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Expected Utility and Insurance in a Two State Model

1 Expected Utility

1.1 The Basics

Expected Utility (EU) theory is a technique developed by Von Neumann and Morgenstern (1944) to deal
with situations of quantifiable risk. It requires preferences to exhibit two additional axioms of continuity
and independence, which are somewhat controversial. Assume that states of nature can be indexed by
an s = 1, ..., S, each with a probability of occurring of p1, ..., pS , which as probabilities obey ps ≥ 0 andPS

s=1 ps = 1.1 Let xs be the realization of some random variable, sometimes known as a prospect
or lottery, x in state s, which yields utility u (xs). The Expected Utility Theorem states that if
consumers have rational preferences that exhibit continuity and independence2 then agents will behave as if
they maximize the expected value of their utility or just expected utility

E [u (x)] =
SX
s=1

psu (xs) (EU Utility)

Similarly, firms can be assumed to maximize expected profits E [π (x)] over various states of the world. The
nature of the budget constraint will vary considerably upon the situation considered.

1.2 Two State Set Up and Indifference Curves

The easiest situation to set up is a 2 state set up with p1 = p and p2 = 1− p. Individuals maximize

E [u (x)] = pu (x1) + (1− p)u (x2)

An interesting way to represent preferences in this case is with a standard consumer model over two goods,
consumption in state 1 and consumption in state 2. As usual an indifference curve is given implicitly by
setting utility to a fixed value and treating one variable (say x2) as a function of the other (x1) or formally

pu (x1) + (1− p)u
¡
xIC2 (x1)

¢
= ū

Differentiating this condition implicitly once gives the condition

−dx
IC
2

dx1
=MRSx1x2 =

p

1− p

u0 (x1)
u0 (x2)

Along the 45 degree line of a graph of x1 and x2, where x1 = x2, then u0 (x1) = u0 (x2) and so MRSx1x2 =
p/ (1− p) the odds-ratio (the proportion of state 1’s to state 2’s) no matter what the utility function looks
like. This is one of the stronger implications of expected utility theory.

1This approach breaks down if the uncertainty is unquantifiable, i.e. you cannot attach numerical probabilities to each state.
Risk is generally defined as quantifable uncertainty.

2 Intuitively, continuity implies that very slight changes in probability will not affect a strict preference of a prospect x over
a prospect y. Independence implies that if x is preferred to y and we mix x and y each with the same lottery z, so that x0
= x with a 50% chance and z with a 50% chance (and y0 defined similarly) then x0 will be preferred to y0.
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1.3 Risk Aversion

One way of thinking about risk aversion is to think that people have convex preferences over consumption
in either state: they would rather have a moderate consumption in both states rather than low consumption
in one state and high consumption in the other, just as people tend to prefer a mixed bundle of goods than
lots of only one good. This means that under risk aversion people should exhibit diminishing marginal rates
of substitution along an indifference curve. Taking the derivative of the MRS with respect to x1 and not
forgetting that x2 is a function of x1 along the indifference curve we get

d

dx1
MRSx1x2 =

p

1− p

"
d

dx1

u0 (x1)
u0
¡
xIC2 (x1)

¢#

=
p

1− p

⎡⎣u00 (x1)u0 (x2)− u00 (x2)u0 (x1)
dxIC2
dx1

[u0 (x2)]
2

⎤⎦
=

p

1− p

⎡⎣u00 (x1)u0 (x2) + u00 (x2)u0 (x1) p
1−p

u0(x1)
u0(x2)

[u0 (x2)]
2

⎤⎦
where the last line comes from substituting in the value for the MRS. A sufficient condition for declining
MRS (i.e. for this expression to be negative) is that u00 (x) is negative which is one version of how risk
aversion is defined. Similarly if the individual is risk neutral u00 (x) = 0 and so d(MRS)/dx1 = 0 implying
indifference curves are parallel lines, indicating that consumption in one period is a perfect substitute for
consumption in the other period.

Example 1 Let u = log (x) so expected utility is given by E [u(x)] = p log (x1) + (1− p) log (x2). In this
case indifference curves are given by

ū = p log (x1) + (1− p) log (x2)

⇒ xp1x
1−p
2 = eū

⇒ x2 = eū/(1−p)xp/(1−p)1

The marginal rate of substitution is given by

MRSx1x2 =
p

1− p

x2
x1
=

p

1− p

eū/(1−p)xp/(1−p)1

x1
=

p

1− p

eū/(1−p)

x
1/(1−p)
1

which is declining in x1.

Example 2 Imagine a person faced with the prospect of a fair 50-50 bet. If the person with money I takes
the bet b > 0 then x2 = I + b if he wins and x1 = I − b if he loses. With no bet x1 = x2 = I. The bet is
fair since E [b] = 1

2b+
1
2 (−b) = 0 and so the expected value of the prospect is I. The utility from not taking

the bet is just u (I), while the utility taking it is 1
2u (I + b)+ 1

2u (I − b). The person is will decline or accept
the bet depending on whether

u (I) ≷ 1
2
u (I + b) +

1

2
u (I − b)

A person who rejects the bet (>) is risk averse, takes the bet (<) is risk loving , and is indifferent about it
(=) is risk neutral.

Generalizing to any prospect x we compare what the utility of its expected value of its expected utility
u [E (x)] ≷ E [u (x)]; .> implies risk aversion, < risk loving, and = risk neutrality. A mathematical fact
known as Jensen’s Inequality tells us that risk aversion is reflected in a u (x) that is concave, i.e. u00 (x) < 0
when x is a single variable. Similarly, risk loving implies a convex u, u00 (x) > 0, and risk neutrality a linear
u, u00 (x) = 0.

2



2 Insurance

2.1 Efficient Insurance

Assuming individuals are risk averse and actuarially fair insurance exists (i.e. insurance with expected
cost to the consumer of zero) then it can be shown that individuals will always choose to insure fully (i.e.
eliminate all risk). Suppose an agent a utility function which depends only on income, which she has I
to start out with. Let p > 0 be the the chance of an accident which causes a loss d of income. An agent
can buy insurance contract (a, b) which has a premium b but pays out a net amount a in case the accident
occurs. So the expected utility of an agent that buys such a contract is pu (I − d+ a) + (1− p)u (I − b) .
You can think of state 1 as the accident state and state 2 as the non-accident state with x1 = I − d+a , and
x2 = I − b.
The expected profit of a firm which offers this contract is π = p (−a) + (1− p) b (we leave out the

expectations operator E) The presence of actuarially fair insurance can be justified by assuming insurance
markets are competitive and firms are risk neutral : competition among firms will drive expected profits to
zero π = 0 ⇒ ap = b (1− p) ⇒ b = ap/ (1− p) . The effective "budget constraint" can be written by
solving for x2 as a function of x1

x2 = I − b

= I − a
p

1− p

= I − (x1 + d− I)
p

1− p

=
I − pd

1− p
− p

1− p
x1

Note that this budget constraint goes through the no insurance point x1 = I − d, x2 = I and that it implies
a relative price of consumption in period 1 and to consumption in period 2 as p/(1− p).
The choice of optimal insurance is found by finding the optimal x1

max
x1

pu (x1) + (1− p)u

µ
I − pd

1− p
− p

1− p
x1

¶
Taking the FOC with respect to a

pu0 (x1)− (1− p)u0
µ
I − pd

1− p
− p

1− p
x1

¶µ −p
1− p

¶
= 0

which rearranging and cancelling out (1− p) and p implies

u0 (x1) = u0
µ
I − pd

1− p
− p

1− p
x1

¶
If agents are risk averse then concavity implies u0 is decreasing and so u0 (x1) = u0 (x2) implies x1 = x2 and
so agents will have the same effective income in either state, they are fully insured. We can solve for the
premium as

I − d+ a∗ = I − a∗
p

1− p
⇒ a∗ = (1− p) d

and so b∗ = a∗p/ (1− p) = pd and the optimal contract will be (a∗, b∗) = ((1− p) d, pd) . In each state
income is x∗1 = x∗2 = I − pd. This is shown in a diagram since the zero profit condition implies that the
relative price p/ (1− p) equals the marginal rate of substitution along the 45 degree line (see above) where
the two allocations are equal.
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2.2 Adverse Selection and Insurance

The problem of adverse selection in insurance markets was laid about by Rothschild and Stiglitz (1976).
Take the same setup as above except assume there are two types of individuals - low risk types L and high
risk types H with accident probabilities pL and pH respectively, where pL < pH , but where I, u , and d are
the same for both types. Competition among firms will have some interesting implications as it implies
firms will always offer contracts which can make at least zero profits. Say proportion λ are low risk types
and so (1− λ) are high risk types. If insurance companies can tell the two apart then they can just offer
each type the efficient contract (a∗L, b

∗
L) = ((1− pL) d, pLd) and (a∗H , b

∗
H) = ((1− pH) d, pHd). Low risk

individuals will then consume I − pLd and high risk individuals will consume I − pHd.

Example 3 Let pL = 1
4 and pH = 1

2 and assume that the proportion of L types is λ = 1/2 while the
proportion of H types is 1−λ = 1/2. Each has income I = 1, and if they get into an accident suffer damages
suffers d = 1. Expected utility takes the form

pi log x
i
1 + (1− pi) log x

i
2 i = L,H

where xi1 is remaining income in the accident state and xi2 is remaining income in the nonaccident state.
Using the above solution we can show that x∗1L = x∗2L = 3/4, x

∗
1H = x∗2H = 1/2, (a

∗
L, b
∗
L) = ((1− pL) 1, pL1) =

(3/4, 1/4) and (a∗H , b
∗
H) = ((1− pH) 1, pH1) = (1/2, 1/2) .
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2.2.1 Failure of Efficient Insurance

If the types are not observable by the insurance firms then the efficient contracts no longer work as firms
cannot prevent one type from taking the other type’s efficient contract. The high types H all want to
pretend to be low types L as the accident benefit is higher as a∗L = (1− pL) d > (1− pH) d = a∗H and
premium costs are lower b∗L = pLd < pHd = b∗Ld. Since firms compete to get the low-risk types πL =
−pLa∗L + (1− pL) b

∗
L = 0 and so overall profits when high types take the efficient low risk contract will turn

negative:

λπL + (1− λ)πH = 0 + (1− λ) [(1− pH) b
∗
L − pHa

∗
L]

= (1− λ) [(1− pH) pLd− pH (1− pL) d]

= d (1− λ) [pL − pH ] < 0

where the inequality comes from the fact that pL < pH . Therefore the efficient contracts cannot be an
equilibrium, and some other suboptimal equilibrium must be found. There are two main possibilities to
consider: (i) where firms offer a one-size-fits-all or "pooling" contract (aP , bP ) which both types will take
and (ii) where firms offer "separating" contracts, one for low risk types

¡
aSL, b

S
L

¢
and one for high risk types¡

aSH , b
S
H

¢
which are designed so that each type voluntarily self-selects into buying the contract made for it.
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2.2.2 Pooling Contracts

Say a firm tries to institute a pooling contract (aP , bP ) so that everyone buys it. The question is can this
contract can work as an equilibrium. (The answer is no) If a firm can offer a profitable contract which
at least one type will take, then the equilibrium will fall apart. In fact, for any pooling equilibrium there
is always a contract (a0, b0) that is better for the low risk types and is profitable. Therefore any pooling
equilibrium will fall apart.
The overall probability of accident p = λpL+(1− λ) pH and so pL < p < pH . The zero profit condition

is that πP = −paP +(1− p) bP = 0 and thus bP = aP p/ (1− p). Therefore the relative price of consumption
in either state is p

1−p . Now at any point the indifference curves of high types and low types will cross, as
high types will have a higher MRSHx1x2 .

MRSHx1x2 > MRSLx1x2 ⇔
pH

1− pH
u0
¡
xP1
¢

u0
¡
xP2
¢ > pL

1− pL
u0
¡
xP1
¢

u0
¡
xP2
¢ ⇔ pH

1− pH
>

pL

1− pL
⇔ pH > pL

which makes sense since high types will value consumption in the accident state 1 more than in the non-
accident state 2. Because p is between pH and pL it also follows that MRSHx1x2 >

p
1−p > MRSLx1x2 .

Since a firm offering a pooling contract have to make up for losses with hightypes using profits from
the low types, a contract which attracts low types away from the pooling contract will put such firms out
of business. It turns out that profitable (non-equilibrium) contracts can always be offered to low types.
These are located above the indifference curve for low types and below the indifference curve for high types
(implying only low types take this contract) and beneath the zero profit constraints for low types (implying
positive profits). Therefore pooling equilibria cannot exist as we assumed that any profitable contract would
be offered, and so profitable contracts attracting low types away from the pooling contract will be offered,
making any pooling contracts unprofitable. A technical proof is contained in the footnote.3

Example 4
¡
aP , bP

¢
= (5/8, 3/8) is a one possibility for a pooling contract (one that implies full insurance

for both types). The overall probability of an accident is p = 1
2pL +

1
2pH =

1
2
1
4 +

1
2
1
2 =

3
8 . The profit made

will be π = −paP +(1− p) b = −38 58 + 5
8
3
8 = 0 satisfying the zero profit condition. However the profits made

off of the low types is positive πL = −pLaP + (1− pL) b = −14 58 + 3
4
3
8 =

9−5
32 = 4

32 =
1
8 and so πH = −18 .

Another firm can offer an insurance contract with slightly less coverage that will attract the low types only
and make a profit. Calculating marginal rates of substitution we can see that they will not be equal

MRSLx1x2 =
pL

1− pL

1/x1
1/x2

=
1/4

3/4

1/ (5/8)

1/ (5/8)
=
1

3
, MRSLx1x2 =

pL
1− pL

1/x1
1/x2

=
1/2

1/2

1/ (5/8)

1/ (5/8)
= 1

implying that indifference curves will cross as shown in the diagram below. Contracts which can disrupt
pooling contracts are located in an area below.

3Let K =
¡
MRSLx1x2 +MRSLx1x2

¢
/2 be the average of the MRSx1x2 for both types. Now for some small ε > 0, consider

the following contract that offers just slightly less coverage ε, but requires a lower premium Kε, (a0, b0) = (aP − ε, bP −Kε),
implying x01 = xP1 − ε, and x02 +Kε The low types will take this contract since it will yield a higher utility then

¡
aP , bP

¢
,

which can be shown using a differential argument from calculus

UL

³
xP1 , x

P
2

´
−UL

¡
a0, b0

¢
= pL

h
u
³
xP1 − ε

´
− u

³
xP1

´i
+(1− pL)

h
u
³
xP2 +Kε

´
− u

³
xP2

´i
' pLu

0
³
xP1

´
(−ε)+(1− pL)u

0
³
xP2

´
(Kε)

This quantity is positive since

(1− pL)u
0
³
xP2

´
(Kε)− pLu

0
³
xP1

´
(ε) > 0⇔ K >

pL

1− pL
u0
¡
xP1
¢

u0
¡
xP2
¢ =MRSLx1x2

For the same reason high risk types will not like this contract since K < MRSHx1x2 because the reduction in coverage is not
made up enough for them by the reduction in the premium. Firms will want to offer such a contract as they can make a
positive profit from it

π0 = −pL
³
aP − ε

´
+ (1− pL)

³
bP −Kε

´
=
h
−pLaP + (1− pL) b

P
i
+ ε [pL − (1− pL)K]

=

∙
−pLaP + (1− pL)

p

1− p
aP
¸
+ ε [pL − (1− pL)K] = aP

∙
p− pL

1− p

¸
+ ε [pL − (1− pL)K]

The first term is always positive while the second term is negative. The firm will just pick an ε > 0 small enough the it can
make the second term negligibly small and assure itself positive profits.
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Pooling Contract

2.2.3 Separating Contracts

We know that no pooling contract will ever work as it will lose out to a separating contract. However that
separating contract is not an equilibrium since the former pooling contract which serves the high types no
longer works. An equilibrium pair of separating contracts

¡
aSL, b

S
L

¢
and

¡
aSH , b

S
H

¢
must be stable for both

types. As we saw earlier it is impossible for both types to get their respective efficient contracts as high risk
types prefer the low risk efficient contract to their own optimal contract. However, it is possible for high
risk types to get their efficient contract will low types get an inefficient contract, since low types do not want
the high risk efficient contract. In, fact competition amongst firms for the high types business will assure
that the high risk types will get their efficient contract

¡
aSH , b

S
H

¢
= (a∗H , b

∗
H) in a separating equilibrium.

The low types can only get the most efficient contract
¡
aSL, b

S
L

¢
that high risk types will not want to take.

We model this by making high types indifferent about both contracts, assuming they take the one for the high
types. Let (x∗1H , x

∗
2H) be the amounts in each state from the efficient high type separating contract and¡

xS1L, x
S
2L

¢
be that for the low types. Since utility for the high types is U∗H = pHu (x

∗
1H)+(1− pH)u (x

∗
2H) =

pHu (I − pHd) then
u (I − pHd) = pHu

¡
xS1L

¢
+ (1− pH)u

¡
xS2L

¢
(Cond 1)

is the implicit restriction on
¡
xS1L, x

S
2L

¢
: be careful to note that it is the high risk probabilities for the low risk

contract. The contract
¡
aSL, b

S
L

¢
that will result in a separating equilibrium will satisfy the above condition

and satisfy the zero profit condition for the low risk types

bSL = aSLpL/ (1− pL) (Cond 2)

The two conditions can be used to solve for the separating contract. Substituting in (Cond 2) into (Cond
1) we have

u (I − pHd) = pHu
¡
I − d+ aSL

¢
+ (1− pH)u

¡
I − aSLpL/ (1− pL)

¢
= pHu

¡
xS1L

¢
+ (1− pH)u

µ
I − pLd

1− pL
− pL
1− pL

x1L

¶
This one equation implicitly defines the one variable aSL in a single equation, which you may be able solve
for. Note that this contract cannot be efficient: if we try to substitute in the efficient contract for L types,
with aSL = (1− pL) d then we get

u (I − pHd) = u (I − pLd)
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which cannot hold unless pL = pH , i.e. low and high types are identical, contrary to our starting assumption.
Therefore this contract is inefficient for low types. A little more work would show that the resulting insurance
will be too low.
So far we have found a set of equilibrium contracts that Because the contract for low types is inefficient

there are lots of possible contracts that could preferred by low risk types that would increase profits. However
a more efficient contract for the low risk types will also attract the high risk types. The question is whether
there are pooling contracts which could also sustain high risk types and still make a profit. If λ is big
and there are relatively few high profit types then such a pooling contract exists. Then the separating
equilibrium we just solved is not a true equilibrium as some firm can offer the pooling contract which will
cause both types to abandon the separating contracts. In this case there will be no market equilibrium
whatsoever. Any potential pooling equilibrium will be abandoned for separating contracts and any potential
separating equilibrium will be abandoned for a pooling one!
This contract (ã, b̃) has to make at least zero profits so

pb̃ = (1− p) ã

and it has to be better for low risk types (which automatically makes it better for high risk types) which
substituting in the above means

pLu (I − d+ ã) + (1− pL)u (I − ãp/ (1− p)) > pLu
¡
I − d+ aSL

¢
+ (1− pL)u

¡
I − aSLpL/ (1− pL)

¢
So rearranging, if there there exists an ã that satisfies this above condition then there will be no separating
equilibrium either. Graphically this can be checked by seeing if the zero profit constraint for a pooled
contract lies beneath the indifference curve for low types at the separating equilibrium. If it is beneath
then the above condition is not satisfied and the separating contracts are an equilibrium. If it crosses this
indifference curve then there is no equilibrium: a separating contract can disrupt any pooling contract and
a pooling contract and disrupt any separating contracts. An interesting conclusion of this paper is that if
there are only a few high risk types (λ close to one) then the pooled zero profit is likely to cross L type’s
indifference curve, causing the insurance market to fall apart.

Example 5 The separating contracts for out example are given by

¡
aPH , b

P
H

¢
= (a∗H , b

∗
H) =

µ
1

2
,
1

2

¶
and

¡
aPL , b

P
L

¢
=

Ã
3

2
−
r
3

2
,
1

2
− 1√

6

!
∼= (0.275, 0.092)

The utility for the H types is simply log (1/2) = − log 2. They have to be indifferent about between their

contract and L’s contract so 1
2 log a

P
L +

1
2 log

¡
1− bPL

¢
= log 12 ⇒

¡
aPL
¢1/2 ¡

1− bPL
¢1/2

= 1
2 ⇒ aPL

¡
1− bPL

¢
=

1
4 ⇒ aPL =

1
4(1−bPL)

(or x1L = 1
4x2L

). The firm’s zero profit condition implies

pLa
P
L = (1− pL) b

P
L ⇒ aPL =

1− pL
pL

bPL = 3b
P
L

(or x2L =
I−pLd
1−pL −

pL
1−pLx1L = 1− 1

3x1L) Combining the two conditions and using the quadratic formula

3bPL =
1

4
¡
1− bPL

¢ ⇒ 12bPL
¡
1− bPL

¢
=
1

12
⇒ ¡

bPL
¢2−bPL − 1

12
= 0⇒ bPL =

1±
q
1− 1

3

2
=
1

2
±
q

2
3

2
=
1

2
± 1√

6

(or 1 − 1
3x1L =

1
4x1L

⇒ 4 (x1L)
2 − 12x1L + 3 = 0) Only the smaller answer makes sense (the other one

overinsures and gives L-types lower utility): so bPL =
1
2 − 1√

6
.and so aPL = 3b

P
L =

3
2 − 3√

6
= 3

2 −
q

3
2 , which

then implies x1L = 1
2 +

1√
6
∼= 0.908 and x2L =

q
3
2 − 1

2
∼= 0.725.
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Separating Contracts

The separating equilibrium does exist. If we draw the zero profit condition we see that it lies below the
indifference curve for the L-types. Therefore there is no pooling contract that can make money and draw
both types disrupting the separating contract.
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No Disrupting Pooling Contract Possible
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