-price market as a function of π. Here, revenues respond even to a small share of biased agents
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Figure 3: Impact of Bias on Expected Revenue in the Full Model
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Note: The figure calculates the expected revenue in the simple model from auctions and the fixed-price
market, less the expected revenue when π = 0, for different values of π. We assume F (v) is uniform on
[vL, vH ]. The parameters used for this graph are vL = 5, vH = 10, vB = 13, and n = 5.

in both mechanisms. This is due to the demand-shifting effect. But, when π is small, the response

is larger in the auction since the auction activates the price-setting channel even for low bias. As

π increases, the price-setting channel becomes active in the fixed-price market as well, and the

bias-induced revenue increase in the fixed-price market ultimately exceeds that in the auction.

We now turn to explore the implications of these results for market choice, complementary

actions, and efficiency. Because of the additional richness of the heterogeneous-values model, these

results are easier to establish for n sufficiently large, by which we mean that there is some n̄, which

does not depend on π (but may depend on F (.) and vB), such that the statement holds for all n ≥ n̄.

We also bound the extra cost of holding an auction compared to a fixed-price market, ca− cf both

from above and below. That is, implicit in all of the following corollaries is the statement that

there exist c1 < c2, independent of n and π, such that the corollaries hold when c1 < ca − cf < c2.

Choice of mechanism. For market choice, we have the following result:
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Corollary 5. Let c1 < ca− cf < c2 and n be sufficiently large. Then the seller chooses the auction

over the socially efficient fixed-price market for a range of π > 0.

Thus, even in a world with heterogeneous values, the presence of fools can encourage sellers to

shift from a fixed-price to an auction mechanism. This result follows directly from Proposition 4:

Since the profit gain from biased buyers is higher in the auction for a range of low π’s, sellers have

a stronger incentive to use it.

Production and Marketing. Now consider the implications for production. As before, suppose that

producing the good has a cost kp for the seller, which is drawn from some distribution with full

support on kp ≥ 0. In the setting with heterogeneous values, there are two new forces influencing

welfare. First, even absent bias, buyers earn an information rent due to the heterogeneity in their

valuations. Since the seller does not appropriate this rent, her revenue does not fully reflect the

value of the good to the highest bidder, and hence she underproduces relative to the first best.

Second, as we discussed in Corollary 4, bias results in misallocation when a low-value but biased

agent wins the good instead of a high-value unbiased agent. Our assumption that n is sufficiently

large ensures that the information rent is small, absent any bias, and both mechanisms generate

revenue approaching vH . This effectively shuts down the first force. Moreover, here we do not focus

on the second force, i. e., misallocation, but the implications for inefficient production.

Production is efficient when the cost of production and selling is smaller than the expected

highest value of the good among all buyers. Denoting by Fn1 the expected highest value out of n

draws from distribution F , we say the production decision is efficient when the good is produced if

and only if kp < Fn1 − cf . For any ε > 0, we define the production decision to be ε-efficient if the

gap between the efficient and the actual cutoff is less than ε. We say that the seller ε-overproduces

if she chooses a cutoff more than ε higher than efficient cutoff, and ε-underproduces if she chooses

a cutoff more than ε lower than the efficient cutoff.

Corollary 6. Let c1 < ca − cf < c2, ε > 0 be sufficiently small, and n be sufficiently large. There

is a range of π > 0 for which the seller would produce ε-efficiently under the fixed-price mechanism,

but chooses the auction and ε-overproduces.
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The corollary mirrors Corollary 2 from the simple setting with homogeneous values. A slight

modification is that, because of the heterogeneity in values, even under the fixed-price mechanism

the seller would produce only “approximately” efficiently.

Finally, suppose that at a cost kb the seller can recruit one additional buyer.

Corollary 7. Let c1 < ca − cf < c2 and n be sufficiently large. Then, for kb sufficiently small,

there is a range of π > 0 for which in the seller would not recruit under the fixed-price mechanism,

but chooses the auction mechanism and inefficiently recruits.

This result parallels that of Corollary 3 for our simple model and, similar to Corollary 3, follows

from the higher marginal value of an additional buyer in the auction mechanism at low values of π.

The result implies that recruiting additional buyers can be another potential channel which leads

to inefficient outcomes in the auction market when a small fraction of buyers over-estimates the

value of the good.

In summary, the presence of heterogeneous values does not alter the basic insight about ampli-

fication in auctions and fixed-price markets or the lesson that auctions have an advantage in fishing

for fools for a range of low π. Moreover, with heterogeneous values fools also induce amplification

in allocations which, in turn, generates misallocation. These insights also translate into predictions

about complementary decisions regarding market choice, production, and marketing: They are

distorted when biases significantly affect revenues, and auctions are effective in exploiting bias in

such a revenue-enhancing fashion.

5 Overbidding, Amplification, and Market Choice: Evidence

How relevant are our theoretical findings for auction markets in practice? In Section 2, we pro-

vided several pieces of evidence for the distinctive assumptions in our model, overbidding and

heterogeneity in biases. In Sections 3 and 4, we formalized the implications of these assumptions,

which included results on the amplification of biases due to selection, the relative strength of the

selection effect on revenue in fixed-price and auction markets, and on misallocation. In this sec-

tion, we provide new evidence from eBay and present stylized facts from online and offline auctions
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consistent with our model predictions.

5.1 Field Evidence from eBay

Our analysis utilizes the data from Malmendier and Lee (2011). We first introduce the data set and

discuss the findings first presented in Malmendier and Lee (2011) that are relevant to our model

assumptions. We then derive further results that speak to our novel model predictions.

The core data set of Malmendier and Lee (2011) contains all eBay auctions of a popular ed-

ucational board game, Cashflow 101, during a seven month period in 2004.15 The key to the

identification of overbidding in this setting is the simultaneously available fixed-price market on

the auction website.16 During the sample period, two retailers continuously sold brand new Cash-

flow 101 games on eBay at a fixed (buy-it-now, or BIN) price of $129.95, and their listings were

shown together with the auctions on the regular output screen for Cashflow 101.17 Given the con-

tinuous availability of the game at this fixed price, rational eBay participants should never submit

bids exceeding the fixed price. Thus, the number of agents who bid above the simultaneous fixed

price is a conservative measure of overbidding. It excludes behavioral buyers who bid above their

value but below the fixed price.

Table 1 provides summary statistics of these data. The sample consists of 166 listings with 2, 353

bids by 807 different bidders. The average final price is $132.55. The average auction attracts 17

bids, including rebids of users who have been outbid, and the average number of auction participants

is 8.4. Items are always brand new in the BIN listings; for the auctions, 10.8% of the listing titles

indicate prior use with the words “mint,” “used,” or “like new.” About 28% of the titles imply that

standard bonus tapes or videos are included; the professional retailers always include both extras.

Thus, the goods auctioned on eBay are, if anything, of somewhat lower quality than those sold on

eBay by the fixed-price retailers, rendering the overbidding proxy even more conservative.

15 The exact time period is 2/11/2004 to 9/6/2004. Data is missing on the days from 7/16/2004 to 7/24/2004 since
eBay changed the data format. Two auctions during which a professional listing was not always available (between
23:15 p.m. PDT on 8/14/2004 to 8:48 p.m. on 8/20/2004) were also dropped.

16 The identification strategy refines the approach of Ariely and Simonson (2003), who compare auction and retail
prices on other online sites, and Ashenfelter and Genesove (1992) who compare prices in real-estate auctions and in
face-to-face negotiations.

17 Later, the price was raised to $139.95. The game has since been discontinued.

26



Figure 4: Share of Overbid Auctions for Different Goods
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Share of Overbid Auctions for Different Goods

Note: This figure uses the cross-sectional eBay data of Malmendier and Lee (2011). It contains a
cross-section of 1, 929 different auctions downloaded at the same point in time (on June 6, 2008)
for various categories. The figure depicts the proportion of overbid auctions by item category. The
leftmost column shows the percent of auction prices above the BIN in the Cashflow 101 data. The
other columns show the percent of auction prices above the corresponding BIN in the cross-sectional
data, split by item category.

The main result reported by Malmendier and Lee (2011) is that 43% of auctions end up at

prices above the simultaneously available fixed price. This result is not due to differences in

shipping costs: if those differences are also accounted for, 73% of auctions end above the fixed

price. Simple regressions show that overbidding is not explained by differences in item quality or

seller reputation. The amount of overbidding is significant: 27% of auctions exceed the fixed price

by more than $10, and 16% by more than $20. Even the average auction price exceeds the fixed

price, which helps rule out rational explanations based on switching costs, since a rational buyer

only enters the auction if the expected price is below the fixed price.
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Do these results extend to other goods besides board games? Figure 4 addresses this question

using a second, broader data set, also detailed in Malmendier and Lee (2011), that contains a

cross-section of 1, 929 different auctions, which downloaded at the same point in time (on June 6,

2008) and range from electronics to sports equipment. The figure shows the proportion of overbid

auctions by item category, with Cashflow 101 depicted as the baseline on the left. Cashflow 101 is

not an outlier: the figure shows that overbidding in auctions is common across a wide variety of

goods, with the proportion of overbid auctions ranging between 30% and 60% for most categories.

In summary, the main findings of Malmendier and Lee (2011) are another piece of evidence on

overbidding in auctions, in this case explicitly in comparison to a fixed-price market.

5.2 Amplification in Revenue and Allocations

Given the presence of overbidding in this market, we can explore the specific predictions of our

model about amplification. A key prediction, formally established in Propositions 1 and 3, is that

a few biased agents can have amplified effects on revenue, because they end up setting the price

with disproportionately high frequency.

Table 2 presents evidence on amplification using the detailed bidder- and bid-level data of the

board game Cashflow 101, available for 138 auctions that have on average 8.4 participants. (See

the bidder- and bid-level summary statistics in Panels B and C of Table 1.) The fraction of buyers

who overbid in these auctions is only about 17%; however, 43% of auctions are overbid in the sense

that the final price is above the fixed price at which the good is available. The effect of behavioral

agents is thus amplified by a factor of 0.43/0.17 = 2.5 relative to their share in the population.

This effect is a manifestation of the fishing mechanism: high-bidding behavioral agents are more

likely to set the price in these auctions. The findings in Table 2 thus provide strong evidence for

the basic amplification prediction.18

How well does our model explain the magnitude of amplification observed in the data? To

answer, we calibrate the model by setting the share of behavioral buyers in the population equal

18 The fraction of bids that exceed the fixed price (11%) is lower than the fraction of buyers who overbid (17%).
The difference is due to the fact that in the data, unlike in the model, some buyers bid multiple times. The right
comparison with the theory is to use the fraction of buyers, treating their final bid as equivalent to the single bid
agents can submit in the model.
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to π∗ = 17% and then calculate the probability of at least two fools for each auction in our sample.

The share of auctions with at least two fools is predicted to be qn2 (π∗) = 41%.19 This is very close

to the 43% of overbid auctions we observe in the data. In fact, we cannot reject the hypothesis

that the sample proportion of 43% is the same as the predicted proportion (p = 0.59). The reason

for this close quantitative fit is straightforward. Both in the theory and in the field, we count the

share of auctions with at least two fools, given the baseline share of fools in the population. If fools

are distributed evenly across auctions in the data, the law of large numbers predicts that the share

of overbid auctions should be approximately qn2 (π∗). The fact that this prediction is verified in the

data provides evidence for one of our main assumptions and thus external validity for our model.

We next turn to amplification in allocations. As highlighted by Corollary 4, our model predicts

that biased agents win with an amplified probability relative to their population share. In the

model the magnitude of this amplification is governed by qn1 (π∗). In the data the bias of the agent

winning the good is not observed, but we can calibrate the formula using the above parameters to

obtain qn1 (π∗) ≈ 73%. The fact that our calibrated model closely matched the probability of at

least two biased bidders, and the implication that biased bidders appear to be evenly distributed,

suggests that this prediction is also likely to be precise. Thus even though only 17% of agents

are biased, they win 73% of auctions. This finding indicates that there is significant potential for

misallocation due to the presence of biased bidders. We conclude that the above results strongly

support the basic amplification mechanism identified by the model.

5.3 Auctions versus Fixed-Price Markets

We next consider the prediction in Propositions 2 and 4 that, in the presence of biased bidders,

sellers prefer auctions over other selling mechanisms. In both propositions, the preference for

auctions requires a strictly positive, albeit not high share π of interested buyers who are subject to

overvaluation bias.

Empirical evidence for this prediction is harder to generate as it requires estimates of (1) the

share of behavioral buyers (fools) for different goods, and (2) the market share of auctions and fixed

19 If we use the average auction size of n = 8.4, the share of auctions with at least two fools is predicted to be
qn2 (π∗) = 43%. This is almost exactly what we observe in the data.
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prices for these goods. We discuss some suggestive evidence, including new facts, that is consistent

with the prediction and provides a starting point for future empirical investigations.

Specifically, we focus on evidence that contrasts goods for which it seems implausible that biases

would induce buyers to overbid and overpay (π = 0), with other goods, for which overvaluation

appears more plausible (π > 0). Candidates for the former goods are commodity-type items that

are new, have a model number or other clear identification, and salient market prices. For these

items, it might be less plausible for a buyer to overbid or fail to note the standard (outside) price.

Candidates for the latter type of items are collectibles, memorabilia and other used, unique, or

antiques items. These items provide a greater scope for differences and mistakes in valuation.

We explore how the frequencies of auction- versus fixed-price based selling mechanisms compare

across markets for either type of goods.

First, we return to the broad, cross-sectional eBay data from Malmendier and Lee (2011), which

we discussed above and displayed in Figure 4. For the discussion here, we calculate the absolute

and relative frequencies of both auction and fixed-price listings for all items in the data, split into

33 finer categories. Table 3 displays the results, sorted by decreasing auction frequency. The cross-

sectional draw reveals that commodity-type items, such as tickets, cameras, cell phones, PDAs,

consumer electronics, books, and computers, have the lowest relative auction frequency. On the

other end of the spectrum, items such as stamps, pottery, antiques, art, coins and paper money,

collectibles, and sports memorabilia have the highest relative auction frequency. The much higher

relative frequency of auctions in the latter groups is consistent with the model we propose.

A similar pattern characterizes online auctions more broadly: Lucking-Reiley (2000) provides

evidence of the type of items sold and the revenues generated on 142 Internet auction sites. He

finds that by far the most common type of item is collectibles, which includes antiques, celebrity

memorabilia, stamps, coins, toys, and trading cards. Lucking-Reiley (2000) also finds that most

goods auctioned online are used items that are being resold. Relatedly, evidence from Einav,

Farronato, Levin, and Sundaresan (2018) confirms the impression that idiosyncratic, expensive

items are commonly sold via auction, more so than standard items.20

20 Whereas this paper models auctions as a trade-off between higher cost for auctions with a potentially higher
reward, Einav, Farronato, Levin, and Sundaresan (2018) models auctions as a trade-off between a higher sale proba-
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Finally, the same picture emerges from data of traditional, offline auctions, which tend to sell

collectibles and similar items rather than commodities. We survey the categories of objects sold by

five of the largest auction houses: Christie’s, Sotheby’s, Bonhams 1793, Stockholm Auction House,

and Lyon and Turnbull. As shown in the comprehensive listing of Appendix-Table B.1, items such

as art and antiquities, furniture, collectibles, and photographs are indeed among the most common

categories.

Our model implies not only that profit-maximizing sellers should prefer auctions if they can

expect to attract a non-zero fraction of biased buyers (π > 0), but also that a significant fraction of

items should be sold at inflated prices. Sotheby’s website also provides some suggestive evidence,

based on the ex-ante appraisals of auction objects as well as their final prices. Bids above the

appraisal are, of course, not evidence of overbidding; but they indicate that items sold in auction

houses are perceptible to a wide range of valuations, including potential overestimates.

We collect the online descriptions, selling prices, and appraisal ranges (high and low valuations)

of all auctions conducted between January and July 2007.21 After discarding four auctions that

lack catalog descriptions and online appraisals, we obtain a sample of 43,107 items sold in 178

auctions. We classify items as antiques, art, books, jewelry, sports, stamps, and wine. We compute

the frequencies with which items are sold at a price above the highest appraisal, as well as the

price/appraisal ratios for both the highest and the lowest appraisal. Table 4 summarizes these data

and calculations.

We find that, of the 178 auctions, 168 generated revenues above the most optimistic expectation

benchmark, i. e., the highest appraisal. 14.71% of all items sell for double the amount of the most

optimistic appraisal, with the maximum being a 100-fold multiple. In other words, the final bid

overwhelmingly exceeds the most optimistic assessment in the vast majority of traditional auctions

of collectibles and similar items, consistent with the notion of possible overbidding as well as

targetted use of auctions in such circumstances and for such items.

These findings are suggestive of our predictions in the sense that used, unique, or antique items

bility for auctions with a lower sale price. They document a decline in auctions and find that it is mainly driven by
an increasing relative preference for convenience shopping, rather than changes in the composition of buyers, sellers,
or items.

21 Revenues in foreign currencies are converted to USD using the conversion rates on June 20, 2008.
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such as art, coins, and other collectibles and memorabilia seem plausible candidates for attracting

behavioral bidders, and the use of auctions is consistent with the idea that sellers choose auctions in

part to take advantage of buyer biases. Needless to say that there are alternative explanations such

as higher asymmetric information or greater heterogeneity in values. While the evidence on the

choice of auctions versus markets documented here is suggestive, it complements our findings on

overbidding and amplification and is supportive of the view that sellers choose the auction format

where the probability of behavioral mistakes is higher.

5.4 Attracting Additional Bidders

Corollaries 3 and 7 suggest that, in the presence of biased agents, attracting additional buyers is

especially profitable for sellers in auction-like markets. Here we discuss some anecdotal evidence

consistent with this prediction.

One effective strategy for attracting buyers is setting a low initial price, as evidenced by both

experimental (Ku, Galinsky, and Murnighan 2006) and eBay field studies (Simonsohn and Ariely

2008). This strategy appears popular also in auction-like markets. For example, consider the

US housing market in which buyers can be pitted against one another. Bucchianeri and Minson

(2013) analyze the optimal pricing strategy in this market by surveying realtors and examining web

evidence. They find that realtors frequently suggest underpricing to start a bidding war.22 Similarly,

in the home auction market of New South Wales, Australia, underquoting was extraordinarily

successful at attracting additional buyers and creating bidding fever. In fact, underquoting became

so problematic that the Australian government had to pass a law prohibiting it.23 A related strategy

for sellers, common in housing markets in the United States (Chava and Yao 2017) as well as Sweden

(Repetto and Solis 2017), is to take advantage of left digit bias to increase interest. Consistent with

our model, all of these findings point to a correlation between the presence of behavioral biases and

strategies to attract additional buyers in auctions.

22 They also suggest that this may be due to an agency issues rather than agents believing it is an optimal strategy
for maximizing home revenue.

23 See fairtrading.nsw.gov.au/ftw/About_us/Legislation/Changes_to_legislation/Underquoting_reforms;
abc.net.au/news/2017-04-29/real-estate-underquoting-still-prevalent-despite-crackdown/8481846;
propertyupdate.com.au/agents-underquote-property-prices-beat-game-2; thenewdaily.com.au/money/

property/2017/05/12/underquoting.
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6 Conclusion

This paper develops a simple model to study the effect of psychological biases inducing overvaluation

in both auctions and fixed-price markets. We find that both market mechanisms can amplify rather

than ameliorate the effect of biases on prices, allocation, and ultimately welfare. The amplification

effect is stronger in auctions in the sense that auctions take advantage of even a few agents with

behavioral biases to increase revenues. Further amplification arises when sellers can choose their

preferred selling mechanism, as they switch from efficient fixed-price markets to inefficient auctions.

Sellers may also make inefficient production and marketing decisions as a result. Evidence from

various markets is consistent with these predictions.

Our findings question the received wisdom of neoclassical economics that markets attenuate the

effect of behavioral biases. Our results may explain part of the popularity of auctions in allocating

goods in practice, particularly when their market value is hard to assess.

We conclude with two questions to be explored in future research. The first is closely related

to the auction and market environments studied in this paper. How large are the welfare costs

of overbidding in practice? Our model suggests that they can be significant. However, to settle

this question, careful measurement of bidder behavior across different environments is needed. Our

second question is broader. What other mechanisms amplify the impact of behavioral biases? We

know from the behavioral industrial organization literature that sellers often cater to biases in

contract design. Do these or other mechanisms result in amplification, analogous to our results?

Early hints come from the behavioral bilateral trading literature (Saran 2011, Crawford 2019);

answering these questions in broader contexts can help make progress with the larger agenda of

understanding behavioral agents in markets.
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Table 1: Summary Statistics, Cash-Flow 101 Data
Panel A: Auction-Level Data

Variable Obs. Mean Std. Dev. Min. Max.

Starting Price 165 46.14 43.81 0.01 150
Final Price 166 132.55 17.03 81.00 179.30
Shipping Cost 139 12.51 3.75 4.95 20.00
Total Price 139 144.68 15.29 110.99 185.50
Number of Bids 166 16.91 9.13 1 39
Number of Bidders 139 8.36 3.87 1 18
Feedback Score Buyer 166 36.84 102.99 0 990
Feedback Score Seller 166 261.95 1,432.95 0 14,730
Positive Feedback Percentage Seller 166 62.92 48.11 0 100
Auction Length [in days] 166 6.30 1.72 1 10

one day 166 1.20%
three days 166 11.45%
five days 166 16.87%
seven days 166 65.06%
ten days 166 5.42%

Auction Ending Weekday
Monday 166 11.45%
Tuesday 166 7.83%
Wednesday 166 15.66%
Thursday 166 12.05%
Friday 166 9.64%
Saturday 166 18.67%
Sunday 166 24.70%

Auction Starting Hour 166 14.78 5.20 0 23
Auction Ending Hour 166 14.80 5.21 0 23
Prime Time 166 34.34%
Title New 166 28.31%
Title Used 166 10.84%
Title Bonus Tapes/Video 166 21.08%
Explicit195 166 30.72%

Note: The sample period is 02/11/2004 to 09/06/2004. Final Price is the price paid by the
winner excluding shipping costs; it is equal to the second-highest bid plus the bid increment.
Shipping Cost is the flat-rate shipping cost set by the seller. Total Price is the sum of Final
Price and Shipping Cost. Auction Starting and Ending Hours are defined as 0 for the time
interval from 12 am to 1 am, 1 for the time interval from 1 am to 2 am etc. Prime Time is
a dummy variable and equal to 1 if the auction ends between 3 pm and 7 pm PDT. Delivery
Insurance is a dummy variable and equal to 1 if any delivery insurance is available. Title New
is a dummy and equal to 1 if the title indicates that the item is new. Title Used is a dummy
and equal to 1 if the title indicates that the item is used. Title Bonus Tapes/Video is a dummy
and equal to 1 if the title indicates that the bonus tapes or videos are included. Explicit195
is a dummy variable equal to 1 if the item description mentions the $195 manufacturer price.
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Table 1 (continued)

Panel B: Bidder-Level Data

Variable Obs. Mean Std. Dev. Min. Max.

Number of auctions per bidder 807 1.44 1.25 1 17

Number of bids per bidder (total) 807 2.92 3.35 1 33
Number of bids per bidder (per auction) 807 2.13 1.85 1 22

Average bid per bidder [in $] 807 87.96 38.34 0.01 175.0
Maximum bid per bidder [in $] 807 95.14 39.33 0.01 177.5

Winning frequency per bidder (total) 807 0.17 0.38 0 2
Winning frequency per bidder (per auction) 807 0.15 0.34 0 1

Note: Bids are submitted bids, except in the case of the winning bid which is displayed as the
winning price (the second-highest bid plus the appropriate increment).

Panel C: Bid-Level Data

Variable Obs. Mean Std. Dev. Min. Max.

Bid value [in $] 2,353 87.94 36.61 0.01 177.5
Bid price outstanding [in $] 2,353 83.99 38.07 0.01 177.5
Leading bid [in $] 2,353 93.76 35.18 0.01 177.5

Feedback Score Buyer 2,353 32.40 104.65 -1 1,378
Feedback Score Seller 2,353 273.23 1422.55 0 14,730
Positive Feedback Percentage Seller 2,353 64.72 47.40 0 100

Starting time of auction 2,353 15.63 4.91 0.28 23.06
Ending time of auction 2,353 15.68 4.93 0.28 23.41
Bidding time 2,353 13.70 5.54 0.20 24.00

Last-minute bids
during the last 60 minutes 2,353 6.25%
during the last 10 minutes 2,353 4.25%
during the last 5 minutes 2,353 3.48%

Bid on auction with Explicit195 2,353 0.32 0.47 0 1
Bid on auction with delivery insurance option 2,353 0.46 0.50 0 1
Bids on auction with bonus tapes/videos 2,353 0.25 0.43 0 1
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Table 2: Amplified Effect of Overbidders

Observations (Percent)

Auction-level sample
Does the auction end up overbid? No 78 56.52%

Yes 60 43.48%
Total 138 100.00%

Bidder-level sample
Does the bidder ever overbid? No 670 83.02%

Yes 137 16.98%
Total 807 100.00%

Bid-level sample
Is the bid an over-bid? No 2,101 89.29%

Yes 252 10.71%
Total 2,353 100.00%

Note: Data is hand-collected from eBay for the Cashflow 101 game. Data was
collected between 2/11/2004 to 9/6/2004. Data is missing on the days from
7/16/2004 to 7/24/2004 since eBay changed the data format. Two auctions
during which a professional listing was not always available (between 23:15 p.m.
PDT on 8/14/2004 to 8:48 p.m. on 8/20/2004) were also dropped. Overbidding
is tabulated by observation at the auction, bidder, and bid levels. Overbidding
is defined relative to the buy-it-now price (without shipping costs).
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Table 3: Frequencies of Auctions versus Fixed Price

Category
Auction items Fixed-price items

Number Percent Number Percent

Stamps 151,720 93.3% 10,822 6.7%
Pottery & Glass 190,566 88.7% 24,397 11.3%
Antiques 169,983 86.5% 26,468 13.5%
Art 148,665 78.6% 40,411 21.4%
Coins & Paper Money 203,061 84.4% 37,608 15.6%
Collectibles 1,293,036 79.6% 330,434 20.4%
Sports Mem, Cards & Fan Shop 571,730 77.7% 164,440 22.3%
Clothing, Shoes & Accessories 2,198,045 68.9% 992,488 31.1%
Dolls & Bears 111,512 76.6% 34,087 23.4%
Music 390,900 74.5% 133,600 25.5%
Jewelry & Watches 980,948 74.8% 330,332 25.2%
Gift Certificates 9,874 75.6% 3,188 24.4%
Entertainment Memorabilia 157,926 68.6% 72,396 31.4%
Toys & Hobbies 568,978 72.8% 213,049 27.2%
Crafts 268,859 72.9% 100,013 27.1%
Sporting Goods 356,493 63.9% 201,339 36.1%
Video Games 216,644 56.6% 165,938 43.4%
Everything Else 111,625 69.6% 48,668 30.4%
Baby 45,658 64.4% 25,190 35.6%
Business & Industrial 195,441 59.6% 132,232 40.4%
Home & Garden 532,393 57.8% 388,437 42.2%
DVDs & Movies 315,195 54.7% 260,995 45.3%
Travel 7,727 56.9% 5,854 43.1%
Musical Instruments 104,559 54.9% 85,984 45.1%
Real Estate 2,939 75.7% 943 24.3%
Tickets 32,352 50.8% 31,331 49.2%
Health & Beauty 254,537 54.4% 212,988 45.6%
Cameras & Photo 134,871 44.2% 170,381 55.8%
Cell Phones & PDAs 237,793 37.4% 398,147 62.6%
Consumer Electronics 199,825 42.8% 266,653 57.2%
Books 495,422 47.0% 557,866 53.0%
Computers & Networking 251,442 40.2% 374,227 59.8%
Specialty Services 2,656 24.3% 8,260 75.7%

Note: Absolute and relative frequencies of auction listings and fixed-price listings on
eBay by category as of June 6, 2008 (22:17pm PDT). Number denotes the absolute
number of listings; Percent the percentage of lisitings of a given type out of all auction
and fixed-price listings in the respective category. Categories are sorted by decreasing
percentages of auction listings. Source: http://listings.ebay.com.
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Table 4: Bidding Relative to Appraisal

Number
(Percent)

Revenues
in USD (in %)

Price
above high
valuation

Ratio of
price

to high
appraisal

Ratio of
price

to low
appraisal

Antiques 23 (12.92%) $90,222,465 (3.16%) 52.33% 1.43 2.12

Art 117 (65.73%) $2,535,543,690 (88.82%) 57.25% 1.45 2.09
Books 8 (4.49% $43,276,989 (0.94%) 53.55% 1.52 2.17
Jewelry 18 (10.11%) $167,042,481 (5.85%) 56.47% 1.30 1.82
Sports 2 (1.12%) $14,151,555 (0.50%) 48.82% 1.14 1.74
Stamps 2 (1.12%) $3,136,188 (0.11%) 32.51% 1.10 1.40
Wine 8 (4.49%) $17,846,897 (0.63%) 65.53% 1.35 1.81

Note: The table presents information based on online descriptions, selling prices, and appraisal ranges
(high and low valuations) of all auctions from Sotheby’s conducted between January and July 2007. We
discard four auctions that lack catalog descriptions and online appraisals. Categories of objects sold
by five of the largest auction houses, are used. Items classified as antiques, art, books, jewelry, sports,
stamps, and wine. Revenues in foreign currencies are converted to USD using the conversion rates on
June 20, 2008. Price above high valuation is by item. Ratios presented are the average across auctions.
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Appendix A: Proofs

We first establish two lemmas, which bound the probabilities of having at least two and at least
one biased agent out of n buyers, qn2 (π) and qn1 (π). Using these lemmas we then present proofs of
all propositions and corollaries in the order in which they appear in the main text. Here and below
we denote the base of the natural logarithm by e.

Lemma 1. If π(n− 1) ≥ a for some 0 < a ≤ 1, then qn2 (π) > a2 · e−2
e .

Proof. Consider qn2 (π) = 1− (1−π)n−nπ(1−π)n−1 as a function of n defined not only for integers
but for all n > 0. This function is strictly increasing in n for n > 0. This fact can be directly
verified by differentiation and some calculations, and is also intuitive as the probability of at least
two biased agents should be higher when the total number of agents n is larger. The assumption

π(n− 1) ≥ a, or n ≥ 1 + a/π, implies that qn2 (π) ≥ q1+a/π
2 (π). Moreover,

q
1+a/π
2 (π) = 1− (1− π)1+a/π − (π + a)(1− π)a/π = 1− (1− π)a/π(1 + a). (1)

This is thus a lower bound for qn2 (π).
To develop a bound that does not depend on π, we next show that 1− (1− t)a/t(1 + a), which

is our bound when t = π, is an increasing function of t in the range t > 0. This will imply that we
can further bound (1) from below with the limit of 1− (1− t)a/t(1 + a) as t goes to zero. Note that

d((1− t)a/t)
dt

= (1− t)a/t[− a
t2

log(1− t)− a

(1− t)t
]

= (1− t)a/t(−a
t
)[

1

t
log(1− t) +

1

1− t
],

and the Taylor expansion of the term in the bracket around t = 0 is

1

t
log(1− t) +

1

1− t
=

1

2
t+

2

3
t2 +

3

4
t3 + ...+

k

k + 1
tk + ... > 0,

so that
d((1− t)a/t)

dt
< 0,

as claimed. Thus qn2 (π) is strictly bounded from below by

lim
t→0

1− (1− t)a/t(1 + a) = 1− e−a(1 + a). (2)

Finally we develop a quadratic lower bound for this expression. Consider h(z) = 1− e−z(1 + z)−
z2(e− 2)

e
. Inspecting the derivative of h(.) it is easy to verify that there is some z∗ ∈ (0, 1) such

that for z ∈ (0, z∗), h′(z) > 0 and for z ∈ (z∗, 1), h′(z) < 0. Since h(0) = 0 and h(1) = 0, we have
h(z) > 0 for all z ∈ (0, 1). Using this for z = a implies that 1− e−a(1 + a) > a2 · (e− 2)/e and the
claim follows.
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Lemma 2. If 0 < π ≤ 1/n, then nπ > qn1 (π) > nπ e−1
e .

Proof. Recall that qn1 (π) = 1−(1−π)n. For π ∈ [0, 1] the function (1−π)n is convex and decreasing.
Its derivative at π = 0 is −n. It follows that (1− π)n ≥ 1− nπ, establishing the upper bound. For
the lower bound, note that for π ∈ (0, 1/n]

(1− π)n ≤ (1− nπ) · 1 + (nπ) · (1− 1/n)n < 1− nπ + (nπ)1/e = 1− e− 1

e
nπ, (3)

where the first step uses Jensen’s inequality for the convex (1− π)n and the random variable that
takes on value 0 with probability 1− nπ and value 1/n with probability nπ and thus has expected
value π; and the second step uses the observation established in the proof of Lemma 1 that (1−1/n)n

is increasing in n and converges to 1/e.

Proof of Proposition 1. (a) Let κ1 = e/(e− 2).
Case (i): π(n − 1) ≤ 1. Then for a = π(n − 1), the assumption of Lemma 1 is satisfied, and

the Lemma implies that the revenue impact of fools is at least (n − 1)2π2 · e−2
e (vB − v). This in

term is bounded from below by π(vB − v) when 1/(n− 1)2 · e/(e− 2) ≤ π, which is the range of π
considered in Proposition 1(a).

Case (ii): π(n − 1) > 1. For n = 3, 4, 5 one can directly check that qn2 (π) > π holds if
1/(n − 1) ≤ π < 1. Next note that for a given π, if qn2 (π) ≥ π for some n, then the same holds
when n is replaced by any n′ > n since qn

′
2 (π) − qn2 (π) ≥ 0. Combining this observation with the

results for n = 3, 4, 5 it follows that when π ≥ 1/4, the desired inequality holds for all n satisfying
π(n− 1) ≥ 1. Finally, using Lemma 1 with a = 1 implies the revenue gain is at least e−2

e (vB − v)
so the result also holds if π < (e− 2)/e, and because (e− 2)/e > 1/4 the proof is complete.

(b) Let κ2 = log(vB/(vB − v)). Amplification follows if (1 − (1 − π)n)vB − v > π(vB − v) or
equivalently (1 − π)(vB − v) > (1 − π)nvB, which holds if log((vB − v)/vB) > (n − 1) log(1 − π).
Because −π > log(1− π), the condition is satisfied if log((vB − v)/vB) > −(n− 1)π or equivalently
if π > κ2/(n− 1) as stated in the Proposition.

For completeness we also show that for π ≤ (1/n)(v/vB) the fixed price market does not generate
amplification. Indeed, in this case by Lemma 2 we have (1 − (1 − π)n)vB < nπvB ≤ v and hence
the seller sets the price at v.

Proof of Proposition 2. Let κ3 = vB/v. In the auction, for 0 < π biased agents increase
revenue by some positive amount. In the fixed price market, by the last paragraph in the proof
of Proposition 1(b), when π ≤ 1/(κ3n) the seller sets the price at v. Thus biased agents do not
increase revenue at all.

Proof of Corollary 1. First note that when π = 0, the profit is v − ca in the auction and
v− cf in the fixed price market. Hence for π = 0, when ca− cf > 0 the seller prefers the fixed-price
market. Now suppose that π = (1/n)v/vB. Then by the proof of Proposition 1(b), in the fixed-price
market the seller still sets the price to be v and earns profit v − cf . But in the auction, the profit

is at least v + qn2 (π)(vB − v)− ca ≥ v + e−2
e

(n−1)2

n2
v2

v2B
(v − vB)− ca by Lemma 1. Using n ≥ 2, the
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profit of the auction is higher if ca − cf < e−2
4e

v2

v2B
(v − vB). Since payoff functions are continuous,

the fact that the result holds for this value of π implies that it also holds in some neighborhood,
i.e., for a range of π values.

Proof of Corollary 2. When π = 0 it is immediate that the seller chooses the fixed-price
market and produces efficiently. Now suppose π = (1/n)v/vB. In the fixed-price mechanism the
seller sets the price at v and invests if kp ≤ v− cf . But if the seller can choose the mechanism, then
by the proof of Corollary 1 she chooses the auction, earns higher profits, and hence sets a cutoff
for production that exceeds the efficient level. By continuity, the result holds for a range of π.

Proof of Corollary 3. Suppose π = [1/(n + 1)](v/vB). In the fixed-price market with n
buyers, by the proof of Corollary 1 the benefit of recruiting one more buyer is zero, so the seller
does not recruit. If the seller can choose the market mechanism, then it is easy to see, using steps
analogous to those in the proof of Corollary 1, that when ca− cf is small enough, the seller prefers
the auction. In that auction, the benefit of recruiting one more buyer is

[qn+1
2 (π)− qn2 (π)](vB − v) = (1− π)n−1π2n(vB − v).

If kb < (1− π)n−1π2n(vB − v) for this value of π, the seller will want to recruit. And by continuity
the result also holds for a range of π in the neighborhood of this value.

Proof of Proposition 3. For the claim on amplification in the auction, set a to satisfy

a2(e− 2)

e
=
π(vB − vL)

vB − vH
.

If this choice meets the assumptions of Lemma 1, then Lemma 1 implies that the change in expected
revenue from increasing the share of fools from 0 to π is strictly larger than π(vB − vL). The
conditions of the Lemma are that a ≤ 1 and π(n− 1) ≥ a. Setting κ̃1 = e

e−2 ·
vB−vL
vB−vH , the former is

equivalent to π ≤ 1/(κ̃1), and the latter is equivalent to

π2(n− 1)2 ≥ e

e− 2
· π(vB − vL)

vB − vH
,

or equivalently π ≥ κ̃1/(n− 1)2. These are the inequalities in the statement of the Proposition.
Next consider the fixed-price market. Amplification holds if qn1 (π)vB − vH > π(vB − vL) which,

after writing out qn1 (π), is equivalent to

vB − vH > (1− π)nvB + π(vB − vL).

Now assume that π ≤ (1/2)(vB − vH)/(vB − vL). Then we can bound the second term on the
right-hand side with 1/2 times the left hand side, so the condition would hold if (1/2)(vB − vH) >
(1− π)nvB. Taking logs, we need π to satisfy

log((vB − vH)/(2vB)) > n log(1− π).
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Because −π > log(1 − π), this condition is in turn satisfied if log((vB − vH)/(2vB)) ≥ −nπ, that
is, if we also assume

log(2vB/(vB − vH))/n ≤ π.

Now set κ̃2 = max(log(2vB/(vB−vH)), 2(vB−vL)/(vB−vH)). Then for κ̃2/(n−1) ≤ π ≤ 1/κ̃2 both
assumptions imposed on π in the above derivation hold, and thus the fixed-price market generates
amplification.

Proof of Corollary 4. Start with the auction. Because the revenue gain from a biased agent
setting the price is at most vB − vL, Proposition 3 implies that the price is vB with probability
higher than π; that is, qn2 (π) > π. Since qn1 (π) ≥ qn2 (π) the statement follows.

Now consider the fixed-price market. The proof of Proposition 3 showed that in the assumed
range for π, we have qn1 (π)vB − vH > π(vB − vL). This implies qn1 (π)vB − qn1 (π)vL > π(vB − vL),
which implies qn1 (π) > π, so the probability of a biased buyer exceeds π. And because the proof
of Proposition 3 also showed that, in the given range, the seller sets the price at vB, only biased
buyers can get the good.

Proof of Proposition 4. Begin with the fixed-price market. Let vM be the median of the
distribution F , and suppose π ≤ vM

2vB−vM ·
1
n . We prove that then the seller does not set the price

at vB. We know vM > vL because f is bounded away from zero. A strategy always available to the
seller is to set p = vM and sell with probability 1− (1− π)n 1

2n . Thus setting vB is not optimal if

vM (1− (1− π)n
1

2n
) ≥ vB(1− (1− π)n),

or equivalently

(vB −
vM
2n

)(1− π)n ≥ vB − vM .

The left-hand side is strictly bounded from below by (vB−vM/2)(1−nπ), and it follows that when
π ≤ vM

2vB−vM
1
n , vB is not the optimal price. It is also immediate that setting a price p ∈ [vH , vB) is

strictly dominated by setting the price at vB, and hence is also not optimal when π is in the above
range. And setting the price at p ∈ (0, vL) is strictly dominated by setting the price at vL. Thus
when π ≤ vM

2vB−vM ·
1
n the optimal price is either vL or interior in [vL, vH ].

Now consider the effect of a marginal increase in π on revenue. When the optimal price satisfies
the first-order condition of (1), this effect can be computed directly from (1) using the envelope
theorem as

n(1− π)n−1pF (p)n. (4)

When the optimal price does not satisfy the first-order condition, from the above argument that
price must be vL, and because the marginal cost of increasing the price is strictly larger than its
marginal benefit, it must also be true that a small increase in π does not change the optimal price.
We conclude that (4) is an upper bound for the marginal effect of π as long as π ≤ vM

2vB−vM ·
1
n .

Our next step is to derive an upper bound for F (p)n which is the key term in (4). When p = vL,
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zero is an upper bound. When p > vL, we use the first-order condition, which is

1− (1− π)nF (p)n = (1− π)nnpf(p)F (p)n−1. (5)

This condition implies that for the optimal p

F (p)n ≤ 1

(1 + npf(p))(1− π)n
. (6)

Combining (4) and (6), the marginal revenue effect of increasing π is at most

n(1− π)n−1p

(1 + npf(p))(1− π)n
<

n(1− π)n−1p

(npf(p))(1− π)n
≤ 1

f(1− π)
<

1

2f
,

where we used that π < 1/2, which holds because π ≤ vM
2vB−vM ·

1
n and n ≥ 2. It follows that the

overall revenue effect of increasing the share of biased agents from zero to some value π, which is
the integral of the marginal effects, is less than π/(2f).

Now consider the auction. Using Lemma 1 with a = (n − 1)π (where a < 1 because π ≤
vM

2vB−vM ·
1
n), the revenue effect of biased agents in the auction is at least

e− 2

e
(n− 1)2π2(vB − vH).

Comparing this to the upper bound for the fixed price market, biased agents generate more revenue
in the auction than in the market if

π ≥ e

e− 2
· 1

2f(vB − vH)
· 1

(n− 1)2
.

Thus setting κ̃3 = max( e
e−2

1
2f(vB−vH) ,

2vB−vM
vM

) implies that for κ̃3/(n− 1)2 ≤ π ≤ 1/(κ̃3n), biased

agents generate more revenue in the auction than in the market.

Proof of Corollary 5 Using κ̃3 which was defined in the proof of proposition 4, let n be large
enough that κ̃3

(n−1)2
< 1

κ̃3n
. Denoting revenue in the auction and in the fixed-price market by Ra(π)

and Rf (π), let c1(n) = Ra(0)−Rf (0) and

c2(n) = Ra(
1

κ̃3n
)−Rf (

1

κ̃3n
). (7)

Then c1(n) < c2(n) follows from Proposition 4. In addition, by the definition of c1(n) and c2(n),
when ca−cf ∈ (c1(n), c2(n)), for π = 0 the market is more profitable, but for π = 1

κ̃3n
the auction is

more profitable. Direct substitution into the bounds developed in the proof of Proposition 4 shows
that as n grows, c1(n) converges to zero while c2(n) remains bounded away from zero. Denote
c1 = lim sup c1(n) and c2 = lim inf c2(n). For n large enough the statement of the corollary thus
follows for π = 1/κ̃3n, but then by continuity it also follows for a range of π in its neighborhood
(given n).
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Proof of Corollary 6. We first consider π = 0. In this case, by the proof of Corollary 5, for
n large enough the seller chooses the fixed-price market. We show that, in that market and for n
large, production is ε-efficient. In that market, for n large the seller sets a price in [vM , vH ], and
using the proof of Proposition 4, we can bound Rf (0) = p∗(1− F (p∗)n) ≥ p∗(1− 1

np∗f ) = p∗ − 1
nf .

Moreover, from the first-order condition (5) we have F (p∗)n−1 ≥ 1/(1 + nvH f̄) and therefore for n

large −(1−F (p∗)) ≥ log(F (p∗)) ≥ − log(n)
n−1 −

log(2vH f̄)
n−1 . Since 1−F (p∗) =

∫ vH
p∗ f(t)dt ≥ f(vH − p∗),

it follows that for n large vH − p∗ is bounded from above by a constant times log(n)/n. Thus
vH − Rf (0) goes to zero as n grows, and for any ε > 0 production becomes ε-efficient for n large
enough.

Now suppose that π = 1
κ̃3n

. In the fixed-price market the seller still sets a price below vH ,
so revenue is between vH and Rf (0). Hence vH − Rf (π) also goes to zero at a rate of log(n)/n,
and production is ε-efficient for n large. In addition, we know from Corollary 5 that the seller
prefers the auction and that the revenue gap between the auction and the fixed price market,
Ra(π)−Rf (π)− (ca − cf ) = c2(n)− (ca − cf ), is positive and bounded away from zero as n grows.
Let κ̃4 denote a positive lower bound for this term. Since production is ε-efficient in the market,
and the auction offers a premium in net revenue of more than κ̃4, it follows that when 2ε < κ̃4 for
n large there is ε-overproduction in the auction. This argument establishes the desired result for
π = 1

κ̃3n
, but continuity, and the fact that we define both ε-efficiency and ε-overproduction with

strict inequalities, implies that the result also holds for a range of π in its neighborhood.

Proof of Corollary 7. Consider first the gain from one more buyer in the fixed-price setting
with a share π of fools. To establish the result for integer n, it is useful to first consider the
optimization problem (1) for any positive real n and treat n as a continuous variable. Then, the
increase in revenue from a marginal increase in n can be computed using the envelope theorem,
and equals

−p(1− π)nF (p)n(log(1− π) + logF (p)).

Now fix n0 at an integer value, and let π = 1/(κ̃3(n0 + 1)). Then as long as n ∈ [n0, n0 + 1] the
optimal price is interior. Consider a marginal increase in n when it is in this interval. For any
constant k > 0, if n0 is sufficiently large the above expression will be bounded in absolute value
by k/n0. This is because (1 − π)nF (p)n is by (6) of order 1/n and – since p converges to vH and
π = 1/(κ̃3(n0 + 1)) to zero – log(1 − π) + logF (p) becomes arbitrarily close to zero as n0 grows.
Integrating across the marginal increases as n runs from n0 to n0 +1, it follows that for any k there
is an n0 large enough such that the impact of one more buyer on revenue is less that k/n0. The
same argument also applies when we instead set π = 0, and implies statement (1).

Next consider the gain from one more buyer in the auction. Here the gain is at least

[qn0+1
2 (π)− qn0

2 (π)](vB − vH) = (1− π)n0−1π2n0(vB − vH),

which, for π = 1/(κ̃3(n0 + 1)) is bounded from below by some constant times 1/n0. It follows that
the gain from an additional buyer in the auction exceeds that in the market when n0 is large, so
we can find a small enough kb that ensures recruitment is optimal in the auction but not in the
fixed-price market. Finally, for n0 large the seller will prefer the auction to the market if there are
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n0 buyers and π = 1/(κ̃3(n0 + 1)), by a margin that does not vanish as n0 grows. This follows from
the bounds developed in Proposition 4 through the same logic as in the proof of Corollary 6.
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Appendix B: Appendix-Tables

Table B.1: Auction House Categories

Christie’s

Ancient Art & Antiquities Books, Manuscripts & Maps
Asian Art Fine Art
Collectibles Jewelry & Watches
Furniture & Decorative Art Wine, Spirits & Cigars
Photographs, Prints & Multiples

Sotheby’s

Ancient and Ethnographic Arts Musical Instruments
Asian Art Paintings, Drawings and Sculpture
Books and Manuscripts Photographs
Ceramics and Glass Prints
Collectibles and Memorabilia Silver, Russian and Vertu
Fashion Stamps, Coins and Medals
Furniture and Decorative Arts Watches and Clocks
Jewelry Wine

Stockholm Auction House

Arms, Armor, Guns & Firearms Rare Book & Manuscripts
Clocks & Watches Russian Auction
City Auctions Selected Wine & Spirits
Fine Art & Antiques Swedish Art Glasses
Modern Art & Works of Art Toys, Technica & Nautica
Prints

Lyon and Turnbull

Lyon and Turnbull
Asian Works of Art Jewellery & Watches
Books, Manuscripts & Photographs Paintings & Prints
Ceramics & Glass Rugs & Carpets
Decorative Arts & Design Silver & Objects of Vertu
Furniture, Works of Art & Clocks Sporting & Arms and Armour
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Bonham’s

Angling & Fishing Made In California
Antiquities Modern and Contemporary Art
Antique Arms & Armor Musical Instruments
Sporting Guns Native American & Pre-Columbian Art
California and American Paintings Natural History
Asian Art Rugs & Carpets
Blue Printed Earthenwares Pianos
Books, Maps & Manuscripts Photography
Cameras Portrait Miniatures
Design 1860 - 1945 Prints
Clocks & barometers Railwayana
Coins & Medals - Glendining’s Rivercraft & Maritime
Contemporary Asian Art Russian
Contemporary Ceramics Scientific Instruments
Entertainment Memorabilia Sculpture & Works Of Art
Islamic & Indian Art Silver
Contemp. Indian & Pakistani Paintings Single Owner Sales
Costume & Textiles Sports Memorabilia
Design 1860 - 1945 Staffordshire Figures
European Pictures Stamps
European Porcelain, Pottery & Glass Soma Estate Auctions
20th Century British Art Sunset Estate Auctions
Furniture The Dog Sale
20th Century Decorative Art Toys & Dolls
Jewelry Urban Art
Mechanical Music Watches & Wristwatches
Motoring Wine
Contemporary Art

Note: List of item categories from the major auction houses: Christie’s, Sotheby’s, Bonhams
1793, Stockholm Auction House, and Lyon and Turnbull as of 6/22/2008.
Sources:
www.christies.com [“Categories”];
www.sothebys.com/app/live/dept/DeptTopicAreaMainLive.jsp;
www.bonhams.com/cgi-bin/public.sh/pubweb/publicSite.r?sContinent=EUR&screen=

menuDepartments [“USA”];
www.auktionsverket.se/ramsidor_08/engelsk_ram.html [“Auctions”];
www.lyonandturnbull.com/departments.asp.
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