
5 Search With Bargained Prices

We now investigate how these two assumptions matter for the results, and in

the process develop a baseline search and matching model for macroeconomic

analysis. The model is basically that of Diamond (RES, 1982), Mortensen

(AER, 1982), and Pissarides (AER, 1985). Pissarides (2004) gives a very

accessible exposition. The results I present here are largely based on Hosios

(RES, 1989), but the exposition is very di erent (much more standard here

than in the original article). The importance of this model also stems from

the fact that it is very closely related to the Mortensen-Pissarides model we

will use to analyze unemployment uctuations later in the class.

5.1 Environment and Preliminaries

The model is again continuous time, in nite horizon, and agents are risk

neutral with discount rate , i.e., maximizing

( ) =

Z
( )

where ( ) is their net income at time .

Let’s assume for now that there is an exogenously given stock of buyers

( rms) of measure , who can employ workers productively. The productiv-

ity of each rm is determined as a draw from the distribution

( )

with support , after the match between the rm and the worker (i.e., only
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ex post heterogeneity). This productivity remains constant throughout the

life of the match.

All workers and rms are ex ante identical.

The population of workers, i.e., stock of sellers, is . I also denote the

number (measure) of unemployed workers by , and the number of rms is

and the number of vacant rms looking for workers by .

Frictions in the labor market are modeled by way of a matching function

( )

which determines the ow rate of matches per instant when the stock of

unemployed workers is and the stock of vacancies is . We make a number

of assumptions on this function:

1. Increasing: more vacancies and more unemployed workers result in

more matches 0 (this could be modi ed to 0)

2. Externalities:
( )

0
( )

0
( )

0, and
( )

0

meaning that when there are more vacancies, the matching probability

of a given unemployed worker increases, and the matching probability

of a given un lled vacancy decreases, and similarly in response to an

increase in unemployment.

One important point here is that although there are frictions, there is a

sense in which the market is "regular" meaning that when there are more
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vacancies demanding matches, it’s easier for unemployed workers to nd

matches and vice versa.

The second assumption clari es that there are both negative and positive

externalities in this world.

Digression on pecuniary and non-pecuniary externalities: why

do I refer to those in (2) as externalities? Is it an externality if I demand one

more apple? What is the di erence between me demanding one more apple

and a rm demanding one more worker by posting a vacancy?

A couple of other points are useful to note:

• If ( ) , matching frictions are disappearing, so it will be

interesting to investigate whether we approach a competitive model

(some care needs to be taken here; frictionless matching corresponds

to the case where at an instant min { } jobs are created; as a ow

rate this corresponds to ( ) ).

• A natural benchmark, which seems to be consistent with the data both
in the US and the UK is that ( ) exhibits constant returns to

scale, so when there is a doubling in the number of unemployed work-

ers and vacancies, the total number of matches within a given period

also doubles (and matching probabilities remain unchanged). I do not

impose constant returns to scale yet, but this will play an important

role below.
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Finally, let us assume that there are exogenous separations once a worker

and the rm come together at the ow rate .

The cost of a vacancy is , and when unemployed, workers receive income

or bene t from leisure equal to .

Let ask focus on steady-state equilibria here (non-steady-state equilibria

are for the homework).

A steady state equilibrium in this economy will specify a wage rate func-

tion

: R+

assigning a wage for every level of productivity, and a pair of acceptance

functions for the worker and the rm

: [0 1]

: [0 1]

assigning a probability of accepting a job of productivity after this produc-

tivity is realized following the match. We will see that the decision of the

worker and the rm can be collapsed into a single function without loss of

any generality below, so we can work with the simpler setup where there is

only one function

: [0 1]

to be determined.

I still need to specify the wage determination process, which will be done
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below, but for now note that wages will be "bargained" between the worker

and the rm.

Let us de ne

=
( )

as the matching probability for an un lled vacancy, and

=
( )

as the matching probability for an unemployed worker.

Imposing steady states, the asset value of a lled job of productivity

can be written as

( ) = ( ) +
¡

( )
¢

(28)

where is the value of an un lled vacancy, and is the output of the

match. Now an immediate application of Theorem 2 implies that ( ) is

strictly monotonically increasing in as long as ( ) is increasing in

(i.e., when di erentiable, 0 ( ) 1 everywhere)–can you see why this will

be true? Think of wage bargaining or see below. This implies that for the

rm a reservation productivity rule will be optimal. One complication is that

some matches may be acceptable to the rm, but not to the worker. We will

see that this will not be the case, but this may need to be borne in mind.

Now the value of an un lled vacancy is

= +

Z
max

©¡
( )

¢
; 0
ª

( ) (29)
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which imposes the decision that the rm will only accept a match if this

yields a higher value ( ) for it. This expression ignores the decision of the

worker. More generally we should write

= +

Z
max

©
( )
¡

( )
¢
; 0
ª

( )

which means that the rm can only choose to create the match if ( ) = 1,

i.e., if the worker also want to create the match. Let us ignore this for now

and work with (29)–we will see below, why it is okay to ignore this, and

also why even if this were not the case, the analysis would not be much more

complicated.

From the monotonicity of ( ), (29) can be simpli ed to

= +

Z ¡
( )

¢
( ) (30)

where is the reservation productivity of the rm.

The value functions for the workers are similar

( ) = ( ) +
¡

( )
¢

Now presuming that ( ) is strictly increasing in (again see below), Theo-

rem 2 immediately implies that this is strictly increasing in , so a reservation

productivity rule will also be optimal for the worker in deciding whether to

accept a job or not.

Imposing that this is the same threshold for the worker as for the rm,

we can then write

= +

Z
( ( ) ) ( ) (31)
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Naturally, both equations (30) and (31) will be valid even if the worker and

the rm use di erent reservation productivity rules, with corresponding

to the maximum of these two thresholds. (Can you see why? Think of the

case in which workers and rms use two di erent cuto levels and ;

what would happen then?)

Now given this, we can write the law motion of the number of vacancies

in unemployment as

= ( ) (1 ( ))

= ( ) (1 ( ))

How are wages determined? Nash Bargaining.

Why do we need bargaining? Because of bilateral monopoly, or much

more speci cally: match-speci c surplus (or as is sometimes called quasi-

rents).

Think of a competitive labor market, at the margin the rm is indi erent

between employing the marginal worker or not, and the worker is indi erent

between supplying the marginal hour or not (or working for this rm or

another rm). We can make both parties indi erent at the same time–no

match-speci c surplus.

In a frictional labor market, if we choose the wage such that ( ) = 0,

we will typically have ( ) 0 and vice versa. There is some surplus to be

shared.

Nash solution to bargaining is a natural benchmark.
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5.2 Digression: Nash’s Solution to Bargaining

Nash’s bargaining theorem considers the bargaining problem of choosing a

point from a set R for some 1 by two parties with utility

functions 1 ( ) and 2 ( ), such that if they cannot agree, they will ob-

tain respectively 1 and 2. The theorem is that if we impose the following

four conditions: (1) 1 ( ) and 2 ( ) are Von Neumann-Morgenstern utility

functions, i.e., concave, increasing and unique up to positive linear transfor-

mations; (2) Pareto optimality, the agreement point will be along the frontier;

(3) Independence of Irrelevant Alternatives: suppose 0 and the choice

when bargaining over the set is 0 0, then 0 is also the solution when

bargaining over 0; (4) Symmetry: identities of the players do not matter,

only their utility functions; then there is a unique bargaining solution which

is

= argmax ( 1 ( ) 1) ( 2 ( ) 2)

If we relax the symmetry assumption, so that the identities of the players can

matter (e.g., worker versus rm have di erent "bargaining powers"), then we

obtain:

= argmax ( 1 ( ) 1) ( 2 ( ) 2)
1 (32)

where [0 1] is the bargaining power of player 1.

Next note that if both utility functions are linear and de ned over their

share of some pie, and the set R2 is given by 1 + 2 1, then the
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solution to (32) is given by

2 = (1 ) (1 1 2) + 2

or

(1 ) (1 2 1) = ( 2 2)

and 1 = 1 2.

With Nash bargaining in place, we can already answer the question of why

both rms and workers are using the same threshold . Recall that ( )

resulting from Nash bargaining satis es "Pareto optimality". Suppose that

there exists some 0 such that ( 0) is the equilibriumwage, and ( 0)

and ( 0) . In that case, if ( 0) + ( 0) + , we can

nd some ˜ ( 0) ( 0) such that both ( 0) and ( 0) are positive.

Thus the two parties can agree to produce together, improving their welfare

relative to disagreement, con icting the presumption that ( 0) was part

of an equilibrium (it would not have been Pareto optimal). Conversely, if

( 0) + ( 0) + , then there should in fact be a separation at 0.

5.3 Back to the Model

Put di erently, bargaining is going to ensure that separations are mutually

bene cial, and thus will be such that ( ) + ( ) = + .

Applied to our setting, let’s assume that the worker has bargaining power

. Then, the Nash bargaining solution implies that the wage function ( )
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will be a solution to the equation:

¡
( )

¢
= (1 )

¡
( )

¢
(33)

Now using the value functions, we obtain

( ) =
( )

+
(34)

( ) =
( )

+

then substituting into (33), we have

( ) =
¡ ¢

+

= + (1 ) (35)

This wage equation is very intuitive. The worker receives a fraction of total

surplus of the ow value of match, , plus his outside option

(more appropriately disagreement point), .

Digression: when is the Nash solution the equilibrium of a well-speci ed

bargaining game?

In addition, we have

= +

Z
( )

+

¸
( )

Now substituting for ( ) from (35), gives

= +
¯

+ +

¡
+

¢
where

¯

Z
( )
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Note that this is not the expectation of conditional on . That

conditional expectation would be [ | ] =
R

( ) [1 ( )],

so ¯ is the conditional expectation times the probability that is indeed

greater than .

Moreover, let that probability be denoted by

1 ( )

Similarly

= +
(1 )¯

+

(1 ) ( + )

+

This implies that the sum of the disagreement points for a rm and a worker

is:

+ =
( + )( ) + (1 )¯ + ¯

+ + (1 ) +
(36)

The preceding argument already establishes that in equilibrium

= +

(to derive this equation, can use (34) together with the fact that + =

( ) + ( ); alternatively, use ( ) = and ( ) = )

Combining this with (36), we have

=
(1 )¯ + ¯ + ( + ) ( )

+ + (1 ) +
(37)

This equation de nes implicitly. (Recall that ¯
R

( ),

1 ( )).
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In addition, the equation (37) may be rewritten as follows:

( + ) ( ( )) = ( (1 ) + ) (¯ )

= ( (1 ) + )

Z
( ) ( )

From the point of view of an individual worker or rm, who takes and

as given, this equation characterises a unique value for . The left hand

side is increasing in . Holding and constant

= ( (1 ) + ) (1 ( )) 0

which establishes the result. The result means that all workers and rms in

the economy deduce the same threshold from observing and . For the

economy as a whole, changing the value of will cause changes in and .

Characterizing uniqueness in this context is more demanding. In particular,

as we will see below, steady-state unemployment is

=
+ (1 ( ))

and steady-state vacancy level is

=
+ (1 ( ))

Inverting these equations, we have

=
( )

(1 ( ))
=

( )
and =

( )

(1 ( ))
=

( )

which jointly solve for and as functions of , and thus pin down

and as functions of . If we make further assumptions on ( ), we
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can derive conditions under which will be uniquely determined in general

equilibrium. But I will not pursue this here.

Now continuing with the analysis, we also have

= +
¯ ( )

+ + (1 ) +
(38)

= +
(1 ) ¯ ( )(1 )

+ + (1 ) +

which completes the description of the equilibrium (recall that ¯
R

( )).

We can also calculate the number of unemployed workers (or the unem-

ployment rate in this economy) now. Notice that we could characterize

without worrying about unemployment. This is a common feature of many

search models, sometimes referred to as "block recursiveness".

The unemployment evolution is given by

= ( ) (1 ( )) (39)

where the rst term is separations from existing jobs, of which there are

, and the second term is job creation, which happens at the ow rate

(1 ( )). Thus in steady-state

=
+ (1 ( ))

or de ning the unemployment rate as = ,

=
+ (1 ( ))

It is natural to look towards comparative statics now.
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First, consider an increase in , the level of utility or bene ts in unem-

ployment. For given and , a higher would increase from (37), reducing

the probability of job creation conditional on a match, and increasing unem-

ployment. However, the e ect of on overall unemployment also needs to

take into account the changes in and . Can you derive this e ect? Can

you derive the e ect of on unemployment?

Also note that an increase in , the bargaining power of the workers, and

an increase in , the discount rate, have ambiguous e ects. Why?

Now consider an extended model where new agents can enter at the per

period cost for workers and for rms, and the initial stocks of workers

and rms is small enough (why is this caveat necessary?). What is the

equilibrium of this extended model? It is straightforward to see that as long

as , there will be entry. Similarly for rms. Then in equilibrium

we also have

= ; =

In fact, the standard Mortensen-Pissarides search model, which will be

analyzed in greater detail later in the class, is one where is constant,

= , = 0 and = 0. Now in this case, we have another equilibrium

condition, given by

= +
(1 ) ¯ ( )(1 )

+ + (1 ) +
= 0

Calculating the comparative statics in this model is not as easy as it

seems. This is because when the matching function has decreasing or in-
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creasing returns to scale, there can be di culties in establishing comparative

statics. We will do much more of these comparative statics when we look

at the Mortensen-Pissarides model in the context of understanding unem-

ployment uctuations later, but these models will impose constant returns

to scale matching. Here intuitively, we expect

0, 0, 0 and 0

but for now, you will be asked to derive these results only in the case with

constant returns to scale matching and free entry in the homework (you can

think about the intuition more generally, however, if you want).

Now we can investigate what happens to equilibrium as the amount of

frictions are diminished, i.e., ( ) . For this case, seem that

and are constant (i.e., no free entry). This implies that , and

nite. In this case, also assumed that there is bounded support on

, in particular, let the upper bound be sup. Taking limits, we have from

(37)

(1 ) +

(1 ) +

R sup

( )

1 ( )
=

R sup

( )

1 ( )
= [ | sup]

which is only possible if = sup (why?). Thus exactly as in a compet-

itive equilibrium, only the most productive jobs are active in equilibrium

(homework question: what happens to wages in the limit?).

How does this equilibrium compare to the "second-best", that is the so-

lution to the planner’s problem where the constraints are the same as those
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imposed on the decentralized economy. Therefore, the planner’s problem is

to maximize output subject to search constraints.

The following current value Hamiltonian describes the problem of the

planner. To simplify, I have already imposed the cuto rule that all jobs

above some ˜ will be active (otherwise, the program has to follow each and

choose ( ) again as the probability of a match conditional on productivity

).

To write this Hamiltonian, reason as follows. The planner creates ( )

matches at every instant when there are unemployed workers and va-

cancies. Only a fraction 1 (˜ ) of the matches are turned into jobs. Each

job is worth on average [ | ˜ ] conditional on being created. Finally,

a job of productivity has a discounted net present value equal to ( + ),

because of discounting and potential future separations. Thus the net return

to the planner during an instant can be written as

[ | ˜ ]

+
(1 (˜ )) ( ) +

where the last two terms are the net income ows from unemployed workers

and vacant rms. This is simply equal toR
˜

( )

+
( ) +

Thus the objective function of the planner is to maximizeZ
0

R
˜

( )

+
( ) +

¸
where I suppressed time dependence to save on notation.
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Now adding the constraints with corresponding multipliers, the Hamil-

tonian is

=

R
˜

( )

+
( ) +

¸
+ [ ( ) (1 (˜ )) ( )] search constraint

+ [ + ] adding up constraint.

Here the control variables are ˜ , and the stock variable is (recall the

constraint (39)).

In addition, the multipliers are:

: social value of one more match.

: social value of one more vacancy. (Why? Why not the value of one

more worker?)

This is a standard optimal control problem, with necessary conditions

˜
= 0

=

= 0

As in the equilibrium, let us focus on steady states: = 0.

The rst-order conditions are:

With respect to ˜μ
˜ (˜ )

+

¶
( ) + (˜ ) ( ) = 0

Or rearranging:

˜ = ( + ) (40)
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Thus the cuto threshold has to be proportional to the shadow value of one

more unemployed worker appropriately discounted. What is the intuition?

With respect to :R
˜

( )

+
+ (1 (˜ )) ( + ) + = 0 (41)

Finally, with respect to :R
˜

( )

+
(1 (˜ )) = 0 (42)

Now adding (41) and (42) to eliminate , we obtain:R
˜

( )

+
( + ) + (1 (˜ )) ( + ) ( + ) = 0

or rearranging to solve for ,

=

³R
˜ ( )

+

´
( + ) +

+ + ˜ + ˜
(43)

where I have de ned

˜ 1 (˜ )

For future reference, we also have

= +

¡R
˜

( )
¢

( ) ˜

+ + ˜ + ˜
(44)

Now combining this with (40), we have

˜ =

¡R
˜

( )
¢
( + ) + ( + ) ( )

+ + ˜ + ˜
(45)

When will the decentralized allocation be e cient?
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In the model without entry, we only need = ˜ where these two thresh-

olds are given by (37) and (45). (Why?)

In the model with entry, we need two more conditions to ensure optimal

entry. To see what these are, note that the planner will add unemployed

workers in vacancies up to the point where

= and =

Thus for full constrained e ciency, we need the following three conditions:

(a)

= ˜

(b)

= =

(c)

= =

Now comparing and as implied from (43) and (44) with

(38) and recalling that , we obtain the following

simple conditions for the equilibrium to coincide with the constrained e cient

allocation.

(a)

+ = + (1 )
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(b) ¡R
˜

( )
¢

+ + ˜ + ˜
=

¯

+ + (1 ) +

(c) ¡R
˜

( )
¢

+ + ˜ + ˜
=

(1 ) ¯

+ + (1 ) +

First, suppose ( ) exhibits increasing returns to scale or decreasing

returns to scale. Then (b) + (c) are jointly impossible. Why? Part of the

homework exercise...

Next, suppose that ( ) exhibits constant returns to scale. Then (a),

(b), (c) all hold true if and only if

=
· μ

or 1 =
· ¶

(This is not obvious, you need to play with the equations to convince your-

self).

This is the famous Hosios condition. It requires the bargaining power of

a factor to be equal to the elasticity of the matching function with respect

to the corresponding factor.

What is the intuition?

It is not easy to give an intuition for this result, but here is an attempt:

as a planner you would like to increase the number of vacancies to the point

where the marginal bene t in terms of additional matches is equal to the

cost. In equilibrium, vacancies enter until the marginal bene ts in terms of

their bargained returns is equal to the cost. So if is too high, they are
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getting too small a fraction of the return, and they will not enter enough. If

is too high, then they are getting too much of the surplus, so there will be

excess entry. The right value of turns out to be the one that is equal to the

elasticity of the matching function with respect to unemployment (thus 1

is equal to the elasticity of the matching function with respect to vacancies,

by constant returns to scale).

The acceptance externalities are then easy to understand, since turning

down a job is just like entering this economy by paying some cost.

[Important observation: Job Acceptance externalities ((a)) are easier to

internalize than entry externalities ((b) + (c)). Why?]

Does the Hosios result imply that the decentralized equilibrium is going

to be e cient? Possible, but unlikely unless the planner chooses .

Other important observations:

• No Scale E ects, unless the matching technology is Increasing Returns

to Scale.

• Ine ciencies look more like distorted prices (very neo-classical).

6 Frictions and Investment

In the above model, there are investment-like activities; workers and rms

decide to enter before the matching stage. Nevertheless, these are limited

to the extensive margin, and somewhat miraculously, the Hosios condition
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