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Abstract: An empirical likelihood estimator is proposed for models where agents in-
teract under asymmetric information. The methodology focuses on situations where some
variables that were privately known when the choices were made becomes available to the
econometrician afterwards. The main feature of the estimator is that payoffs parameters,
beliefs and the unknown distribution of these privately known variables are estimated si-
multaneously under the assumption that observed outcomes are the result of a Bayesian
Nash equilibrium. The methodology is applied to a model in which firms simultaneously
decide to stay in the industry or to leave and (if they decide to stay) they then decide if
they increase their R&D expenditure or not. Estimation results show significant strategic
R&D interaction. It also shows that this interaction is more important for small firms
than for larger ones.
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1 Introduction

In models of economic interaction with game theoretical foundations, each
agent’s payoff is affected by the choices made by other agents. If all agents’
payoffs were public information and all agents behaved rationally, each agent
would be able to predict others’ actions in a (pure strategy) Nash equilib-
rium. However, this perfect information environment may be implausible in
a number of economic settings: agents may try to deliberately conceal their
own payoffs, or it may be prohibitively costly for each agent to fully deter-
mine what other agents’ payoffs are, especially when interaction takes place
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among a relatively large number of agents.

The presence of asymmetric information implies that agents must construct
beliefs about other agents’ actions. Although these beliefs may be com-
pletely heterogeneous and arbitrary, if we assume that the observed choices
are derived from a (bayesian) Nash equilibrium, then these beliefs must “be
rational” and satisfy the conditions consistent with such an equilibrium. To
illustrate these ideas, consider the following simple example of a 2x 2 game in
which players simultaneously (i.e, before observing their opponent’s choice)
must choose between one of two actions: “Fight” or “Don’t Fight”. Without

loss of generality, assume the following payoff matrix:
Fig. 1.- A simple 2 X 2 game

PLAYER 2
Fight Don’t
PLAYER 1 Fight |t1—aq,t3—aq t1,0
Don’t 0, t 0,0

Now suppose that a; and agy are known by both players but that ¢, and ¢,
are private information, but it is common knowledge that they are both inde-

pendent random draws from the same -known by both players- distribution,
with cdf given by P(¢).

Let:
m, = Probability that player 1 will choose fight.

my = Probability that player 2 will choose fight.
E,[m3] = Player 1’s belief that player 2 will choose fight.
Es[m1] = Player 2’s belief that player 1 will choose fight.

Now let E;j[ul®"] and FEsus®] be the expected payoff from playing fight
for players 1 and 2 respectively. Then, due to the linearity of the payoff
functions, these expected payoffs are simply given by:

E1 [’U,};ight] = t1 — E1 [7'('2]0[1 and E2 [Ugight] = tg — E2 [7'('1]0&2

Because the payoffs from not fighting are normalized to zero in this game,
we have that players 1 and 2 will choose fight if and only if E;[u;®"] > 0 and
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Es[u3®"] > 0 respectively. Therefore, in a Bayesian Nash equilibrium beliefs
must satisfy:

Eq[me) =1 —P(E3[m]ar) and Es[m] =1 — P(F[ms]as) (1)

Payoff functions are of course unobservable. Suppose ¢; and t; can be ex-

pressed as functions of (Xi,e1) and (X4,e5) respectively. The following

assumptions preserve the stochastic and informational assumptions of this

simple game:

Al.— X, € R¥ and X, € R* are independent draws from the same distri-
bution with (joint) cdf given by F(z), and corresponding pdf given by
dF (z).

A2.— g1 € R and &5 € R are independent draws from the same distribution
with cdf given by G(e).

A3.— ¢, is independent from X, for p € 1,2.

Ad.— At the time the game is played, the realizations of (X1, ;) and (X3, €3)
are privately known by players 1 and 2 respectively. This is consistent
with the following situations:

A4.1.— Both players deliberately and effectively conceal the true values
of (X,,¢e,), p€ 1,2

A4.2.— Tt could be possible for player p € 1,2 to learn the realization of
his opponent’s (X _,,c_,) but it is not profitable to do so.

Ab.— Distributions (F(z), G(¢)) are known by both players.

Without loss of generality, suppose we parameterize ¢; and ¢5 as
t1=BX1—¢c, ta=pXs—¢e

where the parameter vector 8 is known by both players. Then the Bayesian-
Nash equilibrium conditions become

Eolm] = / G(BX1—Eilmar)dF(z) and Eifms] = / G(B' X Ealmlas)dF(z) (1)

x
Now, suppose some time after the game was played by a random sample of
M pairs of players, the econometrician has access to the M outcomes and
suppose that:



B1.— Assumptions (A1 — A5) were satisfied when the game was played by
each of the N pairs of players.

B2.— The realizations of {X;,X;}¥, are now available to the econometri-
cian.

B3.— The realizations of {1, 82,1'}%1 are not observable by the econometri-
cian.

B4.— The distribution G(¢) is assumed to be known -up to a finite number
of parameters- to the econometrician.

B5.— No particular functional form is assumed for the distribution F(z). We
will only assume that this distribution does not depend on any of the
payoff parameters, beliefs or the unknown parameters of G(e).

The methodology proposed here is aimed at the econometric estimation of
models that can be characterized by assumptions B1 — B5, but it applies
to a much broader class of models than the simple one described above. In
particular, it can be applied to models in which all agents can belong to one
of a finite number of “types”, and each player’s “type” is public informa-
tion. Players’ types contain some information about their private payoffs.
This would be the case for example if in the model presented above there
exists a partition of R* say {X}, .., X7}, where X, N X, = 0 for all s # ¢ and
Xy U---UXp = R¥. We say that player p belongs to type 7, if and only
if X, € X;. Then, the methodology presented here could be easily adapted
to a model in which all players’ types are publicly observed. It can also be
used to handle signalling games with a finite number of possible types, and
also models based on games played between many opponents simultaneously.

The models of interest for this methodology could be seen as asymmetric
information versions of the so-called interactions-based models, a term used
by Brock and Durlauf (2001) to refer to a “class of economic environments
in which the payoff function of a given agent takes as direct arguments the
choices of other agents”. The focus here is on interactions-based models
where an individual can’t predict others’ choices because payoffs are (at least
partially) private information but where some part of this private informa-
tion becomes available afterwards to the econometrician.



For all possible applications, the proposal is to estimate simultaneously the
following:

1.- The payoff parameters (a;,as and § in the model described above).
2.- Agents’ beliefs (Ey[ms] and Es[m] in the model described above).

3.- The unknown parameters from the distribution G(e) of those variables
that are privately observed when the game is played and remain unob-
servable to the econometrician.

3.- The unknown distribution dF(z) of those variables that are privately
observed when the game is played, but available afterwards to the
econometrician.

Estimation will take place assuming that the observed outcomes are the result
of a Bayesian-Nash equilibrium. The link between all of these parameters is
given by the corresponding equilibrium restrictions that these beliefs must
satisfy (equation (1’) in the example presented above). The issues of existence
and uniqueness of an equilibrium are crucial and they will be addressed, along
with the asymptotic properties of the proposed estimator in section 3 below,
where we present the methodology for a particular application of an R&D
model.

2 Empirical likelihood: brief overview

2.1 Empirical likelihood: basic problems and some ex-
tensions.

Empirical likelihood (EL) was formally introduced by Owen (1988, 1990,
1991). In its simplest form, EL was proposed as a device to construct non-
parametric tests and confidence intervals for a mean of a random variable
Z € R with unknown probability distribution function (pdf). Suppose we
have a random sample {Z;}Y | and we wish to test if E[Z] = u. EL would
then substitute the unknown pdf with a set of weights {p;}~,. The optimal
weights would be the solution to the problem

N N N
Max logp; subject to: p; >0, p;=1 Dl = b



That is, to maximize the empirical log-likelihood Zfil log p; subject to the
weights being a well-behaved pdf, and the data obeying E[Z] = p with this
pseudo-pdf. Without the constraint Zf\il p;Z; = W, it is easy to show that
the uniform weights p; = (1/N) Vi maximize the empirical log-likelihood.
These would be the optimal weights if u = Z (the sample mean of {Z;}¥,).
Let £(u) = Zf\il logp; be the corresponding maximum EL and define the
empirical log-likelihood ratio R(u) as

R(u) = —2 x {au) - Zlog(l/m}

where {p; })¥, are the optimal EL weights. Now let g be the true mean of Z.

Owen showed that under fairly general conditions R () N x2. This implies
that hypothesis testing and confidence intervals could be based on the statis-
tic R(u). A a-level confidence interval for example, would be constructed as
the set of 11 € R such that R() < ca, where Pr(x?) < ¢, = 1—a. Note that
if we wanted to estimate p by maximizing £(u), we would get u = Z, and
the corresponding optimal weights would be the uniform weights p; = 1/N.

EL was also applied to deal with moments other than the mean, and to
handle vector-valued random variables, where the weights are estimates of
a joint pdf. An important extension was done by Qin and Lawless (1994),
who applied EL for general estimating equations: Suppose that for a random
variable Z € R? there exist a parameter # € RP and a vector valued function
m(Z,0) € R* such that E[m(Z,0)] = 0. For a fixed 8, the corresponding EL
problem is to solve:

N N N
Max Zlogpi subject to: p; >0, Zpi =1 Zpim(Zi,G) =0
i=1 i=1

N
{pi}i:l i=1

Let £(8) = Zfil log p; be the corresponding maximum EL. Letting 8, be
the true parameter value, Qin and Lawless then showed that under some
regularity conditions

R(0y) = —2 x {e(oo) — Zlog(l/N)} 42

where q is the rank of Var(m(Z,6,)). Confidence regions can be built and
hypotheses can be tested for @ using the statistic R(#). We can also use EL
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to estimate @ by maximizing ¢(0). If p=s, then 0 is simply given by the solu-
tion to Zf\il m(zi,a) = 0 and the resulting optimal weights are the uniform
ones p; = 1/N. The interesting case is when s > p. The latter case would be
the kind of problem econometricians usually analyze using GMM estimation.

EL was also extended to analyze combinations of parametric and empirical
likelihoods. Suppose for example that the conditional distribution of y € R
given Z € R* is assumed to have a known parametric functional form given
by f(y | Z,0), but that the marginal pdf of Z is unknown and denote it
by dF(z). The joint pdf of (Y,Z) would then be given by f(y | z,0)dF(z).
Suppose now that we know that E[¢(Z,0)] = 0 for some function ¢ € RP.
EL would estimate @ and {p;}¥, by solving:

N N
Max Y log f(y: | :,0) + Z;loz);pi

0,{pi =1 i=1

N N
subject to  p; >0, Zpi =1 ZPM(%;@ =0
=1 =1

Qin (1994, 2000) called the combination or parametric and nonparametric
likelihoods “Semi-Empirical Likelihood”. Parametric and empirical likeli-
hoods have also been combined in other settings, as in Qin (1998) for up-
graded mixture models where one sample 24, ..., 2,, is directly observed from a
distribution F'(z) while another sample 1, ..., &,,, have density [ p(z | z)dF(z)
where p(z | z) is parameterized as p(x | z,0). Parametric and empirical like-
lihoods have also been combined in Bayesian models: Lazar (2000) analyzed
the product of a prior density on the univariate mean and an empirical like-
lihood for that mean.

The methodology proposed here is a particular case of semi-empirical likeli-
hood estimation.

2.1.1 Empirical Likelihood and GMM

Every GMM problem can also be estimated using EL. Asymptotic equiva-
lence to first order of approximation between GMM and EL has been well
documented in a variety of settings (Owen (2001) is the best comprehensive
reference). It has been also well established that EL improves on the small
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sample properties of GMM. However, other closely estimators have also been
developed that improve on the small sample properties of GMM: Continuous
updating (CUE) -also called “euclidean likelihood” by Owen (2001)- and ex-
ponential tilting estimators (ET). All these belong to a class of Generalized
Empirical Likelihood (GEL) estimators. They all have the same asymptotic
distribution as GMM but different higher order asymptotic properties. The
natural question would be: Why use EL among the GEL family?

A growing body of literature has been devoted to exploring the higher order
asymptotic properties of EL. The majority of these efforts have been aimed at
test statistics. EL has been found to have higher order optimality properties
consistently better than GMM and at least as good as continuous updating
estimators. Kitamura (2001) proves important large deviations optimality
results for empirical likelihood vis a vis GMM: Of 32 simulations performed,
EL had greatest power 22 times, while 2-step, 10-step and continuous up-
dating did this 5, 7 and 0 times respectively. He also found that EL’s power
ranking was best for hypotheses farther from the null.

The most relevant results to the problem we address here is Newey and
Smith (2001). They compare the properties of GEL and GMM estimators
and find that EL has two advantages: First, they show that its asymptotic
bias does not grow with the number of moment restrictions, while the bias
of the other often grows without bound. Second, they show that the bias
corrected EL is asymptotically efficient relative to the other bias corrected
estimators.

3 Proposed application: R&D model

The methodology presented above can be adapted to a number of different
economic situations. Instead of observing n different outcomes of a game
played by n different k—tuples of players (as in the example of the previous
sections) we may observe a single outcome of a game played by n different
players simultaneously. The application presented here corresponds to the
latter case.

The 2 x 2 game described above was used to illustrate the properties of
the proposed empirical likelihood estimator. A brief description of an R&D



model with asymmetric information is presented here. It involves many play-
ers (instead of only two) and beliefs (each player has more than one opponent
now). In this model firms must simultaneously make an R&D decision in an
environment of asymmetric information. First, I specify what I mean by “an
R&D decision” by defining the particular space of actions for this model.

3.1 The model

First, some notation: For firm ¢ denote: d; = Firm ¢’s industry and

k; = Firm 4’s technological category. Note that d; € {1,..,D} and k; €
{LT,SS,SL,HT}.

3.1.1 Timing of the Firms’ Decisions:

In period ¢, each firm makes the following decisions sequentially:
t.1.- Decide to remain or leave the industry in period ¢ + 1.

t.2.- If the firm decides to remain in the industry, it must choose to increase
or not its R&D investment in period ¢ + 1 (relative to period ¢).

All firms make these decisions simultaneously (i.e, before observing what
other firms have optimally chosen to do) and in the context of asymmetric
information, which will be described below. First, denote firms’ decisions by

Yi(i) 1 If firm ¢ decides to stay for period ¢ + 1 and increase its R&D investment.
i) —
1 0 otherwise

Ya(i) {1 If firm ¢ decides to stay for period ¢ + 1 and decrease its R&D investment.
a\l) =

0 otherwise

1 If firm ¢ decides to exit for period ¢ + 1.
0 otherwise

I explain next how firms are assumed to be affected by each others’ choices
in this particular model.



3.2 Strategic interaction among firms

Because R&D decisions may have long-run implications for firm’s future per-
formance, it seems natural to assume that firms care about the choices made
by others. The methodology presented here allows us to test precisely this
assumption. Firms interact in many dimensions, but because a firm’s relative
size in its industry has been consistently cited as a determinant of innova-
tion as well as market structure (exit/entry decisions) in existing models -see
below-, the present model will attempt to analyze how small and large firms
interact. Specifically, the goal is to answer the following questions:

i.- Do small firms care about the R&D and exit decisions made by other
small firms? Do they care about the decisions made by large firms?

ii.- Do large firms care about the R&D and exit decisions made by other
large firms? Do they care about the decisions made by small firms?

Choice rules will be modelled in such a way that allows us to test separately
the influence of other firms’ exit and R&D choices on a particular firm’s
decision exit and R&D decisions respectively.

3.3 Decision rules

The superscripts S and L will be used to denote a small and large firm re-
spectively.

Then, for a small firm let
S 5.8 S_L ,
Upep = 01 Trep + ¥ Trep + BrepX R&D — ER&D

s _ 8§ S_L '
UStay = V1 TEzit + V2 TEait + BstayX stay — Estay

Similarly, for a large firm let:
L L_L L_S /
UkeD = 01 TRgp + % Trep + BrepX R&eD — ERED

L _ . L_L L_S /
UStay = V1 TBait T V2 TEait + BstayX Stay — EStay

(3)
Where

Wz& p =Proportion of the population of Small firms that will choose to increase
their R&D given that they have chosen to stay.

5. =Proportion of the population of Small firms that will choose to exit.
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the equivalent definitions for large firms follow for 7%, , and 75,;,. The
remaining variables X re.p, €reD, X Beie and g Will be described below.

3.3.1 Optimal decision rules
If the population proportions T3 p, Mo, Thep and 75 .. were known, then:
i~ A small firm would:

1.- Stay for period ¢t + 1 iff ug,,, > 0.

2.- Increase its R&D investment (given that it has chosen to stay) iff
ugep > 0.

ii.- A large firm would:

1.- Stay for period t + 1 iff ug,,, > 0.

2.- Increase its R&D investment (given that it has chosen to stay) iff
ube > 0.

Due to the asymmetric information nature of the model, the proportions
ToeDs Tomits Togp and 7L . are not public information. Firms will then
maximize the expected version of the payoff functions (2) and (3). This shall
be carefully detailed below.

3.4 Strategic interaction
3.4.1 Interaction coefficients

As it was mentioned above, the goal of the model is to estimate the influence
of other firms’ choices on an individual firm’s R&D and exit decisions.

- For a small firm, the coefficients o and o3 indicate the influence of the
populations of small and large firms’ R&D decisions respectively ! on
the firm’s own R&D choice. Similarly, ¢ and 5 measure the influence
of the population of small and large firms’ exit decisions on the firm’s
own exit decision.

- Parallel descriptions apply to the interaction coefficients of a large firm:

L L L L
ay, ay and 97, 7y’

IThat is, the R&D decisions of those firms which will actually choose to stay in business.
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3.4.2 Why would firms interact?

RED choices: Modern models of firm survival argue that a firm’s innovation
capabilities determine its chances of surviving in the long run. Returns to
R&D investment can’t be easily measured in the short run, but lagging be-
hind other firms in terms of R&D efforts could imply an irreversible long-run
disadvantage for a particular firm. In this sense, interaction would be based
on long-run consequences.

Exit decisions: A firm’s expected future performance depends -partially-
on market structure. The hypothesis that underperforming firms may de-
lay their exit if they believe market structure will change favorably is an
interesting one to test. This effect hasn’t been directly isolated and tested
before.

3.5 Determinants of exit and R&D
3.5.1 Firm’s relative size

Economies of scale have long been mentioned as a determinant of market
structure. Game-theoretical models of size-expansion as entry deterrent are
well known and used in IO. The most comprehensive summary of such mod-
els was done by Panzar (1989). Falling behind in terms of relative size in
a given industry may lead to a firm’s exit depending on the existence and
importance of economies of scale.

Firm’s size has also been analyzed as a determinant of innovation efforts:
Larger firms may be able to rip the benefits of innovation more effectively
than smaller ones. For example, Hall and Vopel (1997) argue that firms with
a larger market share may have higher innovative efforts. According to the
authors, this phenomenon occurs because market valuation of a firm’s inno-
vative efforts may be higher for firms with a larger market share. Klepper
and Simmons (2000) present a model in which large firms tend to pull ahead
due to the existence of advantages to scale in R&D. Nevertheless, there exist
(older) models that have proposed an opposite effect of market share and
innovation: The relative lack of competition threat from other firms may
discourage innovation efforts by large, incumbent firm.
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3.5.2 Firm’s market value

Financial markets value the knowledge assets of firms. Innovation serves as
an instrument to balance industry and technological uncertainties -see Ori-
ani, R. and Sobrero, M. (2003)-. A firm’s ability to hedge these risks through
its R&D decisions is -at least partially- reflected in the firm’s market value.
Changes in the latter may serve as a guide to R&D investment. See for ex-
ample Hall (1999).

Because market value reflects the public’s appraisal of a firm’s overall perfor-
mance, it comprises at least partially all qualitative and quantitative factors
that determine firm’s survival. Thus, it may become a variable that deter-
mines if a firm stays in an industry or not.

3.5.3 A firm’s ability to innovate

Successful innovation leads to technological change that may affect market
structure: Jovanovic and MacDonald (1994) present a model in which a
process of innovation (introduced from outside the industry) increases the
minimum efficient scale and induces the exit of firms who fail to master the
new technology -see also Klepper (1996)-. On the other hand, successful
innovation and the knowledge derived from it may also increase the returns
to future innovation efforts (R&D expenditure). Reinganum (1989) proposes
such a model.

3.5.4 Technological characteristics

The degree and nature of R&D expenditure and inter-firm competition de-
pends on the technological nature of each industry. Chandler (1994) presents
an historical account and classifies U.S industries into three technological
groups or segments:

i.- Low-tech industries: Final products in these industries remain basically
the same through time. Production processes are relatively simple and
therefore innovation efforts are focused more in marketing and distribu-
tion rather than in production. These industries have the lowest R&D
intensity.

ii.- Stable-tech industries: Competition in these industries is based more on
the improvement of existing product and production processes rather
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than in the development of new products. R&D efforts are more essen-
tial and critical than in low-tech industries, these efforts concentrating
on process improvements and cost reductions, rather than on the de-
velopment of new products.

iii.- High-tech industries: New-product development is the characteristic
element of inter-firm competition. These industries have the highest
R&D intensity. Innovation efforts must be devoted not only to improve-
ment of existing products, but also to fund the high cost of developing
new products. These industries also have the longest time horizons.

These technological classifications are also relevant to exit decisions, and
are closely related to the market structure models mentioned above, where
innovation plays a crucial role for firm survival.

3.5.5 Variables included

The source for firm-level information was Standard € Poor’s Compustat In-
dustrial Annual. Industry-level figures were obtained from the 1997 Economic
Census’s Concentrating Ratios in Manufacturing and Manufacturing General
Summary reports. Unless otherwise noted, the term “Industry” refers to 4
and in some cases 6 digit level NAICS, each case depending on Compustat’s
available classification for each firm. The term “firm” refers to companies
-as opposed to establishments-.

The variables used are the following;:

1.- Scale variables:

Empl
Avg.Empl

=Ratio of firm’s number of employees to the average
number of employees in the firm’s industry.

Herfindahl= Industry’s Herfindahl index

20-Largest Share— Percent of value of shipments accounted for
by the 20 largest companies in the industry

ii.- Market value variables
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q= Tobin’s ‘q’.
eps= Earnings per-share.

Longterm debt
Total assets

= Ratio of firm’s long term debt to its total assets.

ili.- Innovation-effort variables

Intangible assets
Total assets

= Ratio of firm’s intangible assets to its total assets.

R&D Expenditure
Total sales

= Ratio of firm’s total R&D expenditure to its total sales.

iv.- Technological characteristics variables

Hall and Vopel (1997) have constructed a classification table for 4-digit
SIC industries based on Chandler’s technological segments. Using such
a table, the following variable was included:

If firm belongs to low-tech segment

If firm belongs to stable tech-short horizon segment.
Tech segment —

If firm belongs to stable tech-long horizon segment.

W N

If firm belongs to hi-tech segment.

3.6 Distributional assumptions
Let Z = (X R&D, X Stay). Then, we will assume the following:

i- Z have unknown joint cdf given by Gz(2). We will denote the cor-
responding pdf by dGz(z).

ii.- Conditional on Z, the shocks ege.p and €g:4, have marginal cdfs given
by Fr(ergp) and Fs(egiq,) respectively. Their joint cdf is given by
Fr, s(€raD; €stay). We will assume a particular functional form for these
distributions, with parameters independent of Z?

2This assumption can be relaxed by using the technique to deal with endogeneity
detailed in section 4.4.8 above.
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3.7 Information assumptions

We will assume the following:

1.- When firms make their optimal choices, the variables X re.p, €reD,
X geir and £, are privately known.?

2.- The variables X gep and X gi: become available (for the econome-
trician) some time after the optimal choices have been made. The
variables epe.p and €g, remain unknown to the econometrician.

To preserve the simultaneous nature of the game, we must assume that the
R&D and exit decisions made in period ¢ are irreversible for period ¢ + 1.
It is clear that leaving or staying in business fits this commitment description.

The argument to model the decision to increase or decrease R&D expen-
diture as a pre-commitment could be based on the sunk-cost nature of R&D
investments and most importantly, by noting that the returns to R&D invest-
ment are hard to measure in the short run. Because of this, it is unlikely that
gradual availability of small pieces of information about other firms would
result in a dramatic change in a particular firm’s short-run R&D decision.
Finally, one can also argue that in general, a firm’s budget plan (made in
advance) is rather rigid in the short run.

It is hard however, to justify the actual figure of R&D expenditure as a pre-
commitment, that is why the model focuses on a qualitative R&D choice:
increase or decrease R&D expenditure.

3.8 Beliefs and equilibrium conditions

As we mentioned above, when making their optimal choices, firms can’t ob-
serve the population proportions T3, Ta, Thep and 75 ... Firms will
then maximize the expectation of their payoff functions (2) and (3). Let

E; [W}%&D] —=Firm i’s expectation of w5,

E; [7T %mt] =Firm i’s expectation of wgm

3 All that follows can be readily adapted to a case in which components of X pg.p and
X g.i+ are public information, as long as the result is the creation of a finite number of
types, depending on the realization of these publicly known variables.
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and so on for 7%, , and 7%_,,. In equilibrium, due to the informational as-
sumptions of the model, all firms must have the same beliefs. Denote these
beliefs as Ty 1, Topiss Thep and Te,... Linearity of the payoff functions (2)
and (3) allows us to simply plug in these beliefs instead of the true propor-
tions to obtain the expected payofls, which are given by:

For a small firm:

_§ _  S—§ S—L /
Upgp = Q] 7TR&D + aj WR&D + Bre.pX R&D

s (4)
Upepit — 71 7TE;mt + ’72 T‘-E:ut + ﬂStayXStay

for a large firm:

Y L—S p
Ugep = O TRgp T @ Trep + BrepX R&D

=L
UBpit — 71 71-Emt + 72 ﬂ-Emt + ﬂStayXStay

(5)
for a large one.

A small firm will stay iff ug,,, > 0 and will increase its R&D expendlture iff
Ugep- The same stay and R&D rules follow for a large firm, with %g,,, and
uk, , respectively.

3.9 Estimation and Results
3.9.1 Identification

Identification concerns are very important in interactions-based models. This
section examines the issues related to the proposed model. The issues ad-
dressed here are relevant in all potential applications. The specific implica-
tions and assumptions would depend on the particular model.

Payoff functions need normalization

It turns out that the parameters (of,a3), (v7,75), (af,af) and (vEF,~E)
can’t be identified from the expected payoff functions as they are stated in
(4) and (5). Some normalization is needed. I will assume that Small and
Large firms’ expected payoff functions can be expressed in the following sym-
metric way:

_g ~ _§ ~ _ '
Upgp = 01T pep + Q2T rR&D + Bre, pX R&D — ER&D

—S ~ _S ~ = /
Ustay = MNT Egit + Vo Ezit + IBStayX Stay — EExit

(6)
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—L ~ —L ~ !

Upgp = 01T pep + Q2T R&D + Bre,pX R&D — ER&D

L ~ =L ~ = /

uStay = NT gt -+ V2T Exit + IBStayXStay — EEzit
Where Trep and Tg,;; are the expectations of the overall population proba-

bilities of increasing R&D expenditure (given that the firm stays) and leaving
the industry respectively. That is:

(7)

TR&D = nLﬁé&D + (1 - UL)ES%&D T Ezit = nL%ém't + (1 - nL)ﬁ%mit

where n’ is the population probability of observing a Large firm. The origi-
nal interaction parameters can be recovered as:

For a small firm:

of = +a(l—n"), of =am®, YW=m+Rl-7"), 5 =%

For a large firm:
ar =& +ag’, oy =a(l-n"), W =n+Tn" =% -1

The normalization chosen for (6) and (7) has the feature that the relative im-
portance placed on the decisions of Small and Large firms depends -partially-
on their relative presence in the population as reflected by ny.

We will denote:
01 = (ﬁ}g%&Du ﬁ%m’tﬂ ﬁé&D: ﬁém’t: TR&D; T Ezit) 77L)
02 = (alu aQa ?1: ;\)I/ZuﬁlR&DﬂﬁiS'tay)’
0= (6,,6,)
Now let:
(0 Z) OC 7TR&D+0627TR&D +ﬁR&DXR&D
5Stay(0 Z) = 7 71-Emt + ’)/27TEmt +ﬁ5tayXStay
(0,2) = a\Thep + Q2T reD + BrepX recD
5Stay (0: Z ) = 7177Emt + ’727TE:cit + ﬁStayX Stay

Conditional on Z we have the following:

R&D

For a small firm:
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g, s(5R&D(9 Z)8510y(6:2))

Pr(Increasing R&D given that firm stays) = rS(R&D | Stay,Z,0) = 7o (65, (0.2))
Stay

Pr(Leaving the industry) = Pr®(Ezit | Z 0) =1-—Fs(6 Swy(O Z))

For a large firm:
Pr(Increasing R&D given that firm stays) = Pr(R&D | Stay,Z,0) =
Pr(Leaving the industry) = Pr(EBzit | Z,0) = 1 — F, ((5Swy(0,Z))

FR S(JR&D(O Z) stay(o Z))
F1.(054,,(0,2))

Because a firm’s size is a determinant of R&D and exit choices, it will be
included in Z. For simplicity, denote size as Z; € Z. We will assume that a
firm is “Large” if Z; > kp, for some cut-off value k7, and “Small” otherwise.

Define:

(0, 2) = 75 — 1{z, < kL}Prf(_RszD | Stay,Z,0)
$2(8,2) = Thy p — 1{Z > kL}P?“L(anE&D | Stay,Z,6)
Vs(0.2) =75 — 1{Z, < ij;P_T‘j] (LE.m't | Z,8)
b4(0,2) =7k, ., — 1{Z; > kL}PrLL(Em't | Z,0)

n
¥5(0,2) = Trep — [1{21 <k }PrS(R&D | Stay,8,2) +1{Z, > k;}Pri(R&D | Stay,o,Z)]

$6(0,2) = Tpwit — [1{21 < kp}PrS(Bzit | Z,0) +1{Z, > kp}Pri(Exit | z,o)}
Vr(8,2) =0t —1{Z, > k1 }
¥(6,2) = (wl(o,z>,w2(0,2>,wg(o,m,w4(0,Z>,w5(0,Z>,¢6<o,z>,W,Z))

Then, in a Bayesian Nash equilibrium beliefs must satisfy:

/ ¥(6,2)dC(z) — 0 (8)

Existence of equilibria

For a given value of 05, we're interested in knowing if there exists a set
of beliefs 8, such that the equilibrium condition (8) is satisfied. A sufficient
condition for the existence of equilibria is that the joint and marginal dis-
tributions of egrep and eg.;: be continuous. Existence of equilibria for an
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arbitrary value of 8, follows from Brower’s fixed point theorem. Therefore,
an equilibrium must exist for 63, the true population values of 8;. Details
are given in the appendix.

Uniqueness of equilibrium

The question of uniqueness of equilibrium is a very important one. If, for
the true values of 8, there exists more than one set of beliefs 8; that satisfy
equilibrium condition (8), then we would have to make additional assump-
tions about which, among the set of equilibrium beliefs is used by each firm.
In our formulation for example, we would have to assume that all firms use
the same equilibrium beliefs. Alternative formulations could have all small
firms having the same equilibrium beliefs and all large ones also having the
same equilibrium beliefs, which could be different from those used by the
small firms.

The question of uniqueness can be analyzed by looking at the jacobian:
Vo, / (0,02, 2)dG 7 (2)
z
where as before, 69 represent the true population values of 8.

Local uniqueness will be guaranteed if the jacobian:

Ve, /\IJ( * 09,2)dG z(z), where 87 is a solution to /W(Gl,Gg,z)dGz(z) =0

z z

has rank equal to seven (full rank). An example of a sufficient condition for
global uniqueness would be to assume that the jacobian Vg, [ ¥ (601,69, 2)dGz(2)
has either: (i) only strictly positive principal minors or (ii) only strictly nega-
tive principal minors for all @, € [0,1]”. This is a version of the Gale-Nikaido
theorem that guarantees that [ ¥(8,092)dGz is a one-to-one function of 6,
and therefore, that the equilibrium is unique. Simply put, it says that the
jacobian not only has to be non-singular, but it also has to remain either
positive quasi definite or negative quasi definite for all values of 6.
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Distinction between small and large firms has to be statistically
relevant, and equilibrium beliefs must be non-degenerate:

Existence and uniqueness of equilibrium have to do with the identification
of 6, the vector of beliefs. The functional form assumed for the expected
payoff functions requires two additional conditions for the identification of
0. Basically, these conditions are necessary for the asymptotic invertibility
of the Hessian for the first order conditions satisfied by the EL estimator®:

(i) All equilibrium beliefs 89 must be strictly between zero and one. That
is, in equilibrium the population probability of choosing any of the three
possible actions must be strictly positive and this must hold for both
small and large firms. This is a necessary condition for identification

of 02.

(ii) The conditional distributions G(Z | Z, > ki) and G(Z | Z; < kr) are
not identical. This means that there is a (statistically) meaningful dif-
ference between small and large firms. This is a sufficient condition for
general values of 8%, but it becomes a necessary one for some nontrivial
possible values of 6°.

Conditions (i) and (ii) together simply require that the proposed interaction
be meaningful: if (i) is violated, then it would be common knowledge for
example, that all small firms choose the same action (they all leave the
industry, for example). If (ii) is violated, it would imply that there is no
strategic interaction that takes place in the “size” dimension: there is nothing
essentially different between small and large firms. Violations to (i) or (ii)
seem implausible in reality.

3.9.2 Estimation
Conditional likelihood
Having dealt with identification issues, we now present the estimator. First,

let
Y = (11,Y,,Y5)

4The role played by these identification conditions is parallel to the one played by
the conditions necessary to assume invertibility of the information matrix in the usual
maximum likelihood estimation problems.
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where Y7, Y5 and Y3 were defined in section 3.1.1. Then:

For a small firm, the conditional log-likelihood of Y given Z is

log f*(Y | Z,0) = Y11og F, 5(85.p (6, Z), 510y (8, Z)) + Yz log (1 — F5(65,4, (8, 2)))
+ Y log (Fs(égtay(aﬁ Z)) - FR, S(&%&D(aa Z), 6§tay(0: Z)))

and for a large firm, it’s given by:

log f¥(Y | Z,0) = Y1log Fr, s(65e. (0, Z), 0510y (8, 2)) + Yalog (1 — Fs(664, (60, 2)))
+ Y2 log (FS((;é’tay(a’ Z)) - FR, S((SlL'?&D(aa Z), 6£tay(0a Z)))

Therefore, for an arbitrary firm, the log-likelihood is naturally

log f(Y | Z,0) =1{Z, <k }log fX*(Y | Z,0) +1{Z, > kr}log f5(Y | Z,0)

Empirical Likelihood estimator

~EL
The proposed empirical Likelihood estimator @ is the solution to:

N N
Maximize Z log f(y; | 2:,0) + Z log p;
o0pit, o i=1 (9)

N N
subject to p; > 0, Zpi =1, Z\I/(ziﬁ) =0
i—1 i—1

It should be pointed out that this methodology is closely related to the one
proposed by Cosslett (1981), who proposed a pseudo maximum likelihood
estimator for discrete choice models with choice based sampling in which
he estimated the model’s parameters along with a set of weights subject to
the same “well-behaved pdf” conditions presented here and subject to the
probabilities of sampling from the different subpopulations or strata. He
showed that the resulting estimator was efficient. Cosslett’s proposal wasn’t
formally embedded in the empirical likelihood methodology which wasn’t
proposed and studied until 7 years later.

~EL
The asymptotic properties of @ are detailed in the appendix. Some of
its most important properties are:
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~B

L
1.- 6 has the same asymptotic distribution as the efficient GMM esti-
mator based on the moment conditions

E[Velog f(Y | Z,00)] =0 and E[¥(Z,0y)] =0

This result is parallel to that of Imbens (1992), where he proposed a
GMM estimator that had the same efficiency as Cosslett’s (1981) esti-
mator for choice-based sampling. As it was mentioned previously, EL
and GMM estimators typically have the same asymptotic distribution
to first order of approximation. However, as it was also mentioned
above, the superior properties of EL for small samples has been well
documented. EL has a smaller variance to second order of approxi-
mation. Computationally it’s also more convenient since no first-step
estimators and no weight matrix have to be computed.

~EL
2.- 0 is more efficient than the estimator that solves

N N
1
Max‘i’mize ;1 log f(y; | 2;,0) subject to N ;1 U(z;,0) =0

i.e, the one that also uses the equilibrium conditions but imposes the
uniform weights 1/N. This shows the importance of simultaneously
estimating the unknown pdf dG(Z) and the parameters of interest.

3.- Using additional available information about the population distribu-

tion of Z increases the efficiency of EEL. We’d have this additional
information for example, if we know that E[Z,] = ¢y for some Z, € Z
and we know the value of ¢, or if we know that Pr(Z, < qo) = 0.5,
for a known ¢go. More importantly, we can also show that these effi-
ciency gains are also approximately true if we use census information or
another target population of size M, independent from our sample as
long as N/M is relatively small. Hellerstein and Imbens (1999) proved
a very similar result for a different kind of EL estimation. Imbens and
Lancaster (1994) showed how census statistics could be approximately
considered as population moments for GMM problems.

The model was estimated using different combinations of the explanatory
variables listed in section 3.5.5. Because size criteria were derived from 1997
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census figures, only cross sections for years close to 1997 were included. The
model was estimated separately for the cross sections of 1997, 1998 and 1999.
The total number of firms in 1997 was 2139. Approximately 7.4, 9.4 and 8.6
percent of firms left in 1997, 1998 and 1999 respectively. Approximately 59.2,
48.5 and 56.3 percent of firms chose to stay and increase R&D expenditure
for the following year in 1997, 1998 and 1999 respectively. Finally, “large”
firms made up approximately 54.3, 58.0 and 56.3 percent of the sample in
each of the three years.

The chosen distributions for erep and eg4qy were:

1 1 ) . .
Fs(€stay) = T o’ Fr(€ren) = [ (i.e, both logistic),
Fs(€stay)Fr(€ren)
F a 3 _1 S S ]-
SR(ESt Ys ER&D) 1 _ 0_(1 _ FS(EStay))(l _ FR(ER&D)) g ( )
10

The joint distribution uses the Ali-Mikhail-Haq copula. This copula includes
Gumbel’s bivariate logistic distribution as a special case when o = 1.5

Unconstrained MLE: The empirical likelihood ratio test plays a very im-

portant role in the estimation. For a given value of o, let EMLE( | o) be
the maximum likelihood of the unconstrained model, which is estimated by
replacing (6) and (7) with the equations:

Hﬁz&p = Ciwp + BrepX reD — €ReD

uStay Cswy + B'stayX Stay — EExit (6")
and —L L !

Ukep = Chen + PrepX reD — EReD

uStay CStay + B StayX Stay — EEwxit (7)

No Bayesian-Nash equilibrium constraints are imposed and the distributions
are those described in (10). For a given o, unconstrained MLE only needs

to estimate Clg&Dﬂ Cgtayﬂ C}I{/&Dﬂ Cgtay: ﬁR&D and ﬂStay-

Estimation algorithm

5Copulas are functions that join multivariate distribution functions to their one-
dimensional margins. See Nelsen (1999).
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A grid search in [—1, 1] was done for ¢. For each value of o, let £** (EEL | o) be
the parametric portion of the maximum empirical likelihood. Let {p;(c)}¥,
be the optimal weights. For each o, the parameter vector @ was estimated.

For each o, the empirical likelihood ratio

R(0) = 2 x {zMLE( +Zlog 1/N) — (@ sz }

was computed. The goal of the grid search for o was to approximate the
one that minimized R(c). This was done for a number of combinations of
explanatory variables X ge,p and X g4,,, and different values of kj, -the cutoft
value to determine if a firm is “Large” or “Small”’-. The following set of
variables consistently yielded the best results for 1997, 1998 and 1999:

_ Empl Intangible assets
XR&D_{Avg.Empl’ €ps, Total assets ' I’ TeChsegment}

Longterm debt
X,S’tay {Avg Empl’ eps, Total assets ’ Qs Techsegment}

The variable “Size”, denoted by Z; in conditions (8) was AvZ’f‘gi‘pl.

o, the likelihood ratio R(o) was rather stable for cutoff values kj, close to 2.
Therefore, a firm was considered “large” if z‘“‘E’ipl > 2. The statistic R(o)
was very small for the three years. However, it was remarkably smaller for
1998. All Lagrange multipliers were statistically equal to zero for the three
years, but the likelihood ratio statistic R(o) was far smaller for 1998. The

following section discusses the results.

For each

3.9.3 A digression on endogeneity

A very important stochastic assumption was the independence between € g, p
and X ge,p and between £g.;; and X g, Independence assumptions are dif-
ficult to defend and often objectionable in econometric models. It turns out

~EL
that all the asymptotic results for @  still hold if all we assume is that:

For a small firm:
E[Y:1| Z,0) = Fr, s(05s(0,2), 6510, (0, Z))
B[Y; | Z,6) = F5(05,,,(8, 2)) — Fr, 5(055.0(8, Z),5,0,(8, Z))
EYs| Z,0) =1 — Fy(03,,,(0, %))
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and for a large firm:

E[Yi | Zﬁo] = FR, S(élg&D(07Z)u 5§tay(07z))
ElYs | Z,8) = Fs(0514,(0, Z)) — Fr, s(0re.p(0,Z), 0510, (6, Z))
ElYs | Z,6] =1 — Fs(85.,(0,2))

and if we assume that these conditional expectations are common knowledge
among all firms. These modified stochastic and informational assumptions
generate the exact same equilibrium conditions, estimators and asymptotic
results. We have to keep in mind that the primary goal of our models is
to estimate the interaction parameters, estimation of the parameters of Z is
secondary.

The cost of using these assumptions is of course, that we have to drop the pay-
off maximization story. The way beliefs enter the functional forms for these
conditional expectations could also seem “arbitrary”, while it was completely
transparent in the original formulation of the model. However, the functional
form for the original payoff functions was also arbitrary. More importantly,
the Bayesian-Nash equilibrium conditions do not change. It seems wiser to
use these as the basic assumptions of the model. Endogeneity concerns have
always been more daunting to econometricians than functional misspecifica-
tion of conditional moments.

If for some reason endogeneity concerns are overwhelming and we wanted to
hold on to the payoff maximization story, then we can still apply the method-
ology proposed here by adding a vector of exogenous variables Z € R® and
assuming for example, that

Z =117 v

where I is a k x s matrix. We will assume that Z is independent of v, eggp
and €g,i. We will denote its unknown pdf by dG3(2).

Endogeneity of Z could be assumed to take place through a dependence
between v and eggp and g, We could then take the following steps:

1.- Assume a functional form for the distribution of v. Denote it as F,,(v).

Use it to obtain the conditional distribution of Z given Z. Denote the
latter by GZ|2(Z | Z).
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2.- Assume a functional form for the conditional distributions of egrgp
given v and of eg,;; given v. Denote these by F. ., w(€rep | v) and
F.p..iw(€Ezit | V) respectively.

3.- Re-express the equilibrium condition and the log-likelihood in terms
of dF,(v), Gpz(Z | Z), Fepypiw(€ren | V), Fep,w(€Beir | v) and the
unknown dG3(2).

4.- Perform EL estimation with the re-expressed log-likelihood and equilib-
rium conditions. We would now have to estimate -in addition to - the
parameters II and all the possible unknown parameters of the distri-
butions dF,(v), G, z(Z | Z), Fepepw(€ren | V) and Fop,,w(€pat | V).
The optimal weights would now correspond to the unknown {dG3(Z;)}ir;

3.9.4 Estimation Results

Results can be found in tables 1-3 in the appendix. We have the following
main results:

1.- Strategic interaction considerations are more important for RED choices
than for Ezit choices: The estimates for (o, a3, o) were statistically
significant at a 0.95 confidence level for all three years. The same was
true for oF for 1997 and 1999%. On the other hand, (v¥,vE) were not
significant for any of the three years, while (y3,vF) were significant
only for 1998 and 1999, which shows that strategic considerations were

not completely absent from firms’ “exit” decision.

This is an important result since it is consistent with the assertion
that firms are interested in anticipating R&D decisions made by oth-
ers. Innovation has long-run implications for a firm’s performance. On
the other hand, the decision to leave the industry seems to be driven
more by non-strategic considerations: it is hard for an expected change
in market structure to determine a firm’s decision to remain or to leave
an industry. It seems that firms know that innovative firms tend to
thrive regardless of the remaining number of firms in the industry: an
industry’s expected future size is a poor indicative by itself of future
performance for a firm.

6ol was statistically significant at approximately a 0.92 level for 1998.
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2.-

RED strategic behavior is competitive among firms of the same type
and free rider-like among firms of different type: For all three years we
have that o and o3 are positive, and negative, respectively. The same
is true for af and af. This is consistent with the assertion that firms
behave competitively in terms of R&D with firms of their same type,
but have a free-rider-like behavior with respect to firms of the opposite
type. This effect is more significant for small firms than for large firms:
|| > |af| consistently for the three years examined, which means that
the free-rider behavior is more significant for small firms. Innovation
by a given firm benefits all firms in the long run, generating a free-rider
incentive, but it also gives that firm an advantage relative to its direct
competitors. The results obtained are consistent with this assertion if
we believe that firms of the same size tend to compete more fiercely
with each other.

Firms don’t seem to place any strategic importance on the ezxit deci-
sions of firms of their same ‘type’, but they tend to care about the exit
decisions of firms of a different ‘type’: The estimates for 77 and ~F
are never significant. This would be consistent with the assertion that
competition among firms of the same type is a complex one: it involves
far more than simply their decisions to stay or leave. We already con-
cluded that this competition involves strategic R&D considerations.
Once again: having fewer large firms in the industry doesn’t assure a
future positive performance for a given large firm: this performance is
(at least partially) determined by the firm’s ability to innovate. We
also have that (v5,~%) are positive and significant for 1998 and 1999.
Combined with result 2, this implies that firms “like it” when firms of
a different type innovate, but they also “like it” when those firms leave.
This is also consistent with the assertion that firms of different types
compete in dimensions other than R&D (where they benefit from each
other’s R&D expenditure).

Expected actions taken by firms of the opposite ‘type’ tend to have a
statistically greater impact than expected actions taken by firms of the
same ‘type’: There is no case -for any of the three years- in which
af is statistically significant while o is not. The same is true for all
other pairs of interaction parameters. We can see however, that 5

and vF are significant for 1998 and 1999 while 47 and 4L are never
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significant. This is consistent with the assertion that firms tend to
put more weight on the expected behavior of firms that are essentially
different from them: The model is a static one, but firms may know
more about the future behavior of those firms similar to them than
about the future behavior of firms different from them. The model also
examines only two decisions: to stay and to increase R&D expenditure,
firms may give relatively less weight to firms similar to them because
they know more about choices other than ‘stay’ and ‘increase R&D’. On
the other hand, firms may give relatively more weight to firms different
from them because they know little about other choices made by them.

5.- Strategic considerations seem to be more important for small firms than
for large firms: All strategic coefficients are statistically more signif-
icant for small firms than for large firms. Other things being equal,
small firms’ subsistence tends to be more precarious than that of large
firms and they tend to be more interested in predicting future behavior
of others. This seems consistent with the assertion that small firms
tend to act more as “strategic followers” than large firms.

6.- Estimated optimal weights show difference between small and large firms:
Identification required that the distinction between small and large
firms be meaningful: the conditional distribution of G(Z | Z; > kg)
and G(Z | Zy < kg) should not be identical. The estimated optimal
weights tend to support this condition. This is shown in the appendix,
where optimal weights are shown for 1997. When firms are ordered
randomly, we see no pattern in the optimal weights, but when firms
are ordered according to their size we can see that the optimal weights
have a different pattern for small and large firms. The former seem
to retain a uniform-like shape, while the latter become more volatile,
non-uniform shape. This pattern was also present for 1998 and 1999.

Some comments on the estimation results for Brep and Bga:

1.- Earnings per share (EPS) were more significant than Tobin’s ‘q” among
the financial variables included. Tobin’s q seems to be more significant
for the exit decision (1998 and 1999) than for the R&D decision. This
was to be expected since Tobin’s ‘q’ is a measure of the present value
of a firm’s investments. It is therefore a guidance of a firm’s future
viability. We have on the other hand, that firms’ R&D efforts seem
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to respond significantly to changes in EPS. This is consistent with the
innovation models mentioned previously, where the market values firms’
innovation efforts: higher EPS tend to favor a firm’s market value, and
there is evidence that firms try to reinforce that effect with higher R&D
expenditure.

2.- A firm’s relative size in its industry is more relevant for exit decisions
than for R&D decisions. The model consistently showed that both
small and large firms care about R&D activities. A firm’s size however,
does have a larger influence over its market power and its ability to
compete with other firms. Results show that relatively larger firms
tend to have a higher probability of staying.

3.- A firm’s technological category is relevant for R&D decisions. This
is completely consistent with Chandler’s description of technological
segments for industries: firms in low-tech industries have less incentive
than firms in hi-tech industries to increase their R&D expenditure. The
ability to innovate is crucial for the survival of a hi-tech firm. There
wasn’t a significant relationship between a firm’s decision to exit and
its technological group.

4 Concluding Remarks

Asymmetric information is the appropriate setting for a number of interactions-
based models. This asymmetric information exists because players can’t ob-
serve (at least some of) the variables that determine other players’ payoffs
and therefore, their choices. Econometric estimation of these models en-
tails the estimation of players’ beliefs which are almost always unobservable.
Using proxy variables for these beliefs is not a satisfactory answer to the
problem. However, assuming that the observed behavior is the result of a
Bayesian-Nash equilibrium implies that these beliefs must satisfy a set of
clear-cut conditions. These conditions involve the unknown distribution of
the privately observed variables. In a number of cases, portions of these pri-
vately observed variables may become available to the econometrician after
the game was played.

In this case, estimation seems almost suited for empirical likelihood methods.
This allows us to estimate simultaneously the payoff parameters, the beliefs
and the unknown distribution of the privately-observed-available-afterwards-
to-the-econometrician variables. Such an estimator was proposed, and its
main properties were mentioned. Most importantly, the vast literature on
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EL shows that it has better small sample properties than GMM -which could
also be used for these models- it is also computationally more convenient: no
first step estimators or weight matrix are needed. Identification issues are
very important for general interactions-based models and they are also impor-
tant for their asymmetric information counterparts. Issues such as existence
and uniqueness of equilibrium are important, and thankfully more tractable
than they are in general, perfect information models.

An application for an R&D model was analyzed and estimated. In a model
where firms first decide to stay of exit their industry and then they decide to
increase or decrease their R&D expenditure, we found evidence that strategic
considerations are more important for R&D decisions than for exit decisions.
Dividing firms in two types: “small” and “large” we found evidence that
there is intense R&D strategic competition between firms of the same type,
and at the same time free-rider-like strategic behavior between firms of differ-
ent types. We also found that small firms are more eager than large ones to
predict other firms’ behavior. They tend to act more as “strategic followers”.

The next step is to adapt this methodology to deal with dynamic models.
The R&D model presented here seems naturally more for a dynamic formu-
lation. To make this transition successfully, results from empirical likelihood
for time series must be used. Empirical weights would now correspond to
(overlapping) blocks of observations through time. There is no clear-cut cri-
teria for the length of these blocks or their overlapping. Asymptotic results
are a bit tricker. Empirical Likelihood for time series is an area in an early
stage of development. However, it seems the natural way to deal with dy-
namic models of asymmetric information.

Appendix 1: Some proofs

Existence of equilibria:
To prove the existence of a solution to (8), note that the equilibrium conditions

/ (0, 2)dG(z) = 0

z
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can be expressed as

TT}%&D _ /' 1{z < kL}Prls(_quzD | Stay,z,O)dGz(z)
AL = /'z 1{z > kL}PrL;}LZ&D | Stay,z,O)dGz(z)
s /'z 1{z < kL}lP_r;E:Emt | 2,0) 4Gz (2)
AL /'z 1{z > kL}P;;’(Emt | 2,6) G5 (2)

TReD = / [1{z1 < k) Pré(B&D | Stay,2,6) +1{z > hp) PrP(B&D | Stay,2,6)]dC(2)

z

T Bait = /[1{Z1 < kp}Pr¥(Exit| 2,0) + 1{z, > kY PrL(Ewit | z,0)} dGz(z)

nt = / 1(z1 > kp)dGz(2)

x

Now, suppose that the joint and marginal distributions of (¢rgp,&Ezit) are continuous,
so that all the resultant probabilities are also continuous (the distributions assumed in
the R&D model satisfy this condition). Then, for an arbitrary value of the parameters
0 the right hand side of the equations presented above is a continuous function of the
left hand side vector, #;. Therefore, the right hand side is a continuous mapping from
[0,1]7 x [0,1]7 and by Brower’s Fixed Point Theorem, it has a fixed point. Since this is
true for an arbitrary value of 83, it must hold for 89, the true values of these parameters.
This proves that an equilibrium exists. O

~EL
Asymptotic properties of 6

Suppose the following conditions are satisfied:
Ap.1 All equilibrium beliefs are strictly between 0 and 1.
Ap.2 Identification conditions discussed in section 3.9.1 are satisfied.

Ap.3 The log-likelihood log f(Y | Z,8) satisfies the usual technical conditions for asymp-
totic consistency and normality of MLE.

Ap.4 The sample jacobian matrix for equilibrium conditions % Zf\il Vo¥(z;,0) con-
verges uniformly in probability to its expected value if @ converges to 8.

Ap.5 Technical conditions for the asymptotic normality of v N + Zf\;l VoU(z;,0y) are
satisfied

Let

%0 =Var [lOg f(Y | Z,oo)], A() - E[Vg‘I’(Z,O())], Bg - E[\I'(Z,00)\I'(Z,00)’]
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Then, we have that:
~EL
VN@ -8, - N(0,0)
where Q= (So + A)By14g) "'

Proof:
The corresponding Lagrangian for the EL estimation problem is given by:

N N N N
L= logf(yi | 2::0)+ > logpi+ A1—> p;) — Nv' > pi¥(2;;0)
i=1 i=1 i=1 i=1

where X\ € R and v € R7 are Lagrange multipliers. First order conditions with respect to

p; yield:
L A— NV ¥(2;;0) =0
pi

multiplying both sides by p; and summing over ¢ yields

1
N(1+4v'¥(2;;80))

A=N, and p;= fori=1,..,N

Plugging back into the joint semi-empirical likelihood we get

N N
> log f(y; | 230) — > _log (1+v'¥(2;;6)) — Nlog N
i=1 =1

~BEL
6 and v satisfy the first order conditions:

N N
AEL 1 HEL VoU¥(zi;0 v
Sl,N W) = —= VGIng Yi | zla ) - N =0
N; ;N{l—i—u’\ll(zi;HEL)}
N ~EL
Son (0 AEL’ _ Z V(2,0 ) o

N1 (zi8 )

A first order Taylor series approximation around (8y,0) yields

0 S’?N Iy —Ay 5EL—00 —1/2
(0) (S T4y —Bw y eV

Where . v
Sty = N ;Vg log f(y: | 2i,00), S35 = ; N\Il(zi,c%)
| X
In=+ > Voo logf(yi | 2,00), An ZV(;‘I’ z;,00), Bn= Z‘I’ 2i,00)¥

i=1 i=1
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If the assumptions Ap.1-Ap.5 are satisfied, then:

In 29y, Ax 2 A4y, Bn -5 By

and
ggg:gLN(O,E), where Zz(%ﬂ 12())
Therefore
(W@EL—M)&MO @, e - (0 ) (0 0) (20 )"
VNv P Ao —By 0 By Ao —By

and so we get
~EL

VN

as we claimed. O

—80) -5 N(0, (So + 4By 49) V)

~EL
Including additional information about Z increases efficiency of

Suppose assumptions Ap.1-Ap.5 are satisfied and we also know that the population dis-
tribution of Z satisfies:

where () € R" and &y € R" is known.

Now suppose that we add the constraint Zf\;l pip(2;,€0) = 0 to the EL estimation.
Let Sg, Ay and By be the same as in the previous proof and let

Co = E[¥(Z,00)¢(Z,8)'] and D= E[p(Z,£0)0(Z,¢0)']

Then we have that
~EL

VN@ -8y 5 N(0,0)

where
0 = (So + A)B; " Ao + Ay By 1Co A CLB; 40) ™', 1o = Dy — CyBy'Cy

We have that Q is smaller (in the positive semidefinite sense) than Q because the matrix
At is the lower sub-matrix of the inverse variance-covariance matrix of ¥(Z,8,) and
©(Z,€p) and is therefore a positive definite matrix.

Proof:
Let v, be the vector of Lagrange multipliers associated with the constraint Zf\il pip(2i,€0) =
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0. The first order conditions for the estimation problem are now

1 & N Vol ( EEL)’
~EL Zi; v
Sl,N(o :Vautp) = N Zvo Ing Yi |Zl, Z ? -
i=1 i=1 N{l +v \I](Zz,o ) +V¢,<P(zia£0)}
N o aEL)
~EL zi,
5271\[(0 ,I/,llqo)EZ =0
i—1 N{1 —l—V’\I/(Zz,o ) + v,/ 0(2i,€0) }
~EL al (ziagﬂ)
5371\](0 ,I/,I/qo) = Z 0

1 N{1+ \I'(zz,o )—l—l/(p’sé’(zi,fo)} B

The result follows from a first-order Taylor series approximation around the point (60, 0,0)
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Appendix 2: Estimation results

TABLE 1
Empirical Likelihood estimates for strategic coefficients

(Standard errors in parentheses.)

1997 1998 1999

a; 44974 2.4887 5.3535
(1.2318) (0.7654) (1.2590)

s —4.4539 —3.20197 —5.6884
(1.3406) (0.9319) (1.3868)

71 32.8797 —27.7714 —16.8313
(129.7842)  (12.3511) (4.3046)

2 -4.0045  60.0549  38.4981
(129.6698)  (14.3920) (7.2893)
af  2.4630 1.1448 2.7582
(0.6452) (0.4503) (0.6651)

as  —2.4195 —1.8582  —3.0931
(0.7297) (0.5420) (0.7570)
v 31.0506  -2.5684  0.7332
(70.6443) (7.1888) (2.4752)

vy -2.1754  34.8519  20.9335
(70.4424) (8.3777) (3.9836)
af 20778 0.6304 2.2604
(0.5400) (0.3685) (0.5593)

ol  —2.0343 —1.3438 —2.5953
(0.6143) (0.3934) (0.6369)
vF 30.7043  7.0805 4.1020
(59.4655)  (5.6465) (2.4713)

vE o -1.8291 252030  17.5645
(59.2274) (6.0945) (3.3668)

o -0.6583  -0.6595  -0.67488
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TABLE 2
Empirical likelihood estimates for beliefs

(Standard errors in parentheses.)

1997 1998 1999
7wk 0.6569 05755 0.6392
(0.0145) (0.0173) (0.0168)
Toep 0.6174  0.4778  0.5891
(0.0162) (0.0203) (0.0185)
7L .. 0.0725 0.1027 0.0967
(0.0076) (0.0101) (0.0098)
w2, 0.0767 0.0829 0.0741
(0.0085) (0.0133) (0.0095)
nt 0.5432  0.5603 0.5437
(0.0107) (0.0125) (0.0122)
TABLE 3

Empirical likelihood estimates for private information variables

(Standard errors in parentheses.)

R&D Exit
1997 1998 1999 1997 1998 1999
q 0.0042  0.0038 0.0010 0.0014 0.00721  0.0039
(0.0031)  (0.0027)  (0.0011) (0.0031)  (0.0035)  (0.0017)
eps 0.0332  0.2989  0.1212 0.04852 0.1189  0.0375
(0.0211)  (0.0452)  (0.0361) (0.0247)  (0.0514)  (0.0506)
e 0.9296 —0.5382 -0.0114 3.5022  1.5967  2.3501
(0.3982)  (0.4546)  (0.3791) (1.6158)  (1.2578)  (1.1688)
Techsegment 0.17206 0.1649  0.2369 0.0855 —0.2435 0.1392
(0.0493)  (0.0601)  (0.0571) (0.0848)  (0.1103)  (0.0670)
Intangible assets  0.6498 -0.1973 -0.8397 NA NA NA
(0.4063)  (0.4380)  (0.3896) NA NA NA
hong torm debt NA NA NA  -0.1688 0.0862 —0.5210
NA NA NA (0.3246)  (0.3487)  (0.2061)
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Optimal Weights

Weights

4 Bra12E-04

4.B67511E-04

1997 Optimal Weights: Randomly Ordered Firms

4 Bra10E-04

4 B7509E-04

4.67505E-04

4.67507E-04

4.67506E-04

4.67505E-04

4.67512E-04 1

4.67511E-04

All firms randomly ordered

1997 Optimal Weights: Firms Ordered by Size

4 6Fa10E-04

4.67509E-04

| Ll

4.67505E-04

4.67507E-04

4 BFE06E-04

4 BFa05E-04

Small Firms Large Firms
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