
Economics 230a, Fall 2019 
Lecture Note 4: Excess Burden and Basic Optimal Taxation 

Deadweight loss measures the economic cost of market distortions; when one is referring to the 
distortions caused by taxation, the deadweight loss is referred to as the excess burden of taxation, 
because it is the economic cost to taxpayers over and above the tax revenue collected.   
 
Although deadweight loss is an intuitive concept, it may be defined in more than one way, 
depending on the conceptual experiment one has in mind.  Consider the case of a representative 
consumer.  Let y be the consumer’s initial income endowment and p0 be the initial price vector 
the consumer faces.  Assume that this price vector represents the undistorted prices charged by 
producers, and that these prices are fixed, for example set by world markets.  Now, suppose 
government imposes a tax vector t to raise revenue, with the resulting new price vector p1 = p0 + 
t.  One definition of deadweight loss is the amount that one would have to give the consumer to 
compensate for the taxes, net of the revenue the government collects.  Assuming the individual’s 
indirect utility function is V(p, y), this leads to the following expression for deadweight loss: 
 
(1) DWL1 = E(p1, V(p0, y)) – y – t′xc(p1, V(p0, y)) 
 
where E(⋅) is the household’s expenditure function and xc(⋅) is the vector of the household’s 
compensated demands.  The first two terms indicate how much the individual must be 
compensated to remain at the initial level of utility (the Hicksian measure known as 
compensating variation), and the third term indicates how much tax revenue is available for 
compensation.  Note that, for consistency, we calculate this revenue assuming that the 
compensation is occurring, i.e., that the consumer remains on the original indifference curve.  
 
Or, we could define deadweight loss as the amount we could take from the consumer, beyond the 
revenue we give up; to offset gains from removing the tax (the Hicksian equivalent variation):  
 
(2) DWL2 = y – E(p0, V(p1, y)) – t′x(p1, y) 
 
How do these measures relate? Using the identities y = E(p0, V(p0, y)) = E(p1, V(p1, y)), x(p1, y) = 
xc(p1, V(p1, y)), and t = p1 – p0, we may rewrite these two expressions as: 
 
(1′) DWL1 = E(p1, V(p0, y)) – E(p0, V(p0, y))  – (p1 – p0)′xc(p1, V(p0, y)) 
 
(2′) DWL2 = E(p1, V(p1, y))  – E(p0, V(p1, y)) – (p1 – p0)′xc (p1, V(p1, y)) 
 
(1′) and (2′) differ only in the level of utility (pre-tax or post-tax) at which the calculation is 
made; the two measures will generally differ.  Figure 3 in Auerbach-Hines provides a graphical 
illustration of DWL2, and a similar measure can be drawn for DWL1.  It is also customary to 
illustrate these measures graphically in price-quantity diagrams.  Assume that there are two 
goods, a numeraire commodity that is untaxed and has a price of 1, and a taxed commodity with 
price p and quantity x.  Then measure DWL1 (similarly for DWL2) reduces to an expression that 
replaces the price and quantity vectors with scalars relating to the taxed good: 
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Increasing the tax so that the price rises from p1 to p2 
incurs not only another Harberger triangle, B, but 
also a rectangle, C; whereas A and B are second-
order terms, C is a first-order term – it does not 
vanish as the additional tax becomes small.  This is 
because the additional tax is imposed starting at a 
distorted point.  In other words, it is more costly to 
exacerbate an existing distortion.  For the additional 
tax, say ∆t, the second-order DWL approximation is 
– (t∆x + ½∆t∆x). 
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It is important to note that deadweight loss relates to 
the compensated demand curve, because the 
distortion is to relative prices; responses to lump-sum 
taxes also have income effects, but there is no 
associated distortion.  The deadweight loss area, 
approximately triangular in shape, is known as a 
Harberger triangle; its size is approximately – ½t∆x.  
One may also derive the vector version of this 
approximation for many taxes imposed 
simultaneously from expression (1′) or (2′) as a 
second-order Taylor approximation, equal to  – 
½t′∆x, around the undistorted equilibrium. 
 

(3) DWL1 = E(p1, V(p0, y)) – E(p0, V(p0, y))  – (p1 – p0)′xc(p1, V(p0, y)) 
 
Using the fact that E(p1, u) – E(p0, u) = ∫ 𝑥𝑥𝑐𝑐(𝑝𝑝,𝑢𝑢)𝑑𝑑𝑝𝑝𝑝𝑝1

𝑝𝑝0
, we graph expression (3) as: 
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Some Observations about Deadweight Loss 
1. Deadweight loss rises roughly with the square of the tax.  From the approximation we can see 
this, since when the tax rate t is twice as large, so, roughly, is the reduction in x, ∆x (this is exact 
only if the demand curve is linear).  For intuition, consider doubling the tax in the above graph: 
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Another way to view the extra distortion, C, is that it is the revenue loss due to a decline in 
taxed-goods consumption.  That is, additional revenue from the tax increase is D – C, not D.  It is 
even possible for area C to exceed area D in size, in which case revenue would decline with the 
increase in the tax, indicating that the tax rate is higher than the revenue-maximizing rate, i.e., to 
the right of the peak of revenue as a function of the tax rate (also known as a Laffer curve). 

2. Deadweight loss rises roughly in proportion to the elasticity of demand.  Since ∆x is 
approximately t∙ ∂xc/∂p = (t/p)∙p∙∂xc/∂p = – (t/p)∙x∙ε, where ε  is the own compensated demand 
elasticity (defined so that it is nonnegative), we can rewrite the second-order approximation for 
DWL as (t/p)2∙px∙ε.  Graphically, we can see that a larger elasticity of demand increases 
deadweight loss and reduces revenue for a given tax rate. 
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Here, area E represents DWL, equal to 
the revenue cost of reducing the price to 
p3, E+F, net of the individual gain, F.  As 
before, DWL ≈ -½∆t∆x, where now ∆t < 
0 and ∆x > 0.  
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3. Excess burden applies for subsidies as well as taxes.  With a subsidy, an individual will be 
better off, but by less than if the government had transferred the revenue directly: 
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4. Excess burden applies to supply distortions as well. Consider, for example, the labor supply 
decision, which we can represent using a horizontal labor demand curve and an upward sloping 
compensated labor supply curve.  We can also measure deadweight loss in markets where both 
demand and supply are not infinitely elastic.  (See Auerbach and Hines, sec. 2.2.)  The basic 
formula still applies; in particular the distortion is proportional to the change in quantity, ∆x. 
 
Can’t we avoid excess burden by imposing taxes at the same rate on all commodities? If the 
consumer’s budget constraint is p′x = y, why not impose taxes at a constant rate, θ, so that the 
household’s budget constraint becomes (1+θ)p′x = y ⇒ p′x = y/(1+θ) – effectively, a lump-sum 
income tax? The problem is that most of what we call “income” results from individual choices, 
for example how much labor to supply.  That choice would be distorted by the proposed scheme.  
Suppose that income equals w(𝐿𝐿� - l), where the term in parentheses is labor endowment less 
leisure; then we can rewrite the budget constraint as p′x + wl = w𝐿𝐿�.  Taxing everything on the 
left-hand side at a uniform rate would give us a nondistortionary tax, but it would require that we 
be able to tax leisure, l, separately from the labor endowment, 𝐿𝐿�.  If the government taxes leisure 
net of labor endowment at a constant rate, this feasible tax, applied to p′x + w(l - 𝐿𝐿�), will raise no 
revenue.  Given that a realistic tax system will involve distortions, how should we choose taxes 
to minimize deadweight loss? The discussion above suggests that we should avoid high rates of 
tax on any one commodity, and be especially concerned about taxing commodities with high 
response elasticities.  But this intuition is based on analysis of a tax on a single margin. 
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Optimal Taxation 
The basic optimal tax problem seeks to maximize a representative agent’s utility given that the 
government must raise a certain amount of revenue, R, using proportional commodity taxes, 
which may include taxes on supplies of factors, such as labor.  (As Auerbach and Hines discuss, 
this is equivalent to minimizing one of the definitions of deadweight loss derived above.)  We 
also assume, initially, that producer prices, q, are fixed, and that the household has no truly 
exogenous income y.  This means that the initial budget constraint is q′x = 0, and hence that 
proportional taxes on all commodities raise no revenue, as just discussed.  We can therefore 
arbitrarily set one tax rate equal to zero, say for good 0.  (The same analysis would apply for y > 
0 due to the existence of pure profits, if we assumed that such pure profits could be taxed away, 
except that the government would then face the task of raising the remaining R-y rather than R.) 
We also choose this good as numeraire: p0 = q0 = 1, where p is the price the consumer faces.   
 
The Lagrangian for the problem is L = V(p,0) - µ[R – (p – q)′x].  We can maximize with respect 
to p directly; since dti/dpi =1, choosing t is the same as choosing p.)  First-order conditions are: 
 

−𝜆𝜆𝑥𝑥𝑖𝑖 + 𝜇𝜇 �𝑥𝑥𝑖𝑖 + �𝑡𝑡𝑗𝑗
𝑑𝑑𝑥𝑥𝑗𝑗
𝑑𝑑𝑝𝑝𝑖𝑖𝑗𝑗

�     = 0      ∀𝑖𝑖 

 
where λ is the marginal utility of income.  Using the Slutsky equation, 𝑑𝑑𝑑𝑑𝑗𝑗

𝑑𝑑𝑝𝑝𝑖𝑖
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, and 
grouping terms in xi, we get:  
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where α can be thought of as the “social” marginal utility of income.  As Auerbach and Hines 
discuss, µ ≥ α, i.e., the marginal shadow cost of revenue must be at least as high as the marginal 
social utility of income – increasing revenue entails additional deadweight loss.  To interpret 
expression (4), which is referred to as the Ramsey rule, note that the term −∑ 𝑡𝑡𝑗𝑗𝑠𝑠𝑗𝑗𝑖𝑖𝑗𝑗  is the excess 
burden introduced by the additional tax on good i (the – t∆x terms).  Also, revenue collected 
from an additional tax on good i, holding utility fixed, is 𝑥𝑥𝑖𝑖 + ∑ 𝑡𝑡𝑗𝑗𝑠𝑠𝑗𝑗𝑖𝑖𝑗𝑗 .  Thus, (4) says that, at an 
optimum, where small feasible variations in tax instruments have no first-order effects on utility, 
 
 dDWL/dti = (µ - α)(dR/dti + dDWL/dti)/µ     ⇒    dDWL/dti = (µ - α)(dR/dti)/α 
 
That is, we should choose taxes so that the marginal deadweight loss associated with each tax is 
the same proportion of marginal revenue, (µ - α)/α; put another way, the marginal cost of public 
funds per dollar of revenue, which taking account of the excess burden of taxation, should be 
equal for all taxes when we are trying to meet a revenue target with minimum deadweight loss. 
What do optimal taxes look like? Consider a three-commodity model, with two consumption 
goods and labor as the untaxed numeraire.  Stacking the two first order conditions,  
 
�
𝑠𝑠11 𝑠𝑠21
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we invert the matrix in Slutsky terms to obtain the following expression for the ratio of tax rates, 
in terms of compensated cross-elasticities of demand, εij, 
 
(5) 𝑡𝑡1 𝑝𝑝1⁄

𝑡𝑡2 𝑝𝑝2⁄ = 𝜀𝜀22−𝜀𝜀12
𝜀𝜀11−𝜀𝜀21

= 𝜀𝜀20+𝜀𝜀12+𝜀𝜀21
𝜀𝜀10+𝜀𝜀12+𝜀𝜀21

 
 
where the second version of the expression follows from the condition (implied by the envelope 
theorem) that ∑ 𝑝𝑝𝑖𝑖𝑠𝑠𝑖𝑖𝑗𝑗 = 0.𝑖𝑖   (To see this, note that 𝑑𝑑𝑑𝑑 𝑑𝑑𝑝𝑝𝑗𝑗|𝑢𝑢 = ∑ 𝑑𝑑𝑖𝑖𝑠𝑠𝑖𝑖𝑗𝑗𝑖𝑖  ⁄ = 𝜆𝜆∑ 𝑝𝑝𝑖𝑖𝑠𝑠𝑖𝑖𝑗𝑗 = 0.𝑖𝑖 ) 
 
In (5), were we to ignore the cross-elasticities ε12 and ε21, the first version would call for tax rates 
that are inversely proportional to the own demand elasticities.  This inverse elasticity rule is 
consistent with the intuition developed earlier when looking at a single distortion, but it does not 
hold when the distortions interact (i.e., when s12 ≠ 0).  The second version says that we should 
tax more heavily the good with the smaller value of εi0 – the good that is more complementary to 
leisure.  The logic is that taxing goods 1 and 2 discourages labor supply (since either tax lowers 
the real wage – the wage relative to the price of consumer goods), so taxing more heavily the 
good that is complementary to leisure helps lessen this distortion, but at the cost of a new 
distortion, between goods 1 and 2.  This illustrates the general principle of “second-best” – that 
once we have one distortion, in this case the labor-leisure distortion, we may improve welfare by 
introducing another distortion, in this case to the margin of choice between goods 1 and 2. 

Application: The Taxable Income Elasticity 
Sometimes, we observe a taxpayer response that reflects several decisions.  For example, when 
we see taxable income respond to the income tax rate, this reflects not only the decision of how 
much to work, but also the mix of compensation between taxed and untaxed forms (e.g., fringe 
benefits like health insurance) and the mix of expenditures between tax-deductible forms (e.g., 
mortgage interest, charitable contributions, etc.) and non-deductible ones.  In such a case, the 
relevant elasticity will, under certain assumptions, be the overall response.  Following Feldstein 
(1999), consider a household with a utility function, U(C, l, E, D), facing the budget constraint: 
 
C + (1-t)D= (1-t)[w(𝐿𝐿�-l) – E]  
 
where E is the portion of compensation taken in the form of goods that are excluded from 
taxation and D is tax-deductible household spending.  We can rewrite the budget constraint as: 
 
C = (1-t)[w(𝐿𝐿�-l) – E – D]  
 
from which it is clear that the relevant elasticity affecting the deadweight loss of an income tax is 
the elasticity of demand for non-deductible consumption, C, which equals the taxable income 
elasticity (TIE) – the elasticity of taxable income [w(𝐿𝐿�-l) – E – D] with respect to the tax rate.  
Put another way, the taxable income elasticity is a sufficient statistic for the measurement of 
deadweight loss, a useful result if the TIE is more easily measured than the separate responses it 
incorporates.  As Feldstein emphasized, this elasticity may be substantially larger in magnitude 
than the labor supply elasticity, suggesting more deadweight loss for a given tax rate. 
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Note that the taxable income elasticity matters here only because we have assumed that tax rates 
cannot be set separately on E and D.  Indeed, the taxable income elasticity depends on the tax 
structure (Kopczuk, J. Pub. Econ. 2005); for example, if no spending were deductible (D ≡ 0) 
and all compensation taxable (E ≡ 0), then the taxable income elasticity would equal the labor 
supply elasticity.  It might seem obvious that such “base broadening” would reduce deadweight 
loss, as it would leave only labor-supply responses to taxation.  That conclusion would hold if 
labor-supply responsiveness to a change in the tax rate, t, were invariant to base broadening, but 
this is generally not the case: the labor-supply response to an increase in t, when there are 
deductions and exclusions, equals the direct response to a reduction in the real wage, (1-t)w, plus 
the cross-effects from reductions in the prices of E and D, (1-t), which effectively increase the 
real wage.  Intuitively, if an individual expects to pay tax on only a portion of marginal labor 
income (because of additional deductions and exclusions from such income), the labor supply 
elasticity with respect to a change in the tax rate may be smaller in magnitude.  In a model where 
taxes can be set independently on all goods, having a tax base equal to labor income will be 
optimal precisely when the optimal taxes on the other three goods, c, E, and D, are equal (and 
hence can all be set to zero in the presence of a tax on labor income). 
 
Also note that the sufficiency of the TIE for measuring deadweight loss relies on a number of 
implicit assumptions, for example that there are no future revenue effects associated with current 
behavioral changes (which would be relevant, for example, if some of the deductions were for 
retirement saving that would increase future tax receipts). 

Application: Internet Sales 
Most individual US states rely heavily on sales taxes as a source of revenue.  But, until recently, 
states faced stringent limits on the extent to which they could require out-of-state vendors to 
collect sales tax on remote (e.g., internet and mail-order) purchases by state residents.  This 
meant that residents faced sales tax on direct purchases from retail stores and remote sellers but 
effectively not on remote purchases from out-of-state sellers.  The paper by Einav et al. finds 
online purchases to be quite sensitive to state tax rates using data from eBay, where potential 
buyers find out whether a seller is in the same state (and hence required to collect sales tax) only 
after expressing interest in an item.  Their results also show that when a state sales tax is higher, 
residents purchase more on the internet (relative to in-state retail purchases) but less from remote 
in-state vendors. 
 
From an optimal-tax perspective, one might see this case as one with two very closely-related 
commodities, direct purchases and remote out-of-state purchases, with a high cross-elasticity of 
demand, where the state can impose tax only on one good.  The high demand elasticity of the 
taxable commodity is likely to limit the extent to which the state might wish to tax it.  Also, there 
may be large efficiency gains from a 2018 Supreme Court decision (South Dakota v. Wayfair) 
relaxing the restrictions states faced on taxing cross-border internet sales. 
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