
Lecture 6: Topics in Intertemporal Labor Supply
a. the extensive margin
b. wage and earnings generating functions, partial insurance models
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The Extensive margin
A lot of the labor supply literature ignores the extensive margin – workers

who don’t work for a year are dropped. However, variation in the number
of workers is potentially important for understanding aggregate movements in
hours:

(a) some people do miss an entire year of work in downturns
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(b) the elasticity of participation w.r.t. wages can be relatively high,
even if η is small.

There is a literature in macro arguing that the extensive margin is highly
elastic, and that the extensive margin needs to be taken into consideration in
both tax policy analysis and in macro modeling (see Chetty et al for a discussion
of this literature).

Chetty et al present a meta analysis of various quasi-experimental studies
that measure the effects of either permanent changes in (after tax) wages, or
temporary changes, on employment rates. They use the former to obtain esti-
mates of compensated elasticities of participation; the latter provide estimates
of the Frisch elasticities of participation. An interesting paper is the one by
Bianchi et al (2001), on the effects of a tax holiday created in Iceland when the
country switched tax systems and everyone was untaxed for a single year (1987).
You may find it instructive to read the paper because it is almost impossible
to understand what the original authors did (or why), despite the very clear
research design.

Looking at Chetty et al’s Table 1, notice that the typical compensated elas-
ticity is around 0.25, while the typical Frish elasticity is around 0.3. These are
not much different than the elasticities people have obtained for the intensive
margin.

Manoli and Weber (2013) is a very recent attempt to look at one of the
important extensive margins : variation in the length of time people work. This
paper uses an RD design to study the effects of a benefit that is paid to workers
who retire after certain tenure milestones: see their Figure 1 at the end of the
notes. For example, if you retire with 11-14 years of tenure you get 1/3 of a year
of salary, whereas if you retire with 15-19 years you get 1/2 year of salary.Since
workers start jobs at different ages, there is a smooth distribution of people
across the tenure distribution at different ages, and Manoli and Weber find
strong evidence that some workers appear to delay retirement to get the benefits
– see their Figure 4, which shows spikes in tenure just after the milestones.

They use a variant of the bunching style estimator we discussed in Lecture
3 to relate the fraction of people who retire at the threshold point to the relative
size of the extra severance payment available for those who reach the threshold.
Specifically, they smooth the density of retirement tenures (see Figure 13), then
for each milestone they calculate

∆p

pt
=

∑11
k=0(rt+k − rSt+k)∑11

k=0 r
S
t+k

where rt+k is the fraction of retirements at month k after the milestone tenure
level t, and rSt+k is the corresponding smoothed fraction. In words, this is the
excess mass of retiremements in the year just after the milestone. They then
calculate a simple “extensive margin elasticity”:

ε =

∆p
pt

(1−τ(sev))SPt

(1−τ(earn))yt

,
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where SPt is the extra severance pay after the milestone t (e.g., 1/6 of a year of
salary for reaching 15 years), τ(sev) is the tax rate on severance pay, which is
low, and τ(earn) is the effective tax rate on an additional year of work, which
is about 80% – arising from a combination of a 30 payroll/income tax and a
50% replacement rate from the pension system. See Table 4 at the end of the
notes for the calculations. In the top panel they calculate the denominator of
the elasticity using the “rules” - these are around 0.1 to 0.3 . A problem is that
tax records show that some people get the severance even if they retire a bit
early, and others don’t seem to get it even if they pass the milesone – see Figure
8 at the end of the notes for the distributions of SP payment fractions. So in
Panel B of Table 4 they calculate the denominator by estimating the relative
gain in severance pay from exceeding the milestone – similar to the first stage
in a fuzzy RD. These elasticities are larger because the gain in realized SP is
smaller than the gain implied by the formula.

Wage and Earnings Generating Functions, Labor Supply with In-
complete Markets

As discussed in lecture 5, an important question for interpreting the reac-
tion of hours to wage changes is to what extent wage innovations are expected
to persist? Persist shocks have income effects that offset the inter-temporal
substitution effect; transitory shocks have small (igorable) income effects. This
question is closely related to a longstanding question in macro: how much of
any observed rise in labor earnings today is expected to persist into the future?
If earnings changes are purely tranistory, then a fall/rise in earnings today has
little impact of workers’ lifetime earnings and they would not be expected to
lower or raise their consumption by much, assuming they have access to “per-
fect” credit markets.

We begin in this lecture by discussing methods for estimating micro level
“wage generating functions” (WGF) and “earnings generating functions” (EFG).
These are models of the stochastic processes that generate wages and earnings
over time - typically for male earners who work every period for sure, or for
families with at least one earner who works in every period.

WGF’s
Recall that Pistaferri (2003) assumes that an appropriate model for individ-

ual wages is:

logwit = ωi + uit ,

uit = uit−1 + ζit

where the ζit’s are uncorrelated over time. This is a pure random walk model,
in which E[logwit+j | logwit] = logwit. A more general model is

logwit = ωi + xitβt + uit + eit (1)

uit = αuit−1 + ζit ,
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where eit and ζit are serially uncorrelated and uncorrelated with each other.
This model includes a fixed component ωi, a component attributable to observ-
ables xit, an AR(1) component uit, and a purely transitory component eit. We
will discuss how to estimate the parameters of this model using simple method
of moments.

A standard method is to first regress logwit on xit, and treat the residuals
rit as estimates of the combined error component ωi + uit + eit . Then we form
the covariance matrix C of the residuals and fit a model to the vector of elements
of C. Let

σ2
ω = var[ωi]

σ2
u0 = var[ui0],

vt = var[ζit]

Notice that:we can write

rit = ωi + αtui0 + αt−1ζi1 + ...+ αtζit−1 + ζit + eit

which implies that

var[ri1] = σ2
ω + α2σ2

u0 + v1 + var[ei1],

var[rit] = σ2
ω + α2tσ2

u0 + vt + α2vt−1 + ...+ α2(t−1)v1 + var[eit],

cov[rit, ris] = σ2
ω + αs+tσ2

u0 + αt−svs + αt−s+2vs−1 + ...+ αs+t−2v1, (s < t)

The term σ2
u0 represents an initial conditions effect: it is the effect of the dis-

persion in the pre-sample value of uit, which gradually fades out if α < 1. It
is a matter of algebra to show that if var[eit] is constant, and all the v′ts are
constant (i.e., vt = v), and if σ2

u0 = v/(1−α2), (its steady state value) then the
variances of rit are all constant. If var[eit] and all the v′ts are constant but
σ2
u0 < v/(1− α2), the variances of rit rise over time.

As written, the model in equation (1) assumes that the permanent compo-
nent of wage heterogeneity (ωi) contributes a fixed amount (σ2

ω) to the variance
of wages in all periods, and to the covariances at all leads/lags. If there is skill
biased technical change, we might expect that differences in wages between peo-
ple with different levels of skill will rise over time. One way to build that idea
into (1) is to assume that there are a set of loading factors ψt that vary over
time, with ψ1 = 1 for some base period:

logwit = ψt(ωi + xitβt + uit + eit) (2)

= xitβ
′
t + ψt(ωi + uit + eit)

where β′t = ψtβt. Notice that I am assuming here that all 4 components are
scaled by the same loading factor in each period. In general that need not be
true. For example, if you think that eit includes both productivity components
and measurement error, then this component may not get scaled up/down over
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time the same as the pure productivity components. Equation (2) leads to
expressions for the variances and covariances of the wage residuals that are
relatively simple but incorporate an alternative source of non-stationarity. Card
and Lemieux (AER, March 1994) used a model like (2) to evaluate the role of
rising return to skill in leading to widening wage differences between black and
white workers. Baker and Solon (2003) use a model like (2) to look at earnings
dynamics in Canada.

Several recent studies (eg Haider and Solon, 2006; Schoenberg, 2007) have
argued that the loading factor on the permanent component ωi rises with age
(rather than, or in addition to, changing over time). There are several explana-
tions for this: one explored by Schoenberg is that it takes time for the market to
figure out who is high ability. Another is that high ability people invest more in
on-the-job training in their youth, depressing their wages relative to their long
term average. The recent paper by Nilsen et al. (2012) shows data from sev-
eral different countries suggesting that there is a lifecycle pattern in the loading
factor on the permanent component of earnings.

A third class of earnings models assumes that there are person-specific
growth rates in wages or earnings (for an early version, see Ashenfelter and
Card, 1985; Guvenen 2007 is the most prominent recent paper taking this line).
For example, ignoring the x′s and the loading factors, suppose:

logwit = ωi + ρit+ uit + eit (3)

where

σ2
ρ = var[ρi]

σρω = cov[ρi, ωi]

0 = cov[ρi, uit]

0 = cov[ρi, eit]

In this setup, the random trend is allowed to be correlated with the permanent
component, but not the transitory components. This implies that:

var[ri1] = σ2
ω + σ2

ρ + 2σρω + α2σ2
u0 + v1 + var[ei1],

var[rit] = σ2
ω + t2σ2

ρ + 2tσρω + α2tσ2
u0 + vt + α2vt−1 + ...+ α2(t−1)v1 + var[eit],

cov[rit, ris] = σ2
ω + stσ2

ρ + (s+ t)σρω + αs+tσ2
u0 + αt−svs + αt−s+2vs−1 + ...+ αs+t−2v1, (s < t)

Notice that a random trend generates a very specific form of non-stationarity,
with quadratic growth rates in the variances and covariances. An interesting
feature of a random trend model is that it implies a positive correlation between
growth rates of wages for the same individual in different periods. Taking first
differences of equation (3):

∆ logwit = ρi + ∆uit + ∆eit
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Notice that if eit is an i.i.d. process, then ∆eit is an MA(1) with 1st order
autocorrelation of −1/2. If uit is a random walk, then ∆uit is serially uncorre-
lated. If uit is an AR(1) then ∆uit and ∆uis are correlated, but for t and s far
apart, cov(∆uit, ∆uis)→ 0. Thus, one way to look for the presence of a random
trend is to see whether wage changes for the same individual at long lags are
correlated. Does someone who had faster wage growth from age 25 to 30 have
faster wage growth between 40 and 45?

Estimation Methods

In general, for any specific model of the wage generating process, we can write

vecltr[C] = m = f(θ)

where θ represents the parameters in the wage process. The method of moments
idea is to find a value for θ that gives the best fit to the empirical estimates of
m. Call m̂ the estimate of m. In general an element of m̂ is some term in the
empirical covariance matrix Ĉ, say

m̂k = cov[rit, ris] =
1

N

∑
i

ritris =
1

N

∑
i

mki

(since the residuals have zero mean by construction we don’t have to deviate
from means). We can construct the sampling variance of the element m̂k by

1

N

∑
i

(mki − m̂k)2

which is just the variance of the second moment in the sample, divided by N ,
and the sampling covariance between estimates of any two elements m̂k and m̂h

by
1

N

∑
i

(mki − m̂k)(mhi − m̂h).

Under regularity conditions (basically, iid sampling and finite fourth moments),
the vector of estimates of the second moments will have a standard normal
distribution with √

N(m̂−m)→ N(0, V )

Moreover, the matrix

V̂ =
1

N

∑
i

(mi − m̂)(mi − m̂)′

is a consistent estimate of V.

For estimation, one simple choice is least squares:

min
θ

[m̂− f(θ)]′[m̂− f(θ)]
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Various GLS variants are also possible. Consider a positive definite matrix A
(of the right dimension): then we can use the objective:

min
θ

[m̂− f(θ)]′A[m̂− f(θ)]. (4)

Chamberlain (1982) presented the following theorem. Assume:
1. m̂→ f(θ0) almost surely
2. f is continuous in θ in some neighborhood Θ that contains θ0

3. f(θ) = f(θ0) for θ in Θ⇒ θ = θ0 (i.e, we have identification)
4. A→ Ψ a positive definite matrix

Then the gls estimator θ̂ based on equation (1) converges almost surely to
θ0.

If in addition:
5.
√
N(m̂− f(θ0))→ N(0, V )

6. f is 2x continuously differentiable for θ in some neighborhood of θ0, and

F = F (θ0) ≡ ∂f(θ0)

∂θ

has full rank, then √
N(θ̂ − θ0)→ N(0,∆)

where
∆ = (F ′ΨF )−1F ′ΨVΨF (F ′ΨF )−1.

It can also be shown that the optimal choice for A is one such that A → V −1,
in which case ∆ = (F ′V −1F )−1. Notice that the least squares choice A = I
leads to the var-cov:

∆ols = (F ′F )−1F ′V F (F ′F )−1

which looks just like the variance matrix you get in a regression model with
non-spherical errors when you use OLS. In applications we need to estimate F
and V : we will use F̂ = F (θ̂) and some estimate of V̂ .

A nice feature of the optimal weight matrix is that under the null, the
minimand

N [m̂− f(θ)]′V −1[m̂− f(θ)]

has an asymptotic χ2 distribution, with degrees of freedom equal to the differ-
ence between the number of moments and the number of elements of θ. This
provides a general specification test of the validity of the model m = f(θ). For
other weighting matrices there is a similar overall goodness of fit statistic:

N [m̂− f(θ)]′R−[m̂− f(θ)]

where R− is a generalized inverse of the matrix R = (I−F (F ′AF )−1F ′A)V (I−
F (F ′AF )−1F ′A). (This matrix has rank at most equal to the difference between
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the number of moments and the number of columns of F , which is the number
of elements in θ).

As a practical matter the optimal choice for the weighting matrix can lead to
substantial problems in small samples. This was not well understood at the time
of Abowd-Card, but was pointed out in the paper by Altonji and Segel (1996).
It is generally agreed that when the moments of interest are all (roughly) scaled
the same (as is true when we consider covariances of log wage residuals) the
least squares objective is sensible.

EGF’s
Abowd and Card present EGF’s for three samples. They show that the first

difference of log earnings has a covariance structure that has mainly 0’s after
more than 2 lags. For example, here is a fragment of the var-cov of changes in
(residualized) log annual earnings for continuously employed men in the PSID:

Dy69 Dy70 Dy71 Dy72 Dy73 Dy74

Dy70 0.161
Dy71 −0.036 0.158
Dy72 −0.007 −0.064 0.170
Dy73 0.000 −0.002 −0.062 0.134
Dy74 0.003 0.000 −0.007 −0.036 0.129

Notice that:
(a) the variances of the changes is nonstationary
(b) cov[Dyt, Dyt−1] is negative and about 30% as large as the variance (i.e

the first order correlation is about -0.3);
(c) cov[Dyt, Dyt−2] = cov[Dyt, Dyt−3] = cov[Dyt, Dyt−4] ≈ 0
On this basis, a simple EGF that one could posit is:

log yit = αi + zit + uit

zit = zit−1 + ξit

where {ξit} are serially uncorrelated, but with different variances over time, and
{uit} are also serially uncorrelated with potentially time-varying variances. One
interpretation of the u′s is as measurement errors. Under this “random walk
plus noise” assumption:

Dyit = log yit − log yit = ξit + uit − uit−1

If the u’s are stationary this model implies that

var[Dyit] = var[ξit] + 2σ2
u

cov[Dyit, Dyit−1] = −σ2
u

cov[Dyit, Dyit−j ] = 0, j > 1

Blundell, Pistaferri and Preston partial insurance model

The idea in this paper is to combine data on earnings and consumption and
use it to estimate “semi-structural” parameters showing the responsiveness of
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consumption to the permanent and transitory components of earnings. The
model is fit to data from the PSID on continuously married families over the
period from 1980 to 1992. A problem to begin is that the PSID only has
consumption data on food spending. So BPP use data from the CEX to estimate
a set of models of the form:

log(food− spendingit) = xitδ + βlog(cit) + eit

where cit is total non-durable spending. The estimate a model that allows β
to vary by year, by education of the household head, and the number of kids
(though none of the interactions are large or significant). The main estimate

is β̂ = 0.85 with std. error. of 0.15 (which is super precise). They then
“invert” the model and apply it to the PSID to get imputed total non-durable
consumption of each family in each year. Thereafter c refers to imputed log of
total consumption, which is (essentially) 1.17× log(food− spending).

The next step of the paper is to specify an EGF. They assume:

log yit = Pit + vit

Pit = Pit−1 + ζit

vit = εit + θεit−1

which implies that:

∆log yit = ζit + εit + (θ − 1)εit−1 − θεit−2

Evidence on the goodness of fit of this class of models is shown in their Table
3 (see end of notes). This looks a lot like the A-C EGF for males.

A third step is to specify how consumption is related to earnings. They
assume:

∆cit = φζit + ψεit + ξit

They actually present the model as if φ and ψ vary across consumers (and over
time for consumers), but for the main analysis these are treated as constant.
This is a “semi-structural” equation that nests some interesting cases.

a) If people simply adjust consumption to income then φ = ψ = 1
b) If people can borrow and lend freely, but don’t knowζit until it happens,

then φwill be large but less than 1 (they argue that simulations suggest φ = 0.8)
whereas ψ should be pretty small.

Notice that with the EGF and the consumption model we can derive the
covariance structure of earnings and consumption changes:

cov(∆log yit,∆log yis) = var[ζit] + var[∆vit] s = t

= (θ − 1)var[εit−1] + θ(1− θ)var[εit−2] s = t− 1

= −θvar[εit−2] s = t− 2

= 0 s < t− 2

cov(∆log yit,∆cit) = φvar[ζit] + ψvar[εit]

cov(∆log yit+1,∆cit) = ψ(θ − 1)var[εit]

cov(∆log yit−1,∆cit) = 0
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Note that if θ 6= 1 than ψ is identified from cov(∆log yit+1,∆cit).
In their estimation, BPP allow a serially uncorrelated but non-stationary

measurement error in consumption. Their table 6 reports estimates of the main
parameters for their model the whole sample and 4 subgroups (with and without
college; born in the 1930s vs. 1940s). Their key estimates for the whole sample
are:

θ = 0.113 (0.025)

φ = 0.642 (0.095)

ψ = 0.053 (0.044)

The main heterogeneity is in φ.They estimate φ = 0.94 (0.18) for families headed
by a male with less than college education, and φ = 0.42 (0.09) for families
headed by a male with some college.
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Study Elasticity
Standard 

Error Population and Variation

A. Steady State (Hicksian) Elasticities

1. Juhn, Murphy, and Topel (1991) 0.13 0.02 Men, skill-specific trends, 1971-1990
2. Eissa and Liebman (1996) 0.30 0.10 Single Mothers, U.S. 1984-1990
3. Graversen (1998) 0.24 0.04 Women, Denmark 1986 tax reform
4. Meyer and Rosenbaum (2001) 0.43 0.05 Single Women, U.S. Welfare Reforms 1985-1997
5. Devereux (2004) 0.17 0.17 Married Women, U.S. wage trends 1980-1990
6. Eissa and Hoynes (2004) 0.15 0.07 Low-Income Married Men & Women, U.S. EITC expansions 1984-1996 
7. Liebman and Saez (2006) 0.15 0.30 Women Married to High Income Men, U.S. tax reforms 1991-97
8. Meghir and Phillips (2010) 0.40 0.08 Low-Education Men, U.K. wage trends, 1994-2004 
9. Blundell, Bozio, and Laroque (2011) 0.30 n/a Prime-age Men and Women, U.K., tax reforms 1978-2007
     Unweighted Mean 0.25

B. Intertemporal Substitution (Frisch) Elasticities
10. Carrington (1996) 0.43 0.08 Full Population of Alaska, Trans-Alaska Pipline, 1968-83
11. Gruber and Wise (1999) 0.23 0.07 Men, Age 59, variation in social security replacement rates
12. Bianchi, Gudmunndsson, and Zoega (2001) 0.42 0.07 Iceland 1987 zero tax year
13. Card and Hyslop (2005) 0.38 0.03 Single Mothers, Canadian Self Sufficiency Project
14. Brown (2009) 0.18 0.01 Teachers Near Retirement, California Pension System Cutoffs
15. Manoli and Weber (2011) 0.25 0.01 Workers Aged 55-70, Austria severance pay discontinuities

     Unweighted Mean 0.32

TABLE 1

Notes: This table reports elasticities of employment rates with respect to wages, defined as the log change in employment rates divided by the log change in 
net-of-tax wages.  Where possible, we report elasticities from the authors' preferred specification.  When estimates are available for multiple populations or 
for multiple specifications without a stated preference among them, we report an unweighted mean of the relevant elasticities.  See Appendix B for details on 
sources of estimates.

Extensive Margin Elasticity Estimates from Quasi-Experimental Studies
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Fig. 1. Payment Amounts based on Tenure at Retirement 

Notes: The employer-provided severance payments are made to private sector employees who have accumulated sufficient 
years of tenure by the time of their retirement. Tenure is defined as uninterrupted employment time with a given employer 
and retirement is based on claiming a government-provided pension. The payments must be made within 4 weeks of 
claiming a pension according to the following schedule.  

Fig. 2. Exits from Labor Force into Retirement 

Notes: The survival functions are computed at a monthly frequency using birthdates and last observed job ending dates. The solid 
red line is the survival function for women; the Early Retirement Age and Normal Retirement Age for women are respectively 55 
and 60. The dashed blue line is the survival curve for men; the Early Retirement Age and Normal Retirement Age for men are 
respectively 60 and 65. Prior to age 60, men can retire through disability pensions.  

Men 

Women 



Fig. 4. Controlling for Covariates 

Notes: We regress a quarterly retirement indicator on quarterly tenure dummies and controls for age, gender, calendar 
years, citizenship, blue collar job status, industry, region, current calendar quarter, job starting month, earnings histories, 
firm size, health and years of experience. The black circles are the estimated coefficients on the tenure dummies. The blue 
x’s above and below each circle represent +/- 2 standard errors around each point estimate.  



Fig. 13. Estimating the Changes in Retirements 

Notes: This figure combines plots for the observed retirement frequencies (black squares), the seasonally 
adjusted retirement frequencies (blue triangles) and the counterfactual retirement frequencies (red circles).  



10 Year Threshold 15 Year Threshold 20 Year Threshold 25 Year Threshold Average
N=21,729 N=19,724 N=15,588 N=18,461

Change in Retirement Probabilities   0.1414   0.2424   0.3777   0.2123   0.2434
(0.0224) (0.0273) (0.0330) (0.0251) (0.0146)

 Sev Pay Fraction   0.3333   0.1667   0.2500   0.2500   0.2500
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Change in Net-of-Tax Rate   1.5667   0.7833   1.1750   1.1750   1.1750
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Elasticity   0.0902   0.3094   0.3214   0.1807   0.2254
(0.0143) (0.0349) (0.0281) (0.0214) (0.0138)

10 Year Threshold 15 Year Threshold 20 Year Threshold 25 Year Threshold Average
N=21,729 N=19,724 N=15,588 N=18,461

Change in Retirement Probabilities   0.1414   0.2424   0.3777   0.2123   0.2434
(0.0233) (0.0277) (0.0350) (0.0251) (0.0157)

 Sev Pay Fraction   0.0620   0.1056   0.1202   0.0514   0.0848
(0.0046) (0.0058) (0.0049) (0.0070) (0.0028)

Change in Net-of-Tax Rate   0.2916   0.4963   0.5651   0.2415   0.3986
(0.0215) (0.0275) (0.0229) (0.0331) (0.0131)

Elasticity   0.4848   0.4883   0.6684   0.8790   0.6301
(0.0892) (0.0622) (0.0683) (0.1668) (0.0559)

Table 4: Estimation Results

Notes: Numbers in parentheses are bootstrapped standard errors based on 1000 replications. For each tenure threshold, estimation results are 
based on the sample of observations that have a binding sev pay schedule. Table 2 provides the exact sample definitions. The Change in the Net-of-



Notes: This figure presents the distribution of the severance pay fraction at a given level of tenure at retirement. The severance pay 
fraction is computed using data from income tax records. Specifically, the fraction is computed as the severance pay in the year of 
retirement divided by average income in the 3 years prior to retirement. Years of tenure at retirement are computed using job start and 
exit dates from social security records. The vertical red lines in each plot indicate the legislated severance pay fraction at retirement 
based on the given level of tenure at retirement.   

Fig. 8. Severance Pay Fractions at Different Tenure Levels 
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the degree of insurance to these shocks for the entire sample and for different subgroups of the 
population.

A. The Autocovariance of Consumption and Income

The impact of the deterministic effects Zit on log income and (imputed) log consumption is 
removed by separate regressions of these variables on year and year-of-birth dummies, and on 
a set of observable family characteristics (dummies for education, race, family size, number of 
children, region, employment status, residence in a large city, outside dependent, and presence 
of income recipients other than husband and wife). We allow for the effect of most of these 
characteristics to vary with calendar time. We then work with the residuals of these regressions, 
labelled ci, t and yi, t  .19

To pave the way to the formal analysis of partial insurance, Table 3 reports unrestricted  
minimum distance estimates of several moments of the income process for the whole sample:  
the variance of unexplained income growth, var 1Dyt 2 , the first-order autocovariances, 1cov 1Dyt11, Dyt 2 2 , and the second-order autocovariances, 1cov 1Dyt12, Dyt 2 2 . Estimates are 
reported for each year. Table 4 repeats the exercise for our new panel data measure of con-
sumption. Finally, Table 5 reports minimum 
distance estimates of contemporaneous and 
lagged consumption-income covariances. As 
noted above, some of the moments are miss-
ing because consumption data were not col-
lected in the PSID in the 1987–1988 period.

Looking at Table 3, one can notice the 
strong increase in the variance of income 
growth, rising by more than 30 percent by 
1985. Also notice the blip in the final year 
(in 1992 the PSID converted the question-
naire to electronic form and imputations of 
income were done by machine). The absolute 
value of the first-order autocovariance also 
increases until the mid-1980s and then is 
stable or even declines. Second- and higher-
order autocovariances (which, from equa-
tion (7), are informative about the presence 
of serial correlation in the transitory income 
component) are small and only in few cases 
statistically significant. At least at face value, 
this evidence seems to tally quite well with 
a canonical MA(1) process in growth, as 
implied by an income process given by the 
sum of a martingale permanent component 

19 To the extent that these regressions remove changes that are unexpected by the individuals, we might expect this 
to change the relative degree of persistence in the remaining shocks, but not the insurance parameters. For example, 
by removing the effect of education-time on income and consumption, we are also removing the increase in inequality 
due to, say, changing education premiums (Attanasio and Davis 1996). If we omit the education variables from our first 
stage, we find that it makes only a small difference to the estimated insurance parameters (for example, the estimate of 
f in Table 6 below is 0.71 instead of 0.64). The same qualitative comment applies to the other variables whose effect 
is removed in the first stage.

Table 3—The Autocovariance Matrix  
of Income Growth

Year var 1Dyt 2 cov 1Dyt11, Dyt 2 cov 1Dyt12, Dyt 2
1980 0.0832 20.0196 20.0018
 (0.0089) (0.0035) (0.0032)
1981 0.0717 20.0220 20.0074
 (0.0075) (0.0034) (0.0037)
1982 0.0718 20.0226 20.0081
 (0.0051) (0.0035) (0.0026)
1983 0.0783 20.0209 20.0094
 (0.0066) (0.0034) (0.0042)
1984 0.0805 20.0288 20.0034
 (0.0055) (0.0036) (0.0032)
1985 0.1090 20.0379 20.0019
 (0.0180) (0.0074) (0.0038)
1986 0.1023 20.0354 20.0115
 (0.0077) (0.0054) (0.0038)
1987 0.1116 20.0375 0.0016
 (0.0097) (0.0051) (0.0046)
1988 0.0925 20.0313 20.0021
 (0.0080) (0.0042) (0.0032)
1989 0.0883 20.0280 20.0035
 (0.0067) (0.0059) (0.0034)
1990 0.0924 20.0296 20.0067
 (0.0095) (0.0049) (0.0050)
1991 0.0818 20.0299 NA
 (0.0059) (0.0040) 
1992 0.1177 NA NA
 (0.0079)  
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and a serially uncorrelated transitory compo-
nent. Since evidence on second-order autoco-
variances is mixed, however, in estimation we 
allow for MA(1) serial correlation in the transi-
tory component 1vi, t 5 ei, t 1 uei, t212 .20

While income moments are informative 
about shifts in the income distribution (and 
on the temporary or persistent nature of such 
shifts), they cannot be used to make conclusive 
inference about shifts in the consumption dis-
tribution. For this purpose, one needs to com-
plement the analysis of income moments with 
that of consumption moments and of the joint 
income-consumption moments. This is done in 
Tables 4 and 5. Table 4 shows that the variance 
of imputed consumption growth also increases 
quite strongly in the early 1980s, peaks in 
1985, and then it is essentially flat afterward. 
Note the high value of the level of the vari-
ance, which is clearly the result of our imputa-
tion procedure. The variance of consumption 
growth captures in fact the genuine association 
with shocks to income, but also the contribu-
tion of slope heterogeneity and measurement 
error.21 The absolute value of the first-order 

autocovariance of consumption growth should be a good estimate of the variance of the imputa-
tion error. This is in fact quite high. Second-order and higher consumption growth autocovari-
ances are mostly statistically insignificant and economically small.

Table 5 examines the association, at various lags, of unexplained income and consumption 
growth. The contemporaneous covariance should be informative about the effect of income 
shocks on consumption growth if measurement errors in consumption are orthogonal to mea-
surement errors in income. This covariance increases in the early 1980s and then is flat or even 
declining afterward.

From (9), the covariance between current consumption growth and one-period-ahead income 
growth cov 1Dct, Dyt112 should reflect the extent of insurance with respect to transitory shocks 
(i.e., cov 1Dct, Dyt112 5 0 if there is full insurance of transitory shocks). We note that in the pure 
self-insurance case with infinite horizon and MA(1) transitory component, the impact of transi-
tory shocks on consumption growth is given by the annuity value r 11 1 r 2 u 2/ 11 1 r 22. With a 
small interest rate, this will be indistinguishable from zero, at least statistically. In fact, this cova-
riance is hardly statistically significant and economically close to zero. At the foot of Table 5 we 
present the p-values for the joint significance tests of the autocovariances E 1Dct, Dyt1j 2 1  j $ 12 . 
These p-values also detect advance information. If future income shocks were known to the 
consumer in earlier periods, then consumption should adjust before the observed shock occurs. 
This should show up in significant autocovariances between changes in consumption and future 

20 We also estimated the autocovariances of income growth at lags greater than two and find that none of them is 
statistically significant. These results are available from the authors upon request.

21 To a first approximation, the variance of consumption growth that is not contaminated by error can be obtained by 
subtracting twice the (absolute value of) first-order autocovariance cov 1Dct11, Dct 2 from the variance var 1Dct 2 .

Table 4—The Autocovariance Matrix of 
Consumption Growth

Year var 1Dct 2 cov 1Dct11, Dct 2 cov 1Dct12, Dct 2
1980 0.1275 20.0526 0.0022
 (0.0097) (0.0076) (0.0056)
1981 0.1197 20.0573 0.0025
 (0.0116) (0.0084) (0.0043)
1982 0.1322 20.0641 0.0006
 (0.0110) (0.0087) (0.0060)
1983 0.1532 20.0691 20.0056
 (0.0159) (0.0100) (0.0067)
1984 0.1869 20.1003 20.0131
 (0.0173) (0.0163) (0.0089)
1985 0.2019 20.0872 NA
 (0.0244) (0.0194) 
1986 0.1628 NA NA
 (0.0184)  
1987 NA NA NA
   
1988 NA NA NA
   
1989 NA NA NA
   
1990 0.1751 20.0602 20.0057
 (0.0221) (0.0062) (0.0067)
1991 0.1646 20.0696 NA
 (0.0142) (0.0100) 
1992 0.1467 NA NA
 (0.0130)  
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incomes. We find no statistical evidence, how-
ever, that this is the case.

The covariance between current con-
sumption growth and past income growth 
cov 1Dct11, Dyt 2 plays no role in the PIH model 
with perfect capital markets, but may be 
important in alternative models where liquidity 
constraints are present (a standard excess sen-
sitivity argument; see Marjorie Flavin 1981). 
The estimates of this covariance in Table 5 are 
also close to zero.

To sum up, the evidence suggests that a 
simple permanent-transitory framework for 
income shocks with time-varying second-
order moments in these shocks provides a good 
representation of the income process for fami-
lies in the PSID over this period. Overall we 
find only weak evidence that transitory shocks 
affect consumption growth. In the sensitivity 
results reported below, however, we find that 
there is evidence of significant responsiveness 
to transitory shocks for low-wealth families 
and for the low-income poverty sample of the 
PSID.

B. Insurance

Our focus here will be on the variances of 
the permanent and the transitory shock, sz

2 and 
se

2, on the partial insurance coefficients for the permanent shock (f) and for the transitory shock 
(c), and the way these parameters vary over time, as well as among different groups in the popu-
lation. Our estimates are based on a generalization of moments (7)–(9). In particular, to account 
for our imputation procedure, we allow consumption to be measured with error, and we allow 
the variance of the measurement error in consumption to vary with time. This is to capture the 
fact that the imputation error is scaled by a time-varying budget elasticity which induces non-
stationarity. We also consider an MA(1) process for the transitory error component of income 1vi, a, t 5 ei, t 1 uei, t212 , and estimate the MA(1) parameter u. Finally, we allow for i.i.d. unobserved 
heterogeneity in the individual consumption gradient, and estimate its variance (sj

2 ).
We present the results of three specifications: one for the whole sample (the “baseline” speci-

fication), one where the parameters are estimated separately by education (college versus no 
college), and one where parameters are estimated separately by cohort (born 1930s versus born 
1940s).22 We also allow for some time nonstationarity. In particular, in all specifications we let 
the variances of the permanent and the transitory shock, sz

2 and se
2 , respectively, vary with calen-

dar time. As for the partial insurance coefficients for the permanent shock (f) and for the transi-
tory shock (c), we assume that they take on two different values, before and after 1985. This is 
consistent with the evidence in Figure 1, which divides the sample period into a period of rapid 

22 Results for the younger cohort (born in the 1950s) and the older cohort (born in the 1920s) are less reliable because 
these cohorts are not observed for the whole sample period. We thus omit them.

Table 5—The Consumption-Income Growth 
Covariance Matrix

Year cov 1Dyt, Dct 2 cov 1Dyt11, Dct 2 cov 1Dyt, Dct112
1980 0.0040 0.0013 0.0053
 (0.0041) (0.0039) (0.0037)
1981 0.0116 20.0056 20.0043
 (0.0036) (0.0032) (0.0036)
1982 0.0165 20.0064 20.0006
 (0.0036) (0.0031) (0.0039)
1983 0.0215 20.0085 20.0075
 (0.0045) (0.0049) (0.0043)
1984 0.0230 20.0030 20.0119
 (0.0052) (0.0043) (0.0050)
1985 0.0197 20.0035 20.0035
 (0.0068) (0.0047) (0.0065)
1986 0.0179 20.0015 NA
 (0.0048) (0.0052) 
1987 NA NA NA
   
1988 NA NA NA
   
1989 NA NA 0.0030
   (0.0040)
1990 0.0077 0.0045 20.0016
 (0.0045) (0.0065) (0.0042)
1991 0.0112 0.0011 20.0071
 (0.0044) (0.0049) (0.0042)
1992 0.0082 NA NA
 (0.0048)  
Test cov 1Dyt11, Dct 2 5 0 for all t  p-value 25%
Test cov 1Dyt12, Dct 2 5 0 for all t  p-value 27%
Test cov 1Dyt13, Dct 2 5 0 for all t  p-value 74%
Test cov 1Dyt14, Dct 2 5 0 for all t  p-value 68%
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Table 6—Minimum-Distance Partial Insurance and Variance Estimates

  Whole sample No college College Born 1940s Born 1930s

       sz
2 1979–81 0.0102  0.0067 0.0099 0.0074 0.00571Variance perm. shock2  10.00352 10.00372 10.00532 10.00352 10.00722

 1982 0.0207 0.0154 0.0252 0.0210 0.0166  10.00412 10.00532 10.00602 10.00612 10.00752
 1983 0.0301 0.0317 0.0233 0.0184 0.0246  10.00572 10.00752 10.00892 10.00582 10.00862
 1984 0.0274 0.0333 0.0176 0.0219 0.0224  10.00492 10.00742 10.00602 10.00772 10.01022
 1985 0.0293 0.0287 0.0204 0.0187 0.0333  10.00962 10.00732 10.01512 10.00662 10.02252
 1986 0.0222 0.0173 0.0312 0.0222 0.0111  10.00602 10.00682 10.01012 10.00772 10.01142
 1987 0.0289 0.0202 0.0354 0.0307 0.0079  10.00632 10.00732 10.00982 10.00802 10.01112
 1988 0.0157 0.0117 0.0183 0.0155 0.0007  10.00692 10.00792 10.01102 10.00762 10.00992
 1989 0.0185 0.0107 0.0274 0.0176 0.0217  10.00592 10.01012 10.00612 10.00822 10.01822
 1990–92 0.0134 0.0092 0.0216 0.0081 0.0063  10.00422 10.00452 10.00652 10.00592 10.00912
       se

2 1979 0.0415 0.0465 0.0302 0.0314 0.03421Variance trans. shock 2  10.00592 10.00962 10.00562 10.00542 10.00702
 1980 0.0318 0.0330 0.0284 0.0269 0.0306  10.00392 10.00532 10.00592 10.00562 10.00722
 1981 0.0372 0.0364 0.0253 0.0319 0.0267  10.00352 10.00532 10.00462 10.00582 10.00642
 1982 0.0286 0.0376 0.0214 0.0264 0.0342  10.00392 10.00632 10.00422 10.00492 10.00782
 1983 0.0286 0.0372 0.0186 0.0190 0.0284  10.00372 10.00632 10.00372 10.00452 10.00772
 1984 0.0351 0.0405 0.0305 0.0223 0.0453  10.00392 10.00592 10.00512 10.00472 10.01002
 1985 0.0380 0.0356 0.0496 0.0280 0.0504  10.00752 10.00562 10.01302 10.00622 10.01152
 1986 0.0544 0.0474 0.0452 0.0261 0.0672  10.00582 10.00762 10.00852 10.00602 10.01532
 1987 0.0480 0.0520 0.0421 0.0440 0.0499  10.00542 10.00822 10.00712 10.00932 10.00952
 1988 0.0383 0.0472 0.0343 0.0386 0.0543  10.00472 10.00742 10.00602 10.00682 10.01482
 1989 0.0369 0.0539 0.0219 0.0360 0.0493  10.00682 10.01262 10.00512 10.00702 10.01322
 1990–92 0.0506 0.0536 0.0345 0.0429 0.0753  10.00402 10.00622 10.00492 10.00602 10.01272
        u  0.1132 0.1268 0.1086 0.1324 0.17061Serial correl. trans. shock 2  10.02472 10.03182 10.03412 10.04422 10.04702
       sj

2  0.0105 0.0074 0.0141 0.0122 0.00011Variance unobs. slope heterog.2  10.00412 10.00792 10.00402 10.00642 10.00902
        f  0.6423 0.9439 0.4194 0.7928 0.68891Partial insurance perm. shock2  10.09452 10.17832 10.09242 10.18482 10.23932
        c  0.0533 0.0768 0.0273 0.0675 20.03811Partial insurance trans. shock 2  10.04352 10.06022 10.05502 10.07052 10.07372
p-value test of equal f  23% 99%  8% 81% 18%
p-value test of equal c  75% 33% 29% 76%  4%

Notes: This table reports DWMD results of the parameters of interest. We also estimate time-varying variances of 
measurement error in consumption (results not reported for brevity). See the main text for details. Standard errors in 
parentheses.




