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1 Cost Minimization: Example II

• Continue example above: y = f (L,K) = AKαLβ

• Cost minimization:
minwL+ rK

s.t.AKαLβ = y

• Solutions:

— Optimal amount of labor:
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— Optimal amount of capital:

K∗ (r, w, y) =
w

r

α

β

µ
y

A

¶ 1
α+β

Ã
w

r

α

β

!− α
α+β

=

=
µ
y

A

¶ 1
α+β

Ã
w

r

α

β

! β
α+β



• Check various comparative statics:

— ∂L∗/∂A < 0 (technological progress and unem-
ployment)

— ∂L∗/∂y > 0 (more workers needed to produce
more output)

— ∂L∗/∂w < 0, ∂L∗/∂r > 0 (substitute away
from more expensive inputs)

• Parallel comparative statics for K∗



• Cost function
c (w, r, y) = wL∗ (r, w, y) + rK∗ (r, w, y) =
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• Cost-minimizing output choice:

max py −B
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• First order condition:
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• Second order condition:
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• When is the second order condition satisfied?



• Solution:

— α+ β = 1 (CRS):

∗ S.o.c. equal to 0

∗ Solution depends on p

∗ For p > 1
α+β
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∗ → ∞

∗ For p = 1
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— α+ β > 1 (IRS):

∗ S.o.c. positive

∗ Solution of f.o.c. is a minimum!

∗ Solution is y∗ → ∞.

∗ Keep increasing production since higher pro-
duction is associated iwth higher returns



— α+ β < 1 (DRS):

∗ s.o.c. negative. OK!

∗ Solution of f.o.c. is an interior optimum

∗ This is the only "well-behaved" case under per-
fect competition

∗ Here can define a supply function



2 Cost Curves

• Nicholson, Ch. 10, pp. 330-338; Ch. 11, pp. 365-
369 (Ch. 8, pp. 220—228; Ch. 9, pp. 256—259,
9th)

• Marginal costsMC = ∂c/∂y → Cost minimization

p =MC = ∂c (w, r, y) /∂y

• Average costs AC = c/y → Does firm break even?

π = py − c (w, r, y) > 0 iff

π/y = p− c (w, r, y) /y > 0 iff

c (w, r, y) /y = AC < p

• Supply function. Portion of marginal cost MC
above average costs.(price equals marginal cost)



• Assume only 1 input (expenditure minimization is
trivial)

• Case 1. Production function. y = Lα

— Cost function? (cost of input is w):

c (w, y) = wL∗(w, y) = wy1/α

— Marginal cost?

∂c (w, y)

∂y
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— Average cost c (w, y) /y?

c (w, y)

y
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y
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• Case 1a. α > 1. Plot production function, total
cost, average and marginal. Supply function?

• Case 1b. α = 1. Plot production function, total
cost, average and marginal. Supply function?

• Case 1c. α < 1. Plot production function, total
cost, average and marginal. Supply function?



• Case 2. Non-convex technology. Plot production
function, total cost, average and marginal. Supply
function?

• Case 3. Technology with setup cost. Plot produc-
tion function, total cost, average and marginal. Sup-
ply function?



2.1 Supply Function

• Supply function: y∗ = y∗ (w, r, p)

• What happens to y∗ as p increases?

• Is the supply function upward sloping?

• Remember f.o.c:
p− c0y (w, r, y) = 0

• Implicit function:
∂y∗
∂p

= − 1

−c00y,y (w, r, y)
> 0

as long as s.o.c. is satisfied.

• Yes! Supply function is upward sloping.



3 One-step Profit Maximization

• Nicholson, Ch. 11, pp. 374-380 (Ch. 9, pp. 265—
270, 9th)

• One-step procedure: maximize profits

• Perfect competition. Price p is given

— Firms are small relative to market

— Firms do not affect market price pM

— Will firm produce at p > pM?

— Will firm produce at p < pM?

— =⇒ p = pM



• Revenue: py = pf (L,K)

• Cost: wL+ rK

• Profit pf (L,K)− wL− rK



• Agent optimization:
max
L,K

pf (L,K)−wL− rK

• First order conditions:
pf 0L (L,K)−w = 0

and

pf 0K (L,K)− r = 0

• Second order conditions? pf 00L,L (L,K) < 0 and
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• Need f 00L,K not too large for maximum



• Comparative statics with respect to to p, w, and r.

• What happens if w increases?
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• Sign of ∂L∗/∂r depends on f 00L,K.



4 Next Lecture

• Aggregation

• Market Equilibrium

• Comparative Statics of Equilibrium


