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Optimal Consumption in a Frictionless World: Complete Markets

To understand consumption under uncertainty, we start with the benchmark
case of complete markets. Complete asset markets e¤ectively allow consumers
to buy insurance against any contingency (or to sell insurance). This is possi-
ble because there exist assets with returns di¤erentiated across every state of
nature, and, subject to an overall budget constraint, individuals can purchase
any (positive or negative) amount of such assets.
This is not realistic � although one way to read the proliferation of exotic

derivative products in recent years is as an evolution of real-world markets
toward the ideal of completeness.
Why, then, consider this case? Because the availability of this benchmark

� like the hypothetical "frictionless plane" in physics � allows us to get a
handle on more complex problems. For example, Newton�s law F = ma is
counterintuitive until one learns to abstract from the force exerted by friction.
Assumptions. Let�s start with a pure endowment model (no investment or

production). There are two periods. On date 1, individual i�s endowment is yi.
From the perspective of date 1, however, the date 2 endowment is a random
variable. There are also only two possible states of nature on date 2. In state 1
the endowment is yi(1), in state 2 it is y1(2):
Let ci denote the individual�s date 1 consumption, ci(1) and ci(2) the indi-

vidual�s contingency plans for consumption on date 2. The plans are contingent
on the state that actually occurs on date 2. The probability that state s occurs
is �(s), where, summing over all states s, �s�(s) = 1:
A key hypothesis is that the individual chooses the consumption plan that

maximizes average lifetime utility,

U i = �(1)
�
u(ci) + �u

�
ci(1)

�	
+ �(2)

�
u(ci) + �u

�
ci(2)

�	
= u(ci) + �

�
�(1)u

�
ci(1)

�
+ �(2)u

�
ci(2)

�	
= u(ci) + �Eu

�
ci(s)

�
;

where c(s) denotes consumption in state s. This is the von Neumann-Morgenstern
expected utility criterion and, being linear in probabilities, it is somewhat spe-
cial. One of its consequences (as we shall see) is that it forces the intertemporal
substitution elasticity to equal the (inverse) coe¢ cient of absolute risk aversion
for isoelastic utility. We shall de�ne the risk aversion coe¢ cient later.
A basic Arrow-Debreu security for state s pays its owner 1 unit of output

on date 2 if state s occurs and nothing otherwise. (In contrast, a riskless bond
pays its owner the same amount of output in every state.)
Let r be the rate of interest on a bond. We de�ne r by the de�nition that

1=(1 + r) is the price (all prices are in terms of date 1 consumption) of a bond
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paying its owner 1 unit of output on date 2 regardless of the state of nature.
We further de�ne

p(s)

1 + r
= date 1 price of the Arrow-Debreu state s security.

Suppose you were to buy exactly one Arrow-Debreu security for each possible
state s. What would we call this "bundle" of assets, which pays you exactly 1
unit of output on date 2 regardless of the state? The name is bond. Thus we
have the arbitrage relation: X

s
p(s) = 1:

Think of there as being three goods in the model � date 1 consumption
and date 2 consumption contingent on state of nature. The Arrow-Debreu
assets�prices de�ne the prices of future contingent consumptions. So individual
i maximizes U i subject to the lifetime budget constraint

ci +
p(1)

1 + r
ci(1) +

p(2)

1 + r
ci(2) = yi +

p(1)

1 + r
yi(1) +

p(2)

1 + r
yi(2): (1)

Individual choice. As in our prior, deterministic model people smooth con-
sumption across dates (subject to intertemporal price incentives), but they also
plan to have smooth consumption across states � subject to inter-state price
incentives.
We see how this works by writing down the usual Lagrangian for maximizing

U i subject to (1) and �nding the �rst-order conditions:

u0(ci) = �i;

�� (s)u0
�
ci(s)

�
= �i

p(s)

1 + r
:

Combine these to get

u0(ci)
p(s)

1 + r
= �� (s)u0

�
ci(s)

�
;

the Euler equation for the state-s Arrow-Debreu security. Interpretation: At an
optimum, the preset utility forgone by buying the asset just equals the future
utility it is expected to yield. The conditions (just add them up) also imply the
stochastic Euler equation for bonds,

u0(ci) = (1 + r)�Eu0
�
ci(s)

�
:

Notice that the ratio of marginal utilities across states on date 2 is

u0
�
ci(1)

�
u0 [ci(2)]

=
p(1)=�(1)

p(2)=�(2)
:

When p(s) = �(s), we say that prices are actuarially fair. In general they
need not be, in which case people will not elect to insure their consumption
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completely (arrange for equal consumption in every state of nature). In general,
the prices p(s) will re�ect not only the state probabilities �(s), but also the
aggregate output levels in various states, with p(s)=�(s) being relatively higher
in states where aggregate output is relatively scarce.
There are some important implications for the comovements of individual

consumption levels over time. If individuals face common prices and have com-
mon probability assessments, then for any consumers i and j, and for any state
s,

u0
�
ci(s)

�
u0(ci)

=
u0
�
cj(s)

�
u0(cj)

:

For the isoelastic utility function, this implies

log
�
ci(s)=ci

�
=
�i
�j
log
�
cj(s)=cj

�
:

Thus consumption growth rates are perfectly correlated. Studies of micro-data
tend to reject this implication of complete markets.
Applications of Arrow-Debreu prices. AD prices are useful in a complete-

markets setting because they give a market valuation of output available in
various states. We then can value contingent output as we would any other
good. Applications include investment under uncertainty and asset pricing.
Regarding investment, imagine that future output is given by A(s)F (K);

where K is capital accumulated prior to production [and the realization of the
productivity shock A(s)]. One unit of output translates into one unit of installed
capital (contrary to the q model to be discussed later) and capital depreciates
at rate �. Under certainty the rule for optimal capital would be 1 = (1 +
r)�1[AF 0(K) + 1 � �]. (Why?) Under uncertainty with complete markets, we
can simply add up the capital�s possible future products state by state and price
those using the AD prices:

1 =
X

s

p(s)

1 + r
[A(s)F 0(K) + 1� �]:

Next suppose we have an asset that pays a dividend d(s) in state s: If we are
in a two-period world (so that asset value is zero after the dividend pay-out),
the asset price is given simply by

q =
X

s

p(s)

1 + r
d(s):

Using the Euler equation for AD securities, we can alternatively write this as

q = �
X

s

�(s)u0 [c(s)]

u0(c)
d(s);

which can be re-written as the asset Euler equation

u0(c)q = �E fu0[c(s)]d(s)g , q = E

�
�u0[c(s)]

u0(c)
d(s)

�
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(Whose consumption are we using above? Does it matter?)
For a long-lived asset in a economy with more time periods we would instead

have

qt = Et

�
�u0(ct+1)

u0(ct)
(dt+1 + qt+1)

�
;

a stochastic di¤erence equation in qt. The term �u0(ct+1)
u0(ct)

(the intertemporal
marginal rate of substitution) is called the pricing kernel.

Optimal Consumption with Incomplete Markets

Let us analyze, more generally, a situation where asset markets mat be
incomplete.
To lead in to the permanent income/life-cycle discussion, I assume an in�nite

horizon.
Dynamic programming of consumption and portfolio choice. The consumer

maximizes expected lifetime utility beginning at date t = 0;

E0

( 1X
t=0

�tu(ct)

)
:

There are N risky assets with random net real returns rit between the end of date
t and start of t + 1. The individual enters t with �nancial assets at, receives
wages wt, and consumes ct. Assets plus new savings at + wt � ct are then
allocated among the N available assets, with xit denoting the portfolio share of
the ith asset. The gross payo¤s on the portfolio sum to assets at the start of
t+ 1, at+1. The implied constraints are:

at+1 =
NX
i=1

xit(1 + r
i
t+1)(at + wt � ct);

NX
i=1

xit = 1:

Let V (at) denote the value function at the start of period t.1 The Bellman
equation for the problem is

V (at) = max
ct;xit

fu(ct) + �EtV (at+1)g ;

where the maximization is done subject to the preceding two constraints.
To derive the �rst-order conditions for a maximum, set up the Lagrangian

u(ct) + �EtV

"
NX
i=1

xit(1 + r
i
t+1)(at + wt � ct)

#
� �

 
NX
i=1

xit � 1
!
:

1More generally, if wages follow a Markov process, current and possibly past wages would
appear as additional state variables in the value function. Because wages are not chosen by
the consumer, however, I simplify the notation by suppressing the dependence of the value
function on the wage process.
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The �rst-order conditions for a maximum are

u0(ct)� �Et

"
NX
i=1

xit(1 + r
i
t+1)V

0(at+1)

#
= 0

and, for all assets i,

�Et
�
(1 + rit+1)V

0(at+1)
�
(at + wt � ct)� � = 0:

Multiply the last condition by xit (which is known as of date t; because it
is chosen then) and sum over i = 1; :::; N . The implication is that u0(ct) =
�= (at + wt � ct) : As a result, by the envelope condition

u0(ct+1) = V
0(at+1);

we �nd that for every available asset i,

u0(ct) = �Et
�
(1 + rit+1)u

0(ct+1)
�
:

So an Euler equation holds for each asset even if markets are incomplete and
human capital is not tradable.
Quadratic case: Hall�s random walk hypothesis. Let there be an asset with

the riskless real return r. Its Euler equation is

u0(ct) = (1 + r)�Et [u
0(ct+1)] :

Assume that u(ct) has the quadratic form

u(ct) = act �
b

2
c2t

and that (1 + r)� = 1: (Quadratic utility is at best an approximation; taken
literally and globally, it would imply the possibility of negative marginal utility
of consumption.) Because u0(c) = a � bc; the Euler equation implies Hall�s
random-walk hypothesis:

ct = Etct+1:

Hall�s basic idea is to test this relationship rather than to estimate a struc-
tural consumption function.
A key implication is that consumption should respond to unexpected news,

but not to predictable events. The reason is that technically speaking, con-
sumption is a martingale (a special case of a random walk). Thus, we can write
the consumption process as

ct+1 = ct + ut+1

where ut+1 is uncorrelated with any information known as of date t:
This is the key implication being tested in Hsieh�s paper on the Alaska fund

(see the 202A reader, part 2). He �nds that Alaska fund oil dividends, which
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are substantial and quite predictable as to amounts and timing, do not a¤ect
Alaskan�s consumption when they are paid out.
The certainty-equivalent consumption function. Consider a world in which

risk-free bonds are the only asset. Ex post, and with an in�nite horizon, con-
sumption must satisfy the intertemporal constraint

1X
t=0

ct
(1 + r)t

= a0 +
1X
t=0

wt
(1 + r)t

:

Ex ante, we there fore have

E0

1X
t=0

ct
(1 + r)t

= a0 + E0

1X
t=0

wt
(1 + r)t

:

Because E0ct = E0Et�1ct = E0ct�1 = E0ct�2 = ::: = c0; we can solve for c0:

c0 =
ra0
1 + r

+
r

1 + r
E0

1X
t=0

wt
(1 + r)t

:

This formulation gets at Milton Friedman�s idea of "permanent income"
as a determinant of consumption: the present value of wage income is what
matters in the consumption function (along with the interest yield on �nancial
wealth). Accordingly, permanent changes in wages will have a bigger e¤ect on
consumption than will transitory changes. The life-cycle hypothesis of Franco
Modigliani and Richard Brumberg is motivated by similar economics, but ac-
counts for the typical lifetime income cycle. The age-earnings pro�le is usually
positively sloped, then �attens out, then drops sharply with retirement. Accord-
ingly, workers will tend to dissave while young, pay back debt and accumulate
wealth during prime earning years, then retire on savings and accumulated pen-
sion bene�ts. (Clearly the wrong model of Mark Zuckerberg.)
Precautionary saving behavior. The certainty equivalent model contains no

true role for risk. As an alternative consider the utility function

u(c) =
c1�R � 1
1�R :

The expression

�cu
00(c)

u0(c)
= R

is known as the Arrow-Pratt coe¢ cient of relative risk aversion. Of course, it is
also 1=�, where � is the intertemporal substitution elasticity � an equivalence
that is sometimes unfortunate but that can be relaxed with more general utility
speci�cations.
With � = (1 + r)�1; assume also that the distribution of log ct+1 is normal

from the perspective of date t. That is, assume that

log ct+1 � N(Et log ct+1; �2t ):
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By the properties of the lognormal distribution, the Euler equation is

c�Rt = Etc
�R
t+1

, c�Rt = e�REt log ct+1+
R2

2 �
2
t :

Because ct = elog ct , taking logs of both sides gives

log ct = Et log ct+1 �
R

2
�2t :

So here we have an e¤ect of consumption variance on the level of consump-
tion: higher variance lowers consumption today, and therefore increases saving.
This precautionary saving e¤ect is proportional to the measure of risk aversion,
R.
More generally, the Euler equation in this case reads

u0(ct) = Etu
0(ct+1):

A mean-preserving expansion in the variance of ct+1 must raise Etu0(ct+1) if
u0(c) is a strictly convex function of c, that is, if the third derivative u000(c) > 0:
(This follows from Jensen�s inequality.) If Etu0(ct+1) rises, so does u0(ct), which
means that ct falls and saving rises. So a positive third derivative of utility leads
to precautionary saving. For the quadratic utility function, u000(c) = 0, so there
is no precautionary saving in that case.
Another way to see the impact of higher consumption variability on Eu0(c)

is through a second-order approximation. Let �c � Ec: Then, taking a Taylor
approximation around c = �c gives us

u0(c) � u0(�c) + u00(�c)(c� �c) + 1
2u

000(�c)(c� �c)2:

Taking expected values lead to

Eu0(c) � u0(�c) + 1
2u

000(�c)Var(c):

Thus, when (and only when) the third derivative u000 is positive, a rise in the
variance of consumption Var(c), holding the expected level �c constant, raises
Eu0(c):
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