
Econ 101A — Problem Set 3
Due in class on Th 12 March. No late Problem Sets accepted, sorry!

This Problem set tests the knowledge that you accumulated mainly in lectures 10 to 13, but it builds on
the work of the previous weeks. It is focused on choice under uncertainy and time-inconsistency. General
rules for problem sets: show your work, write down the steps that you use to get a solution (no credit for
right solutions without explanation), write legibly. If you cannot solve a problem fully, write down a partial
solution. We give partial credit for partial solutions that are correct. Do not forget to write your name on
the problem set!

Problem 1. Relative and Absolute Risk aversion (6 points) In class we introduced the concepts of
relative and absolute risk aversion, but we have not used them. This exercise introduces you to two useful
classes of utility functions.

1. Consider the exponential utiliy function − exp (−ρc) . Show that it is increasing (u0 > 0) and concave
(u00 < 0) for all c as long as ρ > 0, that is, as long as the agent is risk-averse. Show that this function
has constant absolute risk aversion coefficient rA given by ρ. (2 points)

2. Consider the power utiliy function c1−ρ
1−ρ for ρ 6= 1. Show that it is increasing (u0 > 0) and concave

(u00 < 0) for all c > 0 as long as ρ > 0. Show that this function has constant relative risk aversion
coefficient rR given by ρ. (2 points)

3. Consider the log utility function ln (c) . Show that it is increasing (u0 > 0) and concave (u00 < 0) for all
c > 0. Show that this function has constant relative risk aversion coefficient rR equal to 1. (in fact, it
is possibile to show limρ→1 c1−ρ−1

1−ρ = ln (c) — you are not required to prove this) (2 points).

Problem 2. Investment in Risky Asset (26 points) We consider here a standard problem of in-
vestment in risky assets, similar to the one that we covered in class. The agent can invest in bonds or
stocks. Bonds have a return r > 0. (in class we asumed r = 0) Stocks have a stochastic return, r+ > r
with probability p, and r− < r with probability 1− p. In expectations, the stocks outperform bonds, that is,
pr+ + (1− p) r− > r. The agent has income w and utility function u, with u0 (x) > 0 and u00 (x) < 0 for all
x. The agents wants to decide the optimal share α of his wealth to invest in stocks. The agent maximizes

max
α
(1− p)u (w [(1− α) (1 + r) + α (1 + r−)]) +

+pu (w [(1− α) (1 + r) + α (1 + r+)])

s.t.0 ≤ α ≤ 1
or, after some semplification,

max
α
(1− p)u (w [1 + r + α (r− − r)]) + pu (w [1 + r + α (r+ − r)])

s.t.0 ≤ α ≤ 1
1. Assume that the solution is interior and write down the first order conditions for this problem with
respect to α. (1 point)

2. Write down the second order condition. Is it satisfied? (3 points)

3. Use the first order conditions to derive the comparative statics of α∗ with respect to w. Use the implicit
function theorem to write down ∂α∗/∂w. (this is a long expression — sorry!) (4 points)

4. What is the sign of the denominator? You have checked this already. Where? (3 points)
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5. Argue that, given your answer to point 4, the sign of ∂α∗/∂w is given by the sign of the numerator.
Simplify the numerator using the first order conditions. Once you do this simplification, you should
get the following expression for the numerator:

(1− p)w (r− − r) [1 + r + α (r− − r)]u00 (w [1 + r + α (r− − r)]) +

+pw (r+ − r) [1 + r + α (r+ − r)]u00 (w [1 + r + α (r+ − r)]) .

(4 points) Now, let me do one piece of the argument for you. We are interested in the sign of this
expression, since it coincides with the sign of ∂α∗/∂w. We can rewrite it as

(1− p) (r− − r)u0 (w [1 + r + α (r− − r)])

½
u00 (w [1 + r + α (r− − r)])

u0 (w [1 + r + α (r− − r)])
w [1 + r + α (r− − r)]

¾
+(1)

+p (r+ − r)u0 (w [1 + r + α (r− − r)])

½
u00 (w [1 + r + α (r+ − r)])

u0 (w [1 + r + α (r+ − r)])
w [1 + r + α (r+ − r)]

¾
.

All we did was to multiply and divide by u0 (w [1 + r + α (r− − r)]) in the first half of the expression
and by u0 (w [1 + r + α (r+ − r)]) in the second half.

6. Your turn again. What are the expressions in curly brackets? They should be familiar to you. Show
that for a power utility function c1−ρ

1−ρ the two expressions in curly brackets are both equal to −ρ (you
can use point 2 in the previous problem). Using this nice result, rewrite expression (1) substituting
the two expressions in curly brackets with −ρ (4 points)

7. Consider the simplified expression (1) where you substituted −ρ for the curly brackets. Argue, using
the first order conditions, that the resulting expression is in fact equal to zero! Now, if you go back
and look at the steps of this exercise, you will realize that you have proven the following important
result: With power utility function, the ratio of wealth invested in stocks (α) is independent of wealth
w, i.e., ∂α/∂w = 0. Therefore, the model predicts that individuals earning $20,000 should invest the
same fraction of their earnings in stocks as individuals earning $100,000. (3 points)

8. How would you test the above prediction? What would you expect to find? (4 points)

Problem 3. Time inconsistent preferences. (35 points) In this exercise, we reconsider the topic of
choice over time, with the twist that consumers have time-inconsistent preferences, as introduced in lecture
14. We assume three periods, t = 0, t = 1, and t = 2. We will call this time-inconsistent agent Tim. To
make things simpler, assume that Tim only receives income in period 0, that is, M0 > 0, M1 = M2 = 0.
He earns per-period interest r on each dollar saved. We denote M 0

1 the income saved from period 1, i.e,
M 0
1 = (1 + r) (M0 − c0) . Similarly, M 0

2 = (1 + r) (M 0
1 − c1) . We assume that in period t Tim has utility

function

u (ct, ct+1, ct+2) = ln(ct) +
β

1 + δ
ln(ct+1) + β

µ
1

1 + δ

¶2
ln(ct+2).

To make things clearer, imagine that c is ice cream, and that Tim has an immediate gratification problems
with ice cream. If he can consume ice cream, he will eat too much, and leave too little income saved for the
future. This is what the case β < 1 captures.

1. In this sort of intertemporal problems, you need to start from the last period and work backward. In
period 2 Tim receives M 0

2 in income. How much ice cream will Tim consume in period 2? [Remember,
period 2 is the last period, any ice cream that the agent does not consume in the last period is wasted.
Therefore, the agent maximizes ln (c2) s.t. c2 ≤M 0

2.] (1 point)

2. Let us now go back to period 1. In period 1 Tim has incomeM 0
1 and has to decide how much ice cream

to consume, and how much money to save for period 2. Argue that this leads to the budget constraint

c1 +
c2
1 + r

≤M 0
1.

(3 points)
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3. Now that we have derived the budget constraint, consider the maximization problem of Tim in period
1:

max
c1,c2

ln(c1) +
β

1 + δ
ln(c2) (2)

s.t. c1 +
c2
1 + r

≤M 0
1.

In this case, the easiest way to solve the problem is to solve for c2 in the budget constraint (which is
satisfied with equality), plug it into the objective function, and then maximize the objective function
with respect to c1. Once you find the solution for c∗1, use the budget constraint to obtain c∗2. If you
prefer, you can alternatively use the Lagrangean system. You will get the same result, if you do the
calculations right! What are the solutions for c∗1 and c∗2 as a function of M 0

1, r, δ, and β? (5 points)

4. We now consider several features of this solution. Are you surprised that c∗1 is independent of r?What
does this tell you about the strength of the income and substitution effect? Explain in words the
income and substitution effects of a change in r on c∗1. (no math here) (4 points)

5. What is the effect on c∗1 and c∗2 of an increase in impatience δ? Is it reasonable? (3 points)

6. What is the effect on c∗1 and c∗2 of an increase in β? Remember that higher β is associated with less
time-inconsistency, i.e., less taste for immediate gratification? Does it make sense that qualitatively
an increase in δ has the same effects as a decrease in β? (4 points)

7. Now we go back to period 0. Suppose that Tim, at time 0, could decide already the ice cream con-
sumption of the future selves. In other words, he has a commitment device: for example, he may ask
his friends at time 0 to perpetually make fun of him if he consumes more than a predetermined level
of ice cream. What quantity of consumption would Tim decide for periods 1 and 2 as a function of
M 0
1? Here is how we solve this problem. Consider the utility function at time 0:

ln(c0) +
β

1 + δ
ln(c1) + β

µ
1

1 + δ

¶2
ln(c2).

Tim maximizes this utility function subject to the budget constraint c1+ c2
1+r ≤M 0

1. In addition, Tim
is taking the choice of c0 for given, at least for now. The terms with c0 drop out. The maximization
problem therefore is:

max
c1,c2

β

1 + δ
ln(c1) + β

µ
1

1 + δ

¶2
ln(c2)

s.t. c1 +
c2
1 + r

≤M 0
1.

Notice the similarity to the maximization problem in (2). As in point 3, solve for c2 in the budget
constraint (which is satisfied with equality), and plug it into the objective function, and then maximize
the objective function with respect to c1.We label the solution for c1 c

∗,c
1 , that is the level of c1 chosen

with commitment. Once you find the solution for c∗,c1 , use the budget constraint to obtain c∗,c2 . What
are the solutions for c∗,c1 and c∗,c2 as a function of M 0

1, r, δ, and β? (5 points)

8. This is the key part of the exercise. You should now compare the solutions to point 7 and the solutions
to point 3. Are they equal? No! They are different precisely because of the time inconsistency. Show
that, however, they coincide (c∗1 = c∗,c1 ) for β = 1. That is, when there is no time inconsistency (β = 1),
the solutions with and without commitment are the same. (3 points)

9. Show that c∗,c1 < c∗1. Why is this the case? (3 points)

10. Argue, formally or informally, that Tim at time 0 is happier with commitment (that is, with c∗,c1 and
c∗,c2 ) than without commitment (with c∗1 and c∗2). (4 points)
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