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ABSTRACT

This paper analyzes the optimal income tax treatment of couples. Each couple is modelled as a single
rational economic agent supplying labor along two dimensions: primary and secondary earnings. We
consider fully general joint income tax systems. Separate taxation is never optimal if social welfare
depends on total couple incomes. In a model where secondary earners make only a binary work decision
(work or not work), we demonstrate that the marginal tax rate of the primary earner is lower when
the spouse works. As a result, the tax distortion on the secondary earner decreases with the earnings
of the primary earner and actually vanishes to zero asymptotically. Such negative jointness is optimal
because redistribution from two-earner toward one-earner couples is more valuable when primary
earner income is lower. We also consider a model where both spouses display intensive labor supply
responses. In that context, we show that, starting from the optimal separable tax schedules, introducing
some negative jointness is always desirable. Numerical simulations suggest that, in that model, it is
also optimal for the marginal tax rate on one earner to decrease with the earnings of his/her spouse.
We argue that many actual redistribution systems, featuring family-based transfers combined with
individually-based taxes, generate schedules with negative jointness.
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1 Introduction

The tax treatment of couples has been a debating point throughout the existence of the income

tax. Actual policies have varied over time and across countries. Over the past three decades,

there has been an international trend from joint to individual taxation of husbands and wives,

and today the majority of OECD countries use the individual as the basic unit of taxation.

Under individual taxation, tax liability is assessed separately for each family member and is

therefore independent of the income of other individuals living in the household. By contrast,

in a system of fully joint taxation of couples, as operated by for example the United States, tax

liability is assessed at the family level and depend on total family income. It is also notable

that most countries which have moved to individual income taxation still use joint income to

determine welfare benefits and transfers at the bottom end. Two basic points have been noted

in the previous informal discussions of the issue (e.g., Rosen, 1977; Pechman, 1987).

First, as the labor supply of secondary earners is more elastic with respect to taxes than

the labor supply of primary earners (see Blundell and MaCurdy, 1999, for a recent survey),

the traditional Ramsey optimal taxation principle suggests that the labor income of secondary

earners should be taxed at a lower rate than labor income of primary earners for efficiency

reasons. This is achieved to some extent by a progressive individual income tax since primary

earners have higher incomes and hence will face higher marginal tax rates than secondary

earners. By contrast, a fully joint income tax generates identical marginal tax rates across

members of the same family and hence does not meet this efficiency criterion.

Second, welfare is better measured by family income than individual income. As a result,

if the government values redistribution, two married women with the same labor income ought

not to be treated identically if their husbands’ incomes are very different. This redistributive

principle is achieved to some extent by progressive income taxation based on family income,

since it imposes higher tax rates on wives married to high-income husbands than on wives

married to low-income husbands. By contrast, an individual income tax imposes the same

tax burden on wives irrespective of their husbands’ earnings and hence does not meet this

redistributive criterion.1

The purpose of this paper is to explore the optimal income taxation of couples. Following
1Another topic which is often discussed is the neutrality of the tax system with respect to marriage decisions

(see e.g., Alm et al. 1999). This paper considers only couples and hence will not touch on this issue.
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the seminal contribution of Mirrlees (1971), optimal income tax theory has focused almost

exclusively on individuals. In contrast to previous work on this topic, we consider fully gen-

eral income tax systems allowed to depend on the earnings of each spouse in any nonlinear

fashion and hence impose no a priori restrictions.2 Such a problem can be seen as a multi-

dimensional screening problem where agents (couples in the present paper) are characterized

by a multi-dimensional parameter (ability and taste-for-work parameters of each spouse) that

are unobserved by the principal (the government which maximizes social welfare).

Due to the technical difficulties involved, there are very few studies in the optimal taxation

literature attempting to deal with multi-dimensional screening problems. Mirrlees (1976, 1986)

considered briefly such general screening problems in the context of optimal taxation but did

not go beyond obtaining general first-order conditions and did not consider specifically the

case of family taxation. More recently, Cremer, Pestieau and Rochet (2001) revisited the issue

of commodity versus income taxation in a multi-dimensional screening model in a finite type

economy.

The nonlinear pricing literature in the field of Industrial Organization has investigated a

number of aspects of multi-dimensional screening problems. Wilson (1993), Armstrong and Ro-

chet (1999), and Rochet and Stole (2003) provide surveys of this literature. Multi-dimensional

screening problems are difficult to analyze because, in contrast to the one-dimensional case,

first-order conditions are not sufficient to characterize the optimal solution in general. In this

paper, we consider primarily models with a discrete number of earnings outcomes (instead

of types) for the secondary earner which simplifies the theoretical analysis and allows us to

characterize optimal solutions using a first-order approach. Furthermore, we are able to derive

a number of properties of optimal schedules which are relevant for tax policy analysis and

which, to the best of our knowledge, have not been analyzed in nonlinear pricing theory.

As in the nonlinear pricing literature, we have to make certain simplifying assumptions

to be able to make progress in our understanding of the optimal schedules. In particular,
2Boskin and Sheshinski (1983) considered linear taxation of couples with the possibility of differentiated

marginal tax rates on spouses. Their problem is formally identical to a many-person Ramsey optimal tax
problem. They analyze the efficiency principle discussed above and provide a number of useful numerical
simulations based on empirical labor supply elasticities. However, because they restrict themselves to linear
taxation, their tax system is an individual-based (albeit gender specific) income tax by assumption. Hence,
they cannot address the central question of how the tax rate on one earner should depend on the earnings of
his/her spouse.
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we consider a model of family labor supply which assumes no income effects on labor supply,

along with separability in the disutility of supplying labor for the two members of the couple.

We obtain four main results.

First, we derive optimal tax formulas as a function of labor supply elasticities, the re-

distributive tastes of the government (measured by social marginal welfare weights), and the

distribution of earnings abilities and work costs in the population. We show how the opti-

mal tax formulas can be obtained by considering small reforms around the optimum schedule,

which allows us to understand the economic intuition behind each term in the formulas and

how they relate to classic individualistic optimal income tax theory. We show that the marginal

tax rate faced by primary earners at a given earnings level — averaging over secondary earn-

ers — is identical to the marginal tax rate obtained in the standard individualistic Mirrlees

model. Thus, the presence of the secondary earner introduces heterogeneity in marginal tax

rates faced by primary earners at a given earnings level (depending on their spouses) but does

not affect the average.

Second, we analyze the asymptotics of the optimal tax formulas as the earnings of the

primary earner become large. Quite strikingly, for a wide class of social welfare objectives, we

can show that the tax distortion on the secondary earner vanishes asymptotically when the

earnings of the primary earner become very large. In other words, the earnings of spouses

married to very high income husbands should be exempted from income taxation.3 The

intuition for the zero optimal tax on secondary earners can be understood as follows. Taxing

secondary earners amounts to redistributing from two-earner couples to one-earner couples.

For couples with very large primary earner incomes, there is no value in such redistribution

as marginal social welfare weights for one- and two-earner couples are about the same in the

limit.

Third and most importantly, we show that under some additional regularity assumptions

and uncorrelated abilities across spouses, the marginal tax rate on the primary earner is lower

when his spouse works. As a result, the tax on secondary earners decreases with primary

earnings. The intuition is an extension of the asymptotic result described previously. When
3At first glance, our result may seem reminiscent of the famous result that the top marginal tax rate is zero

in the Mirrlees model (Sadka, 1976; Seade, 1977), but the logic is in fact quite different. Indeed, we obtain our
zero-tax result for secondary earners under assumptions implying a positive top marginal tax rate on primary
earners.
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primary earnings are low, secondary earnings make a significant difference for the couple’s

welfare. Hence, the government would like to compensate one earner-couples for not having

secondary earnings relatively more when primary earnings are low. This is equivalent to

introducing a tax on secondary earners which decreases with primary earnings.

Fourth, we show that this negative jointness result is likely to be robust to more general

models where secondary earnings are continuous (instead of binary). In that context, we show

that starting from the optimal separable schedule, it is desirable to introduce negative jointness

at the margin. Although we can only conjecture that negative jointness will be present at the

optimum, extensive numerical simulations suggest that negative jointness is indeed a feature

of the optimum tax systems.

The desirability of negative jointness seems striking at first glance. Notice that fully joint

progressive income taxation, as observed in the United States for example, is characterized by

positive jointness, i.e. the marginal tax on one spouse depends positively on the income of

the other spouse. Our result suggests that such a system is suboptimal: a move to separate

taxation would be a step in the right direction, but this would not go far enough. However,

it is important to note that, in practice, transfers programs at the bottom are almost always

based on joint family income and the phasing-out of those programs creates implicit taxes

on secondary earners which are actually decreasing with primary earnings. For example, the

United Kingdom has an individual income tax system but a family-based transfer system.

Consider a secondary earner in the United Kingdom with modest earnings. There is a high

tax on secondary earnings when primary earnings are low (because secondary earnings reduce

transfer payments) and there is a low tax on secondary earnings when primary earnings are

high (because the secondary earner then faces solely the individual income tax with low rates

for initial earnings). Hence, our optimal tax results are in fact quite consistent with the actual

tax and transfer systems of many OECD countries.

The remainder of the paper is organized as follows. Section 2 analyzes the case where

secondary earners respond only along the extensive margin (working or not working). Section 3

explores how our results extend to a model where secondary earners respond along the intensive

margin. Section 4 presents numerical simulations. Section 5 discusses the implications of

alternative models of family decision making and, finally, Section 6 offers concluding remarks

and avenues for future work.
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2 Extensive Response for the Secondary Earner

2.1 Labor Supply Model

In this section, we consider the simplest possible labor supply model for couples allowing us

to derive properties of the fully general optimal joint tax system.

In the model, the primary earner is characterized by a scalar ability parameter n similar

to the Mirrlees (1971) model. The cost of earning z for a primary earner with ability n is

n · h(z/n), where h(.) is an increasing and convex function of class C2 and normalized so that

h(0) = 0 and h′(1) = 1. The secondary earner makes a binary decision l = 0, 1 of whether or

not to work. Secondary earners are characterized by a scalar fixed cost of work parameter q.

They earn a uniform amount w when working (l = 1) and zero when not working (l = 0).

The government cannot observe n and q and hence has to base redistribution solely on

observed earnings z and w · l. Therefore, the government sets a general non-linear tax system

which depends on z and l. We discuss the mechanism design details more formally in Appendix

A.1. Hence, the general tax system is characterized by a pair of non-linear tax schedules

T0(z), T1(z) depending on whether the spouse works or not. The tax system is separable if

and only if T0 and T1 differ by a constant. Disposable income for a couple with earnings

(z, w · l) is given by c = z +w · l−Tl(z). The utility function for a couple whose primary earner

has ability n and whose secondary earner has a fixed cost of work q takes the quasi-linear form

u(c, z, l) = c− n · h
( z

n

)
− q · l. (1)

The quasi-linear utility specification amounts to ruling out income effects in the labor supply

decisions of both spouses. We make this assumption for two reasons. First, as is well known

from the Industrial Organization literature on nonlinear pricing (e.g., Wilson, 1993) and as

shown more recently by Diamond (1998) in the context of the Mirrlees optimal income tax

model, ruling out income effects simplifies substantially the theoretical analysis. Second, since

the empirical labor market literature tends to find small income effects (e.g., Blundell and

MaCurdy, 1999), the case of no income effects would seem to provide a useful benchmark.

The assumption that disutility of work is separable across the two spouses is also made to

simplify the analysis.4

4It would be violated if, for example, spouses prefer to spend leisure time together (if one works more, then
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The couple chooses (z, l) so as to maximize utility (1) subject to its budget constraint

c = z + w · l − Tl(z). It is important to note that our model is equivalent to a single decision

maker optimizing along two dimensions z and l. Thus, there is no conflict in the family about

consumption or labor supply choices.5 The first-order condition for primary earnings z is given

by

h′
( z

n

)
= 1− T ′

l (z), (2)

where T ′
l is the marginal tax rate of the primary earner taking l = 0, 1 as given. In the case

of no tax distortion, T ′
l (z) = 0, and our normalization assumption h′(1) = 1 implies that

z = n. That is, primary earnings would be identical to ability n, and it is therefore natural to

interpret n as potential earnings. Positive marginal tax rates depress actual earnings z below

potential earnings n. If the tax system is not separable (so that T ′
0 and T ′

1 are not identical),

there will be an interdependence between the labor supply decisions of the two spouses. We

denote by zl the optimal choice of z for a given labor supply choice l of the secondary earner.

We define the elasticity of primary earnings with respect to the net-of-tax rate (one minus

the marginal tax rate) as

εl =
1− T ′

l

zl

∂zl

∂(1− T ′
l )

=
nh′(zl/n)
zlh′′(zl/n)

. (3)

Because we have assumed away income effects, the compensated and uncompensated elasticity

of labor supply are of course identical. This elasticity would be constant in the iso-elastic case

where h(x) = x1+k/(1 + k). In that case, εl ≡ 1/k.

We assume that couple characteristics (n, q) are distributed according to a continuous

density distribution defined over [n, n̄]× [0,∞). We normalize the size of the total population

to one. We denote by P (q|n) the cumulated distribution function of q conditional on n, p(q|n)

the density of q conditional on n, and f(n) the unconditional density of n, so that the density

of the joint distribution of (n, q) is given by p(q|n) · f(n).

leisure is less valuable for the other spouse). The assumption would also be violated if the are economies of
scale in household production, for example in child care.

5This stands in contrast to the recent literature on collective labor supply (following the seminal contributions
by Chiappori 1988, 1992) modelling couples as two individual utility maximizers interacting with each other.
The single decision maker hypothesis provides a useful and simpler benchmark for our analysis. We argue in
detail in Section 5 that collective labor supply issues matter primarily for redistribution within couples and
that such within-couple redistribution can be made first best and is largely independent of the second-best
redistribution across couples which we consider here.
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For the secondary earner to enter the labor market and work, the utility from participation

must be greater than or equal to the utility from non-participation. Let us denote by

Vl(n) = zl − Tl(zl)− nh
(zl

n

)
+ w · l, (4)

the indirect utility of the couple (exclusive of the fixed work cost q). Differentiating with

respect to n (which we denote by an upper dot from now on), and using the envelope theorem,

we obtain

V̇l(n) = −h
(zl

n

)
+

zl

n
· h′

(zl

n

)
. (5)

The participation constraint for secondary earners is

q ≤ V1(n)− V0(n) ≡ q̄. (6)

As defined in this expression, q̄ is the net gain from working exclusive of the fixed work cost

q. For families with a fixed cost below the threshold-value q̄, the secondary earner works. For

families with a fixed cost above the threshold, the secondary earner stays out of the labor

force. If the tax function is not separable, the value of q̄ and hence the participation decision

of the secondary earner will depend on the labor supply decision of the primary earner. The

probability of labor force participation for the secondary earner at a given ability level n of

the primary earner is given by P (q̄|n).

It is natural to define the participation elasticity with respect to the net gain from working

q̄ as

η =
q̄

P (q̄|n)
∂P (q̄|n)

∂q̄
. (7)

When q̄ = w, secondary earners for whom q ≤ w participate, corresponding to a situation

with no tax distortion in the secondary earner labor supply choice. If q̄ = 0, only spouses with

a zero cost of working would participate, representing the case of 100% taxation of secondary

earnings. Hence, we can define the tax rate on secondary earners by

τ =
w − q̄

w
.

Note that, when taxation is separate so that T ′
0 = T ′

1 and hence z0 = z1, we have τ =

(T1 − T0)/w. When taxation is not separate, i.e. T ′
0 6= T ′

1 and hence z0 6= z1, the parameter τ

captures the tax rate on the secondary earner while T1− T0 is the total change in tax liability

for the couple when the secondary earner starts working.
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Lemma 1 At any point n, we have:

• T ′
0 > T ′

1 ⇐⇒ z0 < z1 ⇐⇒ τ̇ < 0

• T ′
0 = T ′

1 ⇐⇒ z0 = z1 ⇐⇒ τ̇ = 0

• T ′
0 < T ′

1 ⇐⇒ z0 > z1 ⇐⇒ τ̇ > 0

The proof follows easily from (5). The lemma is simply another way to restate the theorem

of equality of the cross-partial derivatives. We naturally say that a tax system has positive

jointness if τ is increasing and negative jointness if τ is decreasing. If τ is constant, the tax

system is separable. Those definitions can be either local (at a given n) or global (for every

n).

It is important to note that double-deviation issues are directly taken care off in our model

because we always reason along the n-dimension and assume that z adapts optimally. For

example, if the secondary earners starts to work, optimal primary earnings shift from z0(n) to

z1(n) but the key first-order condition (5) continues to apply. More precisely, we can show,

exactly as in the Mirrlees (1971) model, that a given path for (z0(n), z1(n)) can be implemented

via a truthful mechanism or equivalently with a non-linear tax system if and only if z0(n) and

z1(n) are non-negative and non-decreasing in n. We explain these mechanism design issues in

more detail in Appendix A.1.

2.2 Deriving the Optimal Income Tax Rates

As in standard optimal income tax models, the government maximizes a social welfare function

defined as the sum of a concave and increasing transformation Ψ(.) of the couples’ utilities

subject to a government budget constraint. Formally, the government maximizes

W =
∫ n̄

n=n

∫ ∞

q=0
Ψ(Vl(n)− q · l)p(q|n)f(n)dqdn, (8)

subject to the budget constraint∫ n̄

n=n

∫ ∞

q=0
Tl(zl)p(q|n)f(n)dqdn ≥ E, (9)

where E is an exogenous per capita revenue requirement. The concavity of Ψ(.) measures

the redistributive tastes of the government. We derive formally in appendix A.2 the following

optimal tax formulas:
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Proposition 1 The first-order conditions for the optimal marginal tax rates T ′
0 and T ′

1 at

ability level n can be written as

T ′
0

1− T ′
0

=
1
ε0
· 1
nf(n)(1− P (q̄|n))

·
∫ n̄

n

{
[1− g0(n′)]

(
1− P

(
q̄|n′

))
+ [T1 − T0]p

(
q̄|n′

)}
f(n′)dn′,

(10)
T ′

1

1− T ′
1

=
1
ε1
· 1
nf(n)P (q̄|n)

·
∫ n̄

n

{
[1− g1(n′)]P

(
q̄|n′

)
− [T1 − T0]p

(
q̄|n′

)}
f(n′)dn′, (11)

where all the terms outside the integral are evaluated at ability level n and all the terms inside

the integral are evaluated at n′, and where g0(n′) and g1(n′) are the average social marginal

welfare weights for couples with primary earners’ ability n′ and secondary earners not working

and working, respectively.

The first-order conditions (10) and (11) apply at any point n where there is no bunching

(i.e., where zl(n) is strictly increasing in n). If the conditions generate segments where z0(n)

or z1(n) are decreasing, then there is bunching and z0(n) or z1(n) are constant over a segment.

Heuristic Proof of Proposition 1

In order to understand the economic intuition behind the formulas in Proposition 1, it is

useful to provide a heuristic derivation of the results based on the analysis of a small tax

reform around the optimum schedule.

A useful first step is to present briefly the derivation of the optimal tax rate formula in the

standard individualistic case (with no secondary earner). In that case, the model is a classic

Mirrlees (1971) optimal income tax model with no income effects as in Diamond (1998). The

heuristic derivation of optimal income tax rates has been developed by Piketty (1997) and

Saez (2001).

Suppose, as illustrated in Figure 1, that we increase the income tax by dT for individuals

with ability above n. This increase in taxes is obtained through a small increase dt in the

marginal tax rate in a small band of ability levels [n, n + dn]. This tax reform raises more tax

revenue from all taxpayers above the small band but decreases their utility. The gain for the

government net of the welfare cost is

dG = dT ·
∫ n̄

n
[1− g(n′)]f(n′)dn′,

where g(n′) is the marginal social welfare weight for individuals with ability n′, and f(n′) is

the density distribution of ability.
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In the small band [n, n + dn], there is a reduction in earnings due to the higher marginal

tax rate dt. This decreases tax revenue collected from taxpayers in this band. An individual

in the band reduces earnings by dz = −z · ε · dt/(1 − T ′) which translates into a tax change

of T ′dz. There are f(n)dn such individuals in the band. Following the same derivation as in

Saez (2001), the effect on tax revenue is6

dL = −dT · nf(n) · ε · T ′

1− T ′ .

At the optimum, this small reform cannot change welfare. Hence, the sum of the behavioral

revenue effect dL and the net gain dG must be zero, implying the optimal income tax rate

formula
T ′

1− T ′ =
1
ε
· 1
nf(n)

·
∫ n̄

n
[1− g(n′)]f(n′)dn′. (12)

This corresponds to the Mirrlees (1971) formula for optimal marginal tax rates in the case

with no income effects as shown in Diamond (1998).7

Let us now examine how the introduction of a secondary earner modifies equation (12).

With a secondary earner, the tax system can be depicted as a pair of tax schedules, shown in

Figure 2, one for couples with working spouses and one for couples with non-working spouses.

Note that the vertical distance between the two schedules, T1 − T0, is the extra tax paid by

the couple when the secondary earner enters the labor force.

Let us consider, as illustrated in Figure 2, the same reform as before but only for couples

with working spouses. More precisely, all couples with ability above n and a working spouse

face a small tax increase dT which is created by increasing the marginal tax rate in the small

band [n, n+dn]. As above, this tax reform raises more tax revenue from all two-earner couples

above the small band but decreases their utility. The gain for the government net of the welfare

cost is therefore

dG = dT ·
∫ n̄

n
[1− g1(n′)]f(n′)P (q̄|n′)dn′,

where g1(n′) is the average marginal social welfare weight for couples with ability n′ and a

working spouse and P (q̄|n′) is the fraction of couples with ability n′ for which the secondary
6The key point to note is that dT = dt · dn · z/n as the width of the small band in terms of realized earnings

is dn · z/n.
7The Diamond (1998) formula has 1 + 1/ε instead of 1/ε because n is defined as wage rates in the original

Mirrlees model used by Diamond (1998). We prefer to define n as potential earnings instead because it simplifies
comparative statics in ε (see Saez, 2001).
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earner works (those with fixed cost of work below the cut-off level q̄).

As above, the increase in the marginal tax rate in the small band creates a negative labor

supply response for the primary earner which affects taxes collected by

dL = −dT · P (q̄|n) · nf(n) · ε1 ·
T ′

1

1− T ′
1

.

In contrast to the previous case, there is now an additional behavioral effect as the tax reform

will induce some working spouses (married to primary earners above n) to drop out of the

labor force and fall back on the one-earner tax schedule. At ability level n′ ≥ n, couples

with fixed work costs between q̄ and q̄ − dT (there are p(q̄|n′) · f(n′) · dT of those couples)

will move to the non-working spouse schedule, creating a government revenue effect equal

to −[T1 − T0] · p(q̄|n′) · f(n′) · dT . Hence, the total effect on tax revenue from participation

responses is given by

dP = −dT ·
∫ n̄

n
[T1 − T0] · p(q̄|n′) · f(n′)dn′.

At the optimum, the sum of the three effects dG, dL, and dP will be zero which leads imme-

diately to equation (11) in the Proposition.

Equation (10) can be obtained in a similar way by considering an increase in the tax

for one-earner couples above n. In that case, the participation effect goes in the opposite

direction: some non-working spouses are induced to start working, which increases government

tax revenue (when T1 − T0 is positive). As a result, the participation term in equation (10)

appears with a positive sign.

2.3 Analyzing the Properties of the Optimal Income Tax Rates

2.3.1 Classical Zero Top and Bottom Results

Sadka (1976) and Seade (1977) demonstrated one of the most striking properties of the Mirrlees

(1971) model, namely that the marginal tax rate should be zero at the top and at the bottom

(provided the bottom skill is positive and everybody works). The same property holds in the

two-earner model we are considering.

Proposition 2 If the distribution of abilities n is bounded, then T ′
0 = T ′

1 = 0 at the top ability

n̄. If the bottom ability n is positive, then T ′
0 = T ′

1 = 0 at the bottom.
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The proof follows directly from the transversality conditions (see Appendix A.1).

It is easy to see why these results hold using the heuristic variational method described

above. Let us go back to Figure 2 and assume that the increase in the marginal tax rate took

place at the very top in the small band [n̄− dn, n̄]. In that case, the mechanical effect (net of

the welfare cost) is negligible relative to the primary earner labor supply effect because there

is nobody above n̄ to collect the extra taxes dT from. Similarly the participation effect is

negligible relative to the primary earner intensive labor supply effect. Thus, the first-order

conditions hold only if T ′
0 = T ′

1 = 0 at the top skill n̄. A similar type of proof can be applied

to the bottom ability as well.

Numerical simulations in the context of the Mirrlees model (e.g., Tuomala, 1990) have

shown that the top result is not of much use in practice because it is true only at the very

top and hence applies only to the top earner. Top tails of the earnings distribution are very

well approximated by Pareto distributions and it is therefore much more fruitful to consider

infinite tails to obtain useful high-income optimal income tax results (see Saez, 2001, for a

discussion of this point). We consider infinite tails below.

2.3.2 The Average Marginal Tax Rate Conditional on Ability n

It is useful to start by noting that the average marginal tax rate over one- and two-earner

couples is exactly identical to the marginal tax rate in the individualistic standard case shown

in equation (12). By taking the (weighted) sum of (10) and (11), we obtain

ε0(1− P (q̄|n))
T ′

0

1− T ′
0

+ ε1P (q̄|n)
T ′

1

1− T ′
1

=
1

nf(n)
·
∫ n̄

n
[1− ḡ(n′)]f(n′)dn′, (13)

where ḡ(n′) ≡ P (q̄|n′)g1 (n′)+(1− P (q̄|n′)) g0 (n′) is the average social marginal welfare weight

for couples with ability n′.

This result can be obtained heuristically by increasing slightly the tax for all couples with

ability above n. In that case, there is no change in the participation decision of secondary

earners and therefore the only behavioral response is a substitution effect for primary earners

around n. The result shows that redistribution from high- to low-ability primary earners follows

the exact same logic as in the Mirrlees (1971) optimal income tax model. The introduction of

a secondary earner does not change the average marginal tax rate faced by primary earners

12



but introduces a difference in the marginal tax rate faced by one- versus two-earner couples,

which we now examine in detail.

2.3.3 The Desirability of Joint Taxation

We introduce two assumptions.

Assumption 1 The function V −→ Ψ′(V ) is convex.

This is a very natural assumption on social preferences, and it will be satisfied for all standard

social welfare functions such as the CRRA form Ψ(V ) = V 1−γ/(1− γ) with γ > 0.

Assumption 2 q and n are independently distributed.

This assumption allows us to isolate the impact on the optimal tax system of the interac-

tion between spouses occurring through the social welfare function. Obviously, we do not

expect this assumption to hold in practice and we examine numerically in Section 4 how this

assumption affects our results.

To begin with, suppose that the government implements the optimal separable tax system,

i.e. a tax system where T1 − T0 is independent of the primary earnings. Then the optimal

constrained schedule is characterized by a single set of primary earner marginal tax rates T ′,

a constant tax on the secondary earner T1 − T0, and an initial condition T0(z(n)). In this

case, we have that z1(n) = z0(n) and that q̄ = w − (T1 − T0) is constant. Hence Assumption

2 implies that P (q̄) is also constant across n. Exactly as in the above heuristic derivation of

the average marginal tax rate, it can be shown that the optimal T ′ is given by the standard

Mirrlees (1971) formula:

T ′

1− T ′ =
1
ε
· 1
nf(n)

·
∫ n̄

n
[1− ḡ(n′)]f(n′)dn′.

The optimal T1−T0 can be derived by shifting either the T1- or the T0-schedule uniformly

by dT . For the T1-schedule, this generates the formula

(T1 − T0) ·
p(q̄)
P (q̄)

= 1−
∫ n̄

n
g1(n)f(n)dn,

and for the T0-schedule, we obtain

(T1 − T0) ·
p(q̄)

1− P (q̄)
=

∫ n̄

n
g0(n)f(n)dn− 1.

13



Summing those two equations implies

(T1 − T0) ·
p(q̄)

P (q̄) · (1− P (q̄))
=

∫ n̄

n
[g0(n)− g1(n)]f(n)dn > 0. (14)

The positive sign in (14) can be obtained as follows. By definition,

g0(n)− g1(n) =
Ψ′(V0)

λ
−

∫ q̄
0 Ψ′(V0 + q̄ − q)p(q)dq

λ · P (q̄)
. (15)

Thus, the fact that Ψ′ is decreasing (Ψ concave) implies that g0 − g1 > 0.

Starting from this separable schedule, let us introduce some negative jointness. We consider

an increase in the tax on one-earner couples and a decrease in the tax on two-earner couples

above some ability level n as depicted in Figure 3. The change in the tax for two-earner couples

is dT1 = −dT/P (q̄) and the change in the tax for one-earner couples is dT0 = dT/ (1− P (q̄)),

so that the net effect on taxes collected (absent any behavioral response) is zero.

The net direct welfare effect is

dW = dT ·
∫ n̄

n
[g1(n′)− g0(n′)]f(n′)dn′.

There are two behavioral responses to the tax change. First, these tax changes are obtained

by raising (lowering) the marginal tax rate on the primary earner in one-earner (two-earner)

families around n. The changes in marginal tax rates generate earnings responses for primary

earners going in opposite directions in one- and two-earner couples. Since the primary earner

elasticity is the same for one- and two-earner couples (from equation (3) as z1 = z0), these

behavioral responses offset each other exactly and the net fiscal effect is zero.

Second, the tax change induces a number of non-working spouses above n to join the labor

force. The number of switchers is (1−F (n))p(q̄)dq̄ and dq̄ = dT0−dT1 = dT/[P (1−P )]. Each

of these movers pays T1 − T0 > 0 extra in taxes and hence generate a positive fiscal effect. So

the net effect on tax revenue due to the behavioral response is dB = dT · (1 − F (n)) · (T1 −

T0) · p(q̄)/[P (1− P )].

Therefore, the net effect of the reform is given by

dB + dW = dT ·
{

(1− F (n))(T1 − T0)
p(q̄)

P (q̄) · (1− P (q̄))
−

∫ n̄

n
[g0(n′)− g1(n′)]f(n′)dn′

}
.

Using (14), this can be rewritten to

14



dB + dW = dT ·
{

(1− F (n))
∫ n̄

n
[g0(n′)− g1(n′)]f(n′)dn′ −

∫ n̄

n
[g0(n′)− g1(n′)]f(n′)dn′

}

= dT ·
{

(1− F (n))
∫ n

n
[g0(n′)− g1(n′)]f(n′)dn′ − F (n)

∫ n̄

n
[g0(n′)− g1(n′)]f(n′)dn′

}
. (16)

dB + dW > 0 will follow from the following Lemma.

Lemma 2 Under Assumptions 1 and 2 and with a separable tax system, g0(n) − g1(n) is

(weakly) decreasing in n.

Proof:

Because the tax system is separable, we have that q̄ = w − (T1 − T0) is constant in n. Hence,

equation (15) implies:

d(g0(n)− g1(n))
dn

=

[
Ψ′′(V0)

λ
−

∫ q̄
0 Ψ′′(V0 + q̄ − q)p(q)dq

λ · P (q̄)

]
· V̇0.

Assumption 1 implies that Ψ′′ is increasing, thus the expression in square brackets above is

negative. Furthermore, V0 is increasing in n. This demonstrates the Lemma. �

The lemma implies that∫ n
n [g0(n′)− g1(n′)]f(n′)dn′

F (n)
> g0(n)− g1(n) >

∫ n̄
n [g0(n′)− g1(n′)]f(n′)dn′

1− F (n)
.

This inequality implies that expression (16) above for dB + dW is positive. Therefore, the

reform depicted on Figure 3 is desirable, showing in particular that separate taxation is not

optimal. We can then state the following proposition.

Proposition 3 Under Assumptions 1 and 2, starting from the optimal separable schedule,

introducing some negative jointness in taxes by lowering taxes in (n, n̄) for two-earner couples

and increasing taxes in (n, n̄) for one-earner couples increases welfare.

This proposition shows that the desirable direction of the reform is to decrease the tax

on secondary earners for high primary earnings or equivalently to increase the marginal tax

rate on one-earner couples relative to two-earner couples. This tax reform result is a first step

toward establishing this pattern at the full joint optimum which we explore below.
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It is important to understand the economic intuition behind this result: the tax on sec-

ondary earners, T1 − T0 > 0, amounts to redistributing from two-earner couples to one-earner

couples. This redistributive value is higher for couples with low primary earnings than for cou-

ples with high primary earnings. This tax on secondary earnings generates a distortion on the

labor supply of the secondary earner which does not depend on primary earnings. Therefore,

trading off equity and efficiency, it is desirable for the government to reduce this secondary

earner tax when primary earnings are high.

2.3.4 Asymptotic Results for T1 − T0

Suppose that n̄ = ∞ so that the ability distribution of primary earners has an infinite tail.

For any reasonable welfare function, we would then have that g0(n) and g1(n) converge to

the same value g∞, because the additional income generated by the secondary earner becomes

infinitesimal relative to primary earner income in the limit.8 It is also natural to assume that

the primary earner elasticities εl converge to an asymptotic value ε∞ as n tends to infinity.

Since top tails of income distributions are well approximated by Pareto distributions, as

explained above, we assume that abilities n are Pareto distributed at the top with Pareto

parameter a, and that fixed work costs q are distributed independently of n at the top with

distribution P (q). Under these assumptions, we can prove the following result:

Proposition 4 Suppose that T1 − T0, T ′
0, T ′

1, q̄ converge to ∆T∞, T ′∞
0 , T ′∞

1 , and q̄∞ when

n goes to infinity. Then we have

• ∆T∞ = 0, i.e., the tax on secondary earners goes to zero as the earnings of the primary

earner increase to infinity.

• T ′∞
0 = T ′∞

1 = (1− g∞) / (1− g∞ + a · ε∞) > 0, exactly as in the Mirrlees model.

Proof:

Because T1−T0 converges when n goes to infinity, it must be the case that T ′∞
0 = T ′∞

1 = T ′∞.

Because, q̄ converges, P (q̄) and p(q̄) also converge. Let us denote by P∞ and p∞ their limits.

The Pareto assumption implies that (1 − F (n))/(nf(n)) = 1/a for n large. Taking the limit

when n goes to infinity of the optimal tax formulas (10) and (11) from Proposition 1, we obtain
8In the case where g∞ = 0, the optimal tax system extracts as much tax revenue as possible from the very

rich (‘soaking the rich’).
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respectively:
T ′∞

1− T ′∞ =
1

ε∞
· 1
a
·
[
1− g∞ + ∆T∞ p∞

1− P∞

]
,

T ′∞

1− T ′∞ =
1

ε∞
· 1
a
·
[
1− g∞ −∆T∞ p∞

P∞

]
.

Hence, it is necessary that ∆T∞ = 0 and the formula for T ′∞ follows immediately. �

The result in Proposition 4 is quite striking. The earnings of spouses of the highest-income

earners should be exempted from taxation, even in the case where the government tries to

extract as much tax revenue as possible from high-income couples (the case of g∞ = 0).

Although the result may seem reminiscent of the classic zero top result of Sadka and Seade

discussed above, the logic is completely different. In fact, in the present case where the

distribution of abilities n has an infinite tail, the tax on the secondary earner is zero at the

top while the marginal tax on the primary earner is actually positive at the top. On the other

hand, in the case of a bounded ability distribution, we would obtain a top marginal tax rate

on the primary earner equal to zero (cf. Proposition 2), but then the tax on the secondary

earner would no longer be zero at the top (a point which we come back to in the following

subsection).

The economic intuition of this result can be understood by using Figure 3 again where we

increase the tax on one-earner couples and decrease the tax on two-earner couples above some

high ability level n. Let us assume that T1 − T0 were to converge to some limit ∆T∞ > 0 so

that the analysis can parallel the analysis of the previous subsection. The mechanical effect

on tax revenue is zero as before. Importantly, the direct welfare effect is also zero because the

reduced welfare of one-earner couples is exactly compensated for by an increase in the welfare

of two-earner couples as the social marginal welfare weights are identical (and equal to g∞)

for both groups. As before, the behavioral response along the intensive margin does not affect

tax revenue. Finally, the tax change induces a number of non-working spouses above n to join

the labor force. Each of these movers would pay ∆T∞ > 0 extra in taxes and hence generate

a positive fiscal effect. This positive effect is the net total effect of the reform as all of the

previous effects cancelled out. Therefore, ∆T∞ > 0 cannot be optimal.9 Therefore we must

have ∆T∞ = 0 asymptotically as stated in Proposition 4.
9Conversely, if ∆T∞ were to be negative, the opposite tax reform would increase welfare.
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In summary, this result can be seen as an extension of Proposition 3. For very high primary

earnings, secondary earnings are negligible and hence there is no value in redistributing from

two-earner couples to one-earner couples. Therefore, there is no point in introducing a tax

distortion on secondary earners when primary earnings are very high.

2.3.5 A General Negative Jointness Result

We now turn to the comparison of T ′
0 and T ′

1 over the full tax schedule. In order to obtain our

central negative jointness result, we need introduce three additional assumptions.

Assumption 3 The function x −→ (1− h′(x))/(x · h′′(x)) is decreasing.

This assumption is satisfied, for example, for iso-elastic utilities h(x) = x1+k/(1 + k) where

the labor supply elasticity ε is constant and equal to 1/k.

Assumption 4 The function x −→ x · p(w − x)/[P (w − x) · (1− P (w − x))] is increasing.

This assumption is satisfied for iso-elastic cost of work distributions of the type P (q) =

(q/qmax)η where the participation elasticity of secondary earners (with respect to the money

metric net utility of working q̄ = V1 − V0) defined as q · p(q)/P (q) is constant and equal to η.

Assumption 5 q · p(q)/P (q) ≤ 1 for all q.

This assumption is satisfied when the participation elasticity η is less than or equal to one.

With these assumptions, we can state the following proposition:

Proposition 5 Under Assumptions 1-5, and assuming there is no bunching at the optimum,

we have

• T ′
1 ≤ T ′

0 for all n. Equivalently, τ is non-increasing in n everywhere.

• T1(zn)− T0(zn) ≥ T1(zn̄)− T0(zn̄) > 0 for all n (assuming that n̄ < ∞).

Proof:

Suppose by contradiction that T ′
1 > T ′

0 for some n. Then, because T ′
0 and T ′

1 are continuous

in n (cf. Appendix A.2) and because T ′
1 = T ′

0 at the top and bottom skills (cf. Proposition 2),

there exists an interval (na, nb) where T ′
1 > T ′

0 and where T ′
1 = T ′

0 at the end points, na and nb.
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This implies that z1 < z0 on (na, nb) with equality at the end points. Hence, by Assumption

3, we have ε1T
′
1/(1 − T ′

1) = (1 − h′1)/(h′′1 · z1/n) > (1 − h′0)/(h′′0 · z0/n) = ε0T
′
0/(1 − T ′

0) on

(na, nb). Then, using the first-order conditions (10) and (11) which apply everywhere because

of our no bunching assumption, we obtain

Ω0 (n) ≡ 1
1− P

∫ n̄

n
[(1−g0)(1−P )+∆T ·p]f(n′)dn′ <

1
P

∫ n̄

n
[(1−g1)P−∆T ·p]f(n′)dn′ ≡ Ω1 (n)

on (na, nb) with equality at the end points. This implies that the derivatives of the above

expressions with respect to n, at the end points, obey the inequalities Ω̇0 (na) < Ω̇1 (na) and

Ω̇0 (nb) > Ω̇1 (nb). At the end points, we have T ′
1 = T ′

0, z0 = z1, and V̇0 = V̇1, which implies

˙̄q = 0 and Ṗ = 0. Hence, the inequalities in derivatives can be written as

1− g0 + ∆T · p/(1− P ) > 1− g1 −∆T · p/P at na,

1− g0 + ∆T · p/(1− P ) < 1− g1 −∆T · p/P at nb.

Combining these inequalities, we obtain

∆T · p
P (1− P )

|na > g0(na)− g1(na) > g0(nb)− g1(nb) >
∆T · p

P (1− P )
|nb

.

The middle inequality is intuitive and follows formally from Assumptions 1-5 as shown in

Appendix A.3. Using that q̄ = w − ∆T at na and nb, along with Assumption 4, we obtain

∆T (na) > ∆T (nb).

However, T ′
1 > T ′

0 and hence z1 < z0 implies that ˙̄q < 0 on the interval (na, nb). Then

we have q̄(na) > q̄(nb) and hence ∆T (na) < ∆T (nb). This generates a contradiction, which

proves that T ′
1 ≤ T ′

0 for all n.

The second part of the proposition follows easily from the first part. Since we now have

T ′
1 ≤ T ′

0 on (n, n̄) with equality at the end points, we obtain Ω0 (n) ≥ Ω1 (n) on (n, n̄) with

equality at the end points. Then we have that Ω̇0 (n̄) ≤ Ω̇1 (n̄), which implies

1− g0 + ∆T · p/(1− P ) ≥ 1− g1 −∆T · p/P at n̄.

Because g0(n̄)− g1(n̄) > 0, we have ∆T (n̄) > 0.

Finally, T ′
1 ≤ T ′

0 and hence z1 ≥ z0 implies ˙̄q ≥ 0 and q̄ ≥ w − ∆T with equality at n̄.

Therefore, we have w−∆T (n) ≤ q̄(n) ≤ q̄(n̄) = w−∆T (n̄), and hence ∆T (n) ≥ ∆T (n̄). �
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At a given primary earner ability level, secondary earner participation is a signal of small

fixed costs of work and being better off than non-participation. This implies g0(n)−g1(n) > 0

making it optimal to redistribute from two-earner couples to one-earner couples, i.e. T1−T0 >

0. This redistribution gives rise to a tax distortion in the entry-exit decision of secondary

earners, creating a trade-off between equity and efficiency. The size of the efficiency cost

does not depend on the ability of the primary earner because the characteristics of the two

spouses, q and n, are independently distributed. An increase in n therefore only influences the

optimal secondary earner tax through its impact on the social welfare weights. The value of

redistribution in favor of one-earner couples is declining in primary earnings, i.e. g0(n)−g1(n)

is decreasing in n, due to the fact that the contribution of the secondary earner to household

utility is declining. Therefore, the tax on secondary earnings is declining in primary earnings.

As shown previously, if the ability distribution of primary earners is unbounded, the secondary

earner tax vanishes to zero at the top. The implication of the declining secondary earner tax

is that the marginal tax rate on the primary earner is lower when the spouse works. This is

what we have termed negative jointness.

Although our results may seem surprising at first glance, they obey a simple redistributive

logic. If the tax schedule for two-earner couples is seen as the base schedule, the tax schedule

for one-earner couples is obtained from this base schedule by giving a tax break — a dependent

spouse allowance — which is larger for couples with low primary earnings than for couples with

large primary earnings. In the limit where primary earnings go to infinity, the tax break is

zero. The shrinking tax break generates an implicit tax on secondary earners which decreases

with primary earnings.

We can prove a simple result on the necessary and sufficient conditions for the optimum

tax to be separable in the earnings of each spouse. This result can be seen as a Corollary to

the much more general Proposition 5.

Proposition 6 Under Assumption 2, if g0 − g1 is constant over n, then the optimum is

characterized by T ′
0 = T ′

1 and

T1 − T0 = [g0 − g1] ·
P (q̄) (1− P (q̄))

p (q̄)
, (17)

which is independent of n. Conversely, if the optimum is such that T ′
1 = T ′

0 (implying T1 − T0

being independent of n), then it must be the case that g0 − g1 is constant over n.
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We present the proof in Appendix A.4. Note that g0 − g1 constant in n cannot happen with

a standard concave social welfare function Ψ. However, one can consider more general social

welfare weights where g0 − g1 constant is possible which makes the result of this proposition

useful.

3 Intensive Response for the Secondary Earner

Instead of specifying a binary choice model for the secondary earner labor supply response,

we can use a classic intensive labor supply model for the secondary earner. In that case, the

primary and secondary earner are modelled symmetrically. There is a distribution of earnings

abilities (np, ns) over the population of couples with density f(np, ns) on the domain D. The

utility function is given by

u(c, zp, zs) = c− nphp(zp/np)− nshs(zs/ns),

with c = zp + zs − T (zp, zs). This is a two-dimensional screening problem. There is a small

literature in optimal tax theory considering this type of multi-dimensional screening models

originating with Mirrlees (1976, 1986). There is a larger literature on multi-dimensional screen-

ing in nonlinear pricing theory (see McAffee and McMillan, 1988; Wilson, 1993; Armstrong,

1996; Rochet and Choné, 1998; and Rochet and Stole, 2002).

The first-order conditions for each earner are given by

h′p(zp/np) = 1− T ′
p and h′s(zs/ns) = 1− T ′

s. (18)

The indirect utility is denoted by V (np, ns) and satisfies (using the envelope theorem):

V ′
np

= −hp + (zp/np)h′p and V ′
ns

= −hs + (zs/ns)h′s. (19)

The objective of the government is to maximize

W =
∫ ∫

D
Ψ(V (np, ns)) f (np, ns) dnpdns,

subject to the budget constraint∫ ∫
D

T (zp, zs) f (np, ns) dnpdns ≥ E.

We can then state the following proposition:
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Proposition 7 The first-order conditions for the optimal marginal tax rates T ′
p and T ′

s at

ability level (np, ns) can be written as

T ′
p

1− T ′
p

=
1
εp
· 1
npf(np, ns)

· µp, (20)

T ′
s

1− T ′
s

=
1
εs
· 1
nsf(np, ns)

· µs, (21)

where µp and µs are multipliers satisfying the transversality conditions µp(np, ns) = µp(n̄p, ns) =

0 for all ns and µs(np, ns) = µs(np, n̄s) = 0 for all np, along with the divergence equation

∂µp

∂np
+

∂µs

∂ns
= [g(np, ns)− 1] · f(np, ns), (22)

where g(np, ns) is the marginal welfare weight for couples with ability (np, ns). At the optimum,

the following equation has to be satisfied everywhere:

zp

n2
p

∂zp

∂ns
h′′p

(
zp

np

)
=

zs

n2
s

∂zs

∂np
h′′s

(
zs

ns

)
. (23)

The proof is presented in Appendix A.5.

The formulas are obtained from the first-order conditions of the Hamiltonian. The diver-

gence equation (22) has many solutions satisfying the boundary transversality conditions.10

Equation (23), which follows from the fact that the second-order derivatives of the indirect util-

ity function V (np, ns) has to be symmetric, gives an additional condition making the optimum

solution unique generically.

The optimal marginal tax rate formulas can be obtained heuristically as follows. Consider

a tax reform increasing by dT the tax for couples (n′p, n
′
s) above (np, ns), i.e., such that n′p > np

and n′s > ns. This change can be obtained by increasing the marginal tax rate on primary

earners in a small interval [np, np + dnp] with spouses with ability n′s above ns. Symmetrically,

the marginal tax rate on secondary earners in a small interval [ns, ns + dns] with spouses with

ability n′p above np is also increased. The reform is illustrated in Figure 4.

The reform leads to a mechanical increase in tax revenue and a reduction in welfare for all

couples in the shaded area in Figure 4. The net effect is given by

dT

∫ n̄p

np

∫ n̄s

ns

[
1− g

(
n′p, n

′
s)

)]
f(n′p, n

′
s)dn′pdn′s.

10More precisely, if (µp, µs) is a solution to the divergence equation, then any function (µs − ∂ϕ/∂ns, µp +
∂ϕ/∂np) where ϕ(np, ns) is an arbitrary scalar function will also satisfy the divergence equation.
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In addition, there will be a labor supply response for individuals in the south and west borders

of the shaded area due to changed marginal tax rates. The net loss of tax revenue is

dT

∫ n̄s

ns

εp

T ′
p

1− T ′
p

npf
(
np, n

′
s

)
dn′s + dT

∫ n̄p

np

εs
T ′

s

1− T ′
s

nsf
(
n′p, ns

)
dn′p.

At the optimum, those two effects need to be equal. It is straightforward to check that the

resulting equation implies equations (20), (21), and (22) of the Proposition.

It is easy to show that the average T ′
p across ns is the same as in the standard Mirrlees

model. We define fp(np) as the unconditional density distribution of np. Let us define Fp as

the cumulated distribution of np:

1− Fp(np) =
∫ n̄p

np

∫ n̄s

ns

f(n′p, n
′
s)dn′sdn′p,

and Gp as the average of marginal welfare weights g(n′p, n
′
s) above np:

Gp(np) · [1− Fp(np)] =
∫ n̄p

np

∫ n̄s

ns

g(n′p, n
′
s)f(n′p, n

′
s)dn′sdn′p.

We can then show,

Proposition 8
T ′

p

1− T ′
p

=
1
εp

(1− Fp) · (1−Gp) + δp(np, ns)
npfp

, (24)

where δp(np, ns) averages to zero when summed over ns, i.e., for all np∫ n̄s

ns

δp(np, ns)f(np, ns)dns = 0.

The symmetric equations hold when substituting p for s.

Proof:

δp(np, ns) is defined as:

δp(np, ns) = npfp · εp ·
T ′

p

1− T ′
p

− (1− Fp) · (1−Gp).

Hence, equation (20) implies:

δp(np, ns) · f(np, ns) = µpfp − (1− Fp) · (1−Gp)f(np, ns).

Integrating this expression over (ns, n̄s), we have:∫ n̄s

ns

δp(np, ns)f(np, ns)dns = fp(np)
∫ n̄s

ns

µp(np, ns)dns − fp(np) · (1− Fp) · (1−Gp). (25)
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Integrating the divergence equation (22) over ns and using the transversality condition, we

have: ∫ n̄s

ns

∂µp

∂np
dns =

∫ n̄s

ns

[g(np, ns)− 1] · f(np, ns)dns,

Integrating again from np to n̄p, we have:∫ n̄s

ns

µp(np, ns)dns =
∫ n̄p

np

∫ n̄s

ns

[1− g(np, ns)] · f(np, ns)dns = (1−Gp(np)) · (1− Fp(np)).

This implies that the expression (25) is zero which completes the proof. �

Desirability of joint taxation

As in the binary case, we make an assumption on the social welfare function (Assumption

1 above) along with an assumption that innate characteristics are independently distributed,

that is,

Assumption 2’: np and ns are independently distributed.

Suppose the government implements the optimal separable tax schedule. It can be shown

easily using the standard one dimensional approach that the optimal separable tax schedules

will take the form
T ′

p

1− T ′
p

=
1
εp

(1− Fp(np)) · (1−Gp(np))
npfp

, (26)

T ′
s

1− T ′
s

=
1
εs

(1− Fs(ns)) · (1−Gs(ns))
nsfs

. (27)

where Gp(np) is the average welfare weight above np (averaged across all ns) and Gs(ns) is

the average welfare weight above ns (averaged across all np).

Starting from those separable schedules, we can consider introducing some jointness as

shown on Figure 5. Let fix a point n = (np, ns). We increase taxes by dT/[(1−Fp(np))Fs(ns)]

in the South-East (SE) quadrant (np, n̄p)×(ns, ns). We decrease taxes by−dT/[(1−Fp(np))(1−

Fs(ns))] in the North-East (NE) quadrant (np, n̄p) × (ns, n̄s). There is no change in taxes in

the North-West and South-West quadrants.

This tax change has no effect on taxes collected, absent any behavioral response because

the number of couples in the SE quadrant is (1− Fp(np)) · Fs(ns) and the number of couples

in the NE quadrant is (1− Fp(np)) · (1− Fs(ns)).
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This tax change gives rise to a direct welfare effect equal to

dW = −dT · [G((np, n̄p)× (ns, ns))−G((np, n̄p)× (ns, n̄s))],

where G(I × J) denotes the average welfare weight on the set I × J .

Those changes can be implemented by decreasing T ′
p in the band np × (ns, n̄s) and by

increasing T ′
p in the band np × (ns, ns). Similarly, T ′

s decreases in the band (np, n̄p) × ns.

Those changes affect labor supply and hence tax collected (but the welfare effect is second

order due to usual envelope theorem argument).

The changes in T ′
p compensate each other exactly in terms of labor supply because we

are starting from a separable tax schedule. Hence, the tax revenue effect due to behavioral

responses is solely due to the T ′
s change. The change in T ′

s needs to accommodate a jump

down in taxes equal to dT/[(1 − Fp)Fs] + dT/[(1 − Fp)(1 − Fs)] = dT/[(1 − Fp)Fs(1 − Fs)].

Hence, the effect on tax revenue can be written as (exactly as in our derivation of the standard

Mirrlees formula in Section 3):

dB =
dT

(1− Fp)Fs(1− Fs)

∫ n̄p

np

T ′
s

1− T ′
s

εsnsfs·fp(n′p)dn′p =
dT

Fs(1− Fs)
T ′

s

1− T ′
s

εsnsfs = dT ·1−Gs(ns)
Fs(ns)

,

where we use the separability for the first equality and the optimal tax formula (27) for the

second equality.

The average social weight is equal to one, hence:

G((np, n̄p)× (ns, ns)) · Fs(ns) + G((np, n̄p)× (ns, n̄s)) · (1− Fs(ns)) = 1,

which, using the fact that Gs(ns) = G((np, n̄p)× (ns, n̄s)), can be written as:

1−Gs(ns)
Fs(ns)

= G((np, n̄p)× (ns, ns))−G((np, n̄p)× (ns, n̄s)).

Plugging this into our expression for dB, we obtain:

dB = dT · [G((np, n̄p)× (ns, ns))−G((np, n̄p)× (ns, n̄s))].

Comparing the expressions for dW and dB above, it is clear that dW + dB > 0 if we can

show that

G((np, n̄p)× (ns, ns))−G((np, n̄p)× (ns, n̄s)) > G((np, n̄p)× (ns, ns))−G((np, n̄p)× (ns, n̄s))

(28)
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Proposition 9 Under Assumptions 1 and 2’, starting from the optimal separable schedule,

introducing some negative jointness in taxes by increasing taxes in (np, n̄p) × (ns, ns) and

decreasing taxes in (np, n̄p)× (ns, n̄s) increases welfare.

Proof:

V (np, ns) is strictly increasing in ns. As a result, Assumption 1 implies that Ψ′′(V (np, n
′
s)) <

Ψ′′(V (np, ns)) < Ψ′′(V (np, n
′′
s)) for n′s < ns < n′′s . Hence averaging across n′s ∈ (ns, ns) and

n′′s ∈ (ns, n̄s), we obtain:∫ ns

ns
Ψ′′(V (np, n

′
s))fs(n′s)dn′s

Fs(ns)
<

∫ n̄s

ns
Ψ′′(V (np, n

′′
s))fs(n′′s)dn′′s

1− Fs(ns)
.

Assumptions 2’ implies that V (np, ns) is also separable and hence that V ′
np

is independent

of ns. Therefore, the inequality above implies that:

Ω(np) =

∫ ns

ns
Ψ′(V (np, n

′
s))fs(n′s)dn′s

Fs(ns)
−

∫ n̄s

ns
Ψ′(V (np, n

′′
s))fs(n′′s)dn′′s

1− Fs(ns)
,

is decreasing in np. Hence, the average of Ω across (np, np) is larger than Ω(np) which is larger

than the average of Ω across (np, n̄p). This can be restated as:

G((np, n̄p)× (ns, ns))−G((np, n̄p)× (ns, n̄s)) < G((np, np)× (ns, ns))−G((np, np)× (ns, n̄s)).

Using the decompositions

G((np, n̄p)× (ns, ns)) = Fp(np) ·G((np, np)× (ns, ns)) + (1− Fp(np)) ·G((n̄p, np)× (ns, ns)),

G((np, n̄p)× (ns, n̄s)) = Fp(np) ·G((np, np)× (ns, n̄s)) + (1− Fp(np)) ·G((n̄p, np)× (ns, n̄s)),

we can obtain immediately the inequality (28) required to complete the proof. �.

This proposition generalizes our previous statement from Section 2.3.3. It shows that in

the double intensive model as well, introducing some negative jointness increases welfare. This

suggests that our central proposition 5 result from the binary case might generalize to the

double intensive model. Under a set of regularity conditions, we should expect that T ′
p is

decreasing with ns (and conversely that T ′
s is decreasing with np).
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4 Numerical Simulations

There are two goals in our numerical simulations. First, we want to illustrate our theoretical

results. This includes showing that our no bunching assumption applies to a wide set of

situations, and demonstrating that negative jointness is optimal in more general models than

the binary case considered in Section 2 and carries over to the case where secondary earners

respond along the intensive margin. Second, we want to give a sense of the quantitative

importance of the negative jointness result, how it depends on the parameters of the model,

and how robust it would be to relaxing some of the Assumptions in our basic model.

For the simulations, we make the following simple parametric assumptions. First, we

assume that h(x) = x1+k/(1+k), so that we have a constant primary earner elasticity ε = 1/k.

Second, we assume that F (n) is distributed over [n, n̄] as a truncated Pareto distribution with

parameter a > 1, implying a cumulative distribution function equal to F (n) = [1−(n/n)a]/[1−

(n/n̄)a]. Third, we assume that q is distributed as a power function on the interval [0, qmax]

with distribution function P (q) = (q/qmax)η and density function p(q) = η · (qη−1)/qη
max. As a

result, the elasticity of participation with respect to net gain of working is constant and equal

to η. Fourth, we assume that the social welfare function Ψ is CRRA with coefficient of risk

aversion γ > 0, i.e., Ψ(V ) = V 1−γ/(1 − γ). In the case of γ = 1, we have Ψ(V ) = log V .

The combination of a power function for P (q) with a CRRA social welfare function simplifies

considerably the numerical simulations because the integrals over q can be expressed directly

in terms of the incomplete beta function making computations much faster. Finally, we assume

no exogenous revenue requirement so that E = 0.

Simulations are based on the optimal marginal tax rate formulas derived in Proposition 1.

As described in Appendix A.6, they are performed using an iterative method until the solution

converges to a fixed point satisfying the optimal formulas as well as all the transversality

conditions and the government budget constraint.

4.1 The Extensive-Intensive Model

In this subsection, we consider the binary case presented in Section 2. In Appendix A.6, we

describe the details of the numerical simulations. In the simulations, we set n = 1, n̄ = 4,

w = 1, and qmax = 2 · w. We assume that n is Pareto distributed with parameter a = 2.
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For our benchmark case, we assume γ = 2, ε = 0.5, η = 0.5. Figure 6 plots the optimal

T ′
0, T ′

1, and τ as a function of n. Consistent with our theoretical results, we have T ′
0 = T ′

1 = 0

at the end points and T ′
1 < T ′

0 everywhere else. The difference between T ′
1 and T ′

0 is about 7

percentage points which makes T ′
0 about 30% percent larger than T ′

1. The graph also shows

that the tax on secondary earners τ is decreasing in n from about 37 percent at n to 22 percent

at n̄. This suggests that the negative jointness property is not a negligible phenomenon and

that it generates a significant difference in marginal tax rates between one- and two-earner

couples.

Figure 7 examines the sensitivity of optimal tax rates with respect to alternative parameter

values. It shows optimal tax rates T ′
0, T ′

1, and τ in four situations. In Panel A, we increase the

participation elasticity η to one. We find that this decreases the level of the tax on secondary

earners by about 10 percentage points but the decreasing slope for τ (or, equivalently, the gap

between T ′
0 and T ′

1) remains significant and fairly close to the benchmark case. In Panel B,

we increase the intensive elasticity ε to one. We find that this decreases the level of marginal

tax rates on primary earners by about 10 percentage points but again the decreasing slope

for τ (and the gap between T ′
0 and T ′

1) remains significant as a proportion of tax rate levels.

In panel C, we increase both η and ε to one. This reduces T ′
0, T ′

1, and τ but the negative

jointness pattern remains. Taken together, results from Panels A, B, C show that levels of tax

rates obey the traditional Ramsey principle: when the elasticity increases, the corresponding

tax rate decreases.

In Panel D, we increase redistributive tastes of the government to γ = 4. We find that all

tax rates increase significantly but, again, the negative jointness pattern remains about the

same in proportion to tax rates.

Figure 8 explores two other departures from our benchmark case. Panel A focuses on

the Rawlsian case (γ = ∞). In this case, we have that g1(n) = 0 and that g0(n) is a Dirac

distribution with all mass concentrated at n. The optimal tax formulas from Proposition 1

continue to apply but the transversality condition T ′
0 = 0 is no longer true at the bottom.

Indeed, the simulation shows that T ′
0(n) = 59% in this case. Interestingly, the negative

jointness result carries over to this case.11 The Rawlsian case is theoretically very interesting
11It is actually possible to present a formal proof of negative jointness in the Rawlsian case following the

same steps as in our proof of Proposition 5.
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because it is formally equivalent to a multi-product nonlinear pricing problem as analyzed in

the Industrial Organization literature.12 This shows that the negative jointness result would

carry over in that case as well. Interestingly, the intensive-binary multi-dimensional screening

problem we have considered does not generate singularities at the bottom even when the

objective function corresponds to the one considered in the Industrial Organization literature.

This is in sharp contrast with the important findings by Armstrong (1996) and Rochet and

Choné (1998) who consider multi-intensive models where there is always singularities at the

bottom.

Figure 8, Panel B, explores the case with a long tail. In the simulation, we set n̄ = 200

(which is a close approximation to an infinite tail). The figure shows that in this case, T ′
0 and

T ′
1 converge to the theoretical asymptotic value of 1/(1 + a · ε) = 1/2. We also see that, as

expected, τ converges to zero.

Figure 9 examines the implications of introducing positive or negative correlation in spouse

characteristics, n and q. If we think of a low q as reflecting a high ability of the secondary

earner, a negative correlation in n and q would correspond to a positive correlation in ability,

and vice versa. We introduce correlation by making qmax a function of n; it will be a decreasing

function in the case of positive ability correlation and an increasing function in the case of

negative ability correlation. The correlations are calibrated so that the average participation

rates of spouses remains approximately the same. Panel C displays the participation rates of

spouses by potential earnings in the cases of independent abilities (benchmark), positive cor-

relation in ability, and negative correlation in ability. Panel C shows that we have introduced

significant correlation with participation rates doubling from n to n̄ in the positive correlation

case and decreasing by 50% from n to n̄ in the negative correlation case. Panels A and B dis-

play the optimal tax rates in the positive and negative correlation case, respectively. The levels

of tax rates are higher in the positive correlation case because inequality is more important in

that case and hence redistribution more desirable. However, the negative jointness pattern is

very similar to the cases with no correlation. This suggests that the empirical observation of

positive correlation in ability across spouses (positive assortative mating) would not overturn
12The case where the government minimizes the efficiency costs of raising a given amount of tax revenue

subject to a participation constraint (couples cannot pay more than what they earn in taxes for example) is
also formally equivalent to the Rawlsian model. In that case, g0 = g1 is constant over n and the bottom
transversality condition T ′

0(n) = 0 does not hold. The pattern of optimal taxes would be identical to Figure 8,
Panel A, but with a uniform scaling down.
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the negative jointness result we have obtained.

4.2 The Discrete Intensive-Intensive Model

In order to explore the robustness of the negative jointness results to more general models, we

extend our binary model from Section 2 to a larger number of possible earnings outcomes for

the spouse. We do not try to simulate directly the double intensive model presented in Section

3 because of the considerable technical difficulty involved. Instead, we consider a simpler

model where the intensive response of secondary earners occurs along a discrete number of

earnings outcomes.

The secondary earner chooses among I+1 occupations denoted by i = 0, 1, ..., I and paying

wages w0 < w1 < ... < wI . We assume that occupation 0 is being out of the labor force and

hence pays no wage (w0 = 0). Secondary earners can be of type i = 1, .., I. We assume that

there is an exogenous fraction h̄i of spouses of type i. A spouse of type i will earn wi−1 if she

expends no effort but can earn wi if she expends a cost qi. The distribution of costs is given

by Γi(qi), with density γi(qi).

This discrete model has been developed in the one-dimensional case by Piketty (1997) and

Saez (2002) as an alternative to the Mirrlees (1971) continuous model. Piketty (1997) and Saez

(2002) show that optimal tax rate formulas carry over intuitively to that model.13 Introducing

the discrete intensive choice for the spouses is the simplest way to generalize the binary model

while keeping tractability, both for deriving optimal tax formulas and implementing numerical

simulations.

There are I + 1 tax schedules: T0(z), .., TI(z), depending on the occupation of the spouse.

As shown in appendix, we can define the marginal tax rate from occupation i−1 to occupation

i for spouses as τi = [wi − Vi − (wi−1 − Vi−1)]/(wi − wi−1). The generalization of negative

jointness to this model can be stated as T ′
0 ≥ T ′

1 ≥ .. ≥ T ′
I for all n which is equivalent to

τi being decreasing in n for each i. We do not have a general theoretical result on negative

jointness in the double-intensive context, but we expect that it holds in a wide set of parametric

assumptions which we explore with numerical simulations.14

13It is important to note that the discreteness is in the outcomes and not in the types. The discrete type
case has been extensively analyzed in the literature. However, the discrete type case does not lend itself to a
simple generalization in the multi-dimensional screening case (see Armstrong, 1995).

14It is easy to show that starting from the optimal separable schedule, introducing some jointness increases
welfare exactly as in Section 3.
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In the simulations, we assume that Γi = (q/qi
max)η with a constant elasticity η. We assume

that wi = i so that wi−wi−1 = 1. An in our binary benchmark case, we assume n = 1, a = 2,

γ = 2, ε = 0.5, and E = 0. We pick a higher parameter for η = 1. In this model, the

effective elasticity of spousal earnings is actually significantly smaller than η (which explains

the relatively higher rates on spouses in the multi-discrete model).

The top two panels of Figure 10 consider the case with finite n̄ = 4 while the bottom panels

consider the case with infinite tail n̄ = ∞.

Panel A, displays the optimal marginal tax rates on the primary earner when I = 3, i.e.

T ′
0, .., T

′
3. The figure shows clearly that T ′

0 > .. > T ′
3 on (n, n̄) with equality (and the standard

zero results) at the end points. The differences in marginal tax rates from T ′
0 to T ′

3 are large.

Panel B displays the marginal tax rates on spouses for each transition (τ1 for the transition

from occupation 0 to 1, etc.). As expected, we see that each τi is decreasing in n consistent

with our conjecture that negative jointness is optimal.

An interesting point to note is that the slope of τi is larger (in absolute value) at the

bottom (i = 1) than at the top (i = 3). The sensitivity of the spouse marginal tax rate with

respect to primary earnings is larger for low earnings spouses than for high earnings spouses.

This is consistent with our general theme that introducing wedges in the secondary earnings

labor supply decision is more desirable when the primary earnings are low because spousal

earnings make a significant difference in welfare. This significant difference in welfare is of

course higher when spouse earnings are modest (moving from w0 = 0 to w1 = 1) than when

spouse earnings are large (moving from w2 = 2 to w3 = 3).

The bottom two panels display the case with an infinite tail for n. As we obtained in the

binary case, we see that marginal tax rates on primary earners converge to 0.5 when n grows

and that the marginal taxes on spouses all converge toward zero (although relatively slowly).

Another interesting point to note is that, if we refine the grid for wi by increasing the

number I, we should expect the solution to converge to the double intensive model. It is

unfortunately impossible for us to simulate optimal tax system with a very fine grid for I

because our iterative simulation method is no longer converging in that case. However, we

speculate that the optimum solution in the double intensive model might be regular every-

where with no bunching. This again stands in sharp contrast to the analysis in the Industrial

Organization literature where marginal welfare weights are constant and where bunching is
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always part of the solution as shown in the important contributions by Armstrong (1996) and

Rochet and Choné (1998). We speculate that the solution in the double-intensive model of

Section 3 would also be smooth with no singularities and display global negative jointness as

long as the social welfare function is not degenerate as in the Rawlsian case (where the same

singularity phenomena uncovered by Armstrong (1996) and others would clearly be present).

4.3 Link to Actual Tax Schedules

The numerical simulations presented here are quite stylized and do not represent a real world

calibration attempt. Nevertheless, it is useful to discuss if observed redistribution schedules

display negative jointness as our results suggest they should.

Notice first that joint progressive income taxation featuring increasing marginal tax rates

on family income, such as the system in the United States, display positive jointness and hence

contradict our results. However, the central point to note is that welfare programs offering

low-income support are always based on family income the phasing-out of those means-tested

programs typically create high marginal tax rates at the bottom of the earnings distribution.

As a result, the tax rate on spousal earnings is very high when primary earnings are low

enough to bring the family into the phase-out range of transfer programs. On the other hand,

the tax on the spouse is lower when primary earnings are high enough that the family is

beyond the phase-out range. Hence, transfer programs in OECD countries do create negative

jointness in the lower part of the primary earnings distribution. Then, if the income tax itself

is individually based, such as the one operated by the United Kingdom, the tax rate on spouses

never increases in the upper part of the primary earnings distribution and hence the global

tax/transfer system displays negative jointness as our theory predicts is optimal.

It is also interesting to emphasize that the debate on moving from joint to individual

taxation is always about the income tax which applies on the middle and upper part of the

distribution (thanks to exemptions at the bottom keeping low income earners out of the income

tax) and never about transfers which are means-tested and based on total family income. Our

theory provides support to the current practice of basing transfers on family income and having

an individual income tax system above the bottom in order to avoid positive jointness.

Figure 11 provides an optimum tax simulation example illustrating this. We consider a

distribution of abilities that is uniform from n = 0 to n = 3, and Pareto distributed above
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n = 3 with Pareto parameter a = 2. The density distribution is continuous at n = 3 (but

has a kink). We use ε = 2/3, η = 1/3, and γ = 5. The interesting and realistic feature is

that marginal tax rates in the standard Mirrlees model are U-shaped in that case (as shown

theoretically in Diamond, 1998 and in the calibrated simulations of Saez, 2001). High rates at

the bottom correspond to the phasing-out of the lumpsum grant. As can be seen from (12),

increasing rates at the top are due to the redistributive tastes of the government combined with

the Paretian assumption and constant elasticity. Figure 11 shows that, for the specific choices

of parameters, the tax rate τ on spouses is in between the marginal tax rates for primary

earners at the bottom of the ability distribution. This means that the optimal schedule would

be closely approximated by a family based transfer system at the bottom where transfers are

assessed based on total family earnings and are phased out as earnings increase with high and

declining marginal tax rates. Obviously, a family based schedule cannot be optimum at high

n as τ vanished to zero and T ′
1 and T ′

0 converge to T ′∞ = 43%. However, an individually

based progressive income tax could generate a pattern with increasing marginal tax rates for

primary earners and low marginal tax rates for secondary earners. Thus, combining a family

based transfer system with a individually based income tax could be a good approximation to

the fully optimal system displayed on Figure 11.

It would be important to calibrate carefully the optimal tax model we have developed to

a real world situation, allowing for correlation of ability across spouses and replicating closely

the actual distribution of joint earnings, and modelling responses along both the extensive and

intensive margin calibrated to match the empirical estimated elasticities. Such work would

allow an assessment of the quantitative importance of optimal negative jointness and provide

a better guide to policy makers founded in optimal tax theory. It would also be interesting to

analyze how our couple results interact with the recent studies (Saez, 2002, Immervoll et al.

2007) showing that work subsidies for low income earners are actually optimal in the presence

of strong participation effects in the case of individual taxation. This goes well beyond the

theoretical exploration attempted here and is left for future work.
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5 The Unitary Versus the Collective Approach

We have considered the unitary labor supply model whereby husbands and wives pool their

resources and maximize a single utility function subject to a family budget constraint. A num-

ber of papers have challenged the unitary approach and have viewed the family as consisting of

members with conflicting interests engaging in bargaining over household resources (see Lund-

berg and Pollak, 1996, for a survey of this literature). Following the seminal contributions by

Chiappori (1988, 1992), the collective labor supply model has become especially popular. The

collective approach does not model a particular bargaining process — only Pareto efficiency

is assumed — and it encompasses the unitary model and cooperative bargaining models as

special cases.

In the absence of income pooling, intra-family resource allocation will generally depend

on which family member receives or controls income. Empirical studies have supported this

hypothesis. For example, the influential study of Lundberg et al. (1997) demonstrated that

giving a child allowance directly to the mother instead of to the main income earner as a

reduction in withheld taxes significantly increases spending on children.

What would be the implications of abandoning the income-pooling assumption for the

question of optimal income redistribution analyzed here? Let us adopt the collective approach,

assuming that consumption is allocated across spouses in a Pareto efficient way. The collective

decision process is associated with implicit weights on the individual utilities of each spouse,

where the weights may depend on factors such as innate characteristics, relative incomes,

and on whom receives government transfers. In the government’s problem, social preferences

will be defined on the individual utilities of husbands and wives rather than a family utility

function, and the government attach welfare weights to each family member which may or

may not differ from the weights implicit in the family’s decision process.

It is natural to distinguish between two cases depending on the government’s view on

the intra-family distribution. In one case, policy makers respect family sovereignty, i.e., the

marginal welfare weight on the husband relative to the wife is exactly identical to the relative

bargaining weights implied by the sharing rule in the family. In this case, it is easy to see that

changes in intra-household distribution have no consequences for social welfare, implying that

all of our optimal tax results would continue to apply.
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In the alternative case, policy makers disagree with intra-household distribution. Suppose

for example that, from the point of view of the government, husbands have too much power

and get too large a fraction of consumption in the family. How can the government get a

fairer distribution within families? The findings by Lundberg et al. (1997) show that the

government can actually modify within-family consumption allocation at no fiscal cost simply

by transferring the child benefit from husband to wife. As shown in the formal analysis of

Kroft (2006), by transferring enough resources from husband to wife, the government is able to

restore a fair allocation across spouses in the family. In sharp contrast to the previous models

we have considered here, this within-family redistribution is first best (it does not create any

efficiency costs) as long as the within-family bargaining is Pareto efficient (as assumed in the

theory of Chiappori 1988, 1992).

Hence, within-family distributional issues can be solved using such non-distortionary gov-

ernment transfers within families. Once those within-family distributional issues are fully

resolved at no efficiency costs, we are essentially back to the problem of redistribution across

families which we have analyzed in this paper. Hence, collective labor supply models introduce

a new within-family dimension to the redistribution problem which is very interesting and calls

for more work but which is largely independent of the across-family redistribution problem we

have considered in this paper.

6 Conclusion

This paper has explored the optimal income tax treatment of couples allowing for fully general

joint income tax systems. To make progress on this difficult problem, we have considered a

simple model with no income effects, separability of labor supply decisions across spouses,

and focusing primarily on the case where labor supply of the secondary earner is a binary

participation choice. Under additional regularity assumptions and independent abilities across

spouses, our central result is that the optimal tax function should have a negative cross partial

derivative: the tax rate on secondary earnings should decrease with primary earnings and the

marginal tax rate on primary earners should be lower when secondary earnings increase. The

intuition for this negative jointness result can be understood as follows.

Redistribution from couples with high primary earnings to couples with low primary earn-
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ings takes place according to the logic of the Mirrlees (1971) model. Indeed, in our model,

the average marginal tax rate on primary earners at each earnings level is identical to the one

obtained in the Mirrlees model. Conditional on primary earnings, redistribution takes place

by transferring income from two-earner couples to one-earner couples. Such a transfer creates

a tax wedge on secondary earnings. This tax wedge is largest at low primary earnings because

this is where redistribution from two-earner couples to one-earner couples is most valuable.

Thus, although our results may seem surprising at first sight, they obey a simple redistribu-

tive logic. If the tax schedule for two-earner couples is seen as the base schedule, the schedule

for one-earner couples is obtained from that base schedule by giving a dependent spouse tax

allowance, which is larger for couples with low primary earnings than for couples with high

primary earnings.

This seems a surprising result at first sight, and at odds with the actual practice of joint

progressive taxation of family income. However, we have argued that the current practice of

many European countries — such as the United Kingdom — of having an individual income

tax system for middle- and high-income earners in combination with a means-tested family-

based transfer system for low-income earners creates such a pattern: at the bottom, secondary

earners face a large tax rate due to the phasing-out of transfer benefits, while at the middle

and high end, secondary earners face a low tax rate due to the individual income tax.

It would clearly be important to extend the numerical simulations to a carefully calibrated

model which is closer to the real world in terms of the distribution of abilities and the cor-

relation of such abilities across couples. Such numerical simulations would allow us to assess

the quantitative importance of the negative jointness result relative to the many other factors

and parameters that affect optimal tax rates. We leave such an important extension for future

work.
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A Appendix

A.1 Mechanism Design and Implementation

In our model, agents are characterized by the private information θ = (n, q) ∈ Θ. Agents

choose the observable action x = (z, l) and receive consumption c. The utility function is

u(x, c, θ) = c− n · h
( z

n

)
− q · l.

The taxes paid to the government are defined as z + w · l − c. By the revelation principle,

any government mechanism can be decentralized by a truthful mechanism (x(θ), c(θ))θ∈Θ such

that, for any θ, θ′:

u(x(θ), c(θ), θ) ≥ u(x(θ′), c(θ′), θ).

Given the binary structure for action l, we have:

Lemma 3 Any truthful mechanism (x(θ), c(θ))θ∈Θ can be replaced by a simpler “truthful”

mechanism (zl(n), cl(n))l∈{0,1},n∈(n,n̄) such that, for each n, there is a q̄(n) so that:

• When q < q̄(n), (l′ = 1, n′ = n) maximizes u(zl′(n′), l′, cl′(n′), (n, q)) over all (l′, n′).

• When q ≥ q̄(n), (l′ = 0, n′ = n) maximizes u(zl′(n′), l′, cl′(n′), (n, q)) over all (l′, n′).

For each agent, the new mechanism generates the same utility as the original mechanism and

raises at least as much taxes.

Proof:

For each n, the set Q = (0,∞) is partitioned into 2 sets Q0(n) and Q1(n) such that, q ∈ Q0(n)

implies l(n, q) = 0 (spouse does not work) and q ∈ Q1(n) implies l(n, q) = 1 (spouse works).

Let us assume by convention that, in case of indifference between l = 0 or l = 1, we always

have l(n, q) = 0. For a given n, and for all q, q′ ∈ Q0(n), truthfulness implies

c(n, q)− nh

(
z(n, q)

n

)
≥ c(n, q′)− nh

(
z(n, q′)

n

)
.

Hence c(n, q)−nh(z(n, q)/n) is constant for q ∈ Q0(n). Let us denote its value by V0(n). Let us

denote by Z0(n) = {z(n, q), q ∈ Q0(n)}. Let us denote by m = supz∈Z0(n) z−nh(z/n)−V0(n).

Because z → z − nh(z/n) is continuous with a maximum at z = n and decreases to −∞

when z goes to infinity, there is some z0(n) ∈ Z̄0(n) (the closure of Z0(n)) such that m =
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z0(n)−nh(z0(n)/n)−V0(n).15 We define c0(n) = nh(z0(n)/n)+V0(n). The choice (c0(n), z0(n))

“maximizes” government taxes z − c over the (closure of the) set (c(n, q), z(n, q))q∈Q0(n).

Similarly, let us define V1(n) = c(n, q) − nh(z(n, q)/n) constant over q ∈ Q1(n), and

(c1(n), z1(n)) which “maximizes” taxes z−c over the (closure of the) set (c(n, q), z(n, q))q∈Q1(n).

Let us define q̄(n) = V1(n)− V0(n). Truthfulness implies:

V1(n)− q ≥ V0(n), for all q ∈ Q1(n).

V0(n) ≥ V1(n)− q, for all q ∈ Q0(n).

Therefore, Q1(n) = (0, q̄(n)) and Q0(n) = [q̄(n),∞). If q < q̄(n), the agent chooses l = 1 and

(c1(n), z1(n)). If q > q̄(n), the agent chooses l = 0 and (c0(n), z0(n)). If q = q̄(n), the agent is

indifferent and we assume by convention that the agent chooses l = 0.

Let us show that the new mechanism is truthful. For all n, n′, q < q̄(n), q′ < q̄(n′),

u(z1(n), 1, c1(n), (n, q)) = V1(n)− q ≥ c(n′, q′)− nh(z(n′, q′)/n)− q.

Because (z1(n′), c1(n′)) is in the closure of the set (c(n′, q′), z(n′, q′))q′∈Q1(n′), and u(.) is con-

tinuous, the inequality above implies that, for all n, n′, q < q̄(n):

u(z1(n), 1, c1(n), (n, q)) ≥ u(z1(n′), 1, c1(n′), (n, q)).

Similarly, for all n, n′, q < q̄(n), q′ ≥ q̄(n′),

u(z1(n), 1, c1(n), (n, q)) = V1(n)− q ≥ V0(n) ≥ c(n′, q′)− nh(z(n′, q′)/n),

which implies, for all n, n′, q < q̄(n):

u(z1(n), 1, c1(n), (n, q)) ≥ u(z0(n′), 0, c0(n′), (n, q)).

For all n, n′, q ≥ q̄(n), the inequalities:

u(z0(n), 0, c0(n), (n, q)) ≥ u(z0(n′), 0, c0(n′), (n, q)),

u(z0(n), 0, c0(n), (n, q)) ≥ u(z1(n′), 1, c1(n′), (n, q)),

can be demonstrated in the same way and complete the proof. �

15To see this, take a sequence zk ∈ Z0(n) such that zk − nh(zk/n) − V0(n) converges to m. zk is bounded
above, and hence a subsequence of zk converges to some limit z0(n).
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Thanks to this lemma, we can restrict ourselves to the simpler mechanism consisting of

two standard one-dimensional schedules (z0(n), c0(n)) and (z1(n), c1(n)), where agents choose

which schedule to use based on their choice for l. As, in the one-dimensional mechanism design

theory (see e.g., Guesnerie and Laffont (1987)), we define implementability as follows:

Definition 1 An action profile (z0(n), z1(n))n∈(n,n̄) is implementable if and only if there exists

transfer functions (c0(n), c1(n))n∈(n,n̄) such that (zl(n), cl(n))l∈{0,1},n∈(n,n̄) is a simple truthful

mechanism.

The central implementability theorem of the one-dimensional case carries over to our model.

Lemma 4 An action profile (z0(n), z1(n))n∈(n,n̄) is implementable if and only if z0(n) and

z1(n) are both non-decreasing in n.

Proof:

The utility function c−nh(z/n) satisfies the classic single crossing (Spence-Mirrlees) condition.

Hence, from the one-dimensional case, we know that z(n) is implementable, i.e., there is some

c(n) such that c(n) − nh(z(n)/n)) ≥ c(n′) − nh(z(n′)/n)) for all n, n′, if and only if z(n) is

non-decreasing.

Suppose (z0(n), z1(n)) is implementable, implying that there exists (c0(n), c1(n)) such that

(zl(n), cl(n))l∈{0,1},n∈(n,n̄) is a simple truthful mechanism. That implies in particular that

cl(n) − nh(zl(n)/n)) ≥ cl(n′) − nh(zl(n′)/n)) for all n, n′ and for l = 0, 1. Hence, the one

dimensional result implies that z0(n) and z1(n) are non-decreasing.

Conversely, suppose that z0(n) and z1(n) are non-decreasing. Because z0(n) is non decreas-

ing, the one dimensional result implies there is c0(n) such that c0(n)−nh(z0(n)/n)) ≥ c0(n′)−

nh(z0(n′)/n)). Similarly, there is c1(n) such that c1(n)−nh(z1(n)/n)) ≥ c1(n′)−nh(z1(n′)/n)).

It is easy to show that the mechanism (zl(n), cl(n))l∈{0,1},n∈(n,n̄) is actually truthful. Define

Vl(n) = cl(n)−nh(zl(n)/n)) for l = 0, 1 and q̄(n) = V1(n)− V0(n). We only need to prove the

cross-inequalities. For all n, n′, q ≥ q̄(n),

u(z0(n), 0, c0(n), (n, q)) = V0(n) ≥ V1(n)− q ≥ u(z1(n′), 1, c1(n′), (n, q)).

For all n, n′, q < q̄(n),

u(z1(n), 1, c1(n), (n, q)) = V1(n)− q ≥ V0(n) ≥ u(z0(n′), 0, c0(n′), (n, q)).
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The key assumption that allows us to obtain those simple results is the fact that q is separable

in our utility specification. �

A.2 Solving the Government Maximization Problem and Proposition 1

The government maximizes

W =
∫ n̄

n

{∫ V1(n)−V0(n)

0
Ψ(V1(n)− q)p(q|n)dq +

∫ ∞

V1(n)−V0(n)
Ψ(V0(n))p(q|n)dq

}
f(n)dn,

subject to the budget constraint∫ n̄

n

∫ V1(n)−V0(n)

0
[z1(n) + w − nh(z1(n)/n)− V1(n)]p(q|n)f(n)dqdn+

∫ n̄

n

∫ ∞

V1(n)−V0(n)
[z0(n)− nh(z0(n)/n)− V0(n)]p(q|n)f(n)dqdn ≥ E,

and the constraints arising from the couples utility maximization:

V̇0(n) = −h(z0(n)/n) + (z0(n)/n)h′(z0(n)/n),

V̇1(n) = −h(z1(n)/n) + (z1(n)/n)h′(z1(n)/n),

and the implementability constraints:

ż0(n) ≥ 0,

ż1(n) ≥ 0,

Let us denote by λ, µ0(n), µ1(n), ρ0(n), and ρ1(n), the five multipliers associated. The

transversality conditions are µ0(n) = µ1(n) = µ0(n̄) = µ1(n̄, 1) = 0 and ρ0(n) = 0 at each

point of increase of z0(n) and ρ1(n) = 0 at each point of increase of z1(n). We abbreviate

h(z1(n)/n) into h1, etc.

The first order conditions with respect to z0(n) and z1(n) are

µ0 ·
z0

n2
h′′0 + λ · (1− h′0) · (1− P (q̄|n)) · f(n) + ρ̇0 = 0,

µ1 ·
z1

n2
h′′1 + λ · (1− h′1) · P (q̄|n) · f(n) + ρ̇1 = 0.

The first order conditions with respect to V0(n) and V1(n) are

−µ̇0 =
∫ ∞

V1−V0

Ψ′(V0(n))p(q|n)f(n)dq − λ(1− P (q̄|n))f(n)− λ[T1 − T0]p(q̄|n)f(n),
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−µ̇1 =
∫ V1−V0

0
Ψ′(V1(n)− q)p(q|n)f(n)dq − λP (q̄|n)f(n) + λ[T1 − T0]p(q̄|n)f(n).

Introducing the social marginal welfare weights

g0(n) =

∫∞
V1−V0

Ψ′(V0(n))p(q|n)f(n)dq

λ · (1− P (q̄|n))f(n)
,

g1(n) =

∫ V1−V0

0 Ψ′(V1(n)− q)p(q|n)f(n)dq

λ · P (q̄|n)f(n)
,

we can integrate those two equations using the upper transversality conditions and obtain:

−µ0(n)
λ

=
∫ n̄

n

{
[1− g0(n′)](1− P (q̄|n′))f(n′) + [T1 − T0]p(q̄|n′)f(n′)

}
dn′,

−µ1(n)
λ

=
∫ n̄

n

{
[1− g1(n′p)]P (q̄|n′)f(n′)− [T1 − T0]p(q̄|n′)f(n′)

}
dn′.

On a segment where zl is increasing, we have ρl = 0 and hence ρ̇l = 0. In that case,

plugging these two equations into the first order conditions for z0 and z1, we obtain:

1− h′0
h′0

·(1−P (q̄|n))f(n)n =
h′′0 · z0/n

h′0
·
∫ n̄

n

{
[1− g0(n′)](1− P (q̄|n′))f(n′) + [T1 − T0]p(q̄|n′)f(n′)

}
dn′,

1− h′1
h′1

· P (q̄|n)f(n)n =
h′′1 · z1/n

h′1
·
∫ n̄

n

{
[1− g1(n′)]P (q̄|n′)f(n′)− [T1 − T0]p(q̄|n′)f(n′)

}
dn′.

Using the fact that T ′
l = 1− h′l and the definition of the labor supply intensive elasticity (3),

εl = h′l/(h′′l · zl/n), we obtain the expressions (10) and (11) in Proposition 1.

If the above expressions generate solutions z0, z1 that are non-decreasing everywhere, then

there is no bunching and those expressions apply everywhere. However, if the z0, z1 coming

out of those expressions are decreasing on some portions, then they cannot be the solution

and the constraint żl ≥ 0 has to bind on some segments and there is bunching. On bunching

segments, we no longer have ρ̇l = 0 and hence the expressions of Proposition 1 no longer apply.

As in the standard one dimensional model, zl and T ′
l are continuous in n and display no

jumps (even when there is bunching) because of our simple quasi-linear specification.

Note that the bottom transversality conditions imply∫ n̄

n

{
[1− g0(n′)](1− P (q̄|n′))f(n′) + [T1 − T0]p(q̄|n′)f(n′)

}
dn′ = 0,

∫ n̄

n

{
[1− g1(n′)]P (q̄|n′)f(n′)− [T1 − T0]p(q̄|n′)f(n′)

}
dn′ = 0.
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A.3 Proof of Lemma in Proposition 4

Lemma 5 If T ′
1 > T ′

0 on (na, nb) with equality at the end points, then g0(na) − g1(na) >

g0(nb)− g1(nb).

Proof:

We have q̄ = V1 − V0 and

g0(n)− g1(n) =
Ψ′(V0)

λ
−

∫ q̄
0 Ψ′(V1 − q)p(q)dq

λ · P (q̄)
> 0,

where positivity follows from Ψ′ decreasing. Differentiating the equation with respect to n, we

have:

ġ0(n)− ġ1(n) = V̇0 ·
Ψ′′(V0)

λ
− V̇1 ·

∫ q̄
0 Ψ′′(V1 − q)p(q)dq

λ · P (q̄)

+
p(q̄) ˙̄q
P (q̄)

·
∫ q̄
0 Ψ′(V1 − q)p(q)dq

λ · P (q̄)
− p(q̄) ˙̄q

P (q̄)
· Ψ′(V0)

λ
.

Rearranging, we obtain:

ġ0(n)− ġ1(n) = V̇0 ·
Ψ′′(V0)

λ
− V̇1 ·

∫ q̄
0 Ψ′′(V1 − q)p(q)dq

λ · P (q̄)
− (g0(n)− g1(n)) · p(q̄) ˙̄q

P (q̄)
,

and therefore:

ġ0(n)− ġ1(n) = V̇1 ·

[
Ψ′′(V0)

λ
−

∫ q̄
0 Ψ′′(V0 + q̄ − q)p(q)dq

λ · P (q̄)

]
+

˙̄q ·
[
−(g0(n)− g1(n)) · p(q̄)

P (q̄)
− Ψ′′(V0)

λ

]
. (29)

The first term in expression is negative because V̇1 > 0 and by Assumption 1, Ψ′′ is increasing

and hence the term inside the first square brackets is negative.

In the segment (na, nb), z1 < z0 and hence ˙̄q < 0. Furthermore,

g0(n)− g1(n) =

∫ q̄
0 [Ψ′(V0)−Ψ′(V0 + q̄ − q)]p(q)dq

λ · P (q̄)
=

∫ q̄
0 −Ψ′′(Vq)(q̄ − q)p(q)dq

λ · P (q̄)
.

where V0 ≤ Vq ≤ V1−q using the intermediate value theorem. Because, −Ψ′′ > 0 is decreasing,

we have:

g0(n)− g1(n) ≤ −Ψ′′(V0)q̄
λ

.

Assumption 5 (q̄ · p(q̄)/P (q̄) ≤ 1) then implies that:

(g0(n)− g1(n)) · p(q̄)
P (q̄)

≤ −Ψ′′(V0)
λ

.
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Therefore, the second term in square brackets in expression (29) above is non-negative. Thus,

the second term in (29) is non-negative. As a result, ġ0(n) − ġ1(n) < 0 on (na, nb) and the

Lemma is proven. �

A.4 Proof of Proposition 6

For the first part, we want to show that, if q and n are independent and g0 − g1 is constant,

then T ′
0 = T ′

1 and T1 − T0 given by eq. (17) satisfy the first-order conditions of Proposition 6.

Notice that T ′
0 = T ′

1 implies z0 = z1, ε0 = ε1, and q̄ = w − T1 + T0 being independent of n.

Then the first-order conditions of Proposition 1 implies that, for every n,∫ n̄

n

{
[1− g0] + [T1 − T0]

p (q̄)
1− P (q̄)

}
f(n′)dn′ =

∫ n̄

n

{
[1− g1]− [T1 − T0]

p (q̄)
P (q̄)

}
f(n′)dn′,

which may be written as∫ n̄

n
[g0 − g1]f(n′)dn′ =

∫ n̄

n
[T1 − T0]

p (q̄)
P (q̄) (1− P (q̄))

f(n′)dn′. (30)

If g0 − g1 is constant, this condition is solved by T1 − T0 given by (17).

For the second part, with q and n being independent, if T ′
0 = T ′

1 we have just shown that

the first-order conditions imply (30). Taking the derivative of eq. (30) with respect to n, we

obtain

g0 − g1 = [T1 − T0]
p (q̄)

P (q̄) (1− P (q̄))
,

which is constant in n under the assumptions.

A.5 Proof of Proposition 7

We start by forming the integrated Hamiltonian:

H =
∫ ∫

D
Ψ(V (np, ns)) f (np, ns) dnpdns

+
∫ ∫

D
λ [−V + zp + zs − nphp (zp/np)− nshs (zs/ns)] f (np, ns) dnpdns

+
∫ ∫

D

[
−hp + (zp/np) h′p − Vnp

]
µ̃p (np, ns) dnpdns

+
∫ ∫

D

[
−hs + (zs/ns) h′s − Vns

]
µ̃s (np, ns) dnpdns,

where λ is the scalar budget constraint multiplier and µ̃p and µ̃s are scalar functions of (np, ns).

To simplify the problem, it is useful to introduce the following formula from multi-variable
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calculus (see Mirrlees, 1976)∫ ∫
D

(
Vnp µ̃p + Vns µ̃s

)
dnpdns +

∫ ∫
D

V

(
∂µ̃p

∂np
+

∂µ̃s

∂ns

)
dnpdns =

∫
∂D

V (µ̃ · ds) ,

where µ̃ = (µ̃p, µ̃s) and ds denotes the normal outward vector along ∂D, the boundary of D.

Using the above expression, we may rewrite the Hamiltonian to

H =
∫ ∫

D
Ψ(V (np, ns)) f (np, ns) dnpdns

+
∫ ∫

D
λ [−V + zp + zs − nphp (zp/np)− nshs (zs/ns)] f (np, ns) dnpdns

+
∫ ∫

D

[
−hp + (zp/np) h′p

]
µ̃p (np, ns) dnpdns

+
∫ ∫

D

[
−hs + (zs/ns) h′s

]
µ̃s (np, ns) dnpdns

+
∫ ∫

D
V

(
∂µ̃p

∂np
+

∂µ̃s

∂ns

)
dnpdns −

∫
∂D

V (µ̃ · ds) .

The transversality condition is that µ̃ · dS = 0 on the boundary ∂D. In words, the scalar

product of the normal vector ds to the boundary of D and µ̃ must be zero at all points along

the boundary ∂D. If D = [np, n̄p] × [ns, n̄s], then µ̃p = 0 for np = np, n̄p and µ̃s = 0 for

ns = ns, n̄s.

The first-order conditions in zp and zs are:

λ
[
1− h′p (zp/np)

]
f (np, ns) +

zp

np
h′′p (zp/np) ·

µ̃p

np
= 0 (31)

λ[1− h′s(zs/ns)]f(np, ns) +
zs

ns
h′′s(zs/ns) ·

µ̃s

ns
= 0 (32)

After routine rewriting and introducing the elasticity of earnings with respect to 1−T ′
p, denoted

by εp, for the primary earner, the first-order condition in zp at (np, ns) becomes

T ′
p

1− T ′
p

=
1
εp
· 1
npf (np, ns)

· µ̃p

λ
. (33)

Similarly, the first-order condition in zp at (np, ns) is

T ′
s

1− T ′
s

=
1
εs
· 1
nsf (np, ns)

· µ̃s

λ
. (34)

The first-order condition in V at (np, ns) gives the divergence equation

∂µ̃p

∂np
+

∂µ̃s

∂ns
=

[
λ−Ψ′ (·)

]
f (np, ns) . (35)
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By defining µi ≡ µ̃i/λ for i = p, s and g (np, ns) = Ψ′ (·) /λ, we rewrite the first-order conditions

above so as to obtain the conditions (20), (21), and (22) in Proposition 5.

The solution to a multi-variable calculus problem must also fulfill the so-called integrability

constraint. According to this constraint, the resulting marginal tax rates (T ′
p, T

′
s) must be a

gradient so that the tax function T (zp, zs) is well defined. (T ′
p, T

′
s) is a gradient iff the matrix of

second derivative is symmetric, i.e., T ′′
ps = T ′′

sp. Similarly, the indirect utility function V (np, np)

needs to satisfy Vnsnp = Vnpns . It turns out that those two conditions are equivalent and are

satisfied iff condition (23) is fulfilled. From the derivatives of the indirect utility function

in (19), we have Vnpns =
(
zp/n2

p

)
h′′p (zp/np) ∂zp/∂ns and Vnsnp =

(
zs/n2

s

)
h′′s (zs/ns) ∂zs/∂np

thereby obtaining condition (23) directly.

To see that condition (23) is also equivalent to T ′′
ps = T ′′

sp note that 1 − T ′
p (zp, zs) =

h′p (zp/np) and 1−T ′
s (zp, zs) = h′s (zs/ns). By differentiating each of those two equations with

respect to np and ns, we obtain a system of equations which takes the matrix form

T ′′Dz = Dg′(z/n),

from which it is seen that T ′′
ps = T ′′

sp if condition (23) is satisfied.

A.6 Numerical Simulations

A.6.1 Extensive-Intensive Model Simulations

Simulations are performed with Matlab software and our programs are available upon request.

We select a grid for n, from n = 1 to n̄ = 4 with 1000 elements: (nk)k. Integration along

the n variable is carried out using the trapezoidal approximation. All integration along the q

variable is carried out using explicit closed form solutions using the incomplete β function:∫ V1−V0

0
Ψ′(V1 − q)p(q)dq =

∫ V1−V0

0

1
(V1 − q)γ

η · qη−1

qη
max

dq

=
η

qη
max

∫ V1−V0

0
(V1−q)−γqη−1dq =

η · V η−γ
1

qη
max

∫ 1−V0
V1

0
tη−1(1−t)−γdt =

η · V η−γ
1

qη
max

·β(1−V0

V1
, η, 1−γ)

where the incomplete beta function β is defined as (for 0 ≤ x ≤ 1):

β(x, a, b) =
∫ x

0
ta−1(1− t)b−1dt.
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Matlab does not compute it directly for γ ≥ 1 (b ≤ 0) but we have used the development in

series to compute it very accurately and quickly with a subroutine:

β(x, a, b) = 1 +
∞∑

n=1

(1− b)(2− b)..(n− b)
n!

· xn+a

n + a
.

We pick qmax = 2 ·w1+1/η so that the fraction of spouses working is normalized in the situation

with no taxes (when w or η change). We set w = 1 in the simulations presented so that

qmax = 2.

Simulations proceed by iteration:

We start with given T ′
0, T ′

1 vectors, derive all the vector variables z0, z1, V0, V1, q̄, T0, T1,

λ, etc. which satisfy the government budget constraint and the transversality conditions.16

This is done with a sub-iterative routine that adapts T0 and T1 as the bottom n until those

conditions are satisfied. We then use the first order conditions (10), (11) from Proposition 1

to compute new vectors T ′
0, T ′

1. In order to converge, we use adaptive iterations where we take

as the new vectors T ′
0, T ′

1, a weighted average of the old vectors and newly computed vectors.

The weights are adaptively adjusted down when the iteration explodes. We then repeat the

algorithm. This procedure converges to a fixed point in most circumstances. The fixed point

satisfies all the constraints and the first order conditions. We check that the resulting z0 and

z1 are non-decreasing so that the fixed point is implementable. So the fixed point is expected

to be the optimum.17

The central advantage of our method is that the optimal solution can be approximated

very closely and quickly. In contrast, brute force simulations where we search the optimum

over a large set of parametric tax systems by computing directly social welfare would be much

slower and less precise.

A.6.2 Discrete Intensive-Intensive Model Simulations

We can denote again by Vi the indirect utility (before fixed cost of work) of a couple when the

spouse works in occupation i: Vi = zi − Ti(zi) + wi − nh(zi/n), where zi is chosen optimally

such that h′(zi/n) = 1− T ′
i .

16The adjust the constants for Tl(n) until all those constraints are satisfied. This is done using a secondary
iterative procedure.

17We also compute total social welfare and verify on examples that it is higher than social welfare generated
by other tax rates T ′

1, T ′
0 satisfying the government budget constraint.
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A spouse of type i works in job i (instead of job i − 1) if and only if her fixed costs of

work effort qi are such that q̄i ≡ Vi − Vi−1 ≥ qi. Hence, the fraction of spouses of type i who

work in job i is Γi(q̄i). We denote by Pi = h̄i · Γi(q̄i) + h̄i+1 · [1 − Γi+1(q̄i+1)] the number of

spouses working in job i. We denote by Qi(q̄i) = h̄i · Γi(q̄i) + h̄i+1 + .. + h̄I the number of

spouses working in jobs i, i+1, .., I. The first order conditions of the government problem can

be written as follows:

εi ·
T ′

i

1− T ′
i

·nf(n) ·Pi =
∫ n̄

n
[(1−gi)Pi−∆Ti · h̄i ·γi(q̄i)+∆Ti+1 · h̄i+1 ·γi+1(q̄i+1)]f(n′)dn′. (36)

The average marginal tax rate across spouses occupations is also given by the classical

Mirrlees formula and the transversality conditions imply that T ′
i = 0 at n and n̄. For the

simulations, we pick the following (equivalent) transversality conditions:∫ n̄

n
[(1−Gi)Qi −∆Ti · h̄i · γi(q̄i)]f(n′)dn′.

where Gi is the average of gi, .., gI , and Qi = Pi + .. + PI .

Simulations in that case proceed in exactly the same way as in the binary case. We choose

the same functional form Γi(q) = (q/qmax)η. We choose wi = i and I = 3 in the example. We

choose h̄i = 1/I and we set again qmax = 2.

We then use the same iterative process starting from a set of vectors T ′
0, .., T

′
I , then com-

puting all the vector variables z0, .., zI , V0, .., V1, q̄1, .., q̄I , T0, .., TI , λ, etc. which satisfy the

government budget constraint and the transversality conditions. We then recompute T ′
0, .., T

′
I

using the first order conditions (36) and using the same adaptive weighting procedure as above.

The iterative process is converging in most cases when I is not too large.
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Chiappori, Pierre-André (1988). “Rational Household Labor Supply.” Econometrica,

56(1), 63–90.
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Figure 6: Benchmark Simulation: γ=2, η=0.5, ε=0.5
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Figure 7: Sensitivity Analysis around Benchmark (γ=2, η=0.5, ε=0.5)
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Figure 8: Two Cases of Interest
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Figure 9: The Effects of Spousal Correlation of Ability
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Figure 10: Discrete Intensive Spouse Model
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Figure 11: Getting Closer to Family Based Transfers, γ=5, η=1/3, ε=2/3
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