Econ 101A Midterm 1

Instructor: Stefano DellaVigna

Th 28 September 2006

Do not turn page unless instructed to.

Econ 101A – Midterm 1 Th 28 September 2006.

You have approximately 1 hour and 20 minutes to answer the questions in the midterm. Adriana and Suresh will collect the exams at 11.00 sharp. Show your work, and good luck!

Problem 1. Quasi-linear utility for leisure. (55 points) Martha is deciding how many hours of leisure l she should take on a typical day, and how much she should consume. Martha's utility function is $u(c, l) = \alpha c + \phi(l)$, where $\phi(l)$ is a function satisfying $\phi'(l) > 0$ and $\phi''(l) < 0$. Assume $\alpha > 0$. The consumption good c has price 1.

- 1. Compute the marginal utility of consumption $\partial u(c, l) / \partial c$ and of leisure $\partial u(c, l) / \partial l$. What is the special feature of this utility function? (3 points)
- 2. Martha maximizes u(c, l) subject to a budget constraint. Martha starts the period with income M, and earns w > 0 for each hour h worked. Every hour of work is subtracted from leisure, so l = 24 h. Write down the budget constraint as a function of c and l. Justify the steps. (4 points)
- 3. Write down the maximization problem of Martha that wants to achieve the highest utility subject to the budget constraint. Martha maximizes with respect to c and l. Write down the boundary constraints for c and l, and neglect them from now on. (3 points)
- 4. Assuming that the budget constraint holds with equality, write down the Lagrangean and derive the first order conditions with respect to c, l, and λ . (2 points)
- 5. Solve for λ^* as a function of the parameters, α, M, w . What does λ^* depend on? (3 points)
- 6. Use the envelope function for constrained maximization to show that λ^* equals $\partial v(\alpha, M, w)/\partial M$, that is, λ represents the marginal utility of wealth. Remember, $v(\alpha, M, w)$ is the indirect utility function, that is, $v(\alpha, M, w) = u(c^*(\alpha, M, w), l^*(\alpha, M, w))$. [Note: You will not need to explicitly solve for c^* and l^* to do this] (6 points)
- 7. Combine 5 and 6 to solve for $\partial v(\alpha, M, w)/\partial M$. Why is this the case? Relate this to your answer in point 1, providing as much intuition as you can. (4 points)
- 8. Going back to the maximization problem, plug the value of λ^* into the first order condition for l. Use the condition you obtain to derive the comparative statics of leisure with respect to income M $(\partial l^*(\alpha, M, w) / \partial M)$ and wage $(\partial l^*(\alpha, M, w) / \partial w)$. What is the sign of these derivatives? [You will need the implicit function theorem for at least one of these] (5 points)
- 9. Given that M and w are both sources of earnings, why is the effect of changes on M and w on l^* so different? Provide as detailed an answer as you can. Give economic intuition. (7 points)
- 10. Now provide an equation that denotes the solution for $c^*(\alpha, M, w)$. [It may be helpful to define $\omega(.) = (\phi')^{-1}(.)$ as the inverse function of $\phi'(.)$]. Could you run into problems with the non-negativity constraints for c^* and l^* ? Can you give an example of values of α, M , and w such that you do violate non-negativity? (5 points)
- 11. (Harder) What is the solution if the non-negativity constraints are violated? (6 points)
- 12. We forgot the second order conditions! Compute the Bordered Hessian and check that the sufficient conditions for an optimum are satisfied. (7 points)

Problem 2. Preferences. (25 points)

- 1. Consider a preference relation \succeq with the properties of completeness and transitivity. Define what we mean by completeness and transitivity of a relation. (3 points)
- 2. As we discussed in class, a preference relation \succeq defines the indifference relation \sim as follows: $x \sim y$ if and only if $x \succeq y$ and $y \succeq x$. Here comes the question: If \succeq is complete and transitive, does this imply that the relation \sim is complete? Provide a proof or, if the statement is false, an example to the contrary (6 points)
- 3. If ≿ is complete and transitive, does it imply that ~ is transitive? Provide a proof or, if the statement is false, an example to the contrary (3 points)
- 4. Andrew is religious and believe in meditation. He is detached from material things, but values prayer and meditation highly. As he states his preferences, "I like meditation, I would always rather always do more of it, and am completely indifferent as to the consumption of material goods". Denote by m the number of hours of mediations, and by c the quantity of material good consumed. We can translate these preferences as follows. When comparing two bundles x and y, with $x = (m_x, c_x)$ and $y = (m_y, c_y)$, Andrew's preferences are such that $x \succeq y$ if and only if $m_x \ge m_y$. Provide the intuition for why this is the case and plot indifference curves in the two-dimensional space (m, c). (3 points)
- 5. Are these preferences monotonic? Are they strictly monotonic? Argue the answer, and define the terms used. (4 points)
- 6. Are these preferences convex? Are they continuous? Argue the answer, and define the terms used. (6 points)