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Lecture 2

Outline
0. Overview of Labor Supply Patterns
1. Static Labor Supply - basic results
2. Two applications of the expenditure function
3. Functional form - the Stern "catalogue"
4. Identification Problems
5. Addressing Non-Participation (Basic approach)

Some recommended readings:
Nicolas Stern. "On the Specification of Labour Supply Functions." In Richard Blundell

and Ian Walker, editors, Unemployment Search and Labour Supply. Cambridge: Cambridge
University Press, 1986.

James Heckman. "Shadow Prices, Market Wages and Labor Supply." Econometrica 42
(July 1974), pp. 679-694.

Orley Ashenfelter. "Determining Participation in Income-Tested Social programs." Jour-
nal of the American Statistical Association, Vol. 78, No. 383, September 1983.

Jerry Hausman, "Exact Consumer’s Surplus and Deadweight Loss" Am Econ Review 71
(Sept 1981), 662-676

George Borjas ”The Relationship between Wages and Weekly Hours of Work: The Role of
Division Bias”. Journal of Human Resources, 15 (3), 1980 409-423.
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1) and Blundell and MaCurdy (volume 3a), as well as the more recent chapter:

Richard Blundell, Thomas MaCurdy and Costas Meghir. "Labor Supply Models: Unob-
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0. Overview of Data
In problem set 2 you will get a chance to explore some basic data on annual labor supply

patterns from the Current Population Survey (CPS). In the meantime, the figures at the end
of this lecture show average patterns of work activity by age for men and women. Between
the ages of 25 and 55 a large share of men (90%) and a majority of women (75-80%) work
at least a little. A typical male in that age range (in a "good" year) works ~2000 hours (or
at least reports to work about 40 hours a week, 50 weeks a year). Women are more diverse,
with some working about 40 hours a week, others working about 20, so the average is about
1400-1500 per year. One important goal of static labor supply modeling is to explain the
variation in hours choices, and how choices are affected by public policies like welfare benefits,
taxes, etc. A static framework is arguably most relevant for people whose current situation is
representative of their "permanent" situation: it is also appropriate if people have no access to
borrowing/lending. Lifecycle labor supply models, which we will discuss in subsequent lectures,
attempt to explain multiple phenomenon, including: (i) the pattern of the age profile of hours
(ii) the decision of when to stop working altogether (retirement) (iii) year-to-year variation in
hours choices.

1. Static Labor Supply - Basic Results
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The basic setup for a static labor supply problem has a single agent who will definitely
work at least some hours (i.e., an "interior solution"). The agent has a strictly increasing,
strictly quasi-concave utility function u(x, `) where x = consumption of goods and services
(sold at price p, which will be set to 1 in many contexts) and ` = "leisure".** We assume
` ∈ [0, T ], and x ≥ 0. Hours of work are h = T − ` ,the agent has "non-labor income" y, and
faces a parametric hourly wage is w. The agent’s budget constraint is:

px = wh+ y

= w(T − `) + y or re-arranging,

px+ w` = wT + y.

Sometimes the amount wT + y is referred to as "full income" since this is the amount of
money available to purchase either goods or leisure. Importantly, full income depends on w,
generating an income effect in response to a rise in w that is the opposite sign to the standard
case.

**If you want to write utility directly in terms of hours, think of specifying v(x;h) =
u(x;T − h): Since there is a 1:1 linear relation, the choice is arbitrary.

The direct approach to finding the agent’s labor supply function is to maximize utility
subject to the budget constraint. The maximized value function (i.e., the indirect utility
function) is

v(p, w, y) = max
x,h

u(x, T − h) s.t. px = wh+ y

Set up the Lagrangean expression:

L(x, h, λ; p, w, y) = u(x, T − h)− λ(px− wh− y)

Assuming an interior optimum the first order conditions are

Lx = ux(x, T − h)− λp = 0

Lh = −u`(x, T − h) + λw = 0

Lh = −px+ wh+ y = 0

The first two conditions can be rewritten as

u`(x, T − h)

ux(x, T − h)
=
w

p

which expresses the ’tangency’condition that the marginal rate of substitution (mrs = u`/ux)
equals the real wage. The solution functions to the direct optimization problem are:

h(p, w, y)

x(p, w, y)

λ(p, w, y)

with `(p, w, y) = T − h(p, w, y) defining the demand for leisure. We refer to the function
h(p, w, y) as the labor supply function of the agent. As in the basic consumer demand case,
h(p, w, y) isHD0 in (p, w, y). Also, from the envelop theorem, vw(p, w, y) = λh, vy(p, w, y) = λ,
so h(p, w, y) = vw(p, w, y)/vy(p, w, y), which is Roy’s identity for labor supply.
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The indirect approach is to define the expenditure function (sometimes called the excess
exenditure function)

e(p, w, u) = min px− wh s.t. u(x, T − h) ≥ u.

This is amount of money you need to get in addition to your earnings to achieve utility u,
given (p, w). The solution functions for the minimization problem are

hc(p, w, u)

xc(p, w, u)

where the subscript "c" denotes "compensated" (or Hicksian) demand/supply. Sheppard’s
lemma (i.e., the envelop theorem) states that

hc(p, w, u) = −∂e(p, w, u)

∂w
.

Note the sign change from the usual case: a rise in the wage causes e to fall: the derivative
is just −hc. Since this equation holds as we vary (p, w), we can differentiate to get

∂hc(p, w, u)

∂w
= −∂

2e(p, w, u)

∂w2
> 0

(= 0 for the Leontief case, which is not covered by our assumptions on u).

From an initial set of conditions (p0, w0, y0) let u0 = v(p0, w0, y0), and let h0 = h(p0, w0, y0).
Then locally we have

hc(p0, w, u0) = h(p0, w, e(p0, w, u0)).

Differentiating with respect to w:

∂hc(p0, w0, u0)

∂w
=
∂h(p0, w0, y0)

∂w
+
∂h(p0, w0, y0)

∂y

∂e(p0, w0, uo)

∂w

and since
∂e(p0, w0, uo)

∂w
= −hc(p0, w0, uo) = −h(p0, w0, yo)

we get the Slutsky equation

∂h(p0, w0, y0)

∂w
=
∂hc(p0, w0, u0)

∂w
+
∂h(p0, w0, y0)

∂y
h(p0, w0, yo)

or in elasticity form

w0

h0
∂h(p0, w0, y0)

∂w
=
w0

h0
∂hc(p0, w0, u0)

∂w
+ w0

∂h(p0, w0, y0)

∂y

ε = εc + w0
∂h

∂y

Now from the budget constraint

px = wh+ y

p
∂x

∂y
= w

∂h

∂y
+ 1

w
∂h

∂y
= −(1− p∂x

∂y
)

= −(1−mpe)

3



where mpe is the marginal increase in total spending on goods and services if non-labor income
goes up by $1. Note that (1−mpe) is the marginal increase in total spending on leisure when
non-labor income rises by $1. Since leisure is assumed to be a normal good, (1 −mpe) > 0,
although it may be a relatively small number. You can also interpret w ∂h

∂y as the change in
total earnings if you receive $1 of additional non-labor income. To translate it into a more
interpretable number, imagine you were to receive $1 per year extra income for the rest of
your life. How much would you reduce your average earnings per year?

The classic benchmarks (for male workers in US) are εc ≈ 0.10 − 0.30 and (1 − mpe) ≈
0.1− 0.2 implying ε ∈ [−0.10, 0.20].

c. Derivation of Slutsky Using the Utility Function

Often we are interested in understanding how a particular specification of the utility func-
tion maps to behavioral labor supply responses. In this section we relate the responses to the
derivatives of U . Consider the problem of maximizing U(x;h) s.t. x = wh + y. Note that I
have set p = 1. The f.o.c. from the Lagranean are:

U1(x;h)− λ = 0

U2(x;h) + λw = 0

−x+ wh+ y = 0.

Differentiating we get: U11 U12 −1
U21 U22 w
−1 w 0

 dx
dh
dλ

 =

 0 0
−λ 0
−h −1

 (dw, dy).

The determinant of the l.h.s. matrix is

∆ = −(U22 + 2wU12 + w2U11).

This has to be positive from the s.o.c. that the second-order effect of a budget neutral change
(dx, dh) has to be strictly negative. To see his, notice that a budget-neutral variation has
dx = wdh, so we have (dx, dh) = (w, 1)dh. The second-order effect of such a variation is

(w, 1)

[
U11 U12
U21 U22

] [
w
1

]
= w2U11 + 2wU12 + U11 < 0.

Using Cramer’s rule and the fact that λ = U1 :

∂h

∂w
= ∆−1 det

 U11 0 −1
U21 −U1 w
−1 −h 0

 =
U1 + h(wU11 + U21)

∆

∂h

∂y
= ∆−1 det

 U11 0 −1
U21 0 w
−1 −1 0

 =
wU11 + U21

∆
,

so from the Slutsky equation we can infer that:

∂hc

∂w
=
∂h

∂w
− h∂h

∂y
=
U1
∆

=
U1

−[U22 + 2wU12 + w2U11]
≥ 0
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or in terms of U only, using the fact that w = −U2/U1, we have:

∂hc

∂w
=

−(U1)
3

(U1)2U22 − 2U1U2U12 + (U2)2U11
(∗).

A utility function that is s.q.c. will satisfy ∂hc

∂w > 0. (You can check this is one term of the
"bordered Hessian test" for sqc).

2. Two applications of the expenditure function
a. Deadweight loss of taxation
From initial conditions (p0 = 1, w0, y0), suppose a proportional tax t is introduced. Let

h′ = h(w0(1 − t), y0), and let u′ = v(w0(1 − t), y0). Suppose that the before tax wage w0 is
unaffected (no G.E. effects). The equivalent variation for the change is

EV = e(w0(1− t), u′)− e(w0, u′)

Take a second order expansion:

e(w0, u′) ≈ e(w0(1− t), u′) + tw0
∂e(w0(1− t), u′)

∂w
+ .5t2(w0)2

∂2e(w0(1− t), u′)
∂w2

= e(w0(1− t), u′)− tw0h′ − .5t2w0h′ w0

w0(1− t)(
w0(1− t)

h′
∂hc(w0(1− t), u′)

∂w
)

So

EV ≈ tw0h′ + .5t2w0h′
w0

w0(1− t)ε
c

≈ tw0h′(1 + .5tεc)

The equivalent variation exceeds the amount of taxes collected by roughly 100
2 × tε

c percent.

b. Opting-in to welfare
A stylized welfare program has 2 parameters: G = the minimum or guaranteed level of

income, and t, the "clawback rate" of benefits. So an individual with earnings E receives
benefit = max[0, G − tE]. Note that there is a ’breakeven’level of earnings B = G/t such
that if E ≥ B, the individual is out of the welfare system. In the absence of welfare a
certain individual faces a wage w0, has non-labor income of 0, works h0 hours, and has utility
u0 = v(w0, 0). Clearly, anyone with E = w0h0 in the absence of welfare should participate
(and in fact may actually reduce hours).

But if εc > 0, some people who would earn E > B in the absence of the program will
reduce their hours to "opt in". What is the predicted cutoff? Ashenfelter (1983) noted an
agent will opt in if e(w0(1− t), u0) ≤ G. This is illustrated in Figure 2.1.

Taking a second order expansion around e(w0, u0) = 0, we get:

e(w0(1− t), u0) = e(w0, u0) + tw0h0 + .5t2w0h0εc

Thus an agent will participate iff

tw0h0 − .5t2w0h0εc ≤ G or

w0h0 ≤ G/t

1− .5tεc
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Note that when εc = 0 (the Leontief case) this is the cutoff w0h0 ≤ B = G/t. If εc = 0.2 and
t = .5 (for example) the cutoff is (approximately) 1.05B: people with initial earnings within
5% of the breakeven are willing to cut their hours to opt in. (The marginal entrant will reduce
her hours by approximately 100× tεc percent). Ashenfelter analyzes the Seattle-Denver NIT
experiment, where the treatment group was allowed to access a welfare program similar to this
simple 2-parameter system. He uses the experimental data to estimate opt-in behavior and
obtains an estimate of εc in the "benchmark" range.

3. Functional Form: Stern’s catalogue.
Stern (1986) presents a very useful catalogue of functional forms for static single-agent labor

supply modeling. For a variety of ad hoc functional forms for the labor supply function (e.g.,
linear, log-linear, partially log-linear) he uses the integrability theorem to actually figure out
the associated expenditure and utility functions. He also shows the labor supply functions
for some leading examples of utility functions (LES, quadratic, CES) and for the translog
indirect utility function. Finally, he briefly discusses some of the pluses and minuses of the
different functional forms, including conditions for Slutsky terms to be consistent with theory.
I recommend you read this article and keep it in your files for future reference, in case you
ever have to think about a functional form to choose.

As an example, Stern (Table 9.6) considers the following very useful "semi-log" functional
form

h = α logw + βy + γ

He shows that the associated expenditure function has the form

e(w, u) = e−βwu− γ

β
− α

β
logw +

α

β
e−βw Ei(βw), where

Ei(x) ≡
∫ x

−∞

et

t
dt is the so-called exponential integral function.

This functional form is nice because (i) it easily handles zero or negative values for y, (ii) as
we will see later, it can be used in a Tobit formulation to handle non-participation. With
this functional form it is natural to introduce heterogeneity in the γ term, e.g., γ = Zθ + η.
(note that with unbounded support for η some people are predicted not to work - this can be
an advantage or a disadvantage).

Stern (Table 9.3) also discusses the linear supply function which was "integrated" by Haus-
man (AER, 1981) and has been used for various applications in the literature.

Exercise : Work through Table 9.9 in Stern, for the LES.

You may also want to look at Table 9.14, where Stern discusses a LES-style "household
production" model in which people get utility from "latent goods" (sometimes called "z-goods"
) that are a combination of time inputs and purchased inputs. (This is adapted from A.
Atkinson and N. Stern, "A Note on the Allocation of Time", Economics Letters, 3 (1979):
119-123).

4. Identification Problems
A key problem in the labor supply literature is identification. Suppose for sake of discussion

we assume
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h = α logw + βy + Zθ + η

where Z is a set of observed covariates and η is a "taste shock".

Problem #1: measurement error in h and w.
In many data sets we don’t see the hourly wage, w. Instead we see earnings (E) for some

period (last year) and total hours worked (h). Both are measured with error, but (as we will
see in the exercises) hours look especially noisy. Suppose the true values for a person are
(E, h), and the observed values are

Eo = E + e1

ho = h+ e2.

You construct a "wage" wo = Eo/ho. Note that when e2 is positive observed hours are higher
than they actually were and the observed wage is lower. Likewise when e2 is negative, observed
hours are lower than they actually were and the wage is higher. This is called the problem of
"division bias": there is a mechanical negative correlation between hours and the hourly wage
caused by measurement error in hours. See Borjas (1980).

Problem #2: the correlation of tastes for hours and wages.
Note that η is an unobserved component in the tastes for work. For consistent estimation

of the key parameters (α, β) we need that Cov[logw, η] = 0. In many settings this is not likely
to be true. For example, someone who is unhealthy may have low hours and earn low wages.
It may also be the case that logw depends on past accumulated experience. If tastes are
correlated over time, people who prefer to work a lot will end up with higher wages.

Problem #3: the problem of isolating an exogenous component of y
In a typical data set we observe an individual’s earnings and their non-labor income.

Some important components of non-labor income are mechanically related to earnings. For
example, means-tested benefits are negatively related to earnings (and therefore to hours).
Other components of non-labor income are also likely to be correlated with unobserved tastes
for work. For example, asset income represents a return to past savings. Many models would
suggest that people with stronger tastes for work will end up working more hours each year,
and with higher asset income at later stages of their life. In studies of female labor supply it
is common to take husband earnings as exogenous, and use this to identify the income effect
on hours. Sometimes this is also done in studies of male earnings. It is unclear whether
other family members’labor incomes are uncorrelated with an individual’s unobserved tastes
for work.

5. Non-Participation
Return to the canonical model:

max
x,h

u(x, T − h) s.t. px = wh+ y

It may happen that the max is achieved with (h = 0, x = y): an endpoint optimum. This will
happen if

mrs(y, T ) ≡ u`(y, T )

ux(y, T )
> w.
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We can define
m(h;w, y) ≡ wux(y + wh, T − h)− u`(y + wh, T − h)

which is the marginal value of an increase in hours at some level h, given (w, y). If u(x, `) is
s.q.c., the function m(h;w, y) is strictly decreasing in h. (Exercise: prove it). The question of
whether to participate is the question of whether m(0;w, y) > 0. For a given functional form
for u( ) we can think of labor supply as generated by a "Tobit-like" model based on m(h;w, y).
We have:

m(0;w, y) ≤ 0⇒ h = 0,

else h > 0 implicitly defined by m(h;w, y) = 0

One way to handle non-participation is to pick a convenient functional form for u such that
this is a workable model. The classic assumption is that u is quadratic in (x, `): in this case
ux and u` are both linear in h. A problem (nicely addressed by Heckman, 1974, which we
discuss next) is that we don’t observe w for those who don’t work. So in applications, people
usually end up "imputing" a wage for non-workers —not always an attractive choice.

Aside: Arthur Goldberger wrote a monograph in 1967 —Functional Form and Utility:
A Review of Consumer Demand Theory (ultimately published in 1987 by Westview Press) —
that works through the quadratic utility case in a lot of detail, including a nice discussion
of endpoint optimums. See also Michael Ransom "An Empirical Model of Discrete and
Continuous Labor Supply, Review of Economics and Statistics 69 (August 1987): 465-472 for
an application to the case of family labor supply.

Heckman (1974) defines the reservation wage w∗ by

w∗ =
u`(y, T )

ux(y, T )
.

This is the wage that is just high enough to induce the agent to supply a tiny unit of labor.
In terms of the above notation, w∗ is the wage such that m(0;w∗, y) = 0. Note that w∗ is a
function of y and (in Heckman’s application to married women also depends on the number
and age of children). Associated with u is the labor supply function h(w, y)̇. A model for the
data is

w ≤ w∗ ⇒ h = 0

w > w∗ ⇒ h = h(w, y)

Rather than parameterizing preferences, Heckman writes down a statistical model for w∗i , and
another statistical model for wages wi of agent i:

wi = Xib+ e1i

w∗i = Xiβ + e2i.

where X includes y and other variables. Define zi = wi − w∗i = Xi(b − β) + e1i − e2i, and
assume that the labor supply function is

hi = Xic+ wid+ vi.

The likelihood for the observed data then consists of two parts:

Likelihood = P (zi ≤ 0) + f(wi, hi|zi > 0) · P (zi > 0)
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where f(wi, hi|zi > 0) is the joint density of wages and hours conditional on zi > 0 (which
depends on the joint distribution of (e1i, e2i, vi).

Note that if the labor supply function is hi = Xic+wid+ vi, then the reservation wage is
the solution to

0 = Xic+ w∗d+ vi, or

w∗ = −Xi
c

d
− 1

d
vi

which means that there are really only 2 latent random variables, e1i and vi, rather than three
(i.e., e2i = −1dvi).

An issue in modeling non-participation is that people are (almost) never observed working
<5 hrs. per week. Either there are "fixed costs" of working that have to be overcome,
or employers require some minimum hours committment to aid in co-ordination of hours
schedules. We will come back to the issue of non-participation in Lecture 3, where we discuss
estimation of "discretized" budget sets. A discretized framework is also very useful for thinking
about part-time versus full time jobs, and for dealing with budget sets that have a lot of kinks.

6. Compensating Wage Differentials for Fixed Hours Packages
Our final application considers a classic idea (articulated by Adam Smith in The Wealth

of Nations) that if there is a job that has limited hours (e.g., a weather-dependent job) people
who take that job over another unconstrained job will have to be paid a compensating wage
differential. We define

R(h, u) = min
x
x s.t. u(x, T − h) ≥ u.

This is the minimum amount of consumption that in combination with h achieves utility u.
R is just the vertical distance from the x-axis to the u indifference curve when ` = T − h. If
a job pays the wage w and requires h hours of work then an individual would have to receive

R(h, u)− wh = min
x
x− wh s.t. u(x, T − h) ≥ u

in additional nonlabor income to achieve utility u. Note that if h = hc(w, u0) then the required
non-labor income is e(w, u0) :

R(hc(w, u0), u0)− whc(w, u0) = e(w, u0) (*)

This holds as we vary w so differentiating:

R1
∂hc

∂w
− hc − w∂h

c

∂w
=

∂e

∂w

But since ∂e/∂w = −hc, we have that

R1(h
c(w, u0), u0) = w.

If you think of R as the height of the indifference curve, and recall that w is the slope of the
indifference curve at h = hc(w, u0) this is obvious. Now this relation also holds as we vary w
so differentiating again

R11
∂hc

∂w
= 1

⇒ R11(h
c(w, u0), u0) = [

∂hc(w, u0)

∂w
]−1
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This shows that the inverse of the slope of the compensated labor supply curve is the rate of
change of the slope of the indifference curve.

Now suppose there is an unconstrained job that pays a wage w0, and another constrained
job that requires h = h. We ask: what wage w would the constrained job have to pay so
an agent is indifferent between the two jobs. The difference (w − w0) is the compensating
differential for the constrained choice. Using the R function we must have

R(h, u0)− wh = e(w0, u0) (**)

Figure 2.2 shows the determination of R(h, u0).

Now we use our standard trick - a second order expansion. In this case we will expand
around R(hc(w0, u0), u0), where u0 is the utility level of the reference job. Let h0 be the
(unconstrained) hours choice on that job. We have

R(h, u0) ≈ R(hc(w0, u0), u0) + (h− h0)R1(hc(w0, u0), u0) + .5(h− h0)2R11(hc(w0, u0), u0)

= e(w0, u0) + w0h0 + (h− h0)w0 + .5(h− h0)2[∂h
c(w0, u0)

∂w
]−1 (using (*) above)

= e(w0, u0) + hw0 + .5(h− h0)2[w
0∂hc(w0, u0)

h0∂w
]−1

w0

h0
.

Now subtract wh from both sides:

R(h, u0)− wh = e(w0, u0)− h(w − w0) + .5
w0

h0
(h− h0)2 1

εc

And using (**) we get

(w − w0)
w0

= .5
(h− h0)2

h0h

1

εc

For example, if
(h− h0)
h0

≈ .2

and εc = .2 then the compensating differential is

(w − w0)
w0

=
.5× .2× .2

.2
= .1

You need a 10% higher wage to take a job with 20% lower hours. Note that the formula also
applies for high-hours jobs —in fact the formula is symmetric, so you need a 10% higher wage
for job that forces you to work 20% more than you’d like. This may be a good way to introspect
about your own value of εc.
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Fractions of Men and Women Working Last Year, March 2008 CPS
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Average Annual Hours of Men and Women Last Year, March 2008 CPS
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Average Annual Weeks and Hours Per Week of Men and Women, March 2008 CPS
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Average Annual Earnings of Men and Women Last Year, March 2008 CPS
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Figure 2.1: Opt-in to Welfare
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Figure 2.2: Compensating Wage Differential for Constrained Hours Choice
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