Background

- Existing literature on political economy of decentralization has largely focused on problems of political accountability of leaders of lower level local governments (intra-community elite capture).

- Insufficient attention to:
 - Inter-community allocations
 - Distortions related to clientelism, qualitatively distinct from elite capture

- In this project we examine both of these dimensions, and argue they need to be viewed jointly.
Background

- Existing literature on political economy of decentralization has largely focused on problems of political accountability of leaders of lower level local governments *(intra-community elite capture)*

- Insufficient attention to
 - Inter-community allocations
 - Distortions related to clientelism, qualitatively distinct from elite capture

- In this project we examine both of these dimensions, and argue they need to be viewed jointly
Background

- Existing literature on political economy of decentralization has largely focused on problems of political accountability of leaders of lower level local governments (intra-community elite capture)

- Insufficient attention to
 - Inter-community allocations
 - Distortions related to clientelism, qualitatively distinct from elite capture

- In this project we examine both of these dimensions, and argue they need to be viewed jointly
Questions

1. Do upper level governments manipulate flows of development projects to lower level governments on the basis of political (vote-generating) motives?

2. How do voters respond to delivery of benefits? Is there evidence of clientelism:
 - private versus local public goods?
 - short-term, recurring benefits versus long-term, one-time benefits?
 - do voter expectations regarding electoral prospects of incumbents matter?

3. Do these lower level voting patterns match/rationalize the upper level fund flow patterns?
Questions

1. Do upper level governments manipulate flows of development projects to lower level governments on the basis of political (vote-generating) motives?

2. How do voters respond to delivery of benefits? Is there evidence of clientelism:
 - private versus local public goods?
 - short-term, recurring benefits versus long-term, one-time benefits?
 - do voter expectations regarding electoral prospects of incumbents matter?

3. Do these lower level voting patterns match/rationalize the upper level fund flow patterns?
Questions

1. Do upper level governments manipulate flows of development projects to lower level governments on the basis of political (vote-generating) motives?

2. How do voters respond to delivery of benefits? Is there evidence of clientelism:
 - private versus local public goods?
 - short-term, recurring benefits versus long-term, one-time benefits?
 - do voter expectations regarding electoral prospects of incumbents matter?

3. Do these lower level voting patterns match/rationalize the upper level fund flow patterns?
Questions

1. Do upper level governments manipulate flows of development projects to lower level governments on the basis of political (vote-generating) motives?

2. How do voters respond to delivery of benefits? Is there evidence of clientelism:
 - private versus local public goods?
 - short-term, recurring benefits versus long-term, one-time benefits?
 - do voter expectations regarding electoral prospects of incumbents matter?

3. Do these lower level voting patterns match/rationalize the upper level fund flow patterns?
1. Inter-Community Allocations

- Existing literature has largely ignored problem of accountability of elected officials in upper level governments that control flow of funds down to local governments.

- Significance of inter-community vis-a-vis intra-community allocations indicated in earlier work on West Bengal (Bardhan-Mookherjee 2006):
 - very limited evidence of significant effects of landless, land inequality or proportion of low castes on within-village targeting
 - significant effects on inter-village allocations (e.g., 2.5% rise in landlessness associated with 18% decline in program grants from above)
1. Inter-Community Allocations, contd.

- Reasons for this are not well-understood: political discretion/incentives of upper level government officials?
- If so, it would suggest the need to institute formula-bound vertical fiscal transfers and/or measures to reduce scope for discretion by political intermediaries.
2. Testing for Clientelism

- Typically hard to separate clientelism from pork-barrel and citizen-candidate models.

- Distinctive predictions of clientelism models:

 1. Recurring, private benefit programs are more effective in generating votes

 2. Voters’ expectation of who is going to come to power matters for voting behavior.

- We test these empirically, while addressing supply-side endogeneity concerns
2. Testing for Clientelism

- Typically hard to separate clientelism from pork-barrel and citizen-candidate models.

- Distinctive predictions of clientelism models:
 1. Recurring, private benefit programs are more effective in generating votes
 2. Voters’ expectation of who is going to come to power matters for voting behavior.

- We test these empirically, while addressing supply-side endogeneity concerns
2. Testing for Clientelism

- Typically hard to separate clientelism from pork-barrel and citizen-candidate models.

- Distinctive predictions of clientelism models:
 1. Recurring, private benefit programs are more effective in generating votes
 2. Voters’ expectation of who is going to come to power matters for voting behavior.

- We test these empirically, while addressing supply-side endogeneity concerns
Empirical Strategy

- First step: examine variations in allocations for different programs (generated by electoral redistricting shock at upper levels) to local governments

- Second step: use these to instrument variation in benefit flows at local level, to examine impacts on voting patterns

- Check consistency between results: is there larger upper-level manipulation of programs whose delivery is more effective in mobilizing votes?
Empirical Strategy

- First step: examine variations in allocations for different programs (generated by electoral redistricting shock at upper levels) to local governments

- Second step: use these to instrument variation in benefit flows at local level, to examine impacts on voting patterns

- Check consistency between results: is there larger upper-level manipulation of programs whose delivery is more effective in mobilizing votes?
Empirical Strategy

- First step: examine variations in allocations for different programs (generated by electoral redistricting shock at upper levels) to local governments

- Second step: use these to instrument variation in benefit flows at local level, to examine impacts on voting patterns

- Check consistency between results: is there larger upper-level manipulation of programs whose delivery is more effective in mobilizing votes?
1. Context: West Bengal, India

- There are 18 districts in WB
 - Each district covers (approx.) 2 parliamentary constituencies, 15 state assembly constituencies and 2000 villages

- Local government hierarchy: program funds filter down from a district governments (ZP) through 20 PSs (intermediate layer) to 200 GPs

- Benefit programs targeted for the poor:
 - roads, drinking water, employment in public works (NREGA), housing and toilets, credit, seeds/fertilizers, BPL cards, pensions
Political Competition

- Two main contesting parties in West Bengal since 2000: Left Front coalition (LF), Trinamool Congress (TMC)

- LF held an absolute majority in state legislature and in ZP/GP elections since 1977

- Has been losing vote share to TMC since the latter was formed in the late 90s: intense competition since then

- LF lost control of state assembly and most ZP/GPs in 2011
Redistricting

- Electoral constituencies redrawn every 3 decades
 - Based on population size changes shown by Census
 - Last one since 2001 Census, completed 2007

- Every state has a state Redistricting Commission (RC):
 - Appointed by National Election Commission
 - Has 3 (non-political) members: retired Chief Justice, NEC member, state election commissioner
 - Advisory committee consisting of 5 MPs and 5 MLAs
2. Data: Sample

- Random sample from 89 villages in 59 GPs
 - Covers 15 main districts of rural WB

 - 2402 households
 - Attrition rate < 1%
GP Disbursed Benefits

- In each round of survey, the head of household (HoH) reports benefits received from GP in past 7 years

- One-time benefits: one-shot interactions
 - Ration Card, House, Toilet, Drinking Water, Irrigation, Road Access.
 - Note: local public goods are onetime benefits.

- Recurring benefits: repeated interactions
 - public works employment (MNREGA, MPLAD), low interest loans, agri-minikits (subsidized seeds, fertilizers)
Summary Statistics: Benefits Received by Households

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% HoH Reporting</td>
<td>% HoH Reporting</td>
</tr>
<tr>
<td>Any Benefit</td>
<td>61.5</td>
<td>62.5</td>
</tr>
<tr>
<td>Recurring Benefits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any Recurring</td>
<td>9.19</td>
<td>46.81</td>
</tr>
<tr>
<td>Credit</td>
<td>4.7</td>
<td>2.1</td>
</tr>
<tr>
<td>Minikit</td>
<td>5.4</td>
<td>10.5</td>
</tr>
<tr>
<td>MNREGA</td>
<td>NA</td>
<td>33.9</td>
</tr>
<tr>
<td>MPLAD</td>
<td>n.a.</td>
<td>0.2</td>
</tr>
<tr>
<td>One-time Benefits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any Onetime</td>
<td>44.46</td>
<td>44.97</td>
</tr>
<tr>
<td>BPL Cards</td>
<td>17.7</td>
<td>18.1</td>
</tr>
<tr>
<td>House or Toilet</td>
<td>4.6</td>
<td>10.2</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>7.6</td>
<td>12.5</td>
</tr>
<tr>
<td>Road</td>
<td>27.1</td>
<td>24.8</td>
</tr>
</tbody>
</table>

[3] n.a. means “Not Available”. Questions regarding these schemes were not asked in the 2004 survey.
Straw Poll

- A straw poll was conducted at the end of each survey
- Each HoH cast ballot containing symbols of major political parties in the local area
- The response rate was 93%
Election Results and Poll Responses

Panel [a] Results from Poll Responses

<table>
<thead>
<tr>
<th>Party Poll Shares (%)</th>
<th>2004</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMC/INC</td>
<td>30</td>
<td>57</td>
</tr>
<tr>
<td>Left Front</td>
<td>58</td>
<td>34</td>
</tr>
</tbody>
</table>

Panel [b] Official Election Results*

<table>
<thead>
<tr>
<th>Party Vote Shares (%)</th>
<th>2006</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMC/INC</td>
<td>40</td>
<td>47</td>
</tr>
<tr>
<td>Left Front</td>
<td>50</td>
<td>42</td>
</tr>
</tbody>
</table>

* The official election results are reported only for constituencies in which survey was conducted.
Theory: Model of Upper-Level Allocation

- Model budgetary allocations across a 3-layer hierarchy: District (ZP) to different MLA constituencies C_i to villages v to households.
- Each level has a government controlled by either L or T party.
- Within given village v: competing parties in GP elections allocate HH benefits to maximize vote shares (given voting behavior, to be described later), resulting in:

\[
\sigma_v = \frac{1}{2} + \theta_i + \nu_v \sum_k \nu_k b_{kv}
\]

σ_v: L vote share in $v \in C_i$; ν_k: vote-generating effectiveness of benefit k; θ_i: a constituency-specific popularity shock; b_{kv}: per capita benefit k allotted to v; $\nu_v = 1(-1)$ if L(T) is incumbent.
Theory: Model of Upper-Level Allocation

- Model budgetary allocations across a 3-layer hierarchy: District (ZP) to different MLA constituencies C_i to villages v to households
- Each level has a government controlled by either L or T party
- *Within given village* v: competing parties in GP elections allocate HH benefits to maximize vote shares (given voting behavior, to be described later), resulting in:

$$\sigma_v = \frac{1}{2} + \theta_i + I_v \sum_k \nu_k b_{kv}$$

σ_v: L vote share in $v \in C_i$; ν_k: vote-generating effectiveness of benefit k; θ_i: a constituency-specific popularity shock; b_{kv}: per capita benefit k allotted to v; $I_v = 1(-1)$ if L(T) is incumbent
Modeling Allocation of Resources, contd.

- Incumbent MLA in C_i allocates its assigned budget (received from ZP) across village governments to maximize chance of re-election, less a disutility proportional to variance of allocations (dealing with protests, fairness concerns)

- Taking as given how incumbent village governments in their constituency will subsequently behave

- MLA re-election probability p increasing function of aggregate vote share of the party across villages in the constituency, strictly concave (convex) above (below) $\frac{1}{2}$

- Incumbent at ZP level allocates budget across MLA constituencies in the district to maximize number of MLA seats the party will be able to secure.
Testable Predictions for Upper-Level Allocation

1. If political control is perfectly aligned across different levels e.g. L controls ZP, C_1, C_2, where L is in a weaker competitive position in C_2, redistricting of L-controlled ν from C_1 to C_2 will cause ν’s allocation to increase.

2. With a different political alignment involving conflicting control at different layers, the change in allocation will be smaller.

3. Direction of change should be the same for all benefit programs; with larger increases for those programs that are more effective in generating votes (higher ν_k).
Testable Predictions for Upper-Level Allocation

1. If political control is perfectly aligned across different levels e.g. L controls ZP, C_1, C_2, where L is in a weaker competitive position in C_2, redistricting of L-controlled ν from C_1 to C_2 will cause ν’s allocation to increase.

2. With a different political alignment involving conflicting control at different layers, the change in allocation will be smaller.

3. Direction of change should be the same for all benefit programs; with larger increases for those programs that are more effective in generating votes (higher ν_k).
Testable Predictions for Upper-Level Allocation

1. If political control is perfectly aligned across different levels e.g. L controls ZP, C_1, C_2, where L is in a weaker competitive position in C_2, redistricting of L-controlled ν from C_1 to C_2 will cause ν's allocation to increase.

2. With a different political alignment involving conflicting control at different layers, the change in allocation will be smaller.

3. Direction of change should be the same for all benefit programs; with larger increases for those programs that are more effective in generating votes (higher ν_k).

Bardhan, Mitra, Mookherjee, Nath

Political Manipulation and Clientelism
Intuition for Upper-Level Allocation Result

- Deviation of budget for any village from district average is the sum of two components: inter-constituency bias plus inter-village intra-constituency bias.

- Given concavity of re-election probability in vote shares, increasing vote share in weaker constituencies have greater priority.

- With alignment of control across ZP and C_1, C_2, the weaker constituency C_2 gets a larger budget: inter-constituency bias is positive.

- MLA controlling C_2 discriminates more in favor of villages controlled by the same party: so v also benefits from a larger intra-constituency bias (lack of alignment will reverse this).
Intuition for Upper-Level Allocation Result

- Deviation of budget for any village from district average is the sum of two components: inter-constituency bias plus inter-village intra-constituency bias.

- Given concavity of re-election probability in vote shares, increasing vote share in weaker constituencies have greater priority.

- With alignment of control across ZP and C_1, C_2, the weaker constituency C_2 gets a larger budget: inter-constituency bias is positive.

- MLA controlling C_2 discriminates more in favor of villages controlled by the same party: so v also benefits from a larger intra-constituency bias (lack of alignment will reverse this).

Bardhan, Mitra, Mookherjee, Nath Political Manipulation and Clientelism
Intuition for Upper-Level Allocation Result

- Deviation of budget for any village from district average is the sum of two components: inter-constituency bias plus inter-village intra-constituency bias.

- Given concavity of re-election probability in vote shares, increasing vote share in weaker constituencies have greater priority.

- With alignment of control across ZP and C_1, C_2, the weaker constituency C_2 gets a larger budget: inter-constituency bias is positive.

- MLA controlling C_2 discriminates more in favor of villages controlled by the same party: so v also benefits from a larger intra-constituency bias (lack of alignment will reverse this).
Benefit program types $k = 1, \ldots, K$ partitioned into recurring (\mathcal{R}), one-time (\mathcal{O}) and public (\mathcal{P}) subsets, each benefit is indivisible ($0 - 1$) at the household level.

Group $g = 1, \ldots, G$ of citizens, demographic weights μ_g, receives marginal utility b_{kg} from type k benefit.
Parties and Elections

- Party policies at GP/village level v:
 - Select π_{kg} proportion of group g citizens that receive benefit k
 - subject to constraints $\pi_{kg} = \pi_k$ for $k \in \mathcal{P}$, $\sum_g \mu_g \pi_{kg} = b_{kv}$
 - b_{kv} per capita benefit b_k of program k allocated to village v by upper level government

- Two competing parties P, T engage in Downsian competition to maximize chance of winning the next election

- For arbitrary election at date t, focus on benefits allocated by incumbent elected at $t - 1$ between $t - 1$ and t
Retrospective (Probabilistic) Voting

- Voters receiving a recurring or public benefit between $t - 1$ and t from the incumbent expects to receive the same benefit between t and $t + 1$ if the incumbent is re-elected at t (and other conditionalities specified by the incumbent are met).

- A voter receiving a one-time private benefit between $t - 1$ and t cannot receive it ever again.

- If the challenger wins at t, voters expect benefits promised by this party in its electoral platform (assumed to be credible).

- Probabilistic voting: voters vote partly on basis of expected benefits, and partly on non-policy-related (identity, loyalty, image) grounds that are uniformly distributed with loyalty bias l_g and swing density s_g within group g.

Bardhan, Mitra, Mookherjee, Nath Political Manipulation and Clientelism
Retrospective (Probabilistic) Voting

- Voters receiving a recurring or public benefit between $t-1$ and t from the incumbent expects to receive the same benefit between t and $t+1$ if the incumbent is re-elected at t (and other conditionalities specified by the incumbent are met).

- A voter receiving a one-time private benefit between $t-1$ and t cannot receive it ever again.

- If the challenger wins at t, voters expect benefits promised by this party in its electoral platform (assumed to be credible).

- Probabilistic voting: voters vote partly on basis of expected benefits, and partly on non-policy-related (identity, loyalty, image) grounds that are uniformly distributed with loyalty bias l_g and swing density s_g within group g.
Retrospective (Probabilistic) Voting

- Voters receiving a recurring or public benefit between \(t - 1 \) and \(t \) from the incumbent expects to receive the same benefit between \(t \) and \(t + 1 \) if the incumbent is re-elected at \(t \) (and other conditionalities specified by the incumbent are met)

- A voter receiving a one-time private benefit between \(t - 1 \) and \(t \) cannot receive it ever again

- If the challenger wins at \(t \), voters expect benefits promised by this party in its electoral platform (assumed to be credible)

- Probabilistic voting: voters vote partly on basis of expected benefits, and partly on non-policy-related (identity, loyalty, image) grounds that are uniformly distributed with loyalty bias \(l_g \) and swing density \(s_g \) within group \(g \)

Bardhan, Mitra, Mookherjee, Nath

Political Manipulation and Clientelism
Retrospective (Probabilistic) Voting

- Voters receiving a recurring or public benefit between $t-1$ and t from the incumbent expects to receive the same benefit between t and $t+1$ if the incumbent is re-elected at t (and other conditionalities specified by the incumbent are met).

- A voter receiving a one-time private benefit between $t-1$ and t cannot receive it ever again.

- If the challenger wins at t, voters expect benefits promised by this party in its electoral platform (assumed to be credible).

- Probabilistic voting: voters vote partly on basis of expected benefits, and partly on non-policy-related (identity, loyalty, image) grounds that are uniformly distributed with loyalty bias l_g and swing density s_g within group g.
Program (Pork-Barrel) Politics

- Benefit distribution policy of party p is unconditional (given g, k), wrt voting behavior of citizen
- Vote shares at the village (at t) depend on recurring and public good allocations (between $t - 1$ and t) actual or promised:

\[
\sigma^L = \frac{1}{2} + \sum_g \mu_g l_g + \sum_g \mu_g s_g \sum_{k \in R \cup P} \beta_{kg} [\pi^L_{kg} - \pi^T_{kg}]
\]
Program (Pork-Barrel) Politics, contd.

- One-time benefits distributed between \(t - 1 \) and \(t \) do not affect votes at \(t \) (except via ‘gratitude’)
- Delivery of one-time benefits will affect (strategic) votes only at earlier dates
- As in standard (e.g., Dixit-Londregan (1994, 1995, 1996)) models, obtain policy convergence: both parties select allocation of recurring and public goods (between \(t - 1 \) and \(t \)) to maximize \(\sum_g \mu_g s_g \beta_{kg} \pi_{kg} \) subject to resource constraints
Program (Pork-Barrel) Politics, contd.

- One-time benefits distributed between $t - 1$ and t do not affect votes at t (except via ‘gratitude’)
- Delivery of one-time benefits will affect (strategic) votes only at earlier dates
- As in standard (eg Dixit-Londregan (1994, 1995, 1996)) models, obtain policy convergence: both parties select allocation of recurring and public goods (between $t - 1$ and t) to maximize $\sum g \mu_g s_g \beta_{kg} \pi_{kg}$ subject to resource constraints
Benefit distribution is conditional (given g, k) on the citizen having voted for the winner.

Group g citizen with bias ϵ in favor of L party will vote for L if (with p_L denoting voter expectation that L will win at t):

$$
\epsilon_L + p_L \sum_{k \in R \cup P} \beta_{kg} \pi^L_{kg} + (1 - p_L) \sum_{k \in P} \beta_{kg} \pi^T_k > p_L \sum_{k \in P} \beta_{kg} \pi^L_k \\
+ (1 - p_L) \sum_{k \in R \cup P} \beta_{kg} \pi^T_k
$$
Clientelistic Politics, contd.

- Condition for voting for L:
 \[\epsilon_L + p_L \sum_{k \in \mathcal{R}} \beta_{kg} \pi^L_{kg} > (1 - p_L) \sum_{k \in \mathcal{R}} \beta_{kg} \pi^T_k \]

- Public goods do not matter at all; only recurring benefits matter!

- Voter expectations p_L also matter: higher p_L raises (lowers) effectiveness of benefits distributed by L (T) in generating votes (‘contagion’ effect, which can lead to policy non-convergence and hysteresis (Sarkar (2014), Bardhan-Mookherjee (2016)))
Testable Predictions of Clientelism

Under Clientelism:

1. Only recurring benefits (distributed prior to the election) affect vote shares, public goods do not matter.

2. An increase in party j’s perceived probability of winning increases the effectiveness of recurring benefits distributed on likelihood of voting for the incumbent.

3. Upper level governments will manipulate allocations of recurring private benefit programs to lower level governments to a far greater extent than either one-time or public good programs.
4. Natural Experiment: Changes in Electoral Boundary

- Assembly constituency boundaries changed in 2009
 - Announcement came at the end of 2007
- 24 villages in our survey became part of a new jurisdiction

Note: C1 is the old constituency boundary and C2 the new boundary.
Defining Treatment Group

Let C_1 and C_2 be the old and new assembly boundaries.

Village v_i belongs to assembly treatment group "Left Weaker" if:

a. Left was in power in both C_1 and C_2 in 2006 and the victory margin for Left was lower in C_2 compared to C_1.

b. Left was in power in C_1 but not in C_2 in 2006.
Defining Alignment

Define alignment based on parties that dominates Panchayat Samiti (PS) and Gram Panchayat (GP) Seats

- Two-tier alignment: both Panchayat Samiti and GP are Left dominated
- Three-tier alignment: Zila Parishad, Panchayat Samiti and GP are Left dominated
Our Sample: Government Hierarchy and Redistricting

- Left majority at Panchayat Samiti - 45
 - 73 villages: 62 in aligned GPs, 11 in non-aligned
 - 11 villages redistricted to Left weaker constituency
 - 6 villages redistricted to Left stronger constituency

- TMC/INC majority at Panchayat Samiti - 9
 - 16 villages: 10 in aligned GPs, 6 in non-aligned
 - 3 villages redistricted to TMC weaker constituency
 - 4 villages redistricted to TMC stronger constituency

Flowchart
Gerrymandering?

- Boundary changes were unlikely to be politically manipulated: carried out by Delimitation Commission consisting of a SC judge, CEC and SEC, on basis of population changes between 2001 and 1971 Census, in a public, transparent process

- Iyer and Reddy (2013)
 - Data from two states: Andhra Pradesh and Rajasthan
 - Show that “for most part the redistricting was politically neutral”

- Census village data:
 - No systematic differences in village characteristics across treated and control groups
Predicting Redistricting

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Redistricted</td>
<td>Left Weaker*</td>
</tr>
<tr>
<td>Left GP* Left PS</td>
<td>0.52</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>(0.31)</td>
<td>(0.12)</td>
</tr>
<tr>
<td>Left Dominated GP 2008</td>
<td>-0.36</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>(0.22)</td>
<td>(0.13)</td>
</tr>
<tr>
<td>Left PS</td>
<td>-0.22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.19)</td>
<td></td>
</tr>
<tr>
<td>Delimitation Commission Member</td>
<td>0.17</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>(0.12)</td>
<td>(0.13)</td>
</tr>
<tr>
<td>Observations</td>
<td>89</td>
<td>89</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.113</td>
<td>0.081</td>
</tr>
<tr>
<td>Mean Dependent Variable</td>
<td>0.09</td>
<td>0.07</td>
</tr>
</tbody>
</table>

* p<0.10, ** p<0.05, *** p<0.01 Robust standard errors in parentheses, clustered at district level.

[1] Dependent Variable is indicated at the top of each column.
[2] Left Weaker is a dummy that includes two cases: [a] village was in TMC constituency and moved to a less competitive TMC constituency [b] village was in Left constituency and moved to a more competitive Left constituency.
[3] Left Aligned is a dummy that takes value 1 if Left is in power at the GP as well as Panchayat Samiti.
[4] Delimitation Commission (DC) Member is a dummy variable taking value 1 if MLA/MP was member of DC.
First Stage Analysis: Effects of Redistricting on Inter-Village Benefit Allocations, Parliamentary Level

\[B_{vt} = \alpha_0 + \alpha_1 Post \times LeftWeaker_v \times LeftAligned_v \]
\[+ \alpha_2 Post \times LeftWeaker_v \]
\[+ \alpha_3 Post \times LeftAligned_v + \alpha_4 LeftAligned_v \times LeftWeaker_v \]
\[+ \alpha_5 Post + \alpha_6 LeftAligned_v + \alpha_7 LeftWeaker_v + F_v + \tau_t + \epsilon_{vt} \]

where:

Post=1 for years 2008-2011, 0 for earlier years

LeftWeaker_v = 1 if v was redistricted into a LF constituency where LF had a lower vote share in 2003

Bardhan, Mitra, Mookherjee, Nath
Political Manipulation and Clientelism
Comparing Pre-trends: Per Capita Recurring Benefits

Recurring Benefits

Year

Non-redistricted Villages
Lfit Non-redistricted Villages
Left Weaker
Lfit Left Weaker

Bardhan, Mitra, Mookherjee, Nath
Political Manipulation and Clientelism
Comparing Pre-trends: Per Capita Onetime Benefits

Onetime Benefits

- Annual Per HH Onetime Benefits
- Village Types: Non-redistricted, Left Weaker
 - Non-redistricted Villages: Light dashed line
 - Left Weaker: Dark line
 - Lfit Non-redistricted Villages: Lighter dashed line
 - Lfit Left Weaker: Darker line

Bardhan, Mitra, Mookherjee, Nath

Political Manipulation and Clientelism
Effect of Treatment on Per Capita Recurring Private Benefits (1994-2011)

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post* Treated</td>
<td>0.03</td>
<td>-1.14</td>
<td>-1.14</td>
</tr>
<tr>
<td></td>
<td>(0.38)</td>
<td>(1.04)</td>
<td>(1.04)</td>
</tr>
<tr>
<td>Post* Treated* Left Aligned Two-tier</td>
<td></td>
<td>3.04**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.16)</td>
<td></td>
</tr>
<tr>
<td>Post* Treated* Left Aligned Three-tier</td>
<td></td>
<td>3.01**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.17)</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>1775</td>
<td>1775</td>
<td>1775</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.174</td>
<td>0.186</td>
<td>0.186</td>
</tr>
<tr>
<td>Mean Annual Per HH Benefits</td>
<td>0.76</td>
<td>0.76</td>
<td>0.76</td>
</tr>
<tr>
<td>SD Annual Per HH Benefits</td>
<td>1.87</td>
<td>1.87</td>
<td>1.87</td>
</tr>
</tbody>
</table>

* p<0.10, ** p<0.05, *** p<0.01. Robust standard errors in parentheses, clustered at GP level.

[2] Treated refers to those cases where GP was redistricted to an assembly constituency where Left party has a lower likelihood of winning based on victory margins.
[5] Left aligned two-tier refers to Left Panchayat Samiti and Left GP.
[6] Left aligned three-tier refers to Left ZP, Left Panchayat Samiti and Left GP.
Effect of Treatment on Public and Onetime Benefits (1994-2011)

Dependent variable: standardized annual per HH onetime benefits for each village.

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post* Treated</td>
<td>0.13</td>
<td>0.47</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td>(0.31)</td>
<td>(0.78)</td>
<td>(0.78)</td>
</tr>
<tr>
<td>Post* Treated* Left Aligned Two-tier</td>
<td>0.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.07)</td>
<td></td>
</tr>
<tr>
<td>Post* Treated* Left Aligned Three-tier</td>
<td></td>
<td></td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1.07)</td>
</tr>
<tr>
<td>Observations</td>
<td>1775</td>
<td>1775</td>
<td>1775</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.349</td>
<td>0.357</td>
<td>0.357</td>
</tr>
<tr>
<td>Mean Annual Per HH Benefits</td>
<td>0.52</td>
<td>0.52</td>
<td>0.52</td>
</tr>
<tr>
<td>SD Annual Per HH Benefits</td>
<td>1.67</td>
<td>1.67</td>
<td>1.67</td>
</tr>
</tbody>
</table>

* p<0.10, ** p<0.05, *** p<0.01. Robust standard errors in parentheses, clustered at GP level.

[2] Treated refers to those cases where GP was redistricted to an assembly constituency where
Left party has a lower likelihood of winning based on victory margins.
[5] Left aligned two-tier refers to Left Panchayat Samiti and Left GP.
[6] Left aligned three-tier refers to Left ZP, Left Panchayat Samiti and Left GP.
Recurring Benefits (per capita)

![Graph showing annual per household recurring benefits over years from 2002 to 2012, with lines indicating Left Weaker, Left Weaker*Left Aligned, Lfit Left Weaker, and Lfit Left Weaker*Left Aligned.](image)

Bardhan, Mitra, Mookherjee, Nath

Political Manipulation and Clientelism
Robustness - Effect of Treatment on Benefits Distributed

<table>
<thead>
<tr>
<th></th>
<th>Recurring Without MNREGA</th>
<th>Onetime Without Roads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post* Treated</td>
<td>-0.29</td>
<td>1.08</td>
</tr>
<tr>
<td></td>
<td>(0.40)</td>
<td>(0.72)</td>
</tr>
<tr>
<td>Post* Treated* Left Aligned Two-tier</td>
<td>1.62*</td>
<td>1.24</td>
</tr>
<tr>
<td></td>
<td>(0.92)</td>
<td>(2.76)</td>
</tr>
<tr>
<td>Post* Treated* Left Aligned Three-tier</td>
<td>1.79*</td>
<td>1.29</td>
</tr>
<tr>
<td></td>
<td>(0.91)</td>
<td>(2.75)</td>
</tr>
</tbody>
</table>

* p<0.10, ** p<0.05, *** p<0.01. Robust standard errors in parentheses, clustered at GP level.

[2] The dependent variable is standardized measure of annual per HH benefits for each village.
[3] Treated refers to those cases where GP was redistricted to an assembly constituency where Left party has a lower likelihood of winning based on victory margins.
Placebo Test - Diff-in-diff (2003-2006)

<table>
<thead>
<tr>
<th></th>
<th>Recurring (1)</th>
<th>Onetime (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post* Treated</td>
<td>-0.15</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>(2.28)</td>
<td>(0.69)</td>
</tr>
<tr>
<td>Post* Treated* Left Aligned Two-tier</td>
<td>-0.83</td>
<td>-1.16</td>
</tr>
<tr>
<td></td>
<td>(2.40)</td>
<td>(0.85)</td>
</tr>
<tr>
<td>Observations</td>
<td>764</td>
<td>764</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.304</td>
<td>0.484</td>
</tr>
<tr>
<td>Mean Annual Per HH Benefits</td>
<td>0.77</td>
<td>0.75</td>
</tr>
<tr>
<td>SD Annual Per HH Benefits</td>
<td>1.89</td>
<td>1.56</td>
</tr>
</tbody>
</table>

* p<0.10, ** p<0.05, *** p<0.01. Robust standard errors in parentheses, clustered at GP level.

[2] The dependent variable is standardized measure of annual per HH benefits for each village.
[3] All specifications include other interactions; whether MLA/MP was part of delimitation committee; village and year fixed effects.
5. Empirical Results: Impacts of Benefits on Votes

- Examine impacts of the variation in benefit flows owing to the redistricting treatment
 - \((\text{LeftWeaker} \ast \text{LeftAligned})\) on LF support in the 2011 polls

- Challenge: exclusion restriction
 - The treatment may affect LF support in ways other than benefits distributed
 - example: additional mobilization efforts by party cadres that we cannot observe

- Solution:
 - Focus on within-village variation across households in benefit flows
Impacts of Benefits on Votes, contd.

* Identification assumption
 * Unobserved impacts of treatment on LF support uncorrelated with targeting of benefits

* Household fixed effects: examine change in poll responses for household head between two rounds
 * Controls for compositional changes in distribution of benefits in treated villages, in favor of LF-supporters
 * One-time benefits distributed between \(t - 1 \) and \(t \) could raise votes at \(t - 1 \), while having negligible effects on votes at \(t \), so effect on the change would still be smaller than for recurring benefit changes
Specification

First-Stage:

\[
\Delta \bar{b}_{ivkt} = \tau_1 T_{vt} \ast \Delta S_{vt} + \tau_2 T_{vt} + \tau_3 \Delta S_{vt} \ast HC_i + \tau_4 \Delta S_{vt} + \tau_6 + \eta_{iv}
\]

(1)

where \(T_{vt} \): treatment; \(S_{vt} \): district per capita benefit (recurring plus one-time) year \(t \); \(HC_i \): household characteristics (caste, land, education dummies)

Second Stage:

\[
\Delta L_{ivt} = \sum_k \nu_k \Delta \bar{b}_{ivkt} + \rho_1 T_{vt} + \epsilon_{ivt}
\]
Effect of Change in Benefits on Change in Poll Responses between 2004, 2011 (Left GPs)

<table>
<thead>
<tr>
<th>Dependent variable: change in poll responses between 2003, 2011</th>
<th>OLS (1)</th>
<th>OLS (2)</th>
<th>IV (3)</th>
<th>IV (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in Recurring Benefits</td>
<td>0.025***</td>
<td>0.027**</td>
<td>(0.006)</td>
<td>(0.011)</td>
</tr>
<tr>
<td>Change in Onetime Benefits</td>
<td>0.020**</td>
<td>0.015</td>
<td>(0.009)</td>
<td>(0.014)</td>
</tr>
<tr>
<td>Change in Total Benefits</td>
<td>0.023***</td>
<td>(0.006)</td>
<td>0.020***</td>
<td>(0.005)</td>
</tr>
<tr>
<td>Observations</td>
<td>1173</td>
<td>1173</td>
<td>1173</td>
<td>1173</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.079</td>
<td>0.079</td>
<td>0.070</td>
<td>0.071</td>
</tr>
</tbody>
</table>

* p<0.10, ** p<0.05, *** p<0.01 Robust standard errors in parentheses.

[1] Change in Vote for Left takes value 0 if HH voted for left in 2011 and 2003 straw polls respectively, 1 if voted left in 2011 but TMC in 2003, and -1 if voted left in 2003 and TMC in 2011.
[3] Change in Onetime Benefits is change in 3 year average onetime benefits between 2003 and 2011.
Role of Expectations

- The above results are consistent with predictions of the clientelism model: only recurring benefits affect vote shares, local public goods do not matter.

- The second prediction of the model is: they will be more effective in villages where voters expect party j to win with higher probability

 - To test this, we use results from the elections that took place between the two survey rounds.

 - Gamma High takes value 1 if victory margin at the assembly constituency level in 2009 Lok Sabha elections is more than the median of treated constituencies.
Role of Expectations - Treatment at Assembly Level

<table>
<thead>
<tr>
<th></th>
<th>OLS (1)</th>
<th>IV (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in Benefits* Gamma High</td>
<td>0.038***</td>
<td>0.049**</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.021)</td>
</tr>
<tr>
<td>Change in Total Benefits</td>
<td>0.018***</td>
<td>0.015***</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>Observations</td>
<td>1173</td>
<td>1173</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.097</td>
<td>0.087</td>
</tr>
</tbody>
</table>

* p<0.10, ** p<0.05, *** p<0.01 Robust standard errors in parentheses.

1. Change in Vote for Left takes value 0 if HH voted for left in 2011 and 2003 straw polls respectively, 1 if voted left in 2011 but TMC in 2003, and -1 if voted left in 2003 and TMC in 2011.
2. Change in Total Benefits is change in sum of onetime and recurring benefits between 2003 and 2011.
3. Gamma High takes value 1 if victory margin at the assembly constituency level in 2009 Lok Sabha elections is more than the median of treated constituencies.
4. HH Characteristics and Treatment Dummy included in all specifications.
5. In columns (3) and (4), excluded instruments are Treatment*Agg Benefits*HH characteristics, Agg Benefits*HH characteristics, and included instruments are Treatment Dummy and HH characteristics.
6. Summary and Broader Implications

➤ We find evidence in favor of clientelism at local level, implying (a) political biases in favor of recurring private benefit programs; (b) ‘contagious’ voting (Sarkar (2014)), lop-sided political competition and hysteresis (Bardhan-Mookherjee 2016)

➤ Evidence of corresponding manipulations of fund transfers by upper-level governments

➤ Both suggest possible value of direct formula-bound transfers to local governments (for local public good programs) and citizens (for welfare benefits), but this needs to be explored further

Bardhan, Mitra, Mookherjee, Nath Political Manipulation and Clientelism
Effect of Change in Benefits on Change in Votes for Left

<table>
<thead>
<tr>
<th></th>
<th>First Stage Ch. Recurring Benefits (1)</th>
<th>First Stage Ch. Onetime Benefits (2)</th>
<th>Reduced Form Ch. Vote for Left (3)</th>
<th>IV Ch. Vote for Left (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TREAT * Ch. Benefits * Maxedu</td>
<td>-0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>-0.30*</td>
</tr>
<tr>
<td>(0.00)*</td>
<td>(0.00)***</td>
<td>(0.00)***</td>
<td>(0.00)***</td>
<td>(0.00)***</td>
</tr>
<tr>
<td>TREAT * Ch. Benefits * Woman Head</td>
<td>0.00</td>
<td>0.00</td>
<td>-0.02*</td>
<td>0.00*</td>
</tr>
<tr>
<td>(0.01)*</td>
<td>(0.00)***</td>
<td>(0.00)***</td>
<td>(0.00)***</td>
<td>(0.00)***</td>
</tr>
<tr>
<td>TREAT * Ch. Benefits * Cultivator</td>
<td>-0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>-0.26</td>
</tr>
<tr>
<td>(0.01)*</td>
<td>(0.00)***</td>
<td>(0.00)***</td>
<td>(0.00)***</td>
<td>(0.00)***</td>
</tr>
<tr>
<td>TREAT * Ch. Benefits * Landless</td>
<td>-0.02***</td>
<td>-0.00</td>
<td>0.00</td>
<td>-0.30*</td>
</tr>
<tr>
<td>(0.01)*</td>
<td>(0.00)***</td>
<td>(0.00)***</td>
<td>(0.00)***</td>
<td>(0.00)***</td>
</tr>
<tr>
<td>TREAT * Ch. Benefits * SC/ST</td>
<td>-0.02*</td>
<td>-0.01</td>
<td>-0.02*</td>
<td>-0.01*</td>
</tr>
<tr>
<td>(0.01)*</td>
<td>(0.01)***</td>
<td>(0.01)***</td>
<td>(0.01)***</td>
<td>(0.01)***</td>
</tr>
<tr>
<td>TREAT * Ch. Benefits * Hindu</td>
<td>-0.00</td>
<td>-0.01</td>
<td>-0.02*</td>
<td>-0.01*</td>
</tr>
<tr>
<td>(0.01)*</td>
<td>(0.01)***</td>
<td>(0.01)***</td>
<td>(0.01)***</td>
<td>(0.01)***</td>
</tr>
<tr>
<td>TREAT * Ch. Benefits * Immigration</td>
<td>-0.01</td>
<td>-0.00</td>
<td>0.00</td>
<td>-0.26</td>
</tr>
<tr>
<td>(0.01)*</td>
<td>(0.00)***</td>
<td>(0.00)***</td>
<td>(0.00)***</td>
<td>(0.00)***</td>
</tr>
<tr>
<td>Treat</td>
<td>0.60</td>
<td>-0.14</td>
<td>-0.26</td>
<td>-0.30*</td>
</tr>
<tr>
<td>(0.97)*</td>
<td>(0.64)***</td>
<td>(0.12)***</td>
<td>(0.10)***</td>
<td>(0.01)***</td>
</tr>
<tr>
<td>Ch. Recurring</td>
<td>0.03**</td>
<td>0.03**</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>(0.01)*</td>
<td>(0.01)***</td>
<td>(0.01)***</td>
<td>(0.01)***</td>
<td>(0.01)***</td>
</tr>
</tbody>
</table>

Observations	1173	1173	1173	1173
Adjusted R^2	0.404	0.731	0.055	0.070
F-test for excluded instruments (p-value)	17.59	48.73	0.055	0.070
Overidentification test: Hansen J statistic (p-value)	13.49	(0.41)	60.94	(0.00)
LM test for full rank of matrix (p-value)	13.49	(0.41)	60.94	(0.00)
Expectations and Change in Votes for Left

<table>
<thead>
<tr>
<th></th>
<th>First Stage Ch. Benefits</th>
<th>First Stage Ch. Benefits</th>
<th>Reduced Form Ch. Vote for Left</th>
<th>IV Ch. Vote for Left</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(γ) high</td>
<td>(γ) high</td>
<td>(γ) high</td>
<td>(γ) high</td>
</tr>
<tr>
<td>Treat* Ch. Benefits * Max Educ. * Gamma High</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Treat* Ch. Benefits * Woman HOH * Gamma High</td>
<td>0.001</td>
<td>0.006</td>
<td>-0.002</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.007)</td>
<td>(0.002)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Treat* Ch. Benefits * Occup * Gamma High</td>
<td>0.001</td>
<td>-0.000</td>
<td>0.001</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.007)</td>
<td>(0.002)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Treat* Ch. Benefits * Landless* Gamma High</td>
<td>-0.004</td>
<td>-0.017**</td>
<td>0.000</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.008)</td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Treat* Ch. Benefits * SC/ST * Gamma High</td>
<td>-0.008</td>
<td>-0.027***</td>
<td>-0.001</td>
<td>-0.001</td>
</tr>
<tr>
<td></td>
<td>(0.009)</td>
<td>(0.010)</td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Treat* Ch. Benefits * Hindu * Gamma High</td>
<td>0.008</td>
<td>-0.013</td>
<td>-0.001</td>
<td>-0.001</td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
<td>(0.011)</td>
<td>(0.002)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Treat* Ch. Benefits * Immig * Gamma High</td>
<td>0.005</td>
<td>-0.013***</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.005)</td>
<td>(0.003)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>Treat</td>
<td>1.015</td>
<td>0.472</td>
<td>-0.260**</td>
<td>-0.304***</td>
</tr>
<tr>
<td></td>
<td>(1.039)</td>
<td>(1.082)</td>
<td>(0.114)</td>
<td>(0.065)</td>
</tr>
<tr>
<td>Change in Benefits* Gamma High</td>
<td></td>
<td></td>
<td></td>
<td>0.049**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.021)</td>
</tr>
<tr>
<td>Change in Total Benefits</td>
<td></td>
<td></td>
<td></td>
<td>0.015***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.003)</td>
</tr>
<tr>
<td>Observations</td>
<td>1173</td>
<td>1173</td>
<td>1173</td>
<td>1173</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.219</td>
<td>0.804</td>
<td>0.056</td>
<td>0.087</td>
</tr>
<tr>
<td>F-test for excluded instruments (p-value)</td>
<td>43.15</td>
<td>261.76</td>
<td>10.893</td>
<td>116.71</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.619)</td>
<td>(0.000)</td>
</tr>
</tbody>
</table>

Bardhan, Mitra, Mookherjee, Nath — Political Manipulation and Clientelism