
Lecture 5 Intertemporal Labor Supply (continued)
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a. Recap; More on the Relation of Intertemporal and Static Re-
sponses

Last time we laid out the prototypical setup: consumption in period t is ct,
hours of work are ht, the wage is wt. Individuals have flow utility u(ct, ht; at)
that is concave in (c, h), and an intertemporal budget contraint:

At+1 = (1 + rt)(At + yt + wtht − ct).

The Bellman equation is

Vt(At) = max
ct,ht

u(ct, ht; at) + βEt[Vt+1((1 + rt)(At + yt + wtht − ct))]

After defining λt ≡ V ′t (At) we get the f.o.c. (assuming an interior solution for
ht) :

uc(ct, ht; at) = λt

uh(ct, ht; at) = −wtλt

and the intertemporal optimum condition:

λt = β(1 + rt)Et[λt+1].
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Aside on the Intertemporal Elasticity based on Consumption
Some macro models ignore labor supply and focus on the implications of

this simple model for the allocation of consumption over time. To illustrate,
consider the additively separable case where

u(ct, ht; at) = v(ct)− φ(ht; at)

In this case, Hall (1978) noted that, setting β = (1 + δ)−1, the intertemporal
optimum condition becomes:

Et[v
′(ct+1)] =

1 + δ

1 + rt
v′(ct).

If we further assume that v(ct) = σ
σ−1c

(σ−1)/σ
t , then v′(ct) = c

−1/σ
t and we get:

Et[(ct+1)−1/σ] =
1 + δ

1 + rt
(ct)
−1/σ.

Taking logs of both sides and assuming we can interchange E and log, we get:

Etlog(ct+1) = log(ct) + σlog(1 + rt)− σlog(1 + δ)

which means that

log(ct+1)− log(ct) = constant+ σlog(1 + rt) + error

where the error is an expectation error, and should be orthogonal to everything
dated t or earlier. Here σ is the “elasticity of intertemporal substitution in
consumption” (IES in the terminology of Havranek, 2015). Notice that − c vccvc

=
1/σ , so σ is the inverse coefficient of relative risk aversion.

Back to Labor Supply
Define the Frisch demands as the solutions to these f.o.c., given (wt, λt) and

the preference shocks:

ct = cF (wt, λt, at)

ht = hF (wt, λt, at)

Let’s log-linearize the Frisch demands:

log ht = At + η logwt + δ log λt

log ct = Bt + θ logwt + κ log λt.

Differentiating the f.o.c. we get(
dc

dh

)
=

[
Ucc Uch
Uhc Uhh

]−1 [
1 0
−w −λ

] [
dλ
dw

]
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So

∂hF

∂w
=
−λUcc

∆
∂hF

∂λ
=
−wUcc − Uhc

∆
∂cF

∂λ
=

wUch + Uhh
∆

∂cF

∂w
=

λUch
∆

where ∆ = UccUhh − U2
ch > 0, since for an intertemporal planning problem we

need concave utility Note that

w
∂hF

∂w
− λ∂h

F

∂λ
=
∂cF

∂w

and dividing by h we get

w

h

∂hF

∂w
− λ

h

∂hF

∂λ
=

c

wh

w

c

∂cF

∂w

or in terms of the elasticities of the log-linearized system,

η − δ =
c

wh
θ.

On average c ≈ wh (other than for trust-fund babies), so this says that η−δ ≈ θ.
In particular, in the separable case Uch = 0 which implies:

η = δ =
Uh
hUhh

κ =
Uc
cUcc

θ = 0

Note that in the separable case κ = −1/R where R is the coefficient of relative
risk aversion. Many macro economists think that Uch > 0, implying that θ > 0
and η > δ.

It useful to relate δ and κ to the more familiar income effects in static labor
supply models. To do this consider the static labor supply problem with the
same preferences

max
c,h

U(c, h) s.t. c = y + wh

The f.o.c. for this problem are

Uc(c, h)− λ = 0

Uh(c, h) + λw = 0

−c+ wh+ y = 0.
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Differentiating these we get dc
dh
dλ

 =

 Ucc Uch −1
Uhc Uhh w
−1 w 0

−1  0 0
−λ 0
−h −1

[ dw
dy

]
and we can show

∂c

∂y
=
−Uchw − Uhh

∆′

∂h

∂y
=

Uccw + Uch
∆′

where ∆′ is the determinant of the bordered Hessian. Note that the numerators
of these expressions are the same as the numerators of ∂c

F

∂λ and ∂hF

∂λ respectively
(with a sign change). Thus:

∂hF

∂λ
∂cF

∂λ

=

∂h
∂y

∂c
∂y

.

This is useful because we know ∂c
∂y = 1 + mpe and w ∂h

∂y = mpe, where mpe is
the marginal propensity to earn out of non-labor income, and is thought to be
a number like −0.1 or so. Thus

w ∂hF

∂λ
∂cF

∂λ

=
mpe

1 +mpe
.

Converting to elasticities, we get:

whλh
∂hF

∂λ

cλc
∂cF

∂λ

=
wh

c

δ

κ
=

mpe

1 +mpe

implying that
δ

κ
=

c

wh

mpe

1 +mpe
.

This says that the ratio of the elasticities of labor supply and consumption
with respect to λ is (roughly) the same as the ratio of mpe to (1 + mpe). if
mpe = −0.1 then mpe

1+mpe ≈ −0.1.
In the additively separable case we can use this ratio to think about a likely

magnitude for η. Specifically, as shown above in the separable case κ = Uc
cUcc

is the negative of the inverse of the coefficient of relative risk aversion defined
over gambles. Define

R = −cUcc
Uc

.

Then κ = −1/R. So if R = 1 and mpe = −0.1, then δ ≈ 0.1, implying η = 0.1
(since in the separable case η = δ).

As noted above, in the macro consumption literature (which ignores labor
supply and focuses on the optimal allocation of consumption over the lifecycle)
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it is standard to estimate κ = −IES by relating the change in consumption
between periods to the real interest rate. Some commentators have argued that
a plausible estimate based on this approach is κ = −1 , though a recent meta-
analysis by Havranek (JEEA, 2015) suggests that there is selective reporting in
the literature, and that the corrected measure of central tendency is smaller.

To get a larger value for η when we think that κ is not too big we need to
have a big value for θ (since η ≈ δ+θ). This means that researchers who believe
in big-η need to specify non-separable preferences, with Uch > 0. One way that
people have tried to estimate Uch is to look at consumption expenditures of
people around the point of retirement, though this has problems because people
can do home production or change the way they shop when they retire.

The relationship between the coefficient of relative risk aversion and the
Frisch elasticity of labor supply is developed nicely in Chetty’s 2006 AER pa-
per. Richard Rogerson and Johanna Wallenius (AER, 2013) is an example of
recent work that tries to look at retirement behavior and learn something about
intertemporal labor supply.

b. Reduced Form Evidence on Intertemporal Labor Supply Elastici-
ties

Let’s return to the log-linearized labor supply and consumption equations:

log ht = At + η logwt + δ log λt

log ct = Bt + θ logwt + κ log λt.

Focusing on hours, we can difference over time:

∆ log ht = log ht − log ht−1 = ∆At + η∆ logwt + δ(log λt − log λt−1).

Next, use the fact that λt−1 = β(1 + rt−1)Et−1[λt]. Thus

log λt−1 = log[β(1 + rt−1)] + logEt−1[λt]

Now define
φt = logEt−1[λt]− Et−1 log[λt]

and define the innovation in the log marginal utility of income as ξt where:

log λt = Et−1 log[λt] + ξt.

Combining all these terms we get

log λt−1 = log[β(1 + rt−1)] + log λt − ξt + φt.

If we write β = (1 + ρ)−1 and approximate log[(1 + rt−1)/(1 + ρ)] = rt−1 − ρ
we get a very useful expression for the evolution of the log marginal utility of
income:
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log λt = log λt−1 − (rt−1 − ρ)− φt + ξt

So
∆ log ht = ∆At + η∆ logwt + δξt − δ(rt−1 − ρ)− δφt. (1)

And following the same steps:

∆ log ct = ∆Bt + θ∆ logwt + κξt − κ(rt−1 − ρ)− κφt. (2)

Estimation Based on Equation (1)
When wages are uncertain equation (1) cannot be estimated by OLS be-

cause ∆ logwt is correlated with ξt. For example, Pistaferri (2003) writes an
approximating model (also used by MaCurdy, 1981) of the form

δξt = δ (log λt − Et−1 log[λt]) ≈
T−t∑
j=0

γj (Et log[wt+j ]− Et−1 log[wt+j ])

(The coefficients γj are negative). If wages follow an AR(1) process

logwt = λ logwt−1 + ζt

then
Et log[wt+j ]− Et−1 log[wt+j ] = λjζt

and

δξt =

T−t∑
j=0

γjλ
jζt = Γ(t, T, λ)ζt.

The update to log λt is some coefficient Γ (which depends on (t, T, λ)) times the
wage innovation ζt. Note that theγ′js should also depend on age and current
wealth, which introduces even more heterogeneity into the coefficient Γ.

One approach to estimation is to find instruments that predict wage growth,
that are orthogonal to the surprise component in wages (and therefore in log λt)
and that also do not enter in ∆At (the preference shock). MaCurdy (1981)
used experience: according to the simplest Mincer model

logwt = b1x(t) + b2x(t)2 + ...

where x(t) is experience at time t. Since x(t) = x(t − 1) + 1 predicted wage
growth is a simple linear function of experience in year t − 1. In fact experi-
ence works as a predictor of wage growth, though the first stage is often weak.
Estimates of η based on this approach tend to be small - on the order of 0.1 to
0.3 (see MaCurdy’s orginal analysis and Altonji (1986, Table 2) for a variety of
estimates based on the MaCurdy approach).∗∗ A concern is that experience may
have some direct effect on preferences. This, coupled with the a priori belief
that η must be relatively large, has led to ongoing interest in other approaches.
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∗∗An interesting feature of Altonji’s paper is that he reports the first stage
equations, so you can judge the power of the instruments, though his paper was
written before the weak instruments critique was well understood (and before
the cluster option made it easy to account for serial correlation within the data
for each person over time).

Altonji (1886) tried using consumption as a proxy for the (unobserved)
marginal utility of wealth, which seems quite plausible. This is easiest to un-
derstand in the within-period separable case: then the system of interest is

log ht = At + η logwt + η log λt + e1t

log ct = Bt + κ log λt + e2t

where I have added measurement errors e1t and e2t. This implies

log ht = (At −
η

κ
Bt) + η logwt +

η

κ
log ct + e1t −

η

κ
e2t.

If thee′jts are really measurement errors the only remaining problems with this
specification are that log ct is correlated with e2t and any unobserved compo-
nents of Bt, and that logwt is measured with error. [It is also possible, as in a
static labor supply model, that the unobserved parts of At are correlated with
logwt]. The main advantage of Altonji’s approach is that we don’t have to first
difference – so there is a lot of variation left and many potential instruments for
logwt and log ct . Altonji (1986) used a second measure of wages (collected at
the interview in the PSID, and representing the point-in-time wage on the job at
the time of the interview), the mean wage observed in other years, and various
demographic factors (e.g. spouse’s education, parental education/income). His
estimates (Altonji (1986, Table 4)) for η are between 0.1 and 0.2.

The main concern with Altonji’s approach is that preferences may not be
separable. If

log ct = Bt + θ logwt + κ log λt + e2t

then solving for log λt and substituting into the hours equation (with a coefficient
δ for log λt that is potentially different from η) leads to an hours model:

log ht = (At −
η

κ
Bt) + (η − θ δ

κ
) logwt +

δ

κ
log ct + e1t −

δ

κ
e2t.

Notice that the coefficient on logwt in this case is

η − θ δ
κ
≈ η − θ mpe

1 +mpe

using the result presented earlier that δκ ≈
mpe

1+mpe . Assuming mpe ≈ −0.1, this
implies that the estimate obtained using Altonji’s procedure is an estimate of
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η+ 0.11θ. Assuming θ ≥ 0 we get an upward-biased estimate for η, though the
magnitude of the bias is arguably small.

Pistaferri (2003) presents an interesting addition to this literature, using in-
formation on wage growth expectations that is collected in the Bank of Italy’s
Survey of Household Income and Wealth (SHIW). Pistaferri assumes that in-
dividual wages follow a random walk:

logwt = logwt−1 + ζt

and adopts the assumption (presented above) that the (scaled) innovation in
the log marginal utility of wealth follows

δξt = δ (log λt − Et−1 log[λt]) =

T−t∑
j=0

γj (Et log[wt+j ]− Et−1 log[wt+j ]) .

With the unit root assumption Et log[wt+j ]− Et−1 log[wt+j ] = ζt and

δξt =

T−t∑
j=0

γjζt = Γζt.

With this substitution, equation (1) becomes:

∆ log ht = ∆At + η∆ logwt + δξt − δ(rt−1 − ρ)− δφt
= ∆At + ηEt−1[∆ logwt] + (η + Γ)ζt − δ(rt−1 − ρ)− δφt (3)

(which is Pistaferri’s equation (13)). In the SHIW people are asked directly
their expected rate of growth of earnings over the next year. Letting yt = wtht,
this means that we observe Et−1[∆ log yt] in the year t− 1 survey. This means
we have to translate the labor supply model into a model of hours and earnings.
Using the definition of earnings we get:

Et−1[∆ logwt] = Et−1[∆ log yt]− Et−1[∆ log ht]

and taking expectations of (3) and substituting we get

Et−1[∆ log ht] =
1

1 + η
{∆At + ηEt−1[∆ log yt]− δ(rt−1 − ρ)− δφt}.

Finally, if we define
ψt = ∆ log yt − Et−1[∆ log yt]

as the innovation in log earnings, and use the fact that ∆ log ht−Et−1[∆ log ht] =
(η + Γ)ζt (from equation (3)) we get

ζt = ψt − (η + Γ)ζt ⇒ ζt =
ψt

1 + η + Γ

⇒ ∆ log ht − Et−1[∆ log ht] =
(η + Γ)

1 + η + Γ
ψt.
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Thus we can write the labor supply equation in terms of expected earnings
changes and the innovation in earnings as:

∆ log ht =
1

1 + η
∆At+

η

1 + η
Et−1[∆ log yt]−

δ

1 + η
(rt−1−ρ)− δ

1 + η
φt+

(η + Γ)

1 + η + Γ
ψt

(4)
(As a final step, Pistaferri solves for φt in terms of the variance in the earnings
forecast, under the assumption of log-normality, but we will leave that aside).
Notice that if we observe expected and realized earnings then we can estimate
this model taking Et−1[∆ log yt] and ψt as observed variables. This procedure
will yield estimates for η and Γ. Morever, Pistaferri uses the relatively short
time period in his panel to get variation in the real interest rate, providing an
estimate of δ. His estimates are

η = 0.70 (0.09)

Γ = −0.20 (0.09)

δ = 0.59 (0.29)

which look pretty large in magnitude. As discussed in his paper, one (plausible)
explanation for this is that the true wage process is more like:

logwt = zt + εt where

zt = zt−1 + ζt

and εt and ζt are i.i.d. This says wages are a combination of a component
with a unit root (the permanent wage component) and a serially uncorrelated
component (the transitory component), and implies that

logwt = logwt−1 + ζt + εt − εt−1

which is an ARIMA(0,1,1) model. Now the innovation in log wages is ζt +
εt, but only the permanent part is expected to persist, so holding constant
the (observed) innovation in current wages (or, in Pistaferri’s case, earnings)
the apparent response in labor supply is bigger than it would be if the entire
wage innovation persisted (which is what is being assumed in equation (3).
Preferences are being credited for a labor supply response that is due in part to
the temporary nature of the wage innovation, so there is an upward bias in the
estimate of η.

Some simple evidence on the right statistical model for wages is presented
in Card (1994): there I used data on a sample of male household heads from the
PSID observed continuously over an 8-year period to fit a model of the form

logwit = ωi + vt + uit + µit

where
uit = αuit−1 + ξit
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and ξit and µit are mutually uncorrelated, the innovations in the AR(1) com-
ponent are uncorrelated (but allowed to have differenent variances in different
years), and ξit and µit are uncorrelated with the random effect. Pistaferri
(effectively) assumes α = 1 and var(µit) = 0. The estimates are reported in
Table 2.3 of my paper and show that: (1) such a model fits relatively well; (2)
α ≈ 0.9; (3) about 50% of the variance in wages is attributed to ωi, 16% to
the transitory component µit and 34% to the serially correlated component uit.
Arguably, Pistaferri’s assumption of a pure random walk model for wages is too
restrictive.

Extensive margin
Many labor supply estimates ignore the extensive margin – workers who

don’t work for a year are dropped. This is potentially important for under-
standing aggregate movements in hours because:

(a) there are substantial numbers of people who move in/out of employ-
ment

(b) the elasticity of participation w.r.t. wages can be relatively high,
even if η is small.

A simple approach to this problem is to go back to the first order conditions
defining the Frisch labor supply/consumption choices, and define a reservation
wage in each period (or more generally a selection equation determining whether
the individual works in period t. For an example of this see J. Kimmel and T.
Kniesner, New Evidence on Labor Supply: Employment vs Hours Elasticities
by Sex and Marital Status.” Journal of Monetary Econ 42 (1998).

Manoli and Weber (2011) is a very recent attempt to look at one of the
important extensive margins: variation in the length of time people work. This
paper uses an RD design to study the effects of a benefit that is paid to workers
who retire after certain tenure milestones. Since workers start jobs at different
ages, there is a smooth distribution of people across the tenure distribution at
different ages, and Manoli and Weber find strong evidence that some workers
appear to delay retirement to get the benefits. However, the implied responsive-
ness is relatively small (elasticities on the order of 0.3 or smaller). An earlier
paper by Krueger and Pischke (Journal of Labor Economics, 1992) looked at
the effect of a revision in the indexing formula for Social Security, which sharply
lowered the benefits to people born in 1917-1921 relative to those born 1915-
1916 (who got very high benefits as a result of an error in the indexing formula).
As shown in their figures:

(1) people born in 1918-20 suffered a sharp drop in benefits to earliest
possible retirement (age 62)

(2) people born in 1914-1916 had unusually high incentives to delay
retirement to age 68

(3) BUT LFPR’s trended pretty smoothly down across these cohorts
(A recent paper by Alex Gelber re-investigates the notch and concludes that

there was some labor supply effect). The extensive margin (EM) is an area of
active research interest. One (serious) difficulty with studying EM responses is
that wages are only observed for workers. So it becomes necessary to impute

10



shadow wages (or make other assumptions) to correlate changes in participation
with changes in wages.

Is Labor Supply Really a Worker Choice?
Ham and Reilly (AER 2002) ask whether information from the demand side

affect hours choices, controlling for wages and other factors. This could arise
in a contract setting where workers agree to work for some wage and allow the
employer to specify hours. In a simple neoclassical model of the labor market
the two sides of the market are separated by the wage:

h = hd(w, x)

= hs(w, y)

where hd and hs are the demand and supply functions for hours (by some group
of workers), and x and y represent demand and supply shocks. In this class
of models, any effect of demand shocks works through w: the two sides of the
market both make independent decisions, taking w as given. Thus, a test of
the standard model is to fit the supply function and include x directly in the
estimating equation. This requires that there be instruments for w in addition
to the demand shock variables - so HR’s test one interpretation of their test is
that they are testing whether one set of demand shock variables affect supply,
when wages are instrumented with other variables.

Formally, H-R consider two specifications. Their first set of models use first
differenced labor supply models of the type described above:

∆ log ht = ∆At + η∆ logwt + δξt − δ(rt−1 − ρ)− δφt. (5)

The include an extra set of explanatory variables representing the changes in
the unemployment rates for the industry and occupation that the agent was
working in in the base year (∆URind,∆URocc). These are treated as poten-
tially endogenous because they may reflect the news shocks incorporated in the
innovation in the log marginal utility of consumption, ξt. They also present
models with future wage changes (∆ logwt+1) included on the right hand side,
as a potential way to incorporate non-separable preferences (basically, if people
forsee high wages ahead they may work more or less this period) See Table 1
of their paper.

H-R’s second specification builds on Altonji’s idea of controlling directly for
consumption. Here the baseline specification is:

log ht = (At −
η

κ
Bt) + (η − θ δ

κ
) logwt +

δ

κ
log ct + e1t −

δ

κ
e2t.

In this case they augment the model with (URind, URocc), and include spec-
ifications with future wages. See tables 2 and 3, which use PSID and CES
data.

Their key finding is that predictable movements in ∆URind and ∆URocc (or
in the levels of URind, URocc), have a lot of explanatory power. They interpret
this as evidence that wages are not translating all the necessary information
about the state of the demand side to the worker.
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Labor Supply in the Very Short Term

Farber’s 2014 “taxi” paper looks at the detailed trip-level data from NYC cabs,
focusing on how taxi driver’s labor supply in a given hour is affected by their
wage. One motivation for the paper is the idea – proposed in a well known paper
by Camerer, Babcock, Lowenstein, and Thaler (QJE, 1997) – that people do
not choose hours according to standard labor supply models: instead, they have
a target level of earnings in mind, and if they get to that level of earnings, they
stop working. This gives rise to a very perverse −1 elasticity of labor supply in
the short run! The target earnings idea comes from the Tversky and Kahneman
(1991) idea of loss aversion. Farber implements a loss aversion component in
the labor supply choice by assuming utility in a given day is:

U(y, h) = (1 + α)(Y − T )− θ

1 + υ
h1+ν Y < T

= (1− α)(Y − T )− θ

1 + υ
h1+ν Y ≥ T

where T is an earnings target (the reference point). Note that if α> 0 the
individual’s MU of income drops from 1 +α to 1−α) as earnings pass through
the reference point. If α = 0 the individual has a constant MU of income –
which is appropriate for a short run labor supply problem. The ±α(T −T ) part
of U is called the “gain loss” utility component, and is assumed to be added
to the “regular” utility function Y − θ

1+υh
1+ν , which is called “consumption

utility”. Driver’s indifference curves have a kink, as shown in the figure at the
end. The MRS is

MRS(Y, h) =
θhν

1 + α
Y < T

=
θhν

1− α
Y ≥ T

The choice of hours given a parametric wage w is as follows:

h =

(
(1 + α)w

θ

)1/ν

w < w∗

= T/w w∗ < w < w∗∗

=

(
(1− α)w

θ

)1/ν

w > w∗∗

where:

w∗ =

(
θ

1 + α

) 1
1+ν

T
ν

1+ν

w∗∗ =

(
θ

1− α

) 1
1+ν

T
ν

1+ν
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Note that if α = 0 the driver has hours function:

h =
(w
θ

)1/ν
with (intertemporal) elasticity 1

ν . But if α > 0 there is a range of variation in
w such that hours are decreasing in the wage (with elasticity -1). Next, Farber
invokes the “rational reference point” assumption of Koszegi and Rabin (2006),
which he translates into the assumption that log T = E[log(wh)] when hours
are determined by consumption utility only:

log T =
1 + ν

ν
E[log w]− 1

ν
θ.

Farber interprets this as the reference point for earnings during an hour with a
given expected wage (so the reference point is higher on a typically high-wage
hour, like Friday at 6:00 pm). This is very important point that comes from the
KR idea: you only get reference point behavior from unanticipated variation.

This leads to a really nice pair of expressions for the logs of w∗ and w∗∗ :

log w∗ = E[log w]− 1

1 + ν
log(1 + α)

log w∗∗ = E[log w]− 1

1 + ν
log(1− α)

which means that reference dependence behavior only arises when the wage is
in an interval of from 1

1+ν log(1 + α) below the mean to 1
1+ν log( 1

1−α ) above the

mean. Farber notes that in the behavioral literature, people believe that 1+α
1−α

is a number like 1.5 to 2.5 (this is the so-called coefficient of loss aversion). In
this case, α is in the interval [0.2, 0.43]. Assuming 1/ν = 0.5 this means that
the range around the mean is something like 6% below the mean to 7% above
(if α = .2), or a wider range of 12% below the mean to 19% above the mean (if
α = .43). Farber argues this means that most wage variation is in the “reference
dependence range”, because (as he shows) the wage is quite predictable.

Farber presents some very nice labor supply estimates based on how many
hours a driver works per shift (there are day shifts, night shifts and some other
miscellaneous kinds). Table 4 presents OLS models, Table 5 presents IV esti-
mates where the instrument is the mean earnings per hour of other drivers in
the same shift (which has a lot of predictive power). His IV estimates range
from .4 to .9 when he includes fixed effects. These may seem large, but at the
daily level we expect pretty large elasticities relative to the year.

13
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FIGURE 1. Negative estimates are underreported. In the absence of selective reporting the funnel
should be symmetrical around the most precise estimates. I exclude estimates with extreme magnitude
or precision from the figure but include all in the regressions.

and interesting result, not from the preferences of editors and referees—although the
priors may be formed based on what results are publishable.

The Online Appendix shows four additional robustness checks. First, I test whether
my results change if I only consider estimates of the EIS published in finance journals.
Different values of the elasticity are needed to explain different facts in economics and
finance; perhaps the two streams of literature differ in the extent of selective reporting.
Nevertheless, my results suggest that the estimates of the EIS reported in finance are
very similar to those reported in economics. Second, some studies report asymmetric
confidence intervals for the estimates, which means that the ratio of the point estimate
to the standard error is not t-distributed. I follow the advice of Stanley (2001, p. 135)
to “better err on the side of inclusion” in meta-analysis, compute approximate standard
errors for the estimates (based on the simplifying assumption of normal distribution),
and include the estimates. Exclusion of these estimates does not change my results.
Third, I exclude the three studies from my sample that use the long-run risks model
to estimate the EIS, but the results are again similar. Finally, my results do not change
qualitatively if I exclude estimates with bootstrapped confidence intervals.

It is difficult to say at this point which of the two potential sources of selective
reporting drives the results in Table 1. A graphical inspection of the data suggests
that both sources play a role. Figure 1 shows the so-called funnel plot, which is often
used in medical meta-analyses to detect selective reporting (Egger et al. 1997). The
horizontal axis measures the magnitude of the estimate of the EIS, while the vertical
axis measures the estimate’s precision, the inverse of the standard error. The most
precise estimates should be concentrated close to the underlying effect at the top of
the figure, while the imprecise estimates at the bottom should be more dispersed. The
t-distribution of the ratio of point estimates to their standard errors ensures that in the
absence of selective reporting the figure is symmetrical, forming an inverted funnel.

Panel (a) of Figure 1 shows the funnel plot with all estimates of the EIS. The
most precise estimates are positive but small. Researchers report negative estimates
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Table 3: Mean Hours, Income, and Average Hourly Earnings. By Shift
Shift Hours Income Wage # Shifts

Day 9.48 248.41 26.39 2247417

(3.97) (106.03) (5.75)

Night 8.78 262.03 30.13 2137499

(3.05) (93.06) (6.55)

Unassigned 8.30 228.12 28.26 662427

(5.33) (138.46) (8.47)
Note: Day shifts start between 4AM and 9:59AM. Night Shifts start between
2PM and 7:59PM. Shifts starting at other times are Unassigned. Standard
deviations are in parentheses.

Figure 4: Distribution of Shift Length in Hours, by Day of Week and Shift
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Labor supply and earnings have distinct patterns over the week by shift. Figure 4 contains

plots of the average shift length by day of week for day and night shifts.23 Day shift drivers

work longest on Sundays, with average hours declining from about 10 hours on Sunday to

9 hours on Saturday. In contrast night shift drivers work their shortest days on Sunday,

with average hours increasing sharply from about 8 hours per shift early in the week to

about 10 hours per shift on Friday and Saturday. Day shift drivers work longer hours than

night shift drivers on all days but Friday and Saturday. Total income per shift, shown in

figure 5, generally follows hours: Day shift drivers earn the most on Sunday and the least

on Saturday, and night shift drivers earn the least on Sunday and the most on Friday and

23 Some shifts span days of the week. I assign each shift to a particular day of the week based on the date
of the first trip in the shift.
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Table 4: Wage Elasticity, OLS Regression of Average Log Daily Hours, by Shift
Elasticity Elasticity Elasticity Elasticity

Model Controls Driver F.E’s All Shifts Day Shifts Night Shifts Other Shifts

(1) No No 0.0159 0.0485 -0.0017 0.0738

(0.0154) (0.0177) (0.0169) (0.0220)

(2) Yes No -0.0034 0.0505 -0.0784 0.0606

(0.0177) (0.0203) (0.0210) (0.0240)

(3) Yes Yes -0.1002 -0.0615 -0.1487 -0.0501

(0.0089) (0.0109) (0.0077) (0.0138)
Note: Each estimated elasticity is from a separate OLS regression. “Elasticity” is the estimated
coefficient of log average hourly earnings from a regression of log shift duration. “Controls” include
indicators for day of week (6), calendar week (51), year (4), the period subsequent to the September
4, 2012 fare increase (1), and major holiday (1). Estimated using sample of 5,047,343 shifts for
8,802 drivers from 2009-2013. Sample sizes are listed in table 3. Robust standard errors clustered
by driver are in parentheses.

mated elasticity is negative and statistically significant but relatively small at -0.1. For day

shifts, the estimated elasticities are small and positive but statistically significant in the first

two specifications. When driver fixed effects are included, the estimated elasticity is again

negative and statistically significant though small. The pattern for night shifts is that the

elasticities are significantly negative when the controls are added. The estimated elasticity

when driver fixed effects are included is more negative than for the day shift. The estimates

for the unclassified (other) shifts are very close to those for day shifts.

While I do find some negative elasticities, none approach minus one as suggested by

reference dependence. My elasticities are much smaller than those found using OLS by CBLT

or Farber (2005), which may reflect a lower level of measurement error in my administrative

data compared with the data transcribed from trip sheets used in the earlier work.

Although the administrative data may have less measurement error than data derived

from the paper trip sheets, it is not error free. Simple consistency checks of the data show

more than a few instances of trips ending before they start and new trips starting before the

previous trip ends.26 Additionally, as I mentioned earlier, my income data do not include

tips, which surely vary across trips as a proportion of fares (Haggag and Paci, 2014). On this

basis, it makes sense to estimate the model using an instrument for average hourly earnings.

In the spirit of CBLT, I use the average across other drivers of log average hourly earnings

on the day each shift started. To avoid problems using an instrument derived from the

26 I used some simple algorithms to adjust the data to eliminate these inconsistencies and serious outliers.
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Table 5: Wage Elasticity, IV Regression of Average Log Daily Hours, by Shift
Elasticity Elasticity Elasticity Elasticity

Model Controls Driver F.E’s All Shifts Day Shifts Night Shifts Other Shifts

(1) No No 0.2288 0.0202 0.3484 0.2913

(0.0101) (0.0134) (0.0117) (0.0306)

(2) Yes No 0.5709 0.3683 0.6182 0.9383

(0.0100) (0.0119) (0.0132) (0.0329)

(3) Yes Yes 0.5890 0.3672 0.6344 0.8751

(0.0099) (0.0112) (0.0124) (0.0281)
Note: Each estimated elasticity is from a separate IV regression. The instrument for average hourly
earnings is the average of average hourly earnings for a non-overlapping sample of drivers on the
same day. “Elasticity” is the estimated coefficient of log average hourly earnings from a regression
of log shift duration. “Controls” include indicators for day of week (6), calendar week (51), year (4),
the period subsequent to the September 4, 2012 fare increase (1), and major holiday (1). Estimated
using sample of 5,047,343 shifts for 8,802 drivers from 2009-2013. Sample sizes are listed in table
3. Robust standard errors clustered by driver are in parentheses.

dependent variable in the estimation sample, I use a non-overlapping randomly selected

2/15 subset of the drivers to generate the instruments.27 The average of log average hourly

earnings of shifts starting on date t in the non-overlapping sample (�nW t) serves as the

instrument for the log average hourly earnings for driver i in my estimation sample for shifts

that start on date t (�nWit).
28

The IV estimates of the labor supply elasticity are contained in Table 5. The results

are striking in comparison with the OLS estimates in table 4. The estimated elasticities

are substantially positive and strongly statistically significant. Adding the control variables

raises the estimated elasticity for each sample, but controlling for driver fixed effects does not

have much effect. The estimated elasticity on the day shift is about 0.36 while the elasticity

on the night shift is about 0.62. The larger elasticity for the night shift is consistent with the

observation that drivers on a night shift are more likely than drivers on a day shift to be able

to adjust hours mid-shift in response to new information regarding earnings opportunities.

Interestingly, the elasticity is even larger on unclassified shifts. It may be that these other

shifts are less likely to be worked by lease drivers and more likely to be worked by owner-

operators who have more flexibility in selecting hours.

27 This sample contains 115,733,041 trips on 5,012,244 shifts for 8,768 drivers.

28 While I do not present the first stage results, the instrument is very strong. The first-stage t-statistic
on the instrument is generally greater than 100, and the coefficient on the instrument in the first stage is
generally close to one.
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Figure 8: Wage Elasticity of Labor Supply, IV Estimates by Experience
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