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1. Introduction

1.1. The commons dilemma and inequality. The daily livelihood of vast masses of

the rural poor in many countries depends on the success with which common pool resources

(CPRs) | such as forest resources, grazing lands, in-shore �sheries, and irrigation water

| are managed, and on the environmental consequences of their management. A CPR

is de�ned by Ostrom (1990, p. 30) as \a natural or man-made resource system that is

su�ciently large as to make it costly (but not impossible) to exclude potential bene�ciaries

from obtaining bene�ts from its use." Understanding the factors that lead to success or

failure of community management of these resources is critical to rural development.

CPR management is a collective-action dilemma: a situation in which mutual cooper-

ation is collectively rational for the group as a whole, but individual cooperation is not

necessarily individually rational for each member. One factor that has not always been

recognized as critical to the outcome of collective action dilemmas is heterogeneity among

the resource users. Ostrom (1990), whose analysis of local management of CPRs is probably

the best-known, discusses homogeneity and heterogeneity, but excludes the issue from her

list of factors crucial to successful CPR management. In this paper, our attention will be

largely restricted to a single but potent kind of heterogeneity: inequality in asset ownership.

Olson (1965, p. 34) hypothesized that inequality might favor the provision of a public

good:

In smaller groups marked by considerable degrees of inequality | that is, in

groups of members of unequal \size" or extent of interest in the collective good

| there is the greatest likelihood that a collective good will be provided; for the

greater the interest in the collective good of any single member, the greater the

likelihood that that member will get such a signi�cant proportion of the total

bene�t from the collective good that he will gain from seeing that the good is

provided, even if he has to pay all of the cost himself.

Inequality in this context can thus facilitate the provision of the collective good, with the

small players free-riding on the contribution of the large player. In a very general setting,

Bergstrom, Blume and Varian (1986) show that wealth redistributions that increase the

wealth of equilibrium contributors to a public good will increase the supply of the public
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good.3 These analyses of the supply of public goods are relevant to conservation among

CPR users; restraint in resource use is analytically equivalent to contributing to a public

good. Following these studies, we would expect group heterogeneity to be conducive to the

e�ective local management of CPRs.

Nevertheless, �eld studies of CPR management have repeatedly shown that inequality

is harmful for collective action. Bardhan (1995) reviews the case-study literature regarding

the relationship between inequality and cooperation in locally-managed irrigation systems,

primarily in Asia. Baland and Platteau (1996, 1997, 1998) likewise summarize many relevant

examples from the case-study literature; they focus more on forests, �sheries and grazing

lands, and on African cases. Johnson and Libecap's (1982) study of the Texas shrimp �shery

is a well-known example. The �shery is exploited by a large 
eet of �shers di�erentiated

by ability. The problem is one of over�shing: in this case of increased e�ort and declining

per-boat yields, there exists a collective incentive to self-regulate e�ort, in the form of

production quotas, and thereby increase collective rents. The success of such contracting,

however, is conditioned by the existence of high transaction costs. Johnson and Libecap

assume that side-payments are impossible to administer, and that the information costs

(and presumably enforcement costs) underlying agent-speci�c quotas are too high to make

such a quota system practical; the only option, therefore, is a system of uniform quotas. The

per-agent gain in moving from the unregulated equilibrium to the rent-maximizing output

level (under uniform quotas) is the same for all agents, but the per-agent loss is increasing

in agents' productivity. Thus it is possible that more productive �shers stand to lose under

a cooperative regime, and hence they will oppose it.

A small number of papers has sought to formalize the logic of the Johnson and Libecap

example. Kanbur (1991) describes a two-person, simultaneous-move, numerical example

in which the players have di�erent payo� functions. As payo� inequality is increased, the

e�cient outcome ceases to be a self-enforcing equilibrium. Baland and Platteau (1997)

3Chan, Mestelman, Moir and Muller (1996) report that when the Bergstrom-Blume-Varian model is

tested in the laboratory, it correctly predicts the direction (though not the magnitude) of changes in group

contributions when income is redistributed toward positive contributors. It does not do so well in predict-

ing individual behavior: individuals with low incomes overcontribute to the public good, and high-income

individuals undercontribute, relative to the model.
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argue that inequality in resource-use entitlements is associated with higher conservation

in some examples where the resource-use technology (e.g., �shing, harvesting, gathering)

exhibits decreasing returns to e�ort. Under alternative cases featuring increasing returns

to e�ort, the e�ect of increasing inequality is indeterminate.

This paper presents a model of heterogeneous resource users in a local commons dilemma.

The model is couched in terms of a �shery; thus the players are referred to as �shers and the

resource as the �sh stock. Indeed, the crisis of conservation of �sheries globally (see, e.g.,

Sa�na 1995) is at least as advanced as resource degradation in other CPRs. In particular,

�sheries are important to peasant economies throughout the developing world. Neverthe-

less, we chose the �shery example primarily to lend concreteness to the discussion. We hope

that the basic conclusions of the model will be transferable to other CPR examples, such

as groundwater-based irrigation, community grazing lands, and village forests. It should

further be noted that the externality between �shers in our model di�ers from the usual

congestion externality posited in research on the commons. In our model, one �sher's over-

exploitation a�ects another's incentives through payo�s in the following period, while the

conventional congestion externality acts through increased harvesting costs during this pe-

riod. In Section 4.1, nevertheless, we consider a congestion externality in a variant of our

basic model.

Additionally, many researchers have argued that the commons dilemma is analogous to

other social problems. Keohane and Ostrom (1994) point out that many issues in inter-

national relations bear a striking formal resemblance to CPRs: in both cases, agents have

little recourse to external authority to impose e�cient solutions. Others have argued that

the problem of economic growth in the presence of poor property-rights protection is like

a commons problem in which agents must \conserve" by forgoing current consumption of

the commonly-held capital stock, or by diverting resources to the creation of institutions

that protect property rights (Benhabib and Rustichini 1996; Tornell and Velasco 1992). In

a similar vein, a 1999 report of the Canadian Standing Senate Committee on Social A�airs,

Science and Technology identi�es \social cohesion" as the \ultimate common property re-

source. We can all bene�t from it if it exists, but it is far too easy to let the social fabric

deteriorate as we each pursue our own short-term self-interest" (Government of Canada,
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1999). In cross-country regression analysis for 29 market economies, Knack and Keefer

(1997) �nd that social cohesion (as measured by the level of trust and the propensity of

people to join voluntary organizations) is strongly associated with higher per capita income

growth; furthermore they �nd that the level of social cohesion is strongly and negatively

associated with income inequality. If indeed social cohesion is a common-pool resource,

then our research provides theoretical support for the negative e�ect of inequality detected

by Knack and Keefer, although our results predict that this relationship is not strictly

monotonic.

1.2. Outline of the paper. In the paper, we demonstrate that Olson's (1965) hypoth-

esis | interpreted as a comparative-static statement that increasing inequality enhances

e�ciency | is not always valid. In many settings increased inequality leads to less e�-

ciency; this is true whether or not �shers have earning opportunities outside the commons.

If these exit options are concave functions of wealth, increased inequality does not, in gen-

eral, enhance the prospects for full conservation. Neither is it true that perfect equality

always favors greater e�ciency. At a certain wealth distribution, increasing wealth inequal-

ity increases equilibrium e�ciency (though not attaining full conservation as long as both

�shers have positive wealth), and furthermore, full conservation is an equilibrium under

perfect inequality. In the model where �shers have exit options, full conservation cannot be

an equilibrium under perfect equality if average wealth is below some threshold level. (In a

one-period variant of our model with myopic players and a congestion externality, we show

that increasing inequality of asset ownership reduces aggregate catch.)

The related assertion that the larger player has a greater interest in collective action

than the smaller is borne out in many settings: with or without concave exit options, it

is the poor who do not conserve. This too is dependent on the assumptions made: if

exit-option functions are convex, for example, it is the poorer �sher who has an interest in

conditional conservation, while the richer �sher prefers the exit strategy. That the larger

player, in many settings, has a greater interest in collective action than the smaller does

not imply, however, that a more unequal distribution of wealth will lead to more successful

collective action.

A signi�cant result is that the relationship between inequality and collective action is
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not necessarily monotonic. In fact, the relationship is U-shaped: at very low and very high

levels of inequality, conservation is possible, while for some middle range of inequality it is

not.

The outline of the chapter is as follows. Section 2 sketches a basic noncooperative com-

mons game. We extend the basic game in Section 3 to consider the e�ects on conservation

if players have earning opportunities outside the commons. The two-player model we use

in this chapter contributes to the tractability of the analysis and the transparency of the

results. A two-player model abstracts from the group-size problem highlighted by Olson

(1965) in order to better focus on the problem of inequality. In Section 4.2, the results

of the basic model are extended to the many-�sher case. Section 4.1 generalizes the catch

technology and cost function of the basic model. Section 5 brie
y considers schemes for

community regulation of the commons in light of the noncooperative model, and concludes.

2. A simple model of the commons

There are two �shers, i = 1; 2. Each is endowed with wealth ei in each period. They share

access to a common resource, namely a stock of �sh F . In each of two periods t, each �sher

must choose to spend some portion of his endowment on �shing capacity ati; thus a
t
i � ei.

(a is short for \action.") Each �sher's utility is simply the total amount of �sh he catches:

Ui = �1i (a
1
i ) + �2i (a

1
i )

where �ti(�) is the amount of �sh caught by �sher i in period t. Fishing yield is a function

f of capacity deployed: f(ati) = ati unless total capacity deployed exceeds the available �sh,

in which case each �sher gets a share of the total equal to his share of total wealth. (This

is the situation known as \overcapitalization" in the literature on �sheries.) Each �sher's

payo� in period 1, then, is given by

�1i (a
1
i ) =

8<
:

a1i ; a11 + a12 � F
a1i

a11+a
1
2
F; a11 + a12 > F

Between periods the stock of �sh grows at rate g, so that in period 2 the supply of �sh

is G � (F � �11 � �12), where G � 1 + g. In the second period, each �sher again chooses a

capacity level a2i . The nature of each �sher's endowment is such that any proportion of it
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can be used in each period for �shing. It is not spent. It re
ects �shing \e�ort", including

number of boats and hours and intensity of labor. Note that in any e�cient outcome there

will be no �shing in period 1. We make the following \commons dilemma assumption":

E � GF (1)

where E � e1 + e2. Assumption (1) ensures that the threat of resource degradation is

su�ciently acute. Alternatively, (1) can be interpreted as a \feasibility" condition: the

�shers are capable of harvesting the entire stock if they desire.

In the subgame consisting of the second period, both �shers will always �sh to capacity.

That is, each will choose a2i = ei and receive second-period payo�

�2i =
ei
E
G(F � �11 � �12)

Thus we can concentrate on the �shers' actions in the �rst period. A strategy is just a

capacity choice a1i , and the �rst-best outcome is a11 = a12 = 0. Any Nash equilibrium of

the abbreviated �rst-period game will be a subgame-perfect equilibrium of the two-period

game, assuming full depletion occurs in the second period. For simplicity, we will hereafter

suppress the period superscript, since all strategic choices under consideration are made in

period 1. (If G were less than 1, there would be no real dilemma: �rst-period depletion

of the resource would be an equilibrium and an optimum.) The crowding externality that

is sometimes a feature of commons models does not occur in our model within periods.

That is, j's action in period 1 does not enter i's payo� in that period, although j's period-1

action will enter i's period-2 payo�, and vice-versa. (In Section 4.1 below, we consider a

within-period congestion externality in the context of our model.)

The goal of conservation in �sheries is to reduce �shing to some level so that the re-

maining stock at the end of every period is su�cient to guarantee the survival of the �sh

population. In our simple model, that level has been normalized to zero in the �rst pe-

riod. The second period extends to the end of the �shers' relevant economic horizons. The

two-period set-up precludes consideration of complicated punishment strategies, but it is

su�cient to capture the fundamental dilemma of resource conservation: namely, when is it

reasonable to forgo current-period consumption in return for higher next-period gains?4

4Other economic treatments of the �shery have focused on changes in the incentives to conserve when the
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In this model, we have abstracted from the problem of discount rates in order to focus

more clearly on the incentives toward resource conservation. Formally, the discount rate

would be subtracted from G, the rate of �sh-stock regeneration. If the discount rate is

greater than G, �rst-period depletion of the �shery is optimal, and conservation is not

economically rational. Furthermore, each �sher's discount rate is plausibly a decreasing

function of wealth. In this case, the more unequal the distribution of endowments, the

more di�cult it will be to sustain universal conservation of the resource. It is as if the poor

�sher faces a low rate of growth in the stock and hence has little incentive to conserve.

The following proposition notes the conditions under which the least e�cient outcome

is a Nash equilibrium.

Proposition 1. If ei > F (G� 1)=G for i = 1; 2, then fe1; e2g is a Nash equilibrium.

(The proof of this and all other propositions is provided in the Appendix.) In particular,

note that Proposition 1 implies that if ei > F for i = 1; 2 | if each �sher could unilaterally

harvest the entire �sh stock in the �rst period | then complete resource depletion is an

equilibrium. When is full conservation a Nash equilibrium? Proposition 2 gives necessary

and su�cient conditions.

Proposition 2. In the basic game described above, when both players have positive wealth,

a1 = a2 = 0 is a Nash equilibrium if and only if ei � E=G for i = 1; 2.

The conditions of Propositions 1 and 2 can be satis�ed simultaneously. In fact, whenever

the condition of Proposition 2 is satis�ed (i.e., ei � E=G; 8i), there are multiple equilibria,

since the condition of Proposition 1 (i.e., ei � F (G� 1)=G; 8i) will also be satis�ed under

the commons dilemma assumption (1). This is illustrated in Figure 1.5 The 45
�
line shows

all possible distributions of wealth e1 + e2 = E. Both full conservation (Proposition 2) and

�sh population varies (Levhari and Mirman 1980; Dutta and Sundaram 1993). This can be approximated

in our model by simply varying F as a comparative-static exercise.

5This �gure was suggested by Timothy Besley.
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full depletion (Proposition 1) are equilibria for the range of wealth distributions BC. At a

point such as A, full conservation is not an equilibrium; after an equalizing redistribution

of wealth to a point between B and C, full conservation would be an equilibrium.

[Figure 1 here]

Intuitively, E=G is the threshold amount of wealth above which the �sher will conserve,

conditional on his counterpart's conservation. Alternatively, the condition ei � E=G; 8i

can be interpreted as de�ning a minimal regeneration rate G such that mutual conservation

is possible in equilibrium. For the two-�sher case we are considering here, this condition

is equivalent to G � 2. This means that the �sh stock must grow at a rate of 100%.

This might seem worrisomely high; the astute reader will have moreover noticed that the

n-player version of Proposition 2 will imply that conservation requires G � n. This result is

quite robust. For any general �shing technology f(ai) and sharing rule (f�igi2I;
P
�i = 1g)

in the case of overcapitalization, it can be shown that the appropriate generalization of

Proposition 2 implies that G � n, where n is the number of players in the set I . This

is not necessarily the case if the share �i accruing to �sher i is a function of �rst-period

conservation, as it might be in the case of a regulated �shery. We will return to this point

in Section 5.

This proposition suggests the following corollary. De�ne

�(E) � f(e1; e2)je1 � 0; e2 � 0; e1 + e2 = Eg

as the set of all distributions of E. For any e = (e1; e2) 2 �(E), ê 2 �(E) is a mean-

preserving spread of e if jê1 � ê2j > je1 � e2j.

Corollary 1. (a) Consider e; e0 2 �(E), where e0 is a mean-preserving spread of e. Then

a1 = a2 = 0 is an equilibrium under e0 only if it is an equilibrium under e. (b) For all

e 2 �(E) there is a mean-preserving spread e0 such that a1 = a2 = 0 is not an equilibrium

under e0.

The Olson hypothesis that inequality enhances the prospects for collective action can

be interpreted as a comparative-static statement: namely, that increasing inequality (for a
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given level of aggregate wealth) makes full conservation more likely. Corollary 1 suggests

that this is not so. Part (b) states that, starting from any wealth distribution, there

exists a less equal wealth distribution such that full conservation is not an equilibrium. In

particular, if full conservation is an equilibrium under the initial distribution, then we know

from Proposition 2 that ei � E=G for i = 1; 2. Then wealth can be taken from one �sher

until ei < E=G for that �sher; full conservation is no longer an equilibrium. In terms of

Figure 1, this is equivalent to moving from a point in the region BC to a point such as A.

Corollary 1 illustrates that increased inequality does not necessarily lead to equilibrium

conservation. Proposition 3, however, shows that under maximum inequality | that is,

when one �sher owns all the wealth | conservation is an equilibrium outcome.

Proposition 3. In the basic game, if G is greater than or equal to one, then under perfect

inequality (e = (E; 0) or e = (0; E)), full conservation is a Nash equilibrium.

In part, Proposition 3 re
ects Olson's hypothesis that cooperation is more di�cult in a

group the larger the number of group members. In our �shery, conservation is an equilibrium

outcome when the number of �shers with positive wealth is reduced to one.

The propositions above consider only the conditions under which full conservation by

both �shers is an equilibrium outcome. The more realistic case in an unregulated �shery,

and one perhaps closer to Olson's thinking, is one in which changes in the distribution of

wealth change the level of e�ciency among a set of ine�cient equilibria. This is considered

in the following proposition, which says that if the distribution of wealth is su�ciently

unequal already, then making even more unequal can increase e�ciency. De�ne M(e) as

the minimum among of �rst-period �shing among all Nash equilibria of the game when the

distribution of endowments is e.

Proposition 4. For all E such that E > GF , there exists ê 2 �(E) such that for all

mean-preserving spreads e0 of ê, M(e0) < M(ê).

Proposition 4 demonstrates that for the wealth distribution ê, where

ê �

�
E �

G� 1

G
F;
G� 1

G
F

�
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and all mean-preserving spreads of ê, �sher 1 will conserve regardless of the other's behavior.6

The proposition also illustrates that the full-conservation equilibrium under perfect inequal-

ity in Proposition 3 is a limiting case as inequality is increased. For distributions such as

ê, one �sher captures a su�ciently large share of the returns to conservation that he will

unilaterally conserve. In particular, there exists an equilibrium in which the larger �sher

conserves, the smaller �sher does not, and any mean-preserving spread increases e�ciency.

If it were true that i's endowment were greater than E=G, then by Proposition 2, �sher

i would always conserve if �sher j did. But since E > (G � 1)F (which is guaranteed by

condition (1)), then ei < E=G, and full-capacity period-1 �shing is a best reply by �sher i to

full conservation by �sher j. Thus any mean-preserving spreads of ê, by further reducing i's

capacity, will increase e�ciency, since �sher j will play 0 and more �shing will be deferred

until the second period. Thus Olson (1965, p. 35) writes:

This suboptimality or ine�ciency will be somewhat less serious in groups com-

posed of members of greatly di�erent size or interest in the collective good. In

such unequal groups, on the other hand, there is a tendency toward an arbitrary

sharing of the burden of protecting the collective good : : : [T]here is accordingly

a surprising tendency for the \exploitation" of the great by the small .

This, then, is the commons analogue of the Olson public-goods hypothesis.

[Figure 2 here]

This situation is summarized in Figure 2, which shows (assuming that G � 2) that as

�sher i's wealth share increases from 1
2
, full e�ciency is maintained until his share reaches

(G� 1)=G, at which point the other �sher defects, reducing total catch. Then as the share

of i continues to increase, the e�ciency of the system increases apace, since the other �sher

is capable of harvesting a decreasing fraction of the �sh stock in period 1. When i owns all

the wealth, full e�ciency is restored.7

6If we restrict the parameters so that E = FG, for G = 2, the wealth distribution ê is given by
�
3
4E;

1
4E
�
.

As G is increased beyond 2, ê becomes more unequal.

7This �gure was suggested by Jean-Marie Baland.
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3. Exit options

In �sheries worldwide, large �shing companies with more opportunities to move their 
eets

elsewhere (compared to small-scale local �shers) are much less concerned about conservation

of the resources in a given harvesting ground. This has been noted in the case of the Texas

shrimp �shery by Johnson and Libecap (1982): there, larger �shers have defected from

quota schemes. Baland and Platteau (1997) cite a similar phenomenon in a Japanese

�shery, where industrial seiners are more apt to deplete �sh stocks than local artisanal

hook-and-line �shers.

The phenomenon extends to other CPRs. In Mali and Mauritania, large (usually ab-

sentee) livestock herd owners have been much less interested than small herders in local

arrangements for rangeland management to prevent overgrazing and deserti�cation (Shan-

mugaranam et al. 1992, cited in Baland and Platteau, 1996). Freudenberger (1991) de-

scribes the deforestation of a forest ecosystem in Senegal by the local unit of a nationwide

agricultural entity known as the Mouride. A relatively low-intensity pattern of resource use

by nearby peasant producers and pastoralists gave way to intensive cash-crop (groundnut)

production. After the soil's rapid exhaustion by groundnut farming, the Mouride's national

decision-making body could open up new territory elsewhere, unlike traditional users who

were more interested in the long-term viability of the local forest.8

In all the cases cited above, the richer or larger commons users were prone to defect. This

need not always be the case. Other authors have reported that the poorer or smaller users

exercise exit options. Bergeret and Ribot (1990), in a study similar to that of Freudenberger,

describe deforestation in a larger area and over a longer time frame, also in the Senegalese

Sahel. Trees are harvested by Fulani refugees from Guinea, who are more likely to be

landless than other peasants, in order to produce charcoal for the rapidly growing urban

market. A qualitatively similar situation has been described in southern Burkina Faso,

where immigrants are more prone to use destructive gathering techniques in communal

forests (Laurent et al. 1994, cited in Baland and Platteau 1997).

8Ostrom (199) repeatedly stresses the importance of dilemmas like the Mouride case as examples of

\heterogeneous discount rates," a form of inequality. If indeed agents have di�erent discount rates, the

di�erence can be explained in terms of deeper parameters, such as di�erent exit possibilities (easily derived

from asset inequalities), or other similar factors (e.g., di�erent access to credit).
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Let us then augment the basic game presented above so that each �sher has an option

to exit rather than �sh in the second period. If only one �sher exits in the second period,

the other receives the entire second-period catch. Let the value of each �sher i's exit option

be given by the function  (ei). This makes the plausible assumption that the exit option

depends on a �sher's endowment level: \exit" could refer to investing or deploying one's

capacity in another sector. In general, the value of each �sher's exit option will not be the

same, unless they have equal endowments. Note that this does not rule out the case where

 (�) is a constant. It does for the time being rule out the possibility that each �sher has

a di�erent exit-option function: that is, we assume that if ei = ej, then the �shers' exit

options are the same.

When is full conservation an equilibrium in this new setting? For a given �sher i,

conditional on �sher j's conservation (that is, j's �rst-period catch is zero), it must be that

i's share of the second-period catch is greater than the value of deviating (�shing to full

capacity in period 1 and exiting in period 2). That is, for i = 1; 2,

ei
E
GF � minfei; Fg+  (ei) (2)

In general, any comparative-static assertions about whether full conservation will be a

Nash equilibrium under di�erent wealth distributions will depend on the nature of the  (�)

function.

3.1. Concave exit options. Thus we will impose the restriction that  (ei) is a concave

function, and furthermore that

 (ei) � 0 (3)

In addition, we restrict attention to cases where \distribution matters"; that is, cases where

there exists some distribution such that full conservation is not an equilibrium outcome.

This can be stated as follows: there exists some wealth level e?, 0 < e? � E, at which

e?

E
GF = minfe?; Fg+  (e?) (4)

If assumption (4) is not satis�ed, then either full conservation or exit is preferred by both

�shers at all levels of wealth, conditional on the conservation of the other. Moreover, for
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simplicity, we shall assume that

 (0) = 0 (5)

Finally, we wish to restrict attention to the case where the �shery is economically viable, in

the sense that the maximum possible �sh production in the second period is greater than

�shing to capacity in the �rst period and exiting with all of the �shery's capacity in the

second period. That is, GF � F +  (E). This can be restated as:

 (E)� (G� 1)F (6)

In what follows, let the exit strategy be the following course of action by one of the �shers:

�sh to capacity in period 1, and exit in period 2. Nowwe can state the following propositions.

Proposition 5. Consider the augmented game in which each �sher i has a second-period

exit option described by the function  (ei).  (�), G, F , and E satisfy assumptions (3),

(4), and (5). Then, given any wealth distribution e 2 �(E) that gives each �sher positive

wealth, there exists a mean-preserving spread e0 of e such that full conservation is not an

equilibrium under e0.

Proposition 5 suggests the following corollary, which addresses the Olson hypothesis in

the context of concave exit options.

Corollary 2. If under perfect equality of wealth full conservation is a Nash equilibrium,

then there exists a mean-preserving spread e0 such that full conservation is not an equilib-

rium.

Corollary 2 says that when the exit option is a nondecreasing concave function, together

with the restrictions implied by assumptions (4) and (5), then whenever full conservation

is an equilibrium with a perfectly equal distribution of wealth, there always exists a less

equal distribution of wealth such that full conservation is not an equilibrium. In this case,

equality is more conducive to conservation. Note that under the unequal distribution of
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wealth, it is the poorer agent who �nds it in his interest to play the exit strategy. As we

will see in a later section, this result generalizes to the case where only one �sher has an

exit option.

[Figure 3 here]

The principal issues raised in Proposition 5 and Corollary 2 can be depicted graphically.

First not that the Nash-equilibrium condition (2) can be rewritten as

 (ei) �
ei
E
GF �minfei; Fg (7)

In Figure 3, �sher i's wealth is given on the horizontal axis, and i's payo� is given on

the vertical axis. The right-hand side of (7) is drawn as ONM , and the left-hand side

( (�)) is given by the concave function OS. Note that the sign of the right-hand side of (7)

determines whether full conservation is an equilibrium in the basic (no-exit-option) version

of the game introduced in Section 2. From Proposition 2, then, we know that the right-hand

side must be positive for all values of ei greater than E=G, which is labeled B in Figure 3.

The point labeled A corresponds to F , the initial �sh stock. A is the point of intersection

between the lines Ui = ei(
GF
E

� 1) to the left (note that the slope is negative as a result of

the commons dilemma assumption (1)) and Ui = ei
GF
E

� F to the right. The wealth level

e? is labeled C. At all wealth levels to the right of C, �sher i strictly prefers conservation,

conditional on conservation by �sher j; at all wealth levels to the left of C (but not including

the origin), �sher i prefers the exit strategy.

In Figure 3 and all subsequent �gures, E is treated as a constant. That is, as ei is

increased, E does not increase; it is assumed that ej is decreased by an equal amount.

Alternatively, the horizontal axis of the �gures can be interpreted as representing the share

of total wealth held by �sher i when E = 1.

According to Corollary 2, if full conservation is an equilibrium outcome under perfect

equality, then there is a mean-preserving spread of the wealth distribution under which full

conservation is not an equilibrium. Suppose that the two �shers are initially endowed with

wealth D in Figure 3. Then by redistributing wealth away from �sher i until his wealth lies

to the left of C, full conservation is no longer an equilibrium; at such a new distribution,

OS lies above ONM for �sher i, and he will prefer the exit strategy.
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[Figure 4 here]

Figures 4 and 5 depict the same situation for di�erent forms of the exit-option function.

In both �gures, the exit options are weakly concave.

In Figure 4, the exit-option function takes the form  (ei) = bei for nonnegative b. It

could be that b is an interest rate that can be earned if a �sher's capacity is invested

elsewhere. Functions for two values of b are shown. The line OQ represents a value of b

so high that neither �sher would ever conserve; this is ruled out by our assumption (4).

The line OP represents a lower value of b and can be analyzed like Figure 3. (All points in

Figure 4 are labeled as in Figure 3.)

[Figure 5 here]

Figure 5 depicts an exit-option function of the form

 (ei) =

8<
:

0; ei = 0

a; ei > 0

for some a > 0. It can be analyzed in the same way as Figures 3 and 4. This type of exit

optio corresponds to a �xed lump-sum available to each �sher in the second period, and is

invariant to their levels of wealth.

Proposition 6 illustrates that the conclusion of Proposition 5 is not completely general;

that is, in the vein of Olson, extreme inequality can enhance the prospects for conservation.

Proposition 6. In the exit-option game when assumptions (3) through (6) hold, under

perfect inequality (e = (E; 0) or e = (0; E)), full conservation is an equilibrium.

Proposition 6 immediately suggests the following corollary.

Corollary 3. For any given distribution of wealth e such that ei > 0 for i = 1; 2, there

always exists a mean-preserving spread of e such that full conservation is an equilibrium.
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Proposition 6 illustrates that the logic of Olson's inequality hypothesis extends to the

case of the concave exit option. Proposition 5 illustrates, however, that with concave exit

options, Olson's hypothesis cannot be interpreted as a general comparative-static result.

Finally, Proposition 7 below indicates that there are cases when the conditions underlying

Proposition 5 do not hold: that is, there is no full-conservation equilibrium with perfect

equality.

Proposition 7. Consider the game described in Proposition 5, where assumptions (3)

through (6) hold. If average wealth is less than e?, then under perfect equality, full conser-

vation is not a Nash equilibrium.

Refer to Figures 3 through 5. Proposition 7 states that if average wealth lies to the

left of C, then under perfect equality, both �shers would prefer the exit strategy, and full

conservation will not be an equilibrium outcome.

As we will see below, this result generalizes to the case where only one �sher has an

exit option. Note that the condition in Proposition 7 that average wealth is less than e?

does not contradict assumption (6), which requires only that total wealth is greater than e?.

Proposition 7 suggests that whether or not average wealth is less than e? is an important

criterion for whether a given commons situation (with concave exit options) is subject to

\Olson e�ects." Speci�cally, if average wealth is less than e?, then increased inequality is

necessary for equilibrium conservation.

3.2. Convex and asymmetric exit options. In the cases analyzed in Propositions 5

through 7 and illustrated in Figures 3 through 5, the return to the exit strategy, relative

to conservation (and always conditional on conservation by the other �sher) is diminishing

in wealth: when there is exit, it is the smaller �sher who exits. In case studies of commons

with exit options it is frequently (though by no means exclusively) asserted that, when

exit occurs, it is the large resource user who exits. How is the prediction of Proposition 5

reconciled with this empirical evidence? First, it could be that exit options are not concave

(or even weakly concave) functions of wealth. Second, it could be that exit option functions
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(and not just the exit-option values) are di�erent for the di�erent �shers. Each of these

possibilities is considered in turn.

[Figure 6 here]

Figure 6 illustrates a convex exit option function. The principal complication is that

there are several \crossover" points corresponding to the wealth value e? in the concave

case. Thus, for example, begin at a position of perfect inequality with total wealth D in

Figure 6; that is, one �sher's endowment is D and the other's is 0. Full conservation is

not an equilibrium outcome, because the �sher with positive wealth will prefer the exit

strategy. If wealth is more equally redistributed in the range of point C, full conservation

is an equilibrium outcome. If one �sher's wealth is C while the other's is in the range of A,

however, full conservation is not an equilibrium outcome.

Situations like that depicted in Figure 6 might well describe many commons with exit

options. In general, because of the kinked \convex" shape of the right-hand side of the

Nash-equilibrium condition (7), a convex left-hand side of the same condition will cross

the right-hand side more than once. With convex exit-option functions, we can make the

following proposition, which does not, in general, hold when exit-options are concave.

Proposition 8. In the exit-option game where each �sher has an exit option given by

 (ei), let  (�) be a convex and increasing function of wealth, and let  (0) = 0. If there

exists any wealth distribution e 2 �(E) such that both �shers have positive wealth and

under which full conservation is an equilibrium outcome, then full conservation is not an

equilibrium outcome under perfect equality.

In some commons situations, agents' exit options are qualitatively di�erent. In a par-

ticular in-shore �shery, for example, it is not simply that the poorer �sher has less capacity,

but instead a fundamentally di�erent �shing technology than the larger �sher. The larger

�sher can move his ocean-going trawler to another harvesting ground, but if the poor �sher

tried to do the same in his small primitive boat, he would stand a good chance of dying

at sea. More generally, the smaller agent's capacity is location-speci�c in a way that the

larger agent's is not.
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Suppose that only one �sher has an exit option: this seems a not-too-extreme approxi-

mation of the asymmetric-technology argument made in the previous paragraph. Figure 3

can be reinterpreted to depict this case. Suppose that OS is �sher 1's exit-option function,

and that ONM is the conditional payo� to conservation for both �shers. Conditional on

�sher 1's conservation, �sher 2 will always conserve if his wealth lies anywhere to the right

of point B. Here the problem is not that �sher 2 will exit, but rather that he will deviate

from conservation by �shing to capacity in period 1. Now if the �shers were to begin at

a position of perfect equality at D, full conservation would be an equilibrium outcome. If

�sher 2's wealth were reduced to some amount between B and C (and �sher 1's wealth

correspondingly increased), full conservation would still be an equilibrium outcome, unlike

the situation described by Proposition 5. Nevertheless, if �sher 2's wealth were reduced to

a point between O and B, he would choose to deviate, and full conservation would not be

an equilibrium outcome. If �sher 2's wealth were reduced to O, then as in Proposition 6,

full conservation is an equilibrium outcome. Finally, if average wealth lies to the left of C,

then as in Proposition 7, there is no full-conservation equilibrium under perfect equality.

In the asymmetric exit-option case, our previous interpretation of mean-preserving

spreads changes in two ways: �rst, whether or not a mean-preserving spread destroys a

full-conservation equilibrium depends on the identity of the �sher who gains under the

redistribution; second, the minimum unequalizing redistribution needed to destroy a full-

conservation equilibrium must be more unequalizing than the minimum necessary redistri-

bution in Proposition 5.

Our earlier assumption that exit-option functions were at least weakly concave made

strong comparative-static results possible. In the �gures, the concavity assumption leads to

a sort of \single-crossing" property: there exists a range of wealth levels at which a �sher

will not conserve, conditional on the other's conservation, and at all higher wealth levels,

the �sher will conditionally conserve. Nevertheless, if there is more than one crossing of

the two curves in the diagrams | as in the case of the convex exit-option function | then

the comparison of two or more wealth distributions is more complicated. If in the case

where there are multiple crossings conservation is not initially an equilibrium outcome, it

is not always possible to say whether it will be an equilibrium outcome under any more
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(or less) unequal distribution. If the right-hand side of the inequality (7) is also concave

(which might occur under considerably more complicated assumptions about the �shing

production function | such as those considered in Section 4.1 below), then even with

concave exit-option functions this can give rise to multiple crossings.9

The nature of the exit-option functions is ultimately an empirical question. In many

situations, exit-option functions are probably linear beyond some level of wealth | this

represents a risk-free bond earning a �xed interest rate. But at lower levels of wealth,

the exit-option function is convex as a result of borrowing constraints. As we have seen,

however, in all cases the presence of exit options generally complicates the prospects for

conservation.

4. Extensions of the basic model

4.1. Generalizing the catch technology and cost functions. The basic model in-

troduced in Section 2 features a very simple linear production technology and zero cost of

e�ort. In this section we consider a more conventional characterization of costs and produc-

tion in the �shery. First, there is a cost of supplying �shing e�ort, and second, the catch

per unit of e�ort is a declining function of aggregate e�ort, as it becomes more di�cult to

catch �sh as the stock is depleted.

Consider a one-period variant of our basic model. Suppose that �shers choose a level of

e�ort ai, as above, but that a �sher's \wealth" is given by the size of his capital stock ki,

which is �xed each period. Let A � a1 + a2. Each �sher's catch is a function of individual

and aggregate e�ort:

�i(ai; A) = �(A)ai (8)

and thus aggregate catch �(�) is equal to �(A) = �(A)A, where �0(�) < 0: catch per unit

of e�ort is declining in aggregate e�ort. Furthermore, suppose that �00 � 0: at higher levels

of aggregate e�ort, the rate at which catch per unit e�ort declines is greater. Note that

this functional form exhibits the congestion externality frequently found in the commons

9Consistent with the discussion in B�enabou (1996) of \inequality of income versus inequality of power,"

what matters is not inequality of wealth per se , but inequality of wealth relative to exit options. If the value

of one �sher's exit option grows faster than one-for-one with his wealth, then wealth inequality will foster

rather than hinder cooperation.
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literature (Neher 1990, Mason and Polasky, 1997).

The cost to �sher i is

C(ai; ki) = c(ai; ki)ai (9)

where c1 > 0 and c2 < 0: cost per unit of e�ort is increasing in e�ort but decreasing in the

capital stock. We also assume that c11 � 0 and that c12 � 0: as one's capital is increased,

the marginal cost of e�ort decreases.

Thus payo�s are given by �i = �i �C(�; �), or

�i(ai; ki) = �(E)ei � c(ei; ki)ei (10)

Each �sher i seeks to maximize payo� �i taking as �xed aj and ki. Then using the �rst-

order conditions from these maximization problems, the Nash equilibrium is the pair of

e�ort levels (a?1; a
?
2) such that:

�0(a?1 + a?2)a
?
1 +�(a?1 + a?2)� a?1

@c

@a1
(a?1; k1)� c(a?1; k1) = 0 (11)

�0(a?1 + a?2)a
?
2 +�(a?1 + a?2)� a?2

@c

@a2
(a?2; k2)� c(a?2; k2) = 0 (12)

We will show that under these conditions, an equalizing redistribution of capital owner-

ship can increase aggregate catch.

Proposition 9. Let

c(ai; ki) =

�
ai
ki

��

for i = 1; 2 and � � 1. A mean-preserving spread of the capital distribution k1 = k2 = k

will reduce the aggregate catch.

Proposition 9 shows that increasing inequality reduces aggregate catch. In the static

context of this section there is no intertemporal conservation mechanism. By reducing

catch, inequality reduces welfare.



21

4.2. More than two agents. Most of our results are not qualitatively changed if there

are more than two �shers. Proposition 10 extends both our Propositions 2 and 4. In

what follows, we call any outcome in which some but not all �shers fully conserve until the

second period \partial conservation." Note that we do not mean that some �shers partially

conserve. Say that there is a set of �shers I . Although it will not be necessary in the proof

of the proposition, let us say that if some subset of �shers Î � I �shes to capacity in period

1, and they deplete the �sh stock, then each of these \defecting" �shers i receives

eiP
i2Î

ei
F

Proposition 10. In the basic game with more than two �shers, in which all �shers have

positive wealth, partial conservation is an equilibrium outcome if and only if:

1. for all �shers i in the subset Î � I of �shers who do not conserve, ei < E=G;

2. for all �shers i in I n Î , ei � E=G;

3.
P

i2Î
ei < F

Corollary 4. Suppose that partial conservation is an equilibrium outcome. (a) If there is

a �sher l in I n Î such that el > E=G and another �sher m in I n Î such that em > el,

then there exists a mean-preserving spread of the initial wealth distribution under which

partial conservation remains an equilibrium outcome. (b) There exist e�ciency-enhancing

mean-preserving spreads of the initial wealth distribution.

Part (a) of Corollary 4 merely states that mean-preserving spreads of the wealth dis-

tribution do not necessarily destroy a cooperative equilibrium outcome: take some wealth

from l (but make sure that el is still greater than or equal to E=G) and give it to m. Part

(b) goes further and states that mean-preserving spreads can enhance e�ciency in the spirit

of Proposition 4 (in the two-�sher case): take some wealth from p 2 Î and transfer it to

some q in I n Î (who is by de�nition wealthier). Then there is no change in the composition
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of Î, but the amount of �rst-period �shing is reduced by exactly the amount of wealth taken

from p.

Finally, if partial conservation is an equilibrium outcome, there exist wealth-equalizing

transfers such that full depletion is the only equilibrium outcome under the new wealth

distribution. Suppose that Î is such that
P

i2Î
ei = F � � for � > 0 small. Then we take

wealth
E

G
� er + �

from some �sher r 2 I n Î and transfer it to some (poorer) �sher s 2 Î . Now r will �sh to

capacity in period 1, but so will all the other �shers, since condition # 3 of Proposition 10

is no longer satis�ed and partial conservation is not an equilibrium outcome.

Now it remains to generalize to the n-�sher case Proposition 4, which states that once the

wealth distribution is su�ciently unequal, further mean-preserving spreads of that distri-

bution increase equilibrium e�ciency. The proof of Proposition 4 constructs this threshold

wealth inequality. Proposition 11 below gives su�cient conditions on the wealth distribu-

tion such that increases in inequality (weakly) increase equilibrium e�ciency in the n-�sher

extension of the basic game; part of the task of Proposition 11 is to characterize what is

meant by \su�ciently unequal" in the many-�sher case.

Let us restrict attention to a particular class of mean-preserving spreads of the wealth

distribution. Consider bilateral wealth transfers from a �sher j to a �sher k such that

ej < E=G and ek � E=G. Fisher j would �sh to capacity in period 1 before the transfer,

and ej � ek. Call this class of mean-preserving spreads unequalizing wealth transfers .

Many more complicated mean-preserving spreads can be characterized as the outcome of a

sequence of such unequalizing wealth transfers.

Proposition 11. In the n-�sher extension of the basic �shing game, de�ne the set

�I �

�
i 2 I jei � E � F

G� 1

G

�

and de�ne

J �

�
i 2 I jei <

E

G

�

If �I and J are nonempty, then after any unequalizing wealth transfer, �rst-period �shing is

weakly lower.



23

Proposition 11 states that if there is at least one �sher whose wealth is below the

conservation threshold E=G, and at least one �sher whose wealth is su�ciently large that

he will conserve regardless of the actions of the other �shers, then there always exist wealth

redistributions that increase inequality and (at least weakly) equilibrium e�ciency.

Note that the conditions of Proposition 11 are not met if all �shers conserve initially (i.e.,

J is empty). From Proposition 10, we know that this situation can only hold if all �shers

have wealth at least as great as E=G. Thus in that situation, the wealth distribution is not

su�ciently unequal for the Olson-style mechanism of Propositions 4 and 11 to operate.

5. Concluding remarks

5.1. Crafting distributive rules. In real-world commons problems, economic actors

often craft institutions to regulate community use of common-pool resources. If the problem

is one of multiple equilibria (as is the case in our model when the conditions of Proposition 2

are satis�ed), the task of such local regulation is merely to coordinate actors on one Pareto-

e�cient equilibrium. If the problem is a prisoners dilemma (as is the case under other

parameter con�gurations for our model), there must be a structure of rules, very likely with

monitoring and enforcement, that transforms the dilemma into a coordination game and the

Pareto-superior outcome into a self-enforcing equilibrium. (This is essentially the message

of Ostrom's (1990) synthesis of local regulation of the commons.) Fishers worldwide have

elaborated schemes of social regulation with varying degrees of success; many of these cases

are reviewed in Baland and Platteau (1998). In this section, we discuss such regulatory

regimes in light of our model.10

Fishers in our model might consider three regulatory mechanisms to govern the exploita-

tion of the �sh stock: they could redistribute wealth (e1; e2) before period 1; they could

redistribute catch (�11; �
1
2) after the �rst period; or they could redistribute �sh (�

2
1; �

2
2) after

the second period. (Many of the distributive rules described in the �eld-study literature

reallocate �shing locations : these can be interpreted as redistributions of capacity. If �shing

locations have di�erent productivities, the default share of the �shing stock accruing to each

�sher will be di�erent. Note that for our model to apply, it must also be that the �shing

10The working-paper version of this paper includes a much lengthier analysis of these issues, including the

details behind several of the assertions made in the remainder of this section.
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locations are not physically isolated from one another.) Such schemes have two possible

e�ects on the payo� of the game. First, the scheme could impose a �ne on the player who

does not abide by the cooperative agreement: this reduces the return to cheating. Second,

output could be shared in the cooperative outcome di�erently from the default sharing rule

of the noncooperative game (i.e., fei=Egi2I). This change in the sharing rule could arise

from redistribution of catch, or from pre-play wealth redistribution.

Propositions 1 through 4 and their corollaries are comparative-static results, but can

be reinterpreted as statements regarding redistribution of capacity. Thus, for example,

Proposition 2 tells us that for wealth distributions that give each �sher positive wealth, full

conservation is an equilibrium if and only if each �sher's share of total wealth is greater than

1=G. If G is at least two, then there always exists a preplay capacity redistribution such

that full conservation is an equilibrium outcome. With the appropriate wealth transfer, full

conservation can be supported as an equilibrium, even if it was impossible under the initial

distribution. Nevertheless, the magnitude of the transfer under a self-enforcing equilibrium

is limited; the �sher who cedes wealth must be at least as well o� under full conservation,

post-transfer, as under full depletion, pre-transfer.

An alternative to pre-play wealth transfers is that �shers e�ect transfers of �sh con-

ditional on the size of individual �rst-period catch. E�ectively, this means that they can

tax each other. It is a well-known result in the �sheries literature that if �rst-period catch

can be taxed at a rate of 100%, then a �rst-best outcome can be implemented under just

about any circumstances (including most exit-option scenarios). (This is essentially the

same as boat licensing in our model: limiting the number of boats (i.e., the proportion of

ei) that each �sher i uses in period 1 is directly related to limiting his catch.) Neverthe-

less, transaction costs might make it impossible to observe each �sher's period-1 catch and

thereby collect taxes. An interesting possibility is that the power to tax is asymmetric; it

is plausible to assume that some factor (economic or otherwise) makes it possible for one

�sher to impose a sanction on the other, but that the latter is impeded from reciprocating.

It can be shown that, under certain conditions, if the poorer �sher is given the power to tax

the richer, cooperation is not an equilibrium outcome. This result extends to the case of

concave exit options. In the case of convex exit-option functions, however, the poorer �sher
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is better able to enforce conservation.

An interesting consequence of democracy is that it grants to the poor the power to tax

the rich. Bardhan (1993) discusses the democratization of environments in which traditional

authority structures have previously enforced cooperative agreements. Until democracy is

consolidated, cooperative performance of resource users can su�er. (\Resource users" could

refer to local villagers sharing a �shery, or to citizens contributing to \social cohesion.")

The discussion of asymmetric taxation under exit options shows that this depends on the

nature of exit options open to the rich. If the exit-option functions of the rich are convex,

then giving the poor the power to tax the rich might not prejudice cooperative behavior.

If, however, exit-option functions are concave, cooperation can break down.

Finally, �shers could redistribute the second-period catch once the game is over such

that the share accruing to each �sher is a function of his �rst-period behavior. Assume

that the aim of the mechanism is to reduce �rst-period �shing to zero. If both �sh in the

�rst period, both receive their payo�s from the unregulated game (e1F=E; e2F=E). If both

conserve in the �rst period, then i receives a nonnegative share �i of GF , where
P
�i = 1. If

one �sher i cheats in the �rst period, but the other does not, then i receives some share �i of

the second-period stock. E�ectively, up to this point we have restricted �i and (�i) to equal

ei=E. It can be shown that under such a rule complex, full conservation can emerge even if

G < n. However, the range of implementable mechanisms is, under certain circumstances,

sensitive to the wealth distribution.

5.2. Summary of results. This paper presents a model of two �shers di�erentiated by

asset-holding levels in an unregulated �shery. Cooperation in this model takes the form of

restraint in resource extraction: if both �shers reduce their catch in the �rst period, they can

reap larger rewards after the �sh stock has grown. E�ciency is indexed by the amount of the

initial �sh stock available at the start of the second (and �nal) period. The model explores

the e�ect of inequality in asset ownership (�shing capacity) on conservation of a common-

pool resource. We demonstrate that Olson's (1965) inequality hypothesis | interpreted

as a comparative-static statement that increasing inequality enhances e�ciency | is not

strictly correct. We give conditions such that inequality reduces equilibrium e�ciency

(conservation of the �sh stock). If �shers have earnings opportunities outside the commons
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(\exit options") that are concave functions of wealth, increased inequality can reduce the

prospects for full conservation. Furthermore, there exists a wealth distribution beyond

which increasing wealth inequality increases equilibrium e�ciency (though not attaining

full conservation as long as both �shers have positive wealth), and full conservation is an

equilibrium under perfect inequality. The relationship between inequality and conservation

can be U-shaped: at very low and very high levels of inequality, conservation is possible,

while for a middle range of inequality, it is not.

Appendix: Proofs of propositions

Proof of Proposition 1: Suppose �sher 1 plays e1. Then �sher 2's choice is between conservation, which

yields payo�
e2
E
G(F � e1) (13)

and depletion, yielding
e2
E
F (14)

Given that ei > F (G� 1)=G, then (13) is strictly less than

e2
E
G
�
F � F

�
G� 1

G

��
=
e2
E
F

which is (14). Thus �sher 2's payo� to depletion is larger than his payo� to conservation, conditional on

�sher 1's having chosen depletion. The argument is the same for �sher 1. Therefore fe1; e2g is a Nash

equilibrium.

Proof of Proposition 2: Suppose that a1 = a2 = 0 is an equilibrium. If �sher 1, say, deviates and plays

a > 0 in period 1, he will receive a total payo� of a+e1G(F�k)=E. Since a1 = a2 = 0 is a Nash equilibrium,

this must be no better than the payo� he would receive under the equilibrium, namely e1GF=E. That is,

e1
GF

E
� a+ e1

G(F � a)

E

e1

�
GF

E
�
G(F � a)

E

�
� a

e1
Ga

E
� a) e1 �

E

G

Now suppose that ei � E=G for i = 1; 2. Suppose that 2 plays 0 and that 0 is not a best reply for 1. Then

there is some a > 0 such that a is a best reply for 1. If so, then

e1
GF

E
< a+ e1

G(F � a)

E

which implies e1 < E=G, a contradiction.
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Proof of Proposition 3: The �sher with zero wealth is indi�erent between conservation and depletion,

given that both yield a payo� of 0. Conditional on conservation by his opponent, the zero-wealth �sher

weakly prefers conservation. The �sher with all the wealth prefers to harvest the �sh stock in period 2

(when it is equal to GF ) rather than in period 1 (when it is equal to F ), as long as G � 1, regardless of his

counterpart's action. Thus full conservation is an equilibrium.

Proof of Proposition 4: Let us restrict attention, without loss of generality, to the case where �sher 1 is

the larger �sher. Say that �sher 2's endowment is �, and assume furthermore that � < F . If 2 plays his full

capacity in period 1, then 1's payo� from full conservation is

E � �

E
G(F � �) (15)

and his payo� from playing his full capacity in period 1 is

E � �

E
F (16)

The amount (15) is larger than (16) if

� �
G� 1

G
F

Therefore de�ne

ê �
�
E �

G� 1

G
F;
G� 1

G
F
�

(Given that E > F , this distribution in fact endows �sher 1 more handsomely, as we have assumed.) We

have shown so far that full period-1 conservation is always a best reply for �sher 1 to full-capacity �shing

by �sher 2 in period 1. Note that with the distribution given by ê, E � � > E=G, so that by Proposition 2,

full conservation is also a best reply by �sher 1 to full conservation by �sher 2. Then for any redistribution

of wealth away from �sher 2, �sher 1 will always play 0 in the �rst period, and thus, regardless of �sher 2's

strategy, the amount of �sh conserved until the second period will be larger.

Proof of Proposition 5: Assumptions (3), (4) and (5) together imply that condition (2) is satis�ed as an

equality for �sher i at two points: where ei = 0, and where ei = e? for some e? > 0. Moreover, for values

of wealth such that 0 < ei < e?, condition (2) does not hold, while for values of wealth such that ei � e?,

it does. Consider two cases. (i) Full conservation is an equilibrium outcome under e. Then it must be that

both �shers hagve wealth greater than e?. Then transfer from one �sher to another an amount such that

the �rst's wealth is now below e?. Then for the �rst �sher, condition (2) no longer holds, and conservation

is no longer an equilibrium outcome. (ii) Full conservation is not an equilibrium under e. Then it must be

that at least one �sher's wealth lies below e?. Then for any transfer from that �sher to the other, so long

as the �rst still has positive wealth, the wealth distribution will be more unequal, and conservation will not

be an equilibrium.

Proof of Proposition 6: Given that the �shery is economically viable (6), the �sher with all the wealth

prefers conservation to the exit strategy. The �sher with zero wealth is, by assumption (5), indi�erent

between conservation and the exit strategy. Therefore full conservation is an equilibrium outcome.
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Proof of Proposition 7: If average wealth is less than e?, then under perfect equality the distribution is

given by (E=2; E=2) and e? > E=2. then for neither �sher does condition (2) hold; that is, conditional on

the other �sher's conservation, each �sher would prefer the exit strategy. Thus full conservation is not an

equilibrium outcome.

Proof of Proposition 8: We will prove the contrapositive of the proposition: that is, we will show that if

under perfect inequality, full conservation is not an equilibrium outcome, then there exists no other wealth

distribution with ei > 0; 8i under which full conservation is an equilibrium. Suppose that wealth is equally

distributed, so that e = (s; s), and that full conservation is not an equilibrium. There are three possible

cases. (i)  (ei) + minfei; Fg > (ei=E)GF for all possible values of ei, i = 1; 2. In this case, both �shers

always prefer the exit strategy at all positive values of wealth, so there is no full-conservation equilibrium.

Now if the condition  (ei) + minfei; Fg > (ei=E)GF is not met, then given the convexity of  (�), there is

some range of wealth levels over which

ei
E
GF �  (ei) + minfei; Fg (17)

Say that e is the lowest value of wealth for which (17) is true, and �e is the highest level of wealth for which

(17) is true. Then if under the distribution e = (s; s), full conservation is not an equilibrium outcome, it

must be either that s < e or s > �e. These are the two remaining cases we must consider. (ii) s < e: All

other wealth distributions are mean-preserving spreads of e. If wealth is taken from �sher 1, say, and given

to �sher 2, the latter's wealth could eventually exceed e, so that 2 would be willing to conserve, conditional

on 1's conservation. But 1's wealth will always be less than e, and given the restriction that both players'

wealth always be positive, 1 will for all wealth less than s prefer the exit strategy. So full conservation is not

an equilibrium for any wealth distribution other than e. (iii) s > �e: Then, once again, all other distributions

are mean-preserving spreads of e. If wealth is given to player 2, the exit strategy will continue to dominate

conservation for 2, regardless of 1's strategy. Thus under no mean-preserving spreads of e is conservation an

equilibrium outcome.

Proof of Proposition 9: Let the capital distribution be k1 = k2 = k, and consider a mean-preserving

spread � such that the new distribution of capital is (k+�; k��). Then the test is to determine the conditions

under which
d�

d�
< 0 (18)

Note that
d�

d�
=
�
�0(�)A+�(�)

� dA
d�

(19)

The expression in parentheses in (19) is positive. It is the marginal product of (aggregate) e�ort in equi-

librium. The marginal product of aggregate e�ort is equal to the sum of each �sher's marginal product of

individual e�ort, or the sum of the left-hand sides of the two expressions in (11); this in turn is equal to

@c

@a1
(a?1; k1) +

@c

@a2
(a?2 ; k2)
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each term of which is positive for all e�ort levels by assumption. Thus (18) is true as long as dA
d�
< 0.

For each �sher i, call the �rst-order conditions in (11) �0(A)ai + �(A)� aic
i
1(ai; ki) � ci(ai; ki) = 0 �

F (A; ai; ki) = 0. Then we can write the Nash-equilibrium action ai as ai = G(ki; A) for i = 1; 2, and

A = a1 + a2 = G(k1; A) +G(k2; A). Then consider the e�ect of a mean-preserving spread �:

A = G(k + �; A) +G(k � �; A) (20)

Totally di�erentiating in (20) with respect to �,

dA = [G1(k + �;A) �G1(k � �; A)]d�+ [G2(k + �;A) +G2(k � �; A)]dA

where subscripts on G denote partial derivatives with respect to the numbered argument. Thus

dA

d�
=

G1(k + �; A)�G1(k � �;A)

1� (G2(k + �; A) +G2(k � �;A))
(21)

First we shall show that ai is an increasing and concave function of ki, holding A constant. Implicitly

di�erentiating the �rst-order conditions for Nash equilibrium (11) (holding A constant) and rearranging,

dai
dki

���
dA=0

=
aI

��� @2

@ai@ki
(ai; ki)

��� + �� @c@ki
(ai; ki)

��
j�0(A)j+ 2 @c

@ai
(ai; ki) + ai @2

@a2
i

(ai; ki)
> 0 (22)

With the speci�c form of the c(�; �) function given in the proposition, (22) is equivalent to:

(1 + �) c(ai;ki)
ki

j�0(A)j
�

+ c(ai;ki)
ai

(1 + �)

Then it can easily be shown that

d2ai
dk2i

����
dA=0

< 0

Now we show that in (21), G2 is negative. Again using the �rst-order conditions (11),

G2 =
dai
dA

���
dki=0

=
�00(A)ai + �0(A)

j�0(A)j+ 2 @c
@ai

(ai; ki) + ai @2

@a2
i

(ai; ki)
> 0

As G2 < 0, the denominator in (21) is positive. As ai is concave in ki, we can say that

G1(k + �; A) < G1(k � �;A)

Therefore, from (21),
dA

d�
< 0

This establishes (18).

Proof of Proposition 10 (sketch): The proof is very simple and will not be given in full. If condition #

3 of the proposition is satis�ed, then the depleting coalition leaves some �sh to regenerate between periods;

if # 3 is not satis�ed, then the only equilibrium outcome is full depletion in period 1. Say that the �shers

in Î � I �sh to capacity in period 1, and condition # 3 is satis�ed. Then a �sher j not in Î gets payo�

ej
E
G

0
@F �

X
i2Î

ei

1
A (23)



30

from conserving, and �shing to capacity in period 1 yields him

ej
E
G

0
@F �

X
i2Î

ei � ej

1
A+ ej (24)

Now (23) is at least as large as (24) if and only if ej � E=G. By similar logic, if a �sher k nominally in Î is

unilaterally deciding between conserving or depleting, the condition for staying in Î is that ek < E=G.

Proof of Proposition 11: In each case that follows, consider a transfer from �sher j to �sher k. If k 2 �I ,

then k will always conserve regardless of the choices made by other �shers. To see this, consider k's choice.

Say that all other �shers �sh to capacity in period 1, and that E�k �
P

i6=k ei is the sum of wealth held by

all other �shers. Furthermore, assume that E�k < F . Then if k chooses to conserve, his payo� is

ek
E
G(F �E�k) (25)

while if k �shes to capacity in period 1, his payo� is (ek=E)F . Now (25) is at least as large as (ek=E)F if

E�k �
F (G� 1)

G
(26)

now since ek = E �E�k , (26) is equivalent to

ek = E � E�k � E �
F (G� 1)

G
(27)

But (27) always holds by k's inclusion in �I. Thus for any �sher with wealth su�ciently great to be in �I

conservation is a dominant strategy.

Now consider an unequalizing wealth transfer to such a �sher k. The result of such a transfer is that

the �sher j who loses wealth must reduce �rst-period �shing one-for-one with his wealth reduction; k waits

to deploy his wealth, including the transfer from j, until the second period. Thus period-1 �shing is strictly

decreased and equilibrium e�ciency is strictly increased.

We must also consider unequalizing transfers j 2 J to �shers k not in �I . If k 2 J , then ek < E=G. After

the transfer � > 0, j's period-1 �shing is decreased by �. If ek + � � E=G, then k could choose to conserve

and equilibrium e�ciency would strictly increase. If ek + � < E=G, k will increase his period-1 �shing by

� and aggregate period-1 �shing (and thus equilibrium e�ciency) is unchanged. Suppose �nally that k is

neither in J nor �I . As before j will decrease his period-1 �shing by � after the transfer. If k conserves

in equilibrium before the transfer, k will continue to do so after the transfer; aggregate period-1 �shing is

decreased by �. Even if k did not conserve before the transfer, he could now �nd it optimal to do so, and

equilibrium e�ciency would increase. If k did not conserve before the transfer, and still chooses not to after

the transfer, his increased �shing exactly o�sets j's reduction and equilibrium e�ciency is unchanged.
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