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Labor Supply        D. Card, Sept 2008 

1. Preliminary issues (compensated, Frisch, Marshallian responses) 

2. non-participation in a single-agent setting 

3. models with multiple solutions – the “old” view 

4. Ransom’s model of family labor supply 

5. models with multiple solutions – the “new” view 

1. Preliminary issues 

Consider the canonical consumer choice problem with an interior maximum: 

Max U(x)  s.t.  p·x = y 

f.o.c.  DU(x) – λp = 0 

 p·x – y = 0 

s.o.c.   v′ D2U(x) v ≤ 0   for all v≠0  s.t. p·v = 0.   

Solution functions: 

 x = x(p, y) 

 λ = λ(p, y) 

 Differentiate the f.o.c., letting S = D2U(x) denote the matrix of 2nd partials: 

 

    S     p          ∂x/∂p′      ∂x/′∂y                λI      0   

      p′    0        −∂λ/∂p′     −∂λ/∂y             −x′      1  

 

Using the partitioned inverse formula:  ∂λ/∂y =  [ p′S-1 p ]-1   < 0  if U is concave.  For 

simple static choice problems we wouldn’t put restrictions on the concavity of U (only 

quasi-concavity).  For intertemporal problems, or problems with uncertainty, we do.  

Note that ∂λ/∂y is related to the degree of risk aversion, and also to the intertemporal 

substitution elasticity of consumption demand (Robert Hall, JPE, 1988)  



 

2 
 

Further application of partitioned inverse formula yields:   

∂x/∂y  =   ∂λ/∂y  ·  S-1 p 

∂x/∂p′  =  λ S-1  −  λ [∂λ/∂y]-1 [ ∂x/∂y  ·  ∂x′/∂y   ]      −   ∂x/∂y · x′   

 

The third term of the second line is what we conventionally call the “income effect”.  The 

usual “substitution effect” is represented by the first two terms.  Specifically, define the 

Hicksian compensated demand function  xc(p,u) ≡  x(p, e(p,u) ),  where e(p,u) is the 

expenditure function.  From the Slutsky equation:  

(S) ∂xc(p, u)/∂p′  =  ∂x(p, y)/∂p′  +   ∂x/∂y · x′   , 

and hence: 

 ∂xc(p, u)/∂p′  =   λ S-1  −  λ [∂λ/∂y]-1 [ ∂x/∂y  ·  ∂x′/∂y   ]    

 

Looking back at the f.o.c, define the Frisch demands  xF(p, λ) as the solution functions: 

(F) DU( xF(p, λ) ) =  λ p. 

This is the set of demands the consumer would have, facing prices p and a given 

marginal utility of income λ.   In simple intertemporal choice problems U = ∑t  βt v(xt), 

where xt is consumption in period t, with discounted price pt, and the Frisch demands 

satisfy 

 βt  v′( xt
F(p, λ) )  = λ pt  , 

which is the traditional first order condition for optimal intertemporal consumption with a 

fixed lifetime budge constraint.  Differentiating (F) w.r.t. p′ and using  S=D2U(x), 

 S  ∂xF(p, λ)/∂p′ =  λ , 

═>      ∂xF(p, λ)/∂p′  =  λ S-1  ,   and  thus we can write 

 ∂xc(p, u)/∂p′  =   ∂xF(p, λ)/∂p′   −  λ [∂λ/∂y]-1 [ ∂x/∂y  ·  ∂x′/∂y   ] 

For the i,j element we have 

(*) ∂xc
i (p, u)/∂pj   =  ∂xF

i (p, λ)/∂pj   −  λ [∂λ/∂y]-1   ∂xi /∂y  ·  ∂xj /∂y  . 
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Note that if D2U is diagonal (all second cross-partials=0), as would be true in the case 

where U = ∑t  βt v(xt), then S-1 is diagonal, so for i≠j the compensated derivatives are 

proportional to the income effects.  Also, (*) implies a nice link between the 

compensated own elasticity, the Frish elasticity, and a combination of income effects 

and the elasticity of λ w.r.t. (basically the degree of risk aversion). 

 

Applications to intertemporal labor supply (or, how do we know what we’re estimating?) 

Consider an application of the previous framework to an intertemporal planning 

problem, when preferences are additively separable across periods.   Let   ct denote 

consumption in period t, ht denote hours of work in period t, wt = wage (measured as of 

period t).  Assuming a fixed real interest rate r, the choice problem is 

Max  ∑t  βt v(ct, ht)     s.t. 

 ∑t  (1+r)-t [  ct  − wtht) ]    =   A0  + ∑t  (1+r)-t  yt     where yt = nonlabor income. 

f.o.c.   

 βt vc(ct, ht)  −  λ (1+r)-t   =    0 

 βt vh(ct, ℓt)  + wt λ (1+r)-t  =   0 

Note we get a “within-period tangency” condition 

−vh(ct, ht) /  vc(ct, ht)  =  wt    

and an intertemporal allocation condition on the m.u. of consumption: 

 vc(ct, ht)   =   λ   βt (1+r)-t    =>    ct  =  wtht  −  st   for some optimal “savings”. 

Now, consider the same consumer who has no access to credit markets.  This 

 consumer’s optimum would be characterized by: 

 −vh(ct, ht) /  vc(ct, ht)  =  wt   

  ct  =  wtht  +  yt . 
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The difference is in what level of income is “brought in” or “taken out” of the period.  In 

the perfect foresight intertemporal case the consumer saves or borrows st, where st   

serves to keep the MU of consumption on the “right trajectory”. The Frisch supply 

function incorporates this optimal adjustment.  If on the other hand, st was adjusted to 

keep v(ct, ht) = v0, we’d be observing a Hicksian labor supply function.  Finally, if we 

compare labor supply choices taking  yt + st  as given, we are observing a Marshallian 

(uncompensated) within-period labor supply function. 

For more on the relation between risk aversion and the behavioral responses to labor 

supply, see R. Chetty, “A New Method for Estimating Risk Aversion”, AER, 96 (Dec. 

2006): 1821-1834. 

 

2. Non-participation – single agent setting  

For the remainder of this lecture we will focus on static labor supply models.  One 

interpretation of this approach is that we have in mind comparisons between people 

who face “permanent” differences in their wages (and non-labor income opportunities).  

Chetty (2006) has a nice 2-stage budgeting representation.  Suppose the agent’s 

problem is  

max  U(c1,  c2 ,   …. cT,  h1 , h2,  …. hT)  

   s.t.    p1 c1+ p2 c2 + ….+ pT cT   =  y + w1 h1+ w2 h2 + ….+ wT hT  

       = y + w (θ1 h1+ θ2 h2 + ….+ θT hT) 

Here, pt is the present value of the price of consumption in period t (e.g. pt=(1+r)−t) and 

wt = w θt is the present value of wages in period t (so w is a ‘scale factor’ that blows up 

wages at all ages, and θt represents the combination of the discount factor and any 

transitory deviation in wages in period t).  The problem can be recast as  
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max u(c,h)   s.t.        c  =  y  +  wh 

where  u(c,h)   ≡  max U(c1,  c2 ,   …. cT,  h1 , h2,  …. hT)   

   s.t.  c = p1 c1+ p2 c2 + ….+ pT cT 

    h  =  θ1 h1+ θ2 h2 + ….+ θT hT 

Here c and h are “lifecycle aggregates” (we can rescale them to represent annualized 

consumption and hours of work).  If the main variation of interest is in y and w, and NOT 

intertemporal variation in θt, then it makes sense to think of the analysis as a static 

model of choice over the lifecycle aggregates.  Note (using the envelop property of the 

value function) that the marginal utility of wealth in the second stage problem is the 

multiplier on the lifecycle consumption allocation constraint (i.e.   

uc(c,h) = λ  =  ∂U/∂ct /pt   for all t . 

 

Ignoring non-participation, the standard way to proceed in static labor supply studies is 

to adopt a convenient parametric functional form, e.g.  my personal favorite: 

(1) hi  =  Xi β +  γ log wi  +  θ yi  +  εi . 

In a stunning feat of reverse engineering (integration) Stern (1985) showed there is a 

utility function v(c, h; τ) that generates a labor supply function h = τ + γ log w +  θ y .  Let 

τi = Xi β+εi be the combination of observed and unobserved heterogeneity.  Assuming a 

distribution for εi, we have derived a d.g.p. for the data hi, conditional on (Xi, log wi, yi).   

We probably don’t want to assume that log wi  is orthogonal to  εi , so we might have to 

augment the model with  

(2) log wi  =  Zi π  +  ηi  . 
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Combining this with (1), we have 

(3) hi  =  Xi β +  Zi γπ  + θ yi  +  ζi,   where   ζi = εi + γ ηi . 

Assuming normal errors gives a likelihood for (hi, log wi ) conditional on (Xi, Zi, yi).  

If there is a significant fraction of non-workers in the sample of interest, the “cheap fix” is 

to impute a wage (using a selection-corrected regression model fit to the observed 

wage data to simulate wages for those who don’t work, possibly with multiple draws for 

the error term). and then convert (1) into a Tobit model.  A more attractive idea 

(Heckman, 1974) is to define i’s reservation wage ri such that: 

 0  =  Xi β +  γ log ri  +  θ yi  +  εi ,   i.e.  log ri = −Xi β/γ −  θ/γ yi − 1/γ εi . 

When log wi  ≤ log ri the person doesn’t work (and we observe hi=0).  When  log wi  > 

log ri we observe wages and positive hours.  The likelihood consists of two parts: 

 - a probability for nonworking = p(ζi ≤ −Xi β−Zi γπ −θ yi ) 

 - a density for  ( ζi = hi −Xi β−Zi γπ−θ yi ;  ηi = log wi −Zi π)  

      conditional on ζi >−Xi β−Zi γπ −θ yi . 

It’s a good exercise to work out the correct likelihood. 

 

3. Models with multiple solutions – the “old” view 

In the next section we will be discussing Ransom’s family labor supply model.  A key 

preliminary issue is the possibility of multiple equilibria that arises in multi-variate 

discrete choice settings.  The simplest model that illustrates the issues is a bivariate 

probit.  Define y1
* and y2

* as latent random variables and y1 and y2 as the associated 
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indicator functions: y1 = 1(y1
* ≥ 0), y2 = 1(y2

* ≥ 0).   Think of y1 and y2 as dummies for 

whether family members 1 and 2 work.  The simplest possible model is 

 y1
* =  β1 y2  +  γ1 X1  +  v1 ;        y2

* =  β2 y1  +  γ2 X2  +  v2 . 

P(1,1) = P( v1 > −γ1X1 –β1 , v2 > −γ2X2 –β2 ) 

P(0,0) = P(v1 ≤ −γ1X1 , v2 ≤ −γ2X2 ) 

P(1,0) =  P( v1 > −γ1X1, v2 ≤ −γ2X2 –β2 ) 

P(0,1) =  P( v1 ≤ −γ1X1 –β1 , v2 ≤ −γ2X2 ) 

Draw (v1 , v2) space, partitioning the area into the regions that map to the 4 outcomes: 
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There is a problem: the dark area maps into multiple outcomes so there is not a unique 

mapping from the v’s to the y’s.  In the old (pre-2000) literature, this was called an 

“incoherency” problem.  We are familiar with this problem from simple 2x2 games, 

where under some conditions there are 2 equilibria: 1 and 2 both work, or 1 and 2 both 

do not work (if the β’s are positive).  (In other settings where the β’s are negative, there 

are also 2 equilibria: 1 works and 2 doesn’t, or vice versa). Note that the dark area 

collapses if either β1=0 or β2=0.  Until recently, it was taken for granted that in a 

bivariate probit, you had to assume 1-way feedback only (ie, β1β2=0).  This is equivalent 

to assuming one person is the Stackelberg leader – not so attractive in a family labor 

supply setting.  We return to the “modern” approach later in the lecture. 

 

A related case 

Consider a mixed 2-equation model of the form: 

 y1 = β1 y2  +  γ1X1  +  v1 

 y2
* = β2 y1  +  γ2X2  +  v2  ,   

 y2 = max (y2
* , 0)      (a Tobit-model) 

Note          

   y2
*  =  β2 (β1 y2  +  γ1X1  +  v1) +  γ2X2  +  v2 

  =  β1β2 y2  +   z,      where   z  =  γ2X2  +  β2 γ1X1 +  β2v1+  v2  . 

 

Consider the mapping from z to y2
* : 
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  Case 1:  β1β2>0.          Case 2: β1β2<0.  

If β1β2<0 there are multiple solutions for z<0 and no solution for z>0.   

 

4. Ransom’s model of family labor supply 

Ransom considers a “unitary” model of family decision-making: 

 max  U(T1−h1, T2−h2, x)    s.t.    x = w1h1 + w2h2 + y . 

Define   m1(h1, h2) =  −U1(    )  +  w1U3  ,  m2(h1, h2) =  −U2(    )  +  w2U3  . 

Two cases considered: 

 both work:    m1(h1, h2) = 0,   m2(h1, h2)  = 0    

 1 works, 2 doesn’t:   m1(h1, 0) = 0,    m2(h1, 0)  < 0   . 
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Ransom assumes U is quadratic in the 3 arguments => U1, U2, U3  are linear in the 

arguments.  Thus m1 include a constant, linear terms in h1, h2, and x, and interactions of 

w1 with h1, h2, and x.  In addition, he assumes the constant contains an additive normal 

error component ε1.  Thus 

 m1 = S1(h1 , h2 ;  w1, w2, y)  +  ε1     

for some function S1 that is linear in h1 and h2 (though the coefficients depend on w1,w2 

and y – see his equation (5a)).  Likewise  

 m2 = S2(h1 , h2 ;  w1, w2, y)  +  ε2 . 

Write S1(h1 , h2) = a10 + a11h1 + a12h2 , and S2(h1 , h2) = a20 + a21h1 + a22h2 .  In the both-

work regime we have m1 = 0  and  m2 = 0, which can be re-cast as 

 h1 =  − a10/a11 – a12/a11 h2   + − ε1/ a11  ,   

 h2 =  − a20/a22 – a21/a22 h1   + − ε2/ a22  , 

whereas in the case that 1 works and 2 doesn’t we have 

 h1 =  − a10/a11 – a12/a11 h2   + − ε1/ a11  , 

 h2
* =  − a20/a22 – a21/a22 h1   + − ε2/ a22  < 0. 

This has the same structure as we discussed above, so for a unique solution we need 

that  1 − (a12/a11)( a21/a22) > 0.   Ransom shows that this is satisfied if U is concave.  In 

his related paper in the J. Econometrics he presents a generic proof, based on a result 

due to Amemiya.   There is no “coherency” problem in a unitary decision maker model 

with well behaved preferences. 

Ransom does not try to econometrically address the problem that when 2 doesn’t work, 

w2 is unobserved – instead he uses the “cheap fix” of imputing a wage for non-workers.  

He also ignores any measurement error or endogeneity in observed wages.  In principle 

it is possible to expand his model to include 2 additional equations for wages, with a 

stochastic component that incorporates measurement error.  A serious issue, however, 
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is that the first order conditions from his specification are NOT very convenient to work 

with when observed wages include an error component.   

Conditioning on wages and nonlabor income, in the “both work” regime we know 

m1=S1+ε1=0 and m2=S2+ε2=0.  If f(ε1, ε2; Σ) is the bivariate normal density (conditional 

on cov. Σ) the likelihood is  f( −S1, −S2; Σ) ·|J|  where Jij = ∂Si/∂hj = aij (J = the Jacobian).  

In the other regime we have ε1  = −S1(h1,0) and  ε2 <  −S2(h1,0), so the likelihood is 

 φ(−S1; σ1)  · | a11 | ·  Φ[  (−S2 – ρσ2/σ1S1)  / σ2(1-ρ2)1/2  ] . 

 

Extensions 

Consider a two-person household where each person has a labor supply equation 

based on (1), and takes total non-labor income and the other’s earnings as given (non-

cooperative household decision making): 

 h1i  =    γ1 log w1i  +  θ1 [ yi + w2i h2i]   +  ε1i . 

 h2i
*  =    γ2 log w2i  +  θ2 [ yi + w2i h2i]   +  ε2i       with h2i

    =  max [  0,    h2i
* ] 

We can rewrite the first two as  

 h1i  =    γ1 log w1i  +  θ1 yi +   θ1w2i h2i  +  ε1i . 

 h2i
*  =    γ2 log w2i  + θ2 yi +   θ2w2i h2i  +  ε2i 

From the general discussion above, this system will be “coherent” if 1− θ1 θ2w2iw1i > 0.  

Note that   ∂h1/∂y  =  θ1 ,   so  w1∂h1/∂y  = w1 θ1  and likewise, w2∂h2/∂y  = w2 θ2 .  So the 

coherency condition is   w1∂h1/∂y × w2∂h2/∂y  <  1.  w1∂h1/∂y is amount that #1’s 

earnings will fall if the family gets $1 of non-labor income.  For men this is thought to be 

very small (0.05 - 0.15).  For women it may be bigger but is probably less than 1. So the 

condition is probably OK.  There could be a problem if there are minimum hours 

constraints (or fixed cost of working) so 2 has to work at least 20 hours/week, or not at 

all. 
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The Modern Approach 

A number of recent papers have considered estimation of models with non-unique 

equilibria – Imbens and Wooldridge (Chapter 9) provide an overview.  The canonical 

model in the new literature is an entry game with 2 players.  The underlying equations 

are expressions for the profits of firms 1 and 2 if the other is present or absent: 

 π1  =  a1  +  b1 d2  +  ε1 

 π2  =  a2  +  b2 d1  +  ε2 

 dj  =  1(πj > 0) 

Prob. of (0,0) = p(0,0) = P(ε1 ≤ −a1 ,  ε2 ≤ −a2 ) 

Prob. of (1,0) = p(1,0) = P(ε1 > −a1 ,  ε2 ≤ −a2 −b2) 

Prob. of (0,1) = p(0,1) = P(ε1 ≤ −a1 −b1 ,   ε2 > −a2) 

Prob. of (1,1) = p(1,1) = P(ε1 > −a1 −b1 ,   ε2 > −a2−b2 ) 

Assuming b1<0 and b2<0 the mapping from (ε1 ,ε2) space to (d1 , d2) space is:  
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These 4 areas add up to more than 1.  The problem is the dark shaded area, which 

contributes to both p(0,1) and p(1,0).  When d1 and d2 are negative, we can have a 

situation where either 1 enters and 2 does not, or 2 enters, and 1 does not.  In the 

modern literature multiple equilibria is treated as a problem of “partial identification”.   

A very closely related application to labor economics is to retirement of older couples 

(Nicole Maestas, Rand Working Paper).  In this case we might have d1 and d2 both 

positive (assuming spouses want to spend time together), which gives a slightly 

different picture. 

To proceed, note that we can get expressions for p(0,0) and p(1,1). We can only get 

expressions for the bounds on p(0,1) and p(1,0), depending on how we allocate the 

dark area: 

 p(0,0) = P(ε1 ≤ −a1 ,  ε2 ≤ −a2 ) 

 p(1,1) = P(ε1 > −a1 −b1 ,   ε2 > −a2−b2 ) 

 P(ε1 > −a1 ,  ε2 ≤ −a2 −b2) − D  ≤  p(1,0)  ≤  P(ε1 > −a1 ,  ε2 ≤ −a2 −b2) 

 P(ε1 ≤ −a1 −b1 ,   ε2 > −a2) − D  ≤  p(0,1) ≤  P(ε1 ≤ −a1 −b1 ,   ε2 > −a2) 

where  

 D =  P(  −a1 < ε1 ≤ −a1 −b1,   −a2 < ε2 ≤ −a2 −b2)    <the dark area in the graph> 

In general notation: 

 p(0,0) = π00 

 p(1,1) = π11 

 L10 ≤ p(1,0)  ≤  U10 

 L01 ≤ p(0,1)  ≤  U01 
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Consider the moment conditions formed from the data for each market (in which we 

observe the outcomes (d1, d2): 

 m1  =  π11  − d1 d2  

 m2  =  π00  − (1−d1)(1−d2) 

 m3 =  U10  − d1 (1−d2) 

 m4 = d1 (1−d2) −  L10   

 m5 =  U01  − d2 (1−d1) 

 m6 = d2 (1−d1) −  L01   

We have the restriction from the model that E[m(d1, d2) |  parms ] ≥ 0.  So we want to 

find a set of parameter estimates such that the observed mean vector of moments 

satisfies the inequality restriction.  This is a potentially solvable estimation problem (see 

WNiE, chapter 9). 

 

 


