
Lecture 6: Topics in Intertemporal Labor Supply
a. the extensive margin
b. structural models
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The Extensive margin
A lot of the labor supply literature ignores the extensive margin – workers

who don’t work for a year are dropped. However, variation in the number
of workers is potentially important for understanding aggregate movements in
hours:

(a) some people do miss an entire year of work in downturns
(b) the elasticity of participation w.r.t. wages can be relatively high,

even if η is small.
There is a literature in macro arguing that the extensive margin is highly

elastic, and that the extensive margin needs to be taken into consideration in
both tax policy analysis and in macro modeling (see Chetty et al for a discussion
of this literature).

Chetty et al present a meta analysis of various quasi-experimental studies
that measure the effects of either permanent changes in (after tax) wages, or
temporary changes, on employment rates. They use the former to obtain esti-
mates of compensated elasticities of participation; the latter provide estimates
of the Frisch elasticities of participation. An interesting paper is the one by
Bianchi et al (2001), on the effects of a tax holiday created in Iceland when the
country switched tax systems and everyone was untaxed for a single year (1987).
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You may find it instructive to read the paper because it is almost impossible
to understand what the original authors did (or why), despite the very clear
research design.

Looking at Chetty et al’s Table 1, notice that the typical compensated elas-
ticity is around 0.25, while the typical Frish elasticity is around 0.3. These are
not much different than the elasticities people have obtained for the intensive
margin.

Manoli and Weber (2013) is a very recent attempt to look at one of the
important extensive margins : variation in the length of time people work. This
paper uses an RD design to study the effects of a benefit that is paid to workers
who retire after certain tenure milestones: see their Figure 1 at the end of the
notes. For example, if you retire with 11-14 years of tenure you get 1/3 of a year
of salary, whereas if you retire with 15-19 years you get 1/2 year of salary.Since
workers start jobs at different ages, there is a smooth distribution of people
across the tenure distribution at different ages, and Manoli and Weber find
strong evidence that some workers appear to delay retirement to get the benefits
– see their Figure 4, which shows spikes in tenure just after the milestones.

They use a variant of the bunching style estimator we discussed in Lecture
3 to relate the fraction of people who retire at the threshold point to the relative
size of the extra severance payment available for those who reach the threshold.
Specifically, they smooth the density of retirement tenures (see Figure 13), then
for each milestone they calculate

∆p

pt
=

∑11
k=0(rt+k − rSt+k)∑11

k=0 r
S
t+k

where rt+k is the fraction of retirements at month k after the milestone tenure
level t, and rSt+k is the corresponding smoothed fraction. In words, this is the
excess mass of retiremements in the year just after the milestone. They then
calculate a simple “extensive margin elasticity”:

ε =

∆p
pt

(1−τ(sev))SPt

(1−τ(earn))yt

,

where SPt is the extra severance pay after the milestone t (e.g., 1/6 of a year of
salary for reaching 15 years), τ(sev) is the tax rate on severance pay, which is
low, and τ(earn) is the effective tax rate on an additional year of work, which
is about 80% – arising from a combination of a 30 payroll/income tax and a
50% replacement rate from the pension system. See Table 4 at the end of the
notes for the calculations. In the top panel they calculate the denominator of
the elasticity using the “rules” - these are around 0.1 to 0.3 . A problem is that
tax records show that some people get the severance even if they retire a bit
early, and others don’t seem to get it even if they pass the milesone – see Figure
8 at the end of the notes for the distributions of SP payment fractions. So in
Panel B of Table 4 they calculate the denominator by estimating the relative
gain in severance pay from exceeding the milestone – similar to the first stage
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in a fuzzy RD. These elasticities are larger because the gain in realized SP is
smaller than the gain implied by the formula.

Structural Methods
The idea of fully structural modelling is to estimate the parameters of the

utility function that drives choices within and between period. Some advantages
of this approach:

1) the model can be solved for the value of the marginal utility of wealth
for an agent in a given period, conditional on the state variables he or she sees at
that point. This makes it possible to assess the wealth effects of wage changes,
and the net effect (via intertemporal substitution and wealth effects) on labor
supply

2) the model can be used to assess out of sample policy changes, like a
revision in social security, on outcomes at all stages of the lifecycle

There are also some costs:
3) because of computational complexity many simplifications have to

be made.
4) it is often very hard to understand where identification is coming from

- in most cases parameters are identified by a combination of functional form
assumptions and general features of the data. There is rarely local identification
based on specific design features, as occurs in IV or RD approaches to estimation
of simpler ’reduced form’ models

A basic example.
We will discuss a simple dynamic labor supply model that illustrates the

idea of interpolation of the value function (or, actually the derivative of the
value function) using a regression approximation. To keep things very simple,
we will assume that wages take on only a limited set of values (say w1, w2...wJ)
and πij = P (wt = wi|wt−1 = wj) are known. There will be two state variables:
the wage, and assets. The value function at time t will be denoted Vt(At, wt).
When the wage takes on only discrete values this is just a set of J functions
Vt(At, wj). What is relevant for dynamic consumption and hours choices are
the derivatives ∂Vt(A,wj)/∂A = λt(A,wj). The solution method will involve
working backward from the retirement period, and at each period solving for
the optimal choices of consumption and hours in that period, as a function of
the wage in that period, assets, and the approximations to ∂Vt+1(A,wj)/∂A.
With these in hand we can then compute ∂Vt(A,wj)/∂A at each of a finite set
of values for A. We will then fit a regression model to these points to get an
approximating model for ∂Vt(A,wj)/∂A at every level of A. We then continue
working backward to obtain the optimal consumption and hours functions in
each period for each wage and level of assets,

c∗t (At, wt)

h∗t (At, wt).

3



In applications these functions can be used to compute a likelihood for the
observed data for a sample of people who are observed at various points in time,
or to compute hours and consumption profiles that are matched to observed
profiles. We defer a discussion of how to use the estimated optimal response
functions till the end of the lecture.

Let’s assume the within period utility function is separable:

U(c, h) = u(c)− d(h).

with d(0) = 0. Let’s also assume that agents work until an exogenous age R,
then retire. At that point the agent becomes eligible for a pension p. In addition
to the pension amount, an agent with (beginning-of-period) wealth AR buys an
annuity and receives a per-period payment of rAR for the rest of his/her life.
For purposes of modeling labor supply at earlier ages we can therefore consider
the value function for period R :

VR(AR) =

∞∑
j=0

U(p+ rAR, 0)

(1 + r)j
=

1

r
u(p+ rAR)

where U(c, h) is the within-period utility function, and I have simplified things
by assuming that the agents’ discount rate and the annuity price are equivalent
(with separable preferences this means that the agent wants to set consumption
constant for all remaining periods). A similar setup is used by Gourinchas and
Parker (2002). Note that the function VR(AR) inherits properties from u(.), so
if u depends on some parameter τ then the same parameter shifts VR.

Now let’s go back to period R − 1. In this period the agent faces a wage
wR−1, and has assets AR−1. The value function for this period is

VR−1(AR−1, wR−1) = max
cR−1,hR−1

u(cR−1)−d(hR−1)+
1

1 + r
[
1

r
u(p+r(1+r)(AR−1+wR−1hR−1−cR−1)].

Note that there is no uncertainty left once we get to R− 1. So we can solve for
the optimal choice in this period very easily, to get a starting value function for
our backward recursion.

The f.o.c.’s for period R− 1 are:

u′(cR−1) = λR−1 = u′(p+ r(1 + r)(AR−1 + wR−1hR−1 − cR−1))

d′(hR−1) = λR−1wR−1.

Now lets assume

d(h) =
1

1 + 1/η
h1+1/η

u(c) = log c

so the f.o.c. for hours implies:

hR−1 = wηR−1 c
−η
R−1,
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which means optimal earnings in period R− 1 are

wR−1hR−1 = w1+η
R−1 c

−η
R−1

Now all we have to do is find an optimal choice for cR−1. Equating marginal util-
ity of consumption in period R−1 and R means that the levels of consumption
are equal, so we are looking for a leve of c that satisfies:

c = p+ r(1 + r)(AR−1 + w1+η
R−1 c

−η − c)

⇒ c =
r(1 + r)

1 + r(1 + r)
AR−1 +

1

1 + r(1 + r)
p+

r(1 + r)

1 + r(1 + r)
w1+η
R−1c

−η

This has to be solved numerically. It has the form

c = f(c) = k + γc−η

and notice that k is pretty big and γ is small. Its not hard to solve this by
iterative methods.1 With this we have now obtained numerically

c∗R−1(AR−1, wR−1)

(this also depends on η, p, r). We can then obtain h∗R−1(AR−1, wR−1).

Now notice that

∂VR−1(A,wR−1)/∂A = λ∗R−1(AR−1, wR−1) =
1

c∗R−1(AR−1, wR−1)
.

This is the function we are going to need to take expectations over in solving
for optimal choices at period R − 2. In particular, if in period R − 2 the wage
is wR−2 = wi then we are going to need to calculate

ER−2[∂VR−1(A,wi)/∂A] =
∑
j

1

c∗R−1(A,wj)
πji,

treating A as an endogenous variable that depends on cR−2, wR−2, hR−2, and
AR−2.

Our method is as follows. First, using the procedure above, we calculate
c∗R−1(A,wj) for a grid of values of A and each possible value of wj . In a test
program, I measured all monetary units in 1000′s and assumed that the possible
values for A are 1, 2...1, 000 (i.e., up to a million). I assumed that w takes on

1I used this method: start with the initial guess c1 = k. Now f(c) = f(c1)+(c−c1)f ′(c1),
so setting c = f(c) gives a new guess

c2 =
f(c1) − c1f ′(c1)

1 − f ′(c1)
.

This converges in 3-4 iterations.
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values of 10, 20....100 (i.e., 10,000, 20,000... 100,000), and that p = 20 (i.e.,
20,000). Then I formed a simple nth − order polynomial approximation:

1

c∗R−1(A,wj)
= b0j + b1jA+ b2jA

2 + ...bnjA
n

For my test program I found that n = 4 gets an extremely good fit. Now notice
that once we have these coefficients, the expected derivative of the R− 1 value
function is:

ER−2[∂VR−1(A,wi)/∂A] =
∑
j

(b0j + b1jA+ b2jA
2 + ...bnjA

n)πji

=
∑
j

b0jπji +
∑
j

b1jπjiA+ ...+
∑
j

bnjπjiA
n

= bi0 + bi1A+ bi2A
2 + ...+ binA

n

where the coefficients bi0, b
i
1...b

i
n depend on the wage in R−2 via the weights πji.

Notice the benefit of having a discrete first-order process for wages: given the
J approximating polynomials, all we have to do to form the expectation for a
given wage in R−2 is weight the approximating polynomials by the appropriate
transition probabilities.

Now we are ready to solve the optimal choices for c and h inR−2. Specifically,
the Bellman equation is:

VR−2(AR−2, wR−2) = max
cR−2,hR−2

u(cR−2)−d(hR−2)+
1

1 + r
ER−2[VR−1(AR−1, wR−1|wR−2)].

And the f.o.c. are:

u′(cR−2) = λR−2 = ER−2[∂VR−1(AR−1, wR−1|wR−2)/∂AR−1]

d′(hR−2) = λR−2wR−2

⇒ hR−2 = wηR−2 c
−η
R−2

⇒ wR−2hR−2 = w1+η
R−2 c

−η
R−2

So we need to solve

1

cR−2
= bi0 + bi1A+ bi2A

2 + ...+ binA
n

where
A = (1 + r)(AR−2 + w1+η

R−2 c
−η
R−2 − cR−2).

Thus for each value of AR−2 and each possible value of the wage wi we need
to solve the root of the function g(c;AR−2, wi), where:

g(c;AR−2, wi) =
1

c
−
∑
k

bik((1 + r)(AR−2 + w1+η
i c−η − c)k = 0.
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Again, a numerical solution is needed.2 The solution is

c∗R−2(AR−2, wR−2)

(which also depends on η, p, r). We can then get h∗R−2(AR−2, wR−2).
Finally, going backward one step we will need to evaluate

ER−3[∂VR−2(AR−2, wR−2)/∂AR−2|wR−3 = wi] =
∑
j

1

c∗R−2(AR−2, wj)
πji.

Thus we can proceed backwards, by estimating the approximating polynomial
functions and repeating the previous steps.

Some comments:
1) Notice in this algorithm, everything is summarized by the approximating

polynomial coefficients for λ∗t (At, wj). For example, if we use a fourth order
polynomial, and have 10 possible wage values, the relevant information for pe-
riod t, given the transition matrix elements πij , and the parameters (η, p, r),
is contained in 50 numbers. The algorithm proceeds by getting the numbers
sequentially from R− 2 back to some earliest possible period (e.g., R− 40).

2) We could introduce tastes in one of several ways. One way is to allow
the marginal utilities of consumption or leisure to change with age in some way,
e.g.,

dt(ht) = f(t)
1

1 + 1/η
h

1+1/η
t

where f(t) is a simple function like f(t) = exp(υt). For a given value of υ it
is possible to solve for the optimal consumption and hours functions in each
period, and then search for a best fitting choice. Another way is to assume
there are discrete types υ ∈ {υ1, υ2, ...υK}, and assume

dk(h) = exp(υk)
1

1 + 1/η
h1+1/η

Then we have to solve the problem for each type,and think of how to map the
behavior we see into an average across the types.

3) How do we get the πij elements?
Suppose that we want to approximate a first order serially correlated con-

tinuous process by a 1st order Markov process. G. Tauchen (1986 Economics
Letters) described a simple algorithm. For example, suppose we want to ap-
proximate an AR-1 wage process:

wt = a+ ρwt−1 + εt

2The standard method is Newton-Raphson. Recall that if you are trying to find a c
such that g(c) = 0 you can normally start with an initial guess c1 and iterate: cj = cj−1 −
g(cj−1)/gc(cj−1). In the case where we are approximating the marginal utility of income
with polynomials, the analytical derviative is easy.
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where εt ∼ N(0, σ2). Note that for this process E[wt] = µw = a/(1 − ρ),
and var[wt] = σ2

w = σ2/(1 − ρ2). To approximate this with a discrete 1st
order markov model with N points of support, first find N − 1 cut points kj
(j = 1, ..N − 1) such that

Φ[
kj+1 − µw

σw
]− Φ[

kj − µw
σw

] =
1

N

with k0 = −∞, and kN =∞. (This defines the boundaries so that the probabil-
ity a draw from N(µw, σ

2
w) falls in each bin is 1/N). Next, find the mean value

of a N(µw, σ
2
w) within each bin. These values will be the points of support for

the discrete process. If ρ = 0 we can stop. Otherwise, the last step is to define
transition probabilities πij such that

πij = P (ki < wt < ki+1|kj < wt−1 < kj+1)

assuming that (
wt−1

wt

)
∼ N

((
µw
µw

)
, σ2
w

(
1 ρ
ρ 1

))
This can be computed using the usual formulas (e.g. in Johnson and Kotz) (or
using simple simulation methods).

4) How do we use the optimal consumption and hours functions, c∗t (At, wt), h
∗
t (At, wt)?

A huge obstacle to micro research on consumption and labor supply is the
absence of reliable data on assets. For example, the well known structural
study of retirement by Rust and Phelan, “How Social Security and Medicare
Affect Retirement Behavior In a World of Incomplete Markets,” Econometrica
65(July 1997), assumes no savings, in part because of the low quality of the
asset information in their data set. As a result, almost no studies have tried
to estimate structural labor supply models that are directly based on observed
data on consumption, hours, wages, and assets. One of the few is Imai and
Keane, IER 2004, which solves the problem by evaluating the value function
at a discrete number of points and interpolating (rather than interpolating the
marginal utility of wealth function). Imai and Keane allow for mismeasurement
in assets and hours.
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Models of Earnings/Wage Dynamics
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Michael Baker and Gary Solon (2003). “Earnings Dynamics and Inequality
among Canadian Men, 1976–1992: Evidence from Longitudinal Income Tax
Records.” JOLE 21(2): 289-321

Steven Haider and Gary Solon (2006). “Life-Cycle Variation in the Associ-
ation between Current and Lifetime Earnings.” AER 96(4): 1308-1320.
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RESTAT 87(2): 235-255.
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114(1): 1–23.
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25(4): 651-691.
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ture of Earnings to Estimate the Effect of Training Programs.” RESTAT 67(4):
648-660.

Introduction
As discussed in lecture 4, an important question for interpreting the reac-

tion of hours to wage changes is to what extent wage innovations are expected
to persist. Pistaferri assumes that innovations are permanent, i.e., that an
appropriate model for individual wages is:

logwit = ωi + uit ,

uit = uit−1 + ζit

where the ζit’s are uncorrelated over time. This is a pure random walk model,
in which E[logwit+j | logwit] = logwit. A more general model is

logwit = ωi + xitβt + uit + eit (1)

uit = αuit−1 + ζit ,

where eit and ζit are serially uncorrelated and uncorrelated with each other.
This model includes a fixed component ωi, a component attributable to observ-
ables xit, an AR(1) component uit, and a purely transitory component eit. We
will discuss how to estimate the parameters of this model using simple method
of moments.

A standard method is to first regress logwit on xit, and treat the residuals
rit as estimates of the combined error component ωi + uit + eit . Then we form
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the covariance matrix C of the residuals and fit a model to the vector of elements
of C. Let

σ2
ω = var[ωi]

σ2
u0 = var[ui0],

vt = var[ζit]

Notice that:we can write

rit = ωi + αtui0 + αt−1ζi1 + ...+ αtζit−1 + ζit + eit

which implies that

var[ri1] = σ2
ω + α2σ2

u0 + v1 + var[ei1],

var[rit] = σ2
ω + α2tσ2

u0 + vt + α2vt−1 + ...+ α2(t−1)v1 + var[eit],

cov[rit, ris] = σ2
ω + αs+tσ2

u0 + αt−svs + αt−s+2vs−1 + ...+ αs+t−2v1, (s < t)

The term σ2
u0 represents an initial conditions effect: it is the effect of the dis-

persion in the pre-sample value of uit, which gradually fades out if α < 1. It
is a matter of algebra to show that if var[eit] is constant, and all the v′ts are
constant (i.e., vt = v), and if σ2

u0 = v/(1−α2), (its steady state value) then the
variances of rit are all constant. If var[eit] and all the v′ts are constant but
σ2
u0 < v/(1− α2), the variances of rit rise over time.

As written, the model in equation (1) assumes that the permanent compo-
nent of wage heterogeneity (ωi) contributes a fixed amount (σ2

ω) to the variance
of wages in all periods, and to the covariances at all leads/lags. If there is skill
biased technical change, we might expect that differences in wages between peo-
ple with different levels of skill will rise over time. One way to build that idea
into (1) is to assume that there are a set of loading factors ψt that vary over
time, with ψ1 = 1 for some base period:

logwit = ψt(ωi + xitβt + uit + eit) (2)

= xitβ
′
t + ψt(ωi + uit + eit)

where β′t = ψtβt. Notice that I am assuming here that all 4 components are
scaled by the same loading factor in each period. In general that need not be
true. For example, if you think that eit includes both productivity components
and measurement error, then this component may not get scaled up/down over
time the same as the pure productivity components. Equation (2) leads to
expressions for the variances and covariances of the wage residuals that are
relatively simple but incorporate an alternative source of non-stationarity. Card
and Lemieux (1994) used a model like (2) to evaluate the role of rising return to
skill in leading to widening wage differences between black and white workers.
Baker and Solon (2003) use a model like (2) to look at earnings dynamics in
Canada.
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Several recent studies (eg Haider and Solon, 2006; Schoenberg, 2007) have
argued that the loading factor on the permanent component ωi rises with age
(rather than, or in addition to, changing over time). There are several explana-
tions for this: one is that it takes time for the market to figure out who is high
ability. Another is that high ability people invest more in on-the-job training
in their youth, depressing their wages relative to their long term average. The
recent paper by Nilsen et al. (2012) shows data from several different coun-
tries suggesting that there is a lifecycle pattern in the loading factor on the
permanent component of earnings.

A third class of earnings models assumes that there are person-specific
growth rates in wages or earnings (for an early version, see Ashenfelter and
Card, 1985). For example, ignoring the x′s and the loading factors, suppose:

logwit = ωi + ρit+ uit + eit (3)

where

σ2
ρ = var[ρi]

σρω = cov[ρi, ωi]

0 = cov[ρi, uit]

0 = cov[ρi, eit]

In this setup, the random trend is allowed to be correlated with the permanent
component, but not the transitory components. This implies that:

var[ri1] = σ2
ω + σ2

ρ + 2σρω + α2σ2
u0 + v1 + var[ei1],

var[rit] = σ2
ω + t2σ2

ρ + 2tσρω + α2tσ2
u0 + vt + α2vt−1 + ...+ α2(t−1)v1 + var[eit],

cov[rit, ris] = σ2
ω + stσ2

ρ + (s+ t)σρω + αs+tσ2
u0 + αt−svs + αt−s+2vs−1 + ...+ αs+t−2v1, (s < t)

Notice that a random trend generates a very specific form of non-stationarity,
with quadratic growth rates in the variances and covariances. An interesting
feature of a random trend model is that it implies a positive correlation between
growth rates of wages for the same individual in different periods. Taking first
differences of equation (3):

∆ logwit = ρi + ∆uit + ∆eit

Notice that if eit is an i.i.d. process, then ∆eit is an MA(1) with 1st order
autocorrelation of −1/2. If uit is a random walk, then ∆uit is serially uncorre-
lated. If uit is an AR(1) then ∆uit and ∆uis are correlated, but for t and s far
apart, cov(∆uit, ∆uis)→ 0. Thus, one way to look for the presence of a random
trend is to see whether wage changes for the same individual at long lags are
correlated. Does someone who had faster wage growth from age 25 to 30 have
faster wage growth between 40 and 45?
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Estimation Methods

In general, for any specific model of the wage generating process, we can write

vecltr[C] = m = f(θ)

where θ represents the parameters in the wage process. The method of moments
idea is to find a value for θ that gives the best fit to the empirical estimates of
m. Call m̂ the estimate of m. In general an element of m̂ is some term in the
empirical covariance matrix Ĉ, say

m̂k = cov[rit, ris] =
1

N

∑
i

ritris =
1

N

∑
i

mki

(since the residuals have zero mean by construction we don’t have to deviate
from means). We can construct the sampling variance of the element m̂k by

1

N

∑
i

(mki − m̂k)2

which is just the variance of the second moment in the sample, divided by N ,
and the sampling covariance between estimates of any two elements m̂k and m̂h

by
1

N

∑
i

(mki − m̂k)(mhi − m̂h).

Under regularity conditions (basically, iid sampling and finite fourth moments),
the vector of estimates of the second moments will have a standard normal
distribution with √

N(m̂−m)→ N(0, V )

Moreover, the matrix

V̂ =
1

N

∑
i

(mi − m̂)(mi − m̂)′

is a consistent estimate of V.

For estimation, one simple choice is least squares:

min
θ

[m̂− f(θ)]′[m̂− f(θ)]

Various GLS variants are also possible. Consider a positive definite matrix A
(of the right dimension): then we can use the objective:

min
θ

[m̂− f(θ)]′A[m̂− f(θ)]. (4)

Chamberlain (1982) presented the following theorem. Assume:
1. m̂→ f(θ0) almost surely
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2. f is continuous in θ in some neighborhood Θ that contains θ0

3. f(θ) = f(θ0) for θ in Θ⇒ θ = θ0 (i.e, we have identification)
4. A→ Ψ a positive definite matrix

Then the gls estimator θ̂ based on equation (1) converges almost surely to
θ0.

If in addition:
5.
√
N(m̂− f(θ0))→ N(0, V )

6. f is 2x continuously differentiable for θ in some neighborhood of θ0, and

F = F (θ0) ≡ ∂f(θ0)

∂θ

has full rank, then √
N(θ̂ − θ0)→ N(0,∆)

where
∆ = (F ′ΨF )−1F ′ΨVΨF (F ′ΨF )−1.

It can also be shown that the optimal choice for A is one such that A → V −1,
in which case ∆ = (F ′V −1F )−1. Notice that the least squares choice A = I
leads to the var-cov:

∆ols = (F ′F )−1F ′V F (F ′F )−1

which looks just like the variance matrix you get in a regression model with
non-spherical errors when you use OLS. In applications we need to estimate F
and V : we will use F̂ = F (θ̂) and some estimate of V̂ .

A nice feature of the optimal weight matrix is that under the null, the
minimand

N [m̂− f(θ)]′V −1[m̂− f(θ)]

has an asymptotic χ2 distribution, with degrees of freedom equal to the differ-
ence between the number of moments and the number of elements of θ. This
provides a general specification test of the validity of the model m = f(θ). For
other weighting matrices there is a similar overall goodness of fit statistic:

N [m̂− f(θ)]′R−[m̂− f(θ)]

where R− is a generalized inverse of the matrix R = (I−F (F ′AF )−1F ′A)V (I−
F (F ′AF )−1F ′A). (This matrix has rank at most equal to the difference between
the number of moments and the number of columns of F , which is the number
of elements in θ).

As a practical matter the optimal choice for the weighting matrix can lead
to substantial problems in small samples. This was not well understood at the
time of Abowd-Card, but was pointed out in the paper by Altonji and Segel. It
is generally agreed that when the moments of interest are all (roughly) scaled
the same (as is true when we consider covariances of log wage residuals) the
least squares objective is sensible.
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Study Elasticity
Standard 

Error Population and Variation

A. Steady State (Hicksian) Elasticities

1. Juhn, Murphy, and Topel (1991) 0.13 0.02 Men, skill-specific trends, 1971-1990
2. Eissa and Liebman (1996) 0.30 0.10 Single Mothers, U.S. 1984-1990
3. Graversen (1998) 0.24 0.04 Women, Denmark 1986 tax reform
4. Meyer and Rosenbaum (2001) 0.43 0.05 Single Women, U.S. Welfare Reforms 1985-1997
5. Devereux (2004) 0.17 0.17 Married Women, U.S. wage trends 1980-1990
6. Eissa and Hoynes (2004) 0.15 0.07 Low-Income Married Men & Women, U.S. EITC expansions 1984-1996 
7. Liebman and Saez (2006) 0.15 0.30 Women Married to High Income Men, U.S. tax reforms 1991-97
8. Meghir and Phillips (2010) 0.40 0.08 Low-Education Men, U.K. wage trends, 1994-2004 
9. Blundell, Bozio, and Laroque (2011) 0.30 n/a Prime-age Men and Women, U.K., tax reforms 1978-2007
     Unweighted Mean 0.25

B. Intertemporal Substitution (Frisch) Elasticities
10. Carrington (1996) 0.43 0.08 Full Population of Alaska, Trans-Alaska Pipline, 1968-83
11. Gruber and Wise (1999) 0.23 0.07 Men, Age 59, variation in social security replacement rates
12. Bianchi, Gudmunndsson, and Zoega (2001) 0.42 0.07 Iceland 1987 zero tax year
13. Card and Hyslop (2005) 0.38 0.03 Single Mothers, Canadian Self Sufficiency Project
14. Brown (2009) 0.18 0.01 Teachers Near Retirement, California Pension System Cutoffs
15. Manoli and Weber (2011) 0.25 0.01 Workers Aged 55-70, Austria severance pay discontinuities

     Unweighted Mean 0.32

TABLE 1

Notes: This table reports elasticities of employment rates with respect to wages, defined as the log change in employment rates divided by the log change in 
net-of-tax wages.  Where possible, we report elasticities from the authors' preferred specification.  When estimates are available for multiple populations or 
for multiple specifications without a stated preference among them, we report an unweighted mean of the relevant elasticities.  See Appendix B for details on 
sources of estimates.

Extensive Margin Elasticity Estimates from Quasi-Experimental Studies
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Fig. 1. Payment Amounts based on Tenure at Retirement 

Notes: The employer-provided severance payments are made to private sector employees who have accumulated sufficient 
years of tenure by the time of their retirement. Tenure is defined as uninterrupted employment time with a given employer 
and retirement is based on claiming a government-provided pension. The payments must be made within 4 weeks of 
claiming a pension according to the following schedule.  

Fig. 2. Exits from Labor Force into Retirement 

Notes: The survival functions are computed at a monthly frequency using birthdates and last observed job ending dates. The solid 
red line is the survival function for women; the Early Retirement Age and Normal Retirement Age for women are respectively 55 
and 60. The dashed blue line is the survival curve for men; the Early Retirement Age and Normal Retirement Age for men are 
respectively 60 and 65. Prior to age 60, men can retire through disability pensions.  

Men 

Women 



Fig. 4. Controlling for Covariates 

Notes: We regress a quarterly retirement indicator on quarterly tenure dummies and controls for age, gender, calendar 
years, citizenship, blue collar job status, industry, region, current calendar quarter, job starting month, earnings histories, 
firm size, health and years of experience. The black circles are the estimated coefficients on the tenure dummies. The blue 
x’s above and below each circle represent +/- 2 standard errors around each point estimate.  



Fig. 13. Estimating the Changes in Retirements 

Notes: This figure combines plots for the observed retirement frequencies (black squares), the seasonally 
adjusted retirement frequencies (blue triangles) and the counterfactual retirement frequencies (red circles).  



10 Year Threshold 15 Year Threshold 20 Year Threshold 25 Year Threshold Average
N=21,729 N=19,724 N=15,588 N=18,461

Change in Retirement Probabilities   0.1414   0.2424   0.3777   0.2123   0.2434
(0.0224) (0.0273) (0.0330) (0.0251) (0.0146)

 Sev Pay Fraction   0.3333   0.1667   0.2500   0.2500   0.2500
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Change in Net-of-Tax Rate   1.5667   0.7833   1.1750   1.1750   1.1750
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Elasticity   0.0902   0.3094   0.3214   0.1807   0.2254
(0.0143) (0.0349) (0.0281) (0.0214) (0.0138)

10 Year Threshold 15 Year Threshold 20 Year Threshold 25 Year Threshold Average
N=21,729 N=19,724 N=15,588 N=18,461

Change in Retirement Probabilities   0.1414   0.2424   0.3777   0.2123   0.2434
(0.0233) (0.0277) (0.0350) (0.0251) (0.0157)

 Sev Pay Fraction   0.0620   0.1056   0.1202   0.0514   0.0848
(0.0046) (0.0058) (0.0049) (0.0070) (0.0028)

Change in Net-of-Tax Rate   0.2916   0.4963   0.5651   0.2415   0.3986
(0.0215) (0.0275) (0.0229) (0.0331) (0.0131)

Elasticity   0.4848   0.4883   0.6684   0.8790   0.6301
(0.0892) (0.0622) (0.0683) (0.1668) (0.0559)

Table 4: Estimation Results

Notes: Numbers in parentheses are bootstrapped standard errors based on 1000 replications. For each tenure threshold, estimation results are 
based on the sample of observations that have a binding sev pay schedule. Table 2 provides the exact sample definitions. The Change in the Net-of-



Notes: This figure presents the distribution of the severance pay fraction at a given level of tenure at retirement. The severance pay 
fraction is computed using data from income tax records. Specifically, the fraction is computed as the severance pay in the year of 
retirement divided by average income in the 3 years prior to retirement. Years of tenure at retirement are computed using job start and 
exit dates from social security records. The vertical red lines in each plot indicate the legislated severance pay fraction at retirement 
based on the given level of tenure at retirement.   

Fig. 8. Severance Pay Fractions at Different Tenure Levels 


