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1 Envelope Theorem

e You now know how x7 varies if py varies.

e How does the function A vary at the optimum as pq
varies?

o Differentiate h(x](p1,p2), 25(p1,P2), P1,p2) with
respect to p1q :

dh(x7(p1,p2), x5(p1,P2), P1,D2)

dp1
Oh(x*,p) § Ox1(x*, p)
B Ox1 Op1

+5h(X*,P) . Ox3(x*, p)

O Op1

oh(x*

N (x*, p)

op1

e Can we say something about the first two terms?
They are zero!



e Envelope Theorem for unconstrained maximization.
Assume that you maximize function f(x; p) with re-
spect to x. Consider then the function f at the op-
timum, that is, f(x*(p),p). The total differential
of this function with respect to p; equals the partial
derivative with respect to p;:

df (x*(p),p) _ 0f(x*(p),P)
dp; B op; '

e You can disregard the indirect effects. Graphical in-
tuition.



2 Convexity and concavity

e Function f from C' C R™ to R is concave if

ftz + (1 —t)y) > tf(z) + (1 — 1) f(y)
for all z,y € C and for all t € [0, 1]

e Notice: C must be convex set, i.e., if x € C and
y € C, thentx + (1 —t)y € C, for t € [0,1]

e Function f from C' C R™ to R is strictly concave if

fltz+ (1 —t)y) > tf(z) + (1 —1)f(y)
for all z,y € C and for all t € (0, 1)

e Function f from R"™ to R is convex if — f is concave.



Alternative characterization of convexity.

A function f, twice differentiable, is concave if and
only if for all = the subdeterminants |H;| of the
Hessian matrix have the property |Hy| < 0, |Hp| >
0, |H3| <0, and so on.

For the univariate case, this reduces to f” < 0

For the bivariate case, this reduces to f;/, < 0 and

2
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A twice-differentiable function is strictly concave if
the same property holds with strict inequalities.



e Examples.

1. For which values of a, b, and cis f () = ax3 +
bxz? + cx + d is the function concave over R?
Strictly concave? Convex?

2. Is f (x,y) = —x? — y? concave?

e For Example 2, compute the Hessian matrix

_f:/c: 7fé:

o 7
x,r — STy

e "o
fy,x— Yy

— Hessian matrix H :

no_ "o
H:( e = r =
fy,x_ fy,y—

e Compute |H{| = f:g,x and [Hp| = f:g,x * Zl/lyy

()"
L,y



Why are convexity and concavity important?

Theorem. Consider a twice-differentiable concave
(convex) function over C C R™. If the point xg
satisfies the fist order conditions, it is a global max-
imum (minimum).

For the proof, we need to check that the second-
order conditions are satisfied.

These conditions are satisfied by definition of con-
cavity!

(We have only proved that it is a local maximum)



3 Constrained maximization

e Nicholson, Ch. 2, pp. 39-46

e So far unconstrained maximization on R (or open
subsets)

e What if there are constraints to be satisfied?

e Example 1: maxy yz * y subject to 3z 4y =5
e Substitute it in: maxgz y x * (5 — 3x)

e Solution: z* =

e Example 2: maxz y zy subject to z exp(y)+y exp(x) =
5

e Solution: 7



Graphical intuition on general solution.

Example 3: maxy o f(x,y) = x*xy s.t. h(z,y) =
2 +y2—1=0

Draw 0 = h(z,y) = ? + y° — 1.

Draw x * y = K with K > 0. Vary K

Where is optimum?

Where dy/dx along curve zy = K equals dy/dz
along curve 2 +y2 — 1 =0

Write down these slopes.



e ldea: Use implicit function theorem.
e Heuristic solution of system

max f(z,y)

s.t. h(z,y) =0

e Assume:

— continuity and differentiability of h

— hl, # 0 (or hly # 0)

e Implicit function Theorem: Express y as a function
of  (or x as function of y)!



Write system as maxg f(x, g(x))

fo.c: fo(z,9(x)) + fi(w, g(w)) + ) =

What is 8%—(@?
X

Substitute in and get: fy(x,g(x)) + fy(z, g(x)) *

(—h%/hy) =0 or
fz(, g(z))

fi(z,g(x))

_ hi(z, g(=))

hy(z, g(x))

=0



e Lagrange Multiplier Theorem, necessary condi-
tion. Consider a problem of the type

ZUlr,na,)én f (xla Ly eeny Ty p)

( hl (331, LDy eeuy L,y p) =0

ot 4 ho (x1, %2, ...,xn; p) =0

| hm (21,22, ...,zn;P) =0
with n > m. Let x* = x™(p) be a local solution to

this problem.

e Assume:
— f and h differentiable at x*

— the following Jacobian matrix at x* has maximal

rank
oh oh
J =
Oh Oh
—8xT(X*) 8x7:(x*)



e Then, there exists a vector A = (A1, ..., \m) such
that (x*, A) maximize the Lagrangean function

L(x,A) = f(x;p) — Y_ Ajhj(x;p)
j=0

e Casen=2,m=1.

e First order conditions are

of(xip) Oh(xip) _

0
8:132' 8:137;

fori =1,2

e Rewrite as
/ /
f:ljl hxl

frp i,



Constrained Maximization, Sufficient condition
for the case n =2, m = 1.

e If X* satisfies the Lagrangean condition, and the de-
terminant of the bordered Hessian

[0 —2h(xn) —ZA(xn) )

O%L 82L
H = 3331(}(*) 32$1(X*) 8:13285131( *)
oh 0°L 0°L
_G:UQ(X*) 89618582(}(*) OT>0x> (x*) /

is positive, then x* is a constrained maximum.

e If it is negative, then x™ is a constrained minimum.

e Why? This is just the Hessian of the Lagrangean L
with respect to A\, x1, and xo



Example 4: maxz y a;2—a:y—|—y2 s.t. a:2+y2 —p=20

maxg . A r? — xy + y° — >\(£U2 +y% - p)
F.o.c. with respect to x:
F.o.c. with respect to y:
F.o.c. with respect to A:
Candidates to solution?

Maxima and minima?



