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Pareto Optimality and Public Goods with Two Agents
Consider the case where the case with N = 2 agents, indexed by i = 1, 2. Most of what we consider

here is generalizable for larger N but working with 2 agents makes things much easier. Let agent 1’s utility
depends on his own action a1 ("action" is defined very broadly here) as well as agent 2’s action, so we can
write U1 (a1, a2) , and similarly for agent 2 U2 (a1, a2).

1 Pareto Optimality

1.1 Definition

The set of feasible actions
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is Pareto optimal (or efficient) if there does not exist another of feasible

actions (ã1, ã2) such that

U1 (ã1, ã2) ≥ U1
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and

U2 (ã1, ã2) ≥ U2
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with at least one above inequality strict. In other words there does not exist an allocation that makes both
as well off and making one strictly better off. A logically equivalent condition is that for any feasible set of
actions (ã1, ã2)

U1 (ã1, ã2) > U1
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A set of actions that makes agent 1 strictly better off must make agent 2 strictly worse off. Important Note:
Except for the trivial case of one person, Pareto optima and Nash equilibria do not necessarily coincide:
plenty of Nash equilibria that are not Pareto optima and vice-versa (remember the Prisoner’s Dilemma!)

1.2 Utility Possibility Set

One can imagine the set of all pairs of utility (U1, U2) given by all of the different actions a1 and a2. The
utility possibility set is that collection

U = {(U1, U2) : U1 = U1 (a1, a2) , U2 = U2 (a1, a2) for any feasible a1, a2}
which can usually be represented by a graph with U1 on the x-axis and U2 on the y-axis. By its very nature
a Pareto optimum should be on the very edge of that set - that is its "frontier ". More formally the utility
possibility frontier is the set

UF = {(U1, U2) ∈ U : there is no
³
Ũ1, Ũ2

´
∈ U such that Ũ1 ≥ U1 and Ũ2 ≥ U2 }

The difference between the utility possibility frontier and the set of Pareto optima, is that the set of Pareto
optima refers to an outcome or allocation while the frontier refers only to utilities. Also, Pareto optima
require that at least one inequality is strict while the frontier can include horizontal or vertical edges that
are not Pareto. All Pareto optima will yield utilities on the frontier, however not quite all points on the
frontier will relate to a Pareto optimum since it may contain points where one agent (not both) may do
better without it costing the other agent.

1.3 Solving for Pareto Optima

1.3.1 Guaranteed Minimum Utility Formulation

One way of solving for Pareto optimum is to guarantee agent 1 a minimum amount of utility ū1 , which is
taken parametrically, and then maximize agent 2’s utility subject to this constraint. In other words

max
a1,a2

U2 (a1, a2) s.t. U1 (a1, a2) ≥ ū1
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If we let λ be the Lagrange multiplier on the constraint to get

L (a1, a2, λ) = U2 (a1, a2) + λ [U1 (a1, a2)− ū1]

Assuming everything is smooth and the Pareto optimal actions are positive the following FOC must hold at¡
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∂U2
∂a1

+ λ
∂U1
∂a1

= 0 and
∂U2
∂a2

+ λ
∂U1
∂a2

= 0 (Pareto FOC)

along with the equation U1 (a1, a2) = ū1. These FOC can be solved for the actions a1 (ū1), a2 (ū1), and
λ (ū1) as well as the utility agent 2 actually receives: u2 (ū1) = U2 (a1 (ū1) , a2 (ū1)). Interestingly, in well-
behaved cases where the utility possibility set is smooth and convex, the utility possibility frontier is given
by the value function u2 (u1). By the envelope theorem the slope of the frontier is given by

du2
du1

=
∂L

∂u1
= −λ

Compare the Pareto FOC to the Nash FOC (see previous handout) you can see that the Pareto optimal
actions take into account ∂U2/∂a1 and ∂U1/∂a2, i.e., that actions of agent 1 have an effect on agent 2 and
vice-versa. These externalities are ignored in the Nash equilibrium and so the Nash equilibrium is only
optimal if ∂U2/∂a1 = ∂U1/∂a2 = 0. Solving each FOC equation for −λ and rearranging we see

−λ =
∂U2
∂a1
∂U1
∂a1

=
∂U2
∂a2
∂U1
∂a2

⇒
∂U1
∂a1
∂U1
∂a2

=
∂U2
∂a2
∂U2
∂a2

(Pareto Tangency)

so the marginal rates of substitution between each action for each agent are equal, i.e. MRS1a1a2 =MRS2a1a2 .
At the Nash equilibrium the marginal rates of substitution are typically perpendicular as MRS1a1a2 = 0 and
MRS2a1a2 =∞.

1.3.2 Maximizing Weighted Utilities Formulation

Another option is to consider a "social planner" who attaches a relative weight λ to agent 1 relative to
agent 2 where λ ≷ 1 depending whether the planner values agent 1 more or less than agent 2. Unlike the
above case we take λ as a fixed parameter and determine the utilities of both agents u1 and u2. A theorem
from mathematics says that "pretty much" any Pareto optimal allocation can be found by maximizing the
weighted utilities

max
a1,a2

λU1 (a1, a2) + U2 (a1, a2)

for some λ. Different λ will give different Pareto optimal allocations. A popular favorite is to choose λ = 1,
which corresponds to the Utilitarian social welfare function. With the exception of the constraint, the same
FOC hold (implying the same Pareto Tangency), except now one solves for a1 (λ), a2 (λ), and the utilities
u1 (λ) = U1 (a1 (λ) , a2 (λ)) and u2 (λ) = U2 (a1 (λ) , a2 (λ)) .
The relationship between the two formulation considered can be seen by considering the problem

max
u1

λu1 + u2 (u1)

where u2 (u1) is the utility frontier derived in the guaranteed minimum utility formulation. Taking the
FOC we get λ+ du2(u1)

du1
= 0 or du2(u1)

du1
= −λ.1 Thus we can imagine a social planner with straight, parallel

indifference curves, each with slope −λ, in a graph. A Pareto optimum will be found where an indifference

curve is tangent to the utility possibility frontier, with slope duP2
duP1

, outlining U.

The FOC imply that we can solve for u1 (and u2) as a function of λ, giving u1 (λ). Typically this
function can be inverted to give the weight λ as a function of u1, i.e. λ (u1). In this way a level of utility
given to person 1 implies a certain relative weight person 1 gets relative to person 2, just as a given weight
implies a level of utility to person 1 (and 2).

1The SOC imply that d2u2
du21

< 0, i.e. the frontier must be concave so that the utility possibility set is convex.
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2 Public Goods
Each agent has utility Ui (G,xi) where xi is private consumption and public good G = g1 + g2 where gi is
agent i’s provision of the public good. The public good, by definition is nonrival, consumption by one agent
does not reduce it’s benefit to another agent, and nonexcludable, i.e., it is prohibitively expensive to keep
agents from consuming it. The price of private consumption is px and the price of the public good is pG.
Each agent has income Ii and thus has an individual budget constraint pxxi + pGgi = Ii.

2.1 Pareto Optimal Provision

Solving each person’s budget constraint for xi in terms of gi we get xi = Ii/px− pGgi/px. Substituting this
expression and G = g1 + g2 into each individual’s utility function we can find Pareto optima by solving

max
g1,g2

λU1

µ
g1 + g2,

I

px
− pGg1

px

¶
+ U2

µ
g1 + g2,

I

px
− pGg1

px

¶
Note here that g1 and g2 are not each subject to a non-negativity constraint, only the total G ≥ 0. This
allows us to transfer money from one individual to another (e.g. person 1 can receive money if g1 < 0 and
g2 ≥ −g1. Taking the FOC we get that the following two first order conditions must be satisfied at the
optimum
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g1 : λ

µ
∂U1
∂G
− ∂U1

∂x1

pG
px

¶
− ∂U2

∂G
= 0

g2 : λ
∂U1
∂G
−
µ
∂U2
∂G

+
∂U2
∂x

pG
px

¶
= 0

Solving each equation for λ and solving for pG/px we get

λ =
∂U2
∂G

∂U1
∂G + ∂U1

∂x
pG
px

=

∂U2
∂G + ∂U2

∂x
pG
px

∂U1
∂G

⇒
∂U1
∂G
∂U1
∂x

+
∂U2
∂G
∂U2
∂x

=MRS1Gx +MRS2Gx =
pG
px

(Samuelson’s Rule)

The condition that pG/px = MRS1Gx + MRS2Gx, is known as "Samuelson’s Rule" (after the influential
economist Paul Samuelson). This condition is different from that one derived with just private goods where
we would have MRS1Gx = pG/px which would be Pareto optimal if G were not a public good but a private
good for person 1.

2.2 Nash equilibrium

In the Nash equilibrium we can expect individual 1 to maximize her own utility taking g2 as given. Therefore
we solve

max
g1

U1

µ
g1 + g2,

I

px
− pGg1

px

¶
which leads to the FOC (assuming gN1 > 0)

∂U1
∂G
− ∂U1

∂x1

pG
px
= 0⇒MRS1Gx =

pG
px

A similar condition applies for person 2, implying that MRS1Gx = pG/px =MRS2Gx which does not satisfy
samuelson’s rule, resulting in a sub-optimal allocation of public goods as GN = gN1 + gN2 < gP1 + gP2 = GP .

2.3 Vertical Addition of Demand Curves

One way of visualizing Samuelson’s rule is to use a graph (pG, G) space much as one would in a typical demand
diagram. Do this by solving the standard consumer problem (like the Nash equilibrium) except assume that
each person faces an individualized price for the public good pGi. This way you will derive a demand curve3



Gi (pGi) by setting MRSiGx = pGi (set px = 1 to simplify matters - it is still the same for everyone). Now in
aggregating the demand curves one should add up the inverse demand curves pDGi (G) = G−1i (G) where G−1i
is the inverse function of Gi and should be downward sloping like most demand curves. Graphically this
amounts to vertically adding up demand curves - something you should never do when dealing with private
consumption (when you should add the actual demand curves, i.e. horizontally).

This idealized market will clear where pDG1 (G
∗) + pDG2 (G

∗) = pSG (G
∗) where pSG (G) is just a standard

inverse supply curve, resulting in an equilibrium price p∗G. Note however that this implies that Samuelson’s
rule will hold as pDG1 (G

∗) =MRS1Gx and pDG2 (G
∗) =MRS2Gx and therefore MRS1Gx +MRS2Gx = p∗G.

Example 1 Assume that pG = px = I1 = I2 = 1 and that utilities are Cobb-Douglas so U1 (G,x1) =

G1/2x
1/2
1 and U1 (G,x1) = G1/2x

1/2
2 . In this case the budget constraints imply that x1 = 1 − g1 and

x2 = 1−g2 and marginal rates of substitution are given byMRS1Gx = x1/G andMRS2Gx = x2/G. Therefore
Samuelson’s Rule implies xP1 /G

P+xP2 /G
P = 1 so that xP1 +x

P
2 = GP . Substituting in the budget constraints

and using the fact that gP1 + gP2 = GP we get GP = 1. Without specifying a λ we get the optimal level of
the public good but we do not get a specific allocation of how much each should contribute. Substituting in
G = 1 into the utility functions gives u1 = x

1/2
1 and u2 = x

1/2
2 . Adding up the budget constraints gives

x1 + x2 = 2 − G = 1 so x2 = 1 − x1. Therefore u2 = (1− x1)
1/2 which combined with the fact that

u1 = x
1/2
1 ⇒ x1 = u21 gives us u2 (u1) =

¡
1− u21

¢1/2
which gives the utility possibility frontier (a quarter of

a circle). Thus the solution to the minimum guaranteed utility formulation is

xP1 = gP2 = u21 and x
P
2 = gP1 = 1− u21.

Putting a weight of λ on person 1 and taking the FOC gives us that λ = u1/
¡
1− u21

¢1/2
which solving for

u1 yields

uP1 =

µ
λ2

1 + λ2

¶1/2
, uP2 =

µ
1

1 + λ2

¶1/2
, xP1 = gP2 =

λ2

1 + λ2
, and xP2 = gP1 =

1

1 + λ2

, which are the solutions to the maximizing weighted utilities formulation. If equal weights are given λ = 1
and so xP1 = xP2 = gP1 = gP2 = 1/2 and uP1 = uP2 = 1/2

1/2. Solving for the Nash instead we get that person
1 will set x1/ (g1 + g2) = 1, and person 2 will set x2/ (g1 + g2) = 1, and therefore x1 = x2 = g1 + g2. With
the budget constraints this implies 1− g1 = 1− g2 = g1 + g2 which simplifying yields

gN1 = gN2 = 1/3 and G
N = xN1 = xN2 = 2/3

, resulting in a suboptimal allocation of public goods as U1 (2/3, 2/3) = U2 (2/3, 2/3) = 2/3 < 1/21/2 ∼=
0.707 Note that the Nash conditions can be combined with each budget constraint to solve for the reaction
curves as 1− g1 = g1+ g2 ⇒ g1 (g2) = (1− g2) /2 and similarly g2 (g1) = (1− g1) /2, which can be combined
in a standard graph. Indifference curves in (g1, g2) are given by u1 = (g1 + g2)

1/2
(1− g1)

1/2 ⇒ gIC12 =
u21/ (1− g1) − g1. The idealized demand curves are given by xi/G = pGi and pGiG + xi = 1 ⇒ xi =
pGiG = 1 − pGiG ⇒ G = 1/ (2pGi) or the inverse demand pGi (G) = 1/ (2G) . Adding the two inverse
demands pG1 (G) + pG2 (G) = 1/G. Inverting this equation we get an added up demand for the public good
as G (pG) = 1/pG. Setting pG = 1 we get G∗ = 1
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