Economics 101A (Lecture 3)

Stefano DellaVigna

September 6, 2005

Outline

1. Implicit Function Theorem

2. Envelope Theorem
3. Convexity and concavity
4. Constrained Maximization

1 Implicit function theorem

- Implicit function: Ch. 2, pp. 32-33 [OLD, 32-34]
- Multivariate implicit function theorem (Dini): Consider a set of equations $\left(f_{1}\left(p_{1}, \ldots, p_{n} ; x_{1}, \ldots, x_{s}\right)=\right.$ $\left.0 ; \ldots ; f_{s}\left(p_{1}, \ldots, p_{n} ; x_{1}, \ldots, x_{s}\right)=0\right)$, and a point (p_{0}, x_{0}) solution of the equation. Assume:

1. f_{1}, \ldots, f_{s} continuous and differentiable in a neighbourhood of $\left(p_{0}, x_{0}\right)$;
(a) The following Jakobian matrix $\frac{\partial \mathbf{f}}{\partial \mathbf{x}}$ evaluated at (p_{0}, x_{0}) has determinant different from 0 :

$$
\frac{\partial \mathbf{f}}{\partial \mathbf{x}}=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & & \frac{\partial f_{1}}{\partial x_{s}} \\
\dddot{ } & \cdots & \dddot{{ }_{x}} \\
\frac{\partial f_{s}}{\partial x_{1}} & \cdots & \frac{\partial f_{s}}{\partial x_{s}}
\end{array}\right)
$$

- Then:

1. There is one and only set of functions $x=\mathbf{g}(p)$ defined in a neighbourhood of p_{0} that satisfy $\mathbf{f}(p, \mathbf{g}(p))=\mathbf{0}$ and $\mathbf{g}\left(p_{0}\right)=x_{0} ;$
2. The partial derivative of x_{i} with respect to p_{k} is

$$
\frac{\partial g_{i}}{\partial p_{k}}=-\frac{\operatorname{det}\left(\frac{\partial\left(f_{1}, \ldots, f_{s}\right)}{\partial\left(x_{1}, \ldots x_{i-1}, p_{k}, x_{i+1} \cdots, x_{s}\right)}\right)}{\operatorname{det}\left(\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right)}
$$

- Example 2 (continued): $\operatorname{Max} h\left(x_{1}, x_{2}\right)=p_{1} * x_{1}^{2}+$ $p_{2} * x_{2}^{2}-2 x_{1}-5 x_{2}$
- f.o.c. $x_{1}: 2 p_{1} * x_{1}-2=0=f_{1}(p, x)$
- f.o.c. $x_{2}: 2 p_{2} * x_{2}-5=0=f_{2}(p, x)$
- Comparative statics of x_{1}^{*} with respect to p_{1} ?
- First compute $\operatorname{det}\left(\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right)$

$$
\left(\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}}
\end{array}\right)=(
$$

- Then compute $\operatorname{det}\left(\frac{\partial\left(f_{1}, \ldots, f_{s}\right)}{\partial\left(x_{1}, \ldots x_{i-1}, p_{k}, x_{i+1} \ldots, x_{s}\right)}\right)$

$$
\left(\begin{array}{ll}
\frac{\partial f_{1}}{\partial p_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\
\frac{\partial f_{2}}{\partial p_{1}} & \frac{\partial f_{2}}{\partial x_{2}}
\end{array}\right)=(
$$

- Finally, $\frac{\partial x_{1}}{\partial p_{1}}=$
- Why did you compute $\operatorname{det}\left(\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right)$ already?

2 Envelope Theorem

- Ch. 2, pp. 33-37 [OLD, 34-39]
- You now know how x_{1}^{*} varies if p_{1} varies.
- How does $h\left(\mathbf{x}^{*}(\mathbf{p})\right)$ vary as p_{1} varies?
- Differentiate $h\left(x_{1}^{*}\left(p_{1}, p_{2}\right), x_{2}^{*}\left(p_{1}, p_{2}\right), p_{1}, p_{2}\right)$ with respect to p_{1} :

$$
\begin{aligned}
& \frac{d h\left(x_{1}^{*}\left(p_{1}, p_{2}\right), x_{2}^{*}\left(p_{1}, p_{2}\right), p_{1}, p_{2}\right)}{d p_{1}} \\
= & \frac{\partial h\left(\mathbf{x}^{*}, \mathbf{p}\right)}{\partial x_{1}} * \frac{\partial x_{1}^{*}\left(\mathbf{x}^{*}, \mathbf{p}\right)}{\partial p_{1}} \\
& +\frac{\partial h\left(\mathbf{x}^{*}, \mathbf{p}\right)}{\partial x_{2}} * \frac{\partial x_{2}^{*}\left(\mathbf{x}^{*}, \mathbf{p}\right)}{\partial p_{1}} \\
& +\frac{\partial h\left(\mathbf{x}^{*}, \mathbf{p}\right)}{\partial p_{1}}
\end{aligned}
$$

- The first two terms are zero.
- Envelope Theorem for unconstrained maximization. Assume that you maximize function $f(\mathbf{x} ; \mathbf{p})$ with respect to x. Consider then the function f at the optimum, that is, $f\left(\mathbf{x}^{*}(\mathbf{p}), \mathbf{p}\right)$. The total differential of this function with respect to p_{i} equals the partial derivative with respect to p_{i} :

$$
\frac{d f\left(\mathbf{x}^{*}(\mathbf{p}), \mathbf{p}\right)}{d p_{i}}=\frac{\partial f\left(\mathbf{x}^{*}(\mathbf{p}), \mathbf{p}\right)}{\partial p_{i}}
$$

- You can disregard the indirect effects. Graphical intuition.

3 Convexity and concavity

- Function f from $C \subset R^{n}$ to R is concave if

$$
f(t x+(1-t) y) \geq t f(x)+(1-t) f(y)
$$

for all $x, y \in C$ and for all $t \in[0,1]$

- Notice: C must be convex set, i.e., if $x \in C$ and $y \in C$, then $t x+(1-t) y \in C$, for $t \in[0,1]$
- Function f from $C \subset R^{n}$ to R is strictly concave if

$$
f(t x+(1-t) y)>t f(x)+(1-t) f(y)
$$

for all $x, y \in C$ and for all $t \in(0,1)$

- Function f from R^{n} to R is convex if $-f$ is concave.
- Alternative characterization of convexity.
- A function f, twice differentiable, is concave if and only if for all x the subdeterminants $\left|H_{i}\right|$ of the Hessian matrix have the property $\left|H_{1}\right| \leq 0,\left|H_{2}\right| \geq$ $0,\left|H_{3}\right| \leq 0$, and so on.
- For the univariate case, this reduces to $f^{\prime \prime} \leq 0$
- For the bivariate case, this reduces to $f_{x, x}^{\prime \prime} \leq 0$ and $f_{x, x}^{\prime \prime} * f_{y, y}^{\prime \prime}-\left(f_{x, y}^{\prime \prime}\right)^{2} \geq 0$
- A twice-differentiable function is strictly concave if the same property holds with strict inequalities.
- Examples.

1. For which values of a, b, and c is $f(x)=a x^{3}+$ $b x^{2}+c x+d$ is the function concave over R ? Strictly concave? Convex?
2. Is $f(x, y)=-x^{2}-y^{2}$ concave?

- For Example 2, compute the Hessian matrix

$$
\begin{array}{ll}
-f_{x}^{\prime}= & , f_{y}^{\prime}= \\
-f_{x, x}^{\prime \prime}= & , f_{x, y}^{\prime \prime}= \\
-f_{y, x}^{\prime \prime}= & , f_{y, y}^{\prime \prime}=
\end{array}
$$

- Hessian matrix H :

$$
H=\left(\begin{array}{ll}
f_{x}^{\prime \prime}= & f_{x}^{\prime \prime}, y= \\
f_{y, x}^{\prime \prime}= & f_{y, y}^{\prime \prime}=
\end{array}\right.
$$

- Compute $\left|H_{1}\right|=f_{x, x}^{\prime \prime}$ and $\left|H_{2}\right|=f_{x, x}^{\prime \prime} * f_{y, y}^{\prime \prime}-$ $\left(f_{x, y}^{\prime \prime}\right)^{2}$
- Why are convexity and concavity important?
- Theorem. Consider a twice-differentiable concave (convex) function over $C \subset R^{n}$. If the point \mathbf{x}_{0} satisfies the fist order conditions, it is a global maximum (minimum).
- For the proof, we need to check that the secondorder conditions are satisfied.
- These conditions are satisfied by definition of concavity!
- (We have only proved that it is a local maximum)

4 Constrained maximization

- Ch. 2, pp. 38-44 [OLD, 39-46]
- So far unconstrained maximization on R (or open subsets)
- What if there are constraints to be satisfied?
- Example 1: $\max _{x, y} x * y$ subject to $3 x+y=5$
- Substitute it in: $\max _{x, y} x *(5-3 x)$
- Solution: $x^{*}=$
- Example 2: $\max _{x, y} x y$ subject to $x \exp (y)+y \exp (x)=$ 5
- Solution: ?
- Graphical intuition on general solution.
- Example 3: $\max _{x, y} f(x, y)=x * y$ s.t. $h(x, y)=$ $x^{2}+y^{2}-1=0$
- Draw $0=h(x, y)=x^{2}+y^{2}-1$.
- Draw $x * y=K$ with $K>0$. Vary K
- Where is optimum?
- Where $d y / d x$ along curve $x y=K$ equals $d y / d x$ along curve $x^{2}+y^{2}-1=0$
- Write down these slopes.
- Idea: Use implicit function theorem.
- Heuristic solution of system

$$
\begin{aligned}
& \max _{x, y} f(x, y) \\
& \text { s.t. } h(x, y)=0
\end{aligned}
$$

- Assume:
- continuity and differentiability of h
$-h_{y}^{\prime} \neq 0\left(\right.$ or $\left.h_{x}^{\prime} \neq 0\right)$
- Implicit function Theorem: Express y as a function of x (or x as function of y)!
- Write system as $\max _{x} f(x, g(x))$
- f.o.c.: $f_{x}^{\prime}(x, g(x))+f_{y}^{\prime}(x, g(x)) * \frac{\partial g(x)}{\partial x}=0$
- What is $\frac{\partial g(x)}{\partial x}$?
- Substitute in and get: $f_{x}^{\prime}(x, g(x))+f_{y}^{\prime}(x, g(x)) *$ $\left(-h_{x}^{\prime} / h_{y}^{\prime}\right)=0$ or

$$
\frac{f_{x}^{\prime}(x, g(x))}{f_{y}^{\prime}(x, g(x))}=\frac{h_{x}^{\prime}(x, g(x))}{h_{y}^{\prime}(x, g(x))}
$$

- Lagrange Multiplier Theorem, necessary condition. Consider a problem of the type

$$
\begin{gathered}
\max _{x_{1}, \ldots, x_{n}} f\left(x_{1}, x_{2}, \ldots, x_{n} ; \mathbf{p}\right) \\
\text { s.t. } \quad\left\{\begin{array}{c}
h_{1}\left(x_{1}, x_{2}, \ldots, x_{n} ; \mathbf{p}\right)=0 \\
h_{2}\left(x_{1}, x_{2}, \ldots, x_{n} ; \mathbf{p}\right)=0 \\
\ldots \\
h_{m}\left(x_{1}, x_{2}, \ldots, x_{n} ; \mathbf{p}\right)=0
\end{array}\right.
\end{gathered}
$$

with $n>m$. Let $\mathbf{x}^{*}=\mathbf{x}^{*}(\mathbf{p})$ be a local solution to this problem.

- Assume:
- f and h differentiable at x^{*}
- the following Jacobian matrix at \mathbf{x}^{*} has maximal rank

$$
J=\left(\begin{array}{ccc}
\frac{\partial h_{1}}{\partial x_{1}}\left(\mathbf{x}^{*}\right) & \ldots & \frac{\partial h_{1}}{\partial x_{n}}\left(\mathbf{x}^{*}\right) \\
\ldots & \ldots & \ldots \\
\frac{\partial h_{m}}{\partial x_{1}}\left(\mathbf{x}^{*}\right) & \ldots & \frac{\partial h_{m}}{\partial x_{n}}\left(\mathbf{x}^{*}\right)
\end{array}\right)
$$

- Then, there exists a vector $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ such that $\left(\mathrm{x}^{*}, \boldsymbol{\lambda}\right)$ maximize the Lagrangean function

$$
L(\mathbf{x}, \boldsymbol{\lambda})=f(\mathbf{x} ; \mathbf{p})-\sum_{j=0}^{m} \lambda_{j} h_{j}(\mathbf{x} ; \mathbf{p})
$$

- Case $n=2, m=1$.
- First order conditions are

$$
\frac{\partial f(\mathbf{x} ; \mathbf{p})}{\partial x_{i}}-\lambda \frac{\partial h(\mathbf{x} ; \mathbf{p})}{\partial x_{i}}=0
$$

for $i=1,2$

- Rewrite as

$$
\frac{f_{x_{1}}^{\prime}}{f_{x_{2}}^{\prime}}=\frac{h_{x_{1}}^{\prime}}{h_{x_{2}}^{\prime}}
$$

Constrained Maximization, Sufficient condition for the case $n=2, m=1$.

- If x^{*} satisfies the Lagrangean condition, and the determinant of the bordered Hessian

$$
H=\left(\begin{array}{ccc}
0 & -\frac{\partial h}{\partial x_{1}}\left(\mathrm{x}^{*}\right) & -\frac{\partial h}{\partial x_{2}}\left(\mathrm{x}^{*}\right) \\
-\frac{\partial h}{\partial x_{1}}\left(\mathrm{x}^{*}\right) & \left.\frac{\partial^{2} L}{\partial^{2} x_{1}} \mathrm{x}^{*}\right) & \frac{\partial^{2} L}{\partial x^{2} \partial x_{1}}\left(\mathrm{x}^{*}\right) \\
-\frac{\partial h}{\partial x_{2}}\left(\mathrm{x}^{*}\right) & \frac{\partial^{2} L}{\partial x_{1} \partial x_{2}}\left(\mathrm{x}^{*}\right) & \frac{\partial^{2} L}{\partial x_{2} \partial x_{2}}\left(\mathrm{x}^{*}\right)
\end{array}\right)
$$

is positive, then x^{*} is a constrained maximum.

- If it is negative, then x^{*} is a constrained minimum.
- Why? This is just the Hessian of the Lagrangean L with respect to λ, x_{1}, and x_{2}
- Example 4: $\max _{x, y} x^{2}-x y+y^{2}$ s.t. $x^{2}+y^{2}-p=0$
- $\max _{x, y, \lambda} x^{2}-x y+y^{2}-\lambda\left(x^{2}+y^{2}-p\right)$
- F.o.c. with respect to x :
- F.o.c. with respect to y :
- F.o.c. with respect to λ :
- Candidates to solution?
- Maxima and minima?

5 Next Class

- Next class:
- Envelope Theorem II
- Preferences
- Utility Maximization (where we get to apply maximization techniques the first time)

