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Abstract

If firm sizes have a small dispersion, idiosyncratic firm-level shocks
lead to negligible aggregate fluctuations. This has led economists to
appeal to macroeconomic (sectoral or aggregate shocks) shocks to ex-
plain aggregate fluctuations. However, the empirical distribution of
firms is fat-tailed. This paper shows how, in a world with fat-tailed firm
size distribution, idiosyncratic firm-level fluctuations aggregate up to
non-trivial aggregate fluctuations. We illustrate why and how this hap-
pens, and contend that aggreage fluctuations come in large part from
idiosyncratic shocks to firms. We show empirically that idiosyncratic
volatility is indeed large enough to account for GDP volatility.This
“granular” hypothesis suggests new directions for macroeconomic re-
search, in particular that macroeconomic questions will be clarified by
looking at the behavior of large firms. This mechanism might be use-
ful understanding the fluctuations of many aggregate quantities, such
as business cycle fluctuations, inventories, inflation, short or long run
movements in productivity, and the current account.
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1 Introduction

This paper proposes a simple origin for aggregate shocks. It will develop the
view that a large part of aggregate shocks comes from idiosyncratic shocks to
individual firms. It will also argue that this approach sheds light on a number
of issues that are difficult to address in models that postulate aggregate
shocks. Though economy-wide shocks (inflation, wars, policy shocks) are
no doubt important, they have a difficulty explaining most fluctuations.
Often, the explanation for quarter-to-quarter jumps of aggregate quantities
is elusive. On the other hand, there is a host of anecdotal evidence for
important idiosyncratic shocks. For instance, the McKinsey Institute (2001)
estimates that in 1995-1999, 1/6 of the increase in productivity growth of
the whole U.S. economy was due to one firm, Wal-Mart1. Likewise, shocks
to GDP may stem from a variety of events such as a success by Nokia, the
difficulties of a Japanese bank, new sales by Boeing, a new chip by Intel,
and a downsizing at Nestlé.

Idiosyncratic shocks aggregate to non-trivial shocks, because modern
economies have many large firms. For instance, in the US, the sales of the
top 20 firms account for about 20% of total US GDP. In Japan, the top 10
firms account for 35% of the exports. There is a systematic structure in this
high concentration. The firm size distribution can be described by a power
law (Ijiri and Simon 1977, Okuyama et al. 1999, Axtell 2001). Economies
with a power law distribution have a host of small firms, and a few very
large ones. This structure will be useful to derive tractable, clean models.

This hypothesis, that idiosyncratic shocks generate aggregate shocks,
offers a microfoundation for the “aggregate shocks” of real business cycle
models. Hence real business cycle shocks are not, at heart, mysterious “ag-
gregate productivity shocks”. Rather they are well-defined shocks to indi-
vidual firms2. This view sheds lights on a number of issues, such as the
dependence of the amplitude of GDP fluctuations with GDP level, the mi-
croeconomic composition of GDP, the distribution of GDP and firm-level
fluctuation.

Some of the mathematics will be involved, so it is useful to highlight the
main argument. First, a result based on Hulten (1978) shows that, if firm

1In their interesting study, McKinsey (2001) seek to understand why U.S. productivity
growth increased from 1.5% to 2.8% per year in the second half of the 1990s. Also see
Lewis (2004).

2These shocks can propagate to the rest of the economy. There is a very large literature
on these “propagation mechanisms”. This paper focuses on the original shocks, not their
propagation.
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i has a productivity shock dπi, those shocks are i.i.d., then GDP moves by:
is:

σGDP = hSσπ (1)

where hS is the Sales herfindahl of the economy:

hS =

Ã
NX
i=1

µ
Salesit
GDPt

¶2!1/2
and σπ is the standard deviation of the i.i.d. productivity shocks. Second,
microeconomic volatility is very large. We find that, even for large firms,
the volatility of productivity is σπ = 20%/year. Third, as countries have
large firms the sales herfindahl hS is high. For instance, for the U.S. in
2002, it is hS = 6.2%. Using (1), we predict a GDP volatility equal to:
σGDP = 20% · 6.2% = 1.2%. This is the order of magnitude of business
cycle fluctuations. Using non-US data leads to even larger business cycle
fluctuations.

We will also show how demand linkages such as Long and Plosser (1982)’s
generate an amount of comovement among firms that ressembles the one of
business cycles. Hence, firm level shocks create both non-trivial aggregate
fluctuations, but also comovement. We have all the ingredients we need for
a business cycle.

The main theoretical contribution is to break the curse of 1/
√
N diversi-

fication. A simple diversification argument shows that, in an economy with
N firms with independent shocks, aggregate fluctuations should have a size
proportional to 1/

√
N . Given modern economies can have millions of firms,

this suggests that those idiosyncratic fluctuations will be negligible. Horvath
(1998,2000) and Dupor (1999) discuss ways out of this problem based on the
sparsity of the input ouput matrix. We offer a simple alternative solution.
When firm size is power law distributed, then conditions under which one
derives the central limit theorem break down, and other mathematics (due
to Paul Lévy) apply. In the central case of Zipf’s law, aggregate volatility
scales like 1/ lnN , rather than 1/

√
N . The draconian 1/

√
N diversification

is replaced by a much milder one that goes in 1/ lnN . Diversification effects
due to country size will be quite small in practice. Section 5 provide gathers
the empirical evidence on this, and is very congruent with the model.

We will present the argument with several degrees of sophistication. Sec-
tion 2 develops a simple model that can be calibrated. Section 3 shows that
empirically, our effects are large enough. It also examines the model’s pre-
dictions about the shape of the fluctuations of the growth rate of firms
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and countries. Section 4 revisits how demand linkages can in turn create
comovements. Section 5 and discusses some extensions.

1.1 Related literature

1.1.1 Macroeconomics

A few papers have proposed way to generate macro shocks from purely mi-
cro shocks. A pioneering paper is Jovanovic (1987), which we discuss in
section 2.2. It relies on an extremely large multiplier M that has an order
of magnitude of 1000 — the square root of the number of firms in the econ-
omy. This high multiplier has proved an obstacle of the Jovanovic model by
macroeconomists. Different routes were explored by very innovative papers,
Durlauf (1993) and Bak et al. (1993). Durlauf (1993) generates macroeco-
nomic uncertainty with idiosyncratic shocks and local interactions between
firms. The action comes from the non-linear interactions between firms,
while in our paper the core comes from the skewed distribution of firms.
Durlauf’s model is analytically difficult, and we suspect that embedding our
power law distributed firm in his models could be quite interesting. This is
difficult to do at this point. Bak et al. (1993) explore self-organizing crit-
icality 3. While we have much sympathy for their approach (which is very
different from ours), their model generates fluctuations that are probably
“too fat tailed”: they have a power law exponent of 1/3, so that fluctua-
tions don’t even have a mean, much less a variance. Nirei (2003) proposes
an elaborate model whose spirit is related to Bak et al. 1993, and finds
fluctuations with a power law exponent 1/2.

Long and Plosser (1983) worked out the view that sectoral (rather than
firm) shocks might account for GDP fluctuations. As their model has a small
number of sectors, those shocks can be viewed as mini aggregate shocks.
Horvath (1998, 2000) and Conley and Dupor (2003) explore this hypoth-
esis further. They find that sector-specific shock are an important source
of aggregate volatility. Studies disaggree somewhat on the share of sec-
tor specific shocks, aggregate shocks, and complementarities. Shea (2002)
quantifies that complementarities play a major role in aggregate business
cycle fluctuations. Caballero, Engel and Haltiwanger find that aggregate
shocks are important (1997), while Horvath (1998) find that sector-specific
shocks go a long way to explain aggregate disturbances. Finally Horvath
(1998,2000) and Dupor (1999) debate about whether N sector can have a
volatility that does not decay in N−1/2. We find an alternative solution

3Also see the pedagogical version in Scheinkman and Woodford (1994).
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to their debate. This solution, formalized in Proposition 2, is that firm size
distribution is very skewed4, that a few large sectors will dominate the econ-
omy. Also, we propose that thinking about firm might be a useful way to
think about the world. Many “industry shocks” originate in the decision of
one large firms (Toyota, WalMart, IBM) to introduce a radical innovation.
The shocks are also easier to explain: they are the fruit of R&D efforts, and
bets on the organization of production.

1.1.2 Some relation social power laws

A growing number of economic variables appear to follow power laws. The
earliest is the distribution of incomes (Pareto, 1896). Many power laws have
an exponent 1, i.e. they follow Zipf’s law. A number of economic systems
appear to follow Zipf’s law: cities (Zipf 1949, Gabaix and Ioannides 2004),
firms (Axtell 2001, Okuyama et al. 2003), mutual funds (Gabaix, Reuter
and Ramalho 2003), web sites (Barabasi and Albert 1999). Gabaix (1999)
provides an explanation and a survey of the literature. Stock market fluctu-
ations also follow power laws. Intriguingly, the exponent is typically either
3 or 3/2. Gabaix et al. (2003, 2004) survey and propose an explanation for
a series of puzzling facts on the distribution of stock market returns. They
base there explanation on the power law distribution of large traders. This
is analogous to the way this paper bases GDP fluctuations on a power law
distribution of large firms.

2 The essence of the idea

2.1 A simple “islands” economy

To illustrate the idea, we will consider a very simple economy, composed ofN
firms that are independent islands with no feedback5. In this economy there
are only idiosyncratic shocks to firms. We study its aggregate volatility.
We call this volatility the GDP volatility coming from idiosyncratic shocks,
σGDP . Say that firm i produces Sit. In a year t, it has a growth rate:

∆Si,t+1
Si,t

=
Si,t+1 − Sit

Sit
= σiεi,t+1 (2)

4Canals et al. (2004) find that this is particularly true for the exports, whose distrib-
ution are extremely skewed. For instance, they find that the root-Herfindahl of exports is
about 50%.

5Appendix A fleshes out such a model. In the next version of the paper, we will propose
a general equilibrium model. The conclusions do not change, but the economics are less
transparent.

5



where σi is firm i’s volatility and the εi,t+1 are independent random variables
with mean 0 and variance 1. Total GDP is:

Yt =
NX
i=1

Sit (3)

and GDP growth is:

∆Yt+1
Yt

=
1

Yt

NX
i=1

∆Si,t+1 =
NX
i=1

σi
Sit
Yt

εi,t+1.

As the shocks εi,t+1 are uncorrelated, the variance of GDP growth is:

σ2GDP = var
∆Yt+1
Yt

=
NX
i=1

σ2i

µ
Sit
Yt

¶2
.

The volatility of GDP fluctuations coming from the idiosyncratic micro
shocks are

σGDP =

Ã
NX
i=1

σ2i ·
µ
Sit
Yt

¶2!1/2
. (4)

Hence the variance of GDP, σ2GDP , is the weighted sum of the variance σ2i
of idiosyncratic shocks with weights equal to

³
Sit
Yt

´2
, the squared share of

output that firm i accounts for. We shall use equation (4) throughout the
paper.

If the firms all have the same volatility σi = σ, we get the following
simple identity:

σGDP = σh (5)

with

h =

"
NX
i=1

µ
Sit
Yt

¶2#1/2
. (6)

h is the square root of the Herfindahl of the economy. For simplicity, we will
call it the “herfindahl” of the economy.

In the body of this paper, we will work with the “bare-bones” model (2)-
(3). This can be viewed as the linearization of a host of richer models. We
present such a model in Appendix A. Our arguments will apply if feedback
mechanisms are added, as we do in section 6.1. We take advantage of the
high tractability and portability of the simple model.
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2.2 The 1/
√
N argument for the appeal to aggregate shocks

First, we briefly recall the reason why macroeconomics usually appeals to
common (or at least sector-wide) aggregate shocks. With a large number of
firms N , one could expect the sum of their σGDP shocks to be vanishingly
small. Indeed, take firms of initially identical size equal to 1/N of GDP, and
identical standard deviation σi = σ. Then (5)-(6) gives:

σGDP =
σ√
N
.

To get an idea of the order of magnitude delivered by this view, we take
an estimate of firm volatility σ = 20% from Appendix B, and consider an
economy with N = 106 firms6. We get

σGDP =
σ√
N
=
20%

103
= 0.02% per year.

This theoretical annual GDP volatility of 0.02% is just too small to account
for the empirically measured size of macroeconomic fluctuations. This is
why economists typically7 appeal to aggregate shocks. We will see that in
fact this argument will fail, because large firms in modern economies have a
size much bigger than 1/N . Before we do that, we show that more general
modeling assumptions predict a 1/

√
N scaling.

Proposition 1 Consider an islands economy with N firms whose sizes are
drawn from a distribution with finite variance. Suppose that they all have
the same volatility σ. Then the economy’s GDP volatility is:

σGDP =
E
£
S2
¤1/2

E [S]

σ√
N
.

Proposition 1 should be contrasted to Proposition 2 below. Its proof is
in Appendix D.

We will now show how a different model of the size distribution of firms
leads to dramatically different results.

6Axtell (2001) reports that in 1997 there were 5.5 million firms in the United States.
7One way around this has been taken by Jovanovic (1987), who observes that when the

multiplier is very large (1/ (1− λ) =M ∼
√
N , so 1− λ ∼ 1/

√
N), we get non-vanishing

aggregate fluctuations. The problem is that empirically, such a large multiplier (of order
of magnitude

√
N ∼ 103) is very implausible: the impact of government purchases or trade

shocks, for instance, would be much higher than we observe. Hence most economists do
not see the “extremely large multiplier” route as plausible.
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2.3 The 1/
√
N argument breaks down with power law firms

2.3.1 Empirical evidence shows that the distribution of firms has
fat tails

A long literature establishes that the distribution of firm sizes (sales, assets,
or number of employees give the same results) is very skewed. A good model
parametrization is a power law distribution:

P (S > x) = ax−ζ . (7)

for x > a1/ζ . To estimate this, it is useful to take the density:

f (x) =
ζa

xζ+1

and its logarithm:
ln f (x) = − (ζ + 1) lnx+ C (8)

where C is a constant. A long literature has estimated the size distribution
of firms, but typically the sample would include only firms listed in the stock
market. Axtell (2001) breaks new ground by using the Census, which lists
all the U.S. firms.

We reproduce his8 plot of (8) in Figure 1. The horizontal axis shows
lnx, where x is the size of a firm in number of employees. The vertical axis
shows the log of the fraction of firms with size x, ln f (x). One expects to see
a straight line in the region where (8) holds, and indeed the Figure shows a
very nice fit. An OLS fit of (8) yields an R2 = 0.992, and a slope = −2.059,
with a standard error of 0.054. This yields an estimate of ζ = 1.059±0.054.

In the rest of the paper we will often take the approximation ζ = 1, the
“Zipf” value. This value (ζ ' 1) is often found in the social sciences, for
instance in the size of cities (Zipf 1949), and the in the amount of assets
under management of mutual funds (Gabaix, Ramalho and Reuter 2003).
The origins of this distribution are becoming better understood (see Gabaix
(1999), and Gabaix and Ioannides (2004) for a survey of various candidate
explanations).

The power law distribution (7) has fat tails, and thus produces some
very large firms. We look at the implications for GDP fluctuations in the
next section.

8Okuyama et al. (1999) also find that ζ ' 1 for Japanese firms.
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Figure 1: Log frequency ln f (S) vs log size lnS of U.S. firm sizes (by num-
ber of employees) for 1997. OLS fit gives a slope of 2.059 (s.e.= 0.054;
R2 =0.992). This corresponds to a frequency f (S) ∼ S−2.059, i.e. a power
law distribution with exponent ζ = 1.059. This is very close to Zipf’s law,
which says that ζ = 1. Source: Axtell (2001).
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2.3.2 GDP volatility when the volatility of a firm does not de-
pend on of its size

Proposition 1 does not address what happens when the variance of sizes is
infinite. More precisely, the empirical distributions we find, with power laws
ζ < 2 , have infinite variance. The next Proposition examines what happens
in that case of a “fat tailed” distribution of firms. Its proof is in Appendix
D.

Proposition 2 Consider an islands economy with N firms that have power
law distributions (7) with exponent ζ ∈ [1, 2) and volatility σ. Then its GDP
volatility is:

σGDP =
vζ
lnN

σ for ζ = 1

σGDP =
vζ

N1− 1
ζ

σ for 1 < ζ < 2

where vζ is a random variable that is independent of N and σ.

The main conclusion is that if firms have fat tails, σGDP decreases as
N−β for 0 ≤ β < 1/2, and thus decays much slowler than N−1/2. In the
Zipf limit ζ = 1, we get β = 0, and the decay is barely perceptible9.

2.3.3 GDP volatility when the volatility of a firm depends on its
size

This section completes the theoretical picture, but in the first reading we
recommend the reader skip to section 3.

We just understood the benchmark case where all firms have the same
volatility σ. We now turn to the case where the volatility decreases with
size, which seems to be the case empirically. We will examine the functional
form suggested by the empirical discussion in section 5.1

σFirm (S) = kS−α (9)

for α ≥ 0.
9 If there are N identical firms, 1/h2N = N . So 1/h2N reveals the “effective” number of

firms in the economy, for diversification purposes. So, in a Zipfian world (where ζ = 1),
the effective number of firms is not N but (lnN)2. For 1 < ζ < 2, the effective number
of firms scales as N2−2/ζ . This notion of the “effective” number of firms is important as
long as diversification plays a role, as is the case in Caballero and Engle (2003) and the
present paper.
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Proposition 3 Take an islands economy with N firms that have power law
distributions P (S > x) = x−ζ for ζ ∈ [1,∞]. Assume that the volatility of
a firm of size S is

σFirm (S) = kS−α (10)

for some α ≥ 0. Then, GDP fluctuations have the form:

∆Yt
Yt

= kN−α0gt (11)

with

α0 = min

µ
1

2
,
α+ ζ − 1

ζ

¶
(12)

and gt is a symmetrical Lévy stable distribution with exponentmin {ζ/ (1− α) , 2}.

In particular, the volatility σ (S) of GDP decreases in a power law fashion
as a function of its size S 10:

σGDP (S) ∼ S−α
0
. (13)

Corollary 4 (Similar scaling of firms and countries). For ζ = 1 and α ≤
1/2, we have α0 ' α, i.e. firms and countries should see their volatility scale
with a similar exponent:

σFirms (S) ∼ σGDP (S) ∼ S−α

In section 5.1, we will present some evidence that the above prediction
holds. The above Propositions indicate that the volatility could decay very
slowly with size. In the next section we examine whether these effects are
large enough.

3 Empirical evidence

3.1 Firm-level volatility

Most estimations of firm-level volatility find very large volatilities σ, with
an order of magnitude σ = 30% to σ = 50% per year. Appendix B reviews
the evidence. For instance, the volatility of firm size is a very large 40%
of year. Much of the work has been done on the median firm, rather than

10 In this paper, f (S) ∼ g (S) for some functions f, g, means that the ratio f (S) /g (S)
tends, for large S, to a positive real number. So f and g have the same scaling “up to a
constant real factor”.
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on large firms. But large firms also have large volatility. For instance, with
Comin and Mulani (2003) we consider the following very simple measure
of firm produtivity, πit, defined as the sales over the number of workers.
We consider the top 20 firms in 1980, and compute σi to be the standard
deviation of lnπi,t+1/ lnπit. We find that the average σi of the top 20 firms
is: σ = 20%. This is slightly less high than the median firms, which makes
sense.

In what follows we will use an estimate of σ = 20% per year for firm
level volality.

3.2 Induced volatility

If firm i has a Hicks-neutral productivity growth dπi, then an important
theorem by Hulten (1978) shows that the increase in GDP is:

dGDP
GDP

=
X
i

Sales of firm i

GDP
dπi (14)

The weights add up to more than 1. This reflects the fact that productivity
growth in a firm generate an increase in the social value of all the inputs it
uses. The firms’ sales are the proper statistics for that social value11. For
clarity, Appendix E shows a simple proof of Hulten’s theorem. It shows that
it holds under weaker condition’s that Hulten’s original conditions12.

Suppose productivity shocks dπi are i.i.d. with standard deviation σπ.
Then, the variance of productivity growth is:

var
dGDP
GDP

=
X
i

µ
Sales of firm i

GDP

¶2
var (dπi)

so
σGDP = hSσπ (15)

where hS is the Sales herfindahl:

hS =

Ã
NX
i=1

µ
Salesit
GDPt

¶2!1/2
. (16)

11This mechanism can be seen in detail in Long and Plosser (1982). Hulten (1978)’s
result, however, is more general.
12 In particular it shows that Hulten’s theorem holds even if factors are not reallocated

right after the shock.
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Hulten’s theorem allows us to simplify a lot the analysis. For the total
volatility, one does not need to know the details of the input-output matrix.
The sales herfindah is the sufficient statistics.

We consider the following employment herfindahl:

hW =

Ã
NX
i=1

µ
Workforceit

Total workforcet

¶2!1/2
(17)

It is less theoretically motivated, but it is useful as a robustness check.
We get our herfindahls from Acemoglu, Johnson and Mitton (2004), who

analyze the Dun and Bradstreet data. This data has a good coverage of the
major firms for many countries. It is not without problems, but at least it
provides an order of magnitude for the empirical values of the herfindahls.

All Countries Rich Countries USA
Sales herfindahl hS 22.0 26.6 6.1
Workers herfindahl hW 3.8 4.0 1.2
GDP volatility induced by

idiosyncratic firm-level shocks
σGDP = σhS 4.4 5.2 1.2

Table 1: Sales herfindahl hS and Workforce herfindahl hW (Eqs.16—17) in
the year 2002. Units are %.

Rich countries are the countries with GDP per capita greater than $13,000.
For the induced GDP volatility, we use take σGDP = σhS, with a firm-level
volatility σ = 20%. See Eq. 15. Source: Acemoglu, Johnson and Mitton
(2004) for the international data, and Compustat for the USA data.

As seen above, a good estimate for the firm-level volatiltiy is σ = 20%.
Table 1 displays the results. We see that the sales herfindahl hS is quite
large: hS = 22% for all countries, and hS = 6.1% for the USA. By Eq. 15
this corresponds to a GDP volatility

σGDP = 20%× 6.1% = 1.2%

for the USA, and σGDP = 20%× 22% = 4.4% for a typical countries. This
is very much in the order of magnitude of GDP fluctuations. As shown
in Section 6.1, feedback mechanisms can increase this estimate. We con-
clude that idiosyncratic volatility is quantitatively large enough to explain
macroeconomic volatility.
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4 Enriching the model with Long Plosser demand
linkages

The above calibration showed that idiosyncratic shock can account to a
large aggregate volatility. We provide here some detail about the comove-
ment they imply. Shea (2002) present a series of models that generate
comovement. We take his “instantaneous” version of the Long Plosser
(1982) model. There are N firms. The representative consumer has utility:

U =
NX
i=1

θi lnCi.Firm i produces Qi with Li units of labor, and Xik inputs

from firm k. The production function is Cobb-Douglas:

Qi = λi exp

Ã
b lnLi +

X
k

φk lnXik

!

with 1 = b +
P

k φk. The clearing constraints are Qi = Ci +
P

kXki and
L =

P
i Li, where L is the fixed labor supply. We assume that firms behave

competitively13.
The analysis is standard. The economic importance of firms is captured

by

γi =
Sales of firm i

GDP
=

piQi

GDP
=

φi
b
+ θi

while its share of value added is Li/L = bγi.
Let hats note log changes, i.e. bZ = dZ/Z. If firm i has a productivity

shock bλi, then Eq. 14 indicates that GDP increases by:
bY =X

i

γibλi. (18)

while the production of firm i increases by:

bQi = bCi = bλi + (1− b) bY (19)

The term bY generates a comovement of firms that we will analyze shortly.

13This is to simplify the analysis. Firms could be competitive because markets are
contestable. Otherwise, our “firms” can be interpreted as “sectors”. There is some debate
about the size of markups. Basu and Fernald (1997) find markups less than 10%, while
other studies find higher markups, and much of macroeconomics uses on zero markups.
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We now analyze further the mechanism. If all the firm have productivity
growth bλi = bλ% then GDP growth will be

bY = bλX
i

γi = bλX
i

φi
b
+ θi

= bλµ1− b

b
+ 1

¶
=
1

b
bλ.

So 1/b is the “multiplier” of productivity shocks: a uniform 1% increase in
productivity translates into a 1/b% increase in GDP.

How big is 1/b empirically? A simple measure is to observe that:

hS
hW

= 1/b

Alternatively, b = hW/hS is the ratio of value added to sales of a typical
firm.

All Countries Rich Countries USA
Sales herfindahl hS 22.0% 26.6% 6.1%
Workers herfindahl hW 3.8% 4.0% 1.2%
Ratio of value added to sales b hW/hS 0.17 0.15 0.20

Table 2: Sales herfindahl hS and Workforce herfindahl hW (Eqs.16—17) in
the year 2002.

Rich countries are the countries with GDP per capita greater than
$13,000. Source: Acemoglu, Johnson and Mitton (2004) for the

international data, and Compustat for the USA data.

The conservative estimate is the U.S. one, which gives b = 0.20. This
translates into a “productivity multiplier” 1/b = 5.

Another way to measure b is to observe that it is 1 minus the share of
intermediate inputs (“materials”) in the production function. This data is
more difficult to get. For the U.S., the Jorgensen, Gollop and Fraumeni
(1987) data, updated in 1996, gives b = 0.50.14 So we conclude that b is
between 0.15 and 0.5.

This allows us to quantify better intensity of the comovement. Shea
(2002) proposes a useful measure of comovement. If, by a statistical or

14Susanto Basu kindly provided this number.
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mental procedure, we removed the common component of firms, instead of
(19), firm level volatility would be bQi = bλi. GDP increase would be:

bYNo Cov =X
i

Value added of firm i

GDP
cQi

But with the Long Plosser demand linkages, GDP increase is:

bY =
X
i

Sales of firm i

GDP
cQi

We have bYNo Cov = bbY
So the ratio of GDP variance attributed to comovements is:

1−
var

³bYNo Cov´
varbY = 1− b2 (20)

This is the type of ratio that Shea calculates. He finds that 80% to 96%
of the variance is due to complementarities. We compare this to what the
model predicts. If b = 0.2 (resp. if b = 0.5), then 1−b2 = 96% (resp. 75%) of
comovements are attributable to complementarities. We conclude that Long
Plosser demand linkages generate enough realistically high comovements
between firms.

This section shows that, to analyze the size of complementarities, it is
enough (under some conditions) to work with the herfindahls of the econ-
omy. One does not need to know the details of the input output matrix.
When we the empirical values for the value added to sales ratio b, we find
that the complementarities generates by demand linkages indeed generate
a large enough comovement across firms. We conclude that our “granular”
hypothesis, when augmented by the Long Plosser model, generates both
plausible aggregate fluctuations and comovements between firms.

5 Evidence on scalings and distributions

The reader may skip this section in the first reading. This section exam-
ines the model’s predictions for the scaling of country level and firm level
quantities.
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5.1 Scaling of firm-level volatility

Here we summarize some evidence for the scaling of the growth rate of firms
(9) and the scaling of GDP growth (13). It has been discussed in a series of
papers by Stanley et al. (1996), Amaral et al. (1997), Canning et al. (1998)
and Lee et al. (1998). In a nutshell, firms and countries have identical,
non-trivial, scaling of growth rates. Stanley et al. (1996) and Amaral et
al. (1997) study how the volatility of the growth rate of firms changes with
size15 S . To do this, one divides the firms in a number of bins of sizes S,
calculate the standard deviation of the growth rate of their sales σ (S), and
plots lnσ (S) vs lnS. One finds a roughly affine shape, displayed in Figure
2:

lnσfirms (S) = −α lnS + β. (21)

Exponentiation gives (9). A firm of size S has volatility proportional to
S−α with α = 0.15. This means that large firms have a smaller proportional
standard deviation than small firms, but this diversification effect is weaker
than would happen if a firm of size S was composed of S independent units
of size 1, which would predict α = 1/2.

Canning et al. (1999) do the same analyses for country growth rates and
find16 that countries with a GDP of size S also have a volatility of size S−α

0
,

with α0 = 0.15. The two graphs are plotted in Figure 2. The slopes are indeed
very similar, and statistical tests reported in Canning et al. (1998) say that
one cannot reject the null that α = α0. This is particularly interesting in
light of Proposition 3 and Corollary 4, which say that this should be the
case if Zipf’s law holds17.

One important caveat is in order. The above estimate of α, the scaling
exponent of firms, is likely biased upwards. The reason is that it is estimated
only with firms in Compustat, i.e. listed in the stock market. For a given
size, a firm that is highly volatile is more likely to be in Compustat than a
less volatile firm. This effect is weaker for big firms. This implies that the
15The measure of size can be assets, sales, or number of employees. Those three measures

give similar results.
16Another way to see their result is to regress:

lnσi = −α lnYi + β lnGDP/Capita+γOpenness

+δGvt share of GDP+constant

where σi is the standard deviation of lnYit/Yit−1 and Yi the mean of the Yit. We run this
over the top 90% of the countries to avoid the tiniest countries, and find that α = .15 with
a standard deviation of .015.
17Acemoglu and Zilibotti (1997) propose a different mechanism by which large countries

are more diversified and have a smaller volatility.
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Figure 2: Standard deviation of the distribution of annual growth rates (log
log axes). Note that σ (S) decays with size S with the same exponent for
both countries and firms, as σ (S) ∼ S−α, with α = .15. The size is measured
in sales for the companies (top axis) and in GDP for the countries (bottom
axis). The firm data are taken from the Compustat from 1974, the GDP
data from Summers and Heston (1991). Source: Lee et al. (1998).

value of α measured in a sample composed only of firms in Compustat will
be larger than the true empirical value. So, the empirical value we find is
more likely to be an upper bound on the true α rather than the true value.
The best way to estimate the true value of α would be to run a regression
(21) on a sample that includes all firms, not just firms listed in Compustat
(Census data, for example lists more firms). It is possible, indeed, that the
best value is α = 0, as random growth models have long postulated. More
research is needed to assess this.

5.2 The distribution of fluctuations in firms andGDP growth
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Figure 3: Empirical distribution of the fluctuation of firm sizes. The shape
is very similar to that of the Levy distribution predicted by the model (see
Figure 4 below). Source: Amaral et al. (1997).

This section examines the prediction of Proposition 3 for the distribution of
fluctuations in firms and GDP.

5.2.1 Fluctuations without border effects: Empirical evidence on
a Lévy distribution of firms’ fluctuations

One can reinterpret Proposition 3 by interpreting a large “firm” as a “coun-
try” made up of smaller entities. If those entities follow a power law distri-
bution, then Proposition 3 applies and predicts that the fluctuations of the
growth rate ∆ lnSit, once rescaled by S−αit , will follow a Levy distribution
with exponent min {ζ/ (1− α) , 2}. Amaral et al. (1997) and Canning et
al. (1998) plot this empirical distribution, and we reproduce their finding in
Figure 3.

We next compare this graph to Proposition 3’s prediction — a symmetri-
cal Lévy distribution with exponent 1/ (1− α) and α = 0.15. Figure 4 draws
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Figure 4: Log of a symmetrical Levy distribution with an exponent of
1/ (1− α), with α = 0.15.

this distribution (ln p(x) vs x).
We see that the shapes are both much fatter than a Gaussian. We now

investigate the best fist, assuming that the growth rate follows a symmetrical
Lévy distribution with exponent β. The Gaussian benchmark corresponds
to β = 2.

Calling git the growth rate of firm i in year t, we transform γit =
Atgit + Bt such that for all t’s, E [γit] = 0 and Median(|γit|) = 1. We
plot the distribution of γit, which is strikingly close to a Lévy with expo-
nent 1/ (1− α). There are some deviations, for very large |γ|. Hypothesizing
that for |γit| ≤ γ, γit follows a Lévy with exponent β, we estimate β by max-
imum likelihood. We take γ = 10. As P (|γit| ≤ γ) = 0.99 empirically, this
means that we fit the 99% of the points. We do this for each year separately,
which give us a series of β’s. We find:

Mean of β = 1.28

Standard deviation of βt = 0.11

σ (β) /(Number of years)1/2 = 0.016.

Empirically, we conclude that β = 1.28 with a standard deviation of 0.016.
The prediction is 1/ (1− α) = 1.18 for α = 0.15. Thus, the empirical data
is fairly close to the theoretical prediction.
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5.2.2 Fluctuations with border effects: Distribution of GDP growth

Theory The above theory needs to be amended slightly for GDP, because
typically the largest firm in a country only accounts for a small fraction (say
couple of percentage points) of a country’s GDP. We speculate that this is
because of antitrust concerns.

We now modify the analysis to incorporate this fact. The payoff will be a
better prediction of the shape of GDP fluctuations. We adopt the following
representation. If we have a country with N firms, the size of firms Si are
drawn from a power law with exponent ζ = 1+ε, but with bounded support
[1,mN ] . The density is assumed to be a power law with an exponent ζ in
[1,mN ], i.e.:

f (S) =
ζ

1− (mN)−ζ
S−ζ−1.

The total size is Y =
PN

i=1 Si. We can also establish the distribution of
the fluctuations in Y .

Proposition 5 If the subcomponents cannot have a size bigger than mN ,
for some finite m, we have, given the standard deviation σi of a country,
that the fluctuations are normal

∆Y

Y
=d Y −αV 1/2u

where u is a normal variable. In particular, if m < ∞, all moments are
finite. Given only the size Y of the country, the fluctuations have the density:

fm,α (g) =

Z ∞

0
e−ψm,2−2α(k2/2) cos (kg)

dk

π
(22)

and all the moments are finite. We call this distribution a “modified Levy
distribution”. In the limit m→∞, this distribution tends to a symmetrical
Lévy distribution with an exponent of 1/ (1− α) . In the limit m → 0, this
distribution tends to a Gaussian.

The proof is in Appendix D.

We find a new “universal” distribution that does not depend on the
details of the shocks to the individual firms. This is analogous to the fact
that in the central limit theorem the limiting distribution does not depend
on the details of the distribution of the initial shocks.
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We make a few observations on our modified Levy distribution. When
m→∞, there are no restrictions on the support of the subunits, and we get
the the Lévy 1/ (1− α) distribution predicted by Proposition 3. Whenm→
0, even the largest firms are small (they are bounded above by mY/E [S]).
Since the total variance is the sum of lots of small variances, the central
limit theorem applies, and hence the fluctuations are Gaussian. The proof
shows that their order of magnitude is m1/2−α.

To calibrate the value of m, we observe that a typical value for the
size of the top firm is 2% [give source]. The size of the largest firms in
the model is m/E [S] times Y . So for the calibrations we can take m =
2% ·E [S] = 0.5 with E [S] = 25 employees. Numerical simulations indicate
that the resulting distribution is quite close to the theoretical limit m→∞
in the relevant domain, so that we get a Lévy distribution with parameter
1/ (1− α) .

Empirical evidence The empirical distribution is plotted in Figure 5.
Figure 6 shows the corresponding theoretical plot for the distribution of
growth rates. We see that the two distributions are pretty close. (A formal
measure of the distance will be put in the next iteration of the paper).

Figure 5: Empirical distribution of GDP fluctuations. Source: Canning et
al. (1998)
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Figure 6: ln(Probability of a growth rate g) vs g under the null of the
modified Levy distribution predicted by the model (with parameters 2−2α =
1.7 and m = 1).

6 Discussion

6.1 Extension of the model with feedback

The previous sections established the main theoretical results. Having cali-
bration and greater descriptive realism in mind, we modify the model into:

∆Sit+1
Sit

= λ
∆St
St

+ vS−αi,t−1uit. (23)

The interpretation of the λ∆St/St term is that there is a feedback effect
of past aggregate fluctuations (∆St+1/St) onto new decisions of firm i. This
leads to a “multiplier” of shocks: a shock to firm j affects firm i in the next
period. This feedback could come from a variety of sources, among them
the Long-Plosser (1983) production demand type, Keynesian “aggregate de-
mand” effects, or via expectations (consumers, or businesses, see the other
firms are doing very well, so they have more optimistic expectations and
spend or invest more).

We allow firm specific shocks to be autocorrelated in an AR(1) manner:

uit =
X
s≥0

δsεi,t−s

where the εit are i.i.d. Aggregate fluctuations are:

∆Yt =
NX
i=1

∆Sit = λ∆Yt−1 + v
NX
i=1

S1−αi

X
s≥0

δsεi,t−s
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thus, with L the lag operator (Lxt = xt−1 for a random process xt) :

∆Yt
Y 1−α

=
v

Y 1−α

NX
i=1

S1−αi (1− λL)−1 (1− δL)−1 εit

and if we look at the fluctuations sampled at horizon H (for instance, if the
underlying unit of action is the quarter, and we look at yearly fluctuations,
H = 4), defining:

∆S
(H)
t = St − St−H

=
¡
1 + L+ ...+ LH−1¢∆St

we get:

∆S
(H)
t

S1−α
=

v

S1−α

NX
i=1

S1−αi ηit

defining

ηit =
¡
1 + L+ ...+ LH−1¢ (1− λL)−1 (1− δL)−1 εit.

So the essence of this algebra is that, like in the simple case of section 2, we
can represent:

∆S
(H)
t

S1−α
= vσgt (24)

with only with a messier expression for σ :

σ2 = var
¡
1 + L+ ...+ LH−1¢ (1− λL)−1 (1− δL)−1 εit.

The main points from (24) are the following: we get that ∆S/S has
fluctuations with the shape of g, it scales like S−α

0
, and (as is classic in the

literature) the feedback λ can considerably increase the variance of aggregate
fluctuations.

Given that the volatility of a firm is var
¡
1 + L+ ...+ LH−1¢ (1− δL)−1 εit,

the ratio

M =

"
var

¡
1 + L+ ...+ LH−1¢ (1− λL)−1 (1− δL)−1 εit

var (1 + L+ ...+ LH−1) (1− δL)−1 εit

#1/2
(25)

plays the role of a “volatility multiplier”. Indeed, we have:

σGDP = MσMicro, with (26)

σ2Micro : =
X
i

σ2i

µ
Si
Y

¶2
(27)
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where σi is the volatility of firm i, and Si is size as a fraction of total GDP.
For H = 1, δ = 0, we have

M =
1p
1− λ2

.

For H À 1/(1− λ), δ = 0, (no autocorrelation of shocks, but essentially all
the propagation via λ∆St/St happens within a period) we have:

M =
1

1− λ
.

As mentioned above, the nature of the feedback leading to the multi-
plier could be very diverse. We do not want to take a stand here on the
various “amplification mechanisms” proposed in macroeconomic research.
We summarize their reduced form here by M . Given our earlier Compu-
stat calibration σMicro = 1.3%, it is not difficult to generate a fluctuation
σGDP =MσMicro of an empirical order of magnitude around 2%. We only
need a multiplier close to 1.5.

7 Conclusion

There are clearly “macroeconomic” shocks: monetary policy shocks, policy
shocks, trade (e.g. exchange rate) shocks, and possibly aggregate produc-
tivity shocks. However, is it possible that, though they are the most visible
ones, they are not the major contributors to GDP fluctuations. The present
paper lays down the theoretical possibility that idiosyncratic shocks are an
important, and possibly the major, part of the origins of business cycle
fluctuations.

It may be worthwhile to contemplate the possible consequences of the
hypothesis that idiosyncratic shocks to large firms are an important deter-
minant of the volatility of aggregate quantities.

First, one may understand the origins of fluctuations better: they do not
come from mysterious “aggregate productivity shocks,” but from concretely
observable shocks to the large players, such as Wal-Mart, Intel, and Nokia.

Second, these shocks to large firms, initially independent of the rest
of the economy, will offer a rich source of shocks for VARs and impulse
response studies — the real-side equivalent of the “Romer and Romer” shocks
for monetary economics. For instance, a strike, or the tenure of a new CEO
could be a source of for a macroeconomic shocks plausibly independent from
the rest of the economy.
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Third, this gives a new theoretical angle for the propagation of fluctua-
tions: For instance, if Wal-Mart innovates, its competitors may suffer in the
short term, but then scramble to catch-up. This creates rich industry-level
dynamics (that are already actively studied in IO) which my work implies
should be very useful for studying macroeconomic fluctuations since they
allows us to trace the dynamics of productivity shocks.

Fourth, this could explain the reason why people, in practice, do not
know “the state of the economy” — i.e. the level of productivity, in the RBC
language. In our view, this is because “the state of the economy” depends
on the behavior (productivity and investment behavior, among others) of
many large firms. So the integration is not easy, and no readily accessible
single number can summarize this state. This could offer a new and relevant
mechanism for the dynamics of “animal spirits”.

Finally this mechanism might explain a large part of the volatility of
many aggregate quantities such as inventories, inflation, short or long run
movements in productivity, and the current account. The latter is explored
in a companion paper, Canals et al. (2004).
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8 Appendix A: A simple model illustrating the
“islands” economy

The paper presents a mechanism that emerges from a variety of economic
structures. Here we present one possible type of model that generates the
mechanism. Markets are competitive. Firm i has a capital Kit. It invests
in a technology with random productivity Ait such that E [Ait] is constant
across i’s and

σ (Ait) = bK−α
ti . (28)

A variety of mechanisms (e.g. Amaral et al. (1998), Sutton (2001)) can gen-
erate the microeconomic scaling presented in equation (28). These mecha-
nisms typically assume that firms of size S are made up of N smaller units,
with N ∼ Sα/2, which generates (??) and (28). Capital is fully reinvested,
so that:

Ki,t+1 = Ai,t+1Kt. (29)

GDP is simply:
Yt =

X
i

Ai,tKt−1.

Adding labor does not change the conclusion of this paper. Suppose
that the production function is Ai,tF (Kti, Lti), with constant returns to
scale. Risk neutral firms maximize

max
Lit

E [Ait]F (Kti, Lti)− wtLti.

The quantity of labor chosen Ltiwill be Lit = λtKit, for a factor of propor-
tionality λ, so that we will have:

Ki,t+1 = Ai,t+1F (Kit, λtKit)− wtλtKit = (Ai,t+1F (1, λt)− wtλt)Kit.

The equation of motion follows the same structure as (29), with random
productivity:

A0it = Ai,t+1F (1, λt)− wtλt.

GDP is
Yt =

X
i

Ai,tKt−1F (1, λt−1)

so that it evolves as the stochastic sum in the paper.
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9 Appendix B: Evidence on firm-level volatility

9.1 Idiosyncratic volatility is very large

Our data on idiosyncratic volatility come from Compustat. For large firms
it is likely that Compustat is very representative, as it includes most of these
firms. For small firms, Compustat may not be fully representative, just like
the stock market may not represent of all firms18. It is still the best dataset
we have so far. Future studies using Census data will give us much better
data.

As firms can die, some choices have to be made on which firms are
included in the sample. Luckily, various specifications give very similar
results. The simplest exercise is to follow a set a firm for a extended amount
of time. To have good statistics, we need many firms, and thus fairly recent
data as the Compustat coverage has been growing. Thus, we use all firms for
all years from 1980 to 2002. The results do not depend at all on the starting
year,1980. Yet, a much earlier starting date would yield too few firms while
a much later one would yield too few years. We remove foreign firms and
we use reports on sales (data12: sales(net) in MM$). Alternative measures
give similar results, as indeed they are proportional in the medium run. We
deflate sales using BEA Implicit Price Deflators for Gross Domestic Product
(year 2000=100). Thus we have observations from 6155 firms (21016 if we
don’t remove firms absent in 1980) from 1980 to 2002. This adds up to
76926 (186075 if we don’t remove firms absent in 1980) data-points (year-
firm) on sales, and 69743 (159660 if we don’t remove firms absent in 1980)
data-points (year-firm) on the growth rate git = ln (Sit/Sit−1).

The raw standard deviation of the git is 0.442. This means that the
standard deviation of the sales of firms in Compustat is 44.2% a year — a
very high number. This number is a bit smaller for large firms, according
to (??). The average standard deviation is a very similar number, 0.462.

Simple standard deviation stddev (git) = 0.442

Average standard deviation
q
E
£
σ2i
¤
= 0.462

Absolute deviation absdevtot = E [|git −E [git]|] = 0.204
Interquartile range IQRtot (git) = 0.193

Table: Statistics on the dispersion of growth rates git = ln (Sit/Sit−1),
where Sit are the sales of firm i at time t.

18 Indeed this “selection bias” creates an upward bias in the measurement of β in the
microeconomic scaling law (??).
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As firms’ growth rates have fat tails, the variance might not be a very
robust estimator. We look at two robust estimators of deviation. The in-
terquartile range is the value of the 75% percentile minus the 25% percentile
of growth rates. It is equal to 0.193. For a Gaussian with standard deviation
σ, the interquartile range is 0.675σ, so if the distribution was Gaussian we
would infer a standard deviation 0.193/0.675= 0.285. Again, this is a very
high dispersion. Our last measure of dispersion is the absolute deviation,
which gives 0.204. If the distribution is Gaussian, we would infer a standard
deviation of 0.203

p
π/2 = 0.254. As the distribution has tails fatter than a

Gaussian, the true standard deviation is higher than those last two values.
We conclude from this analysis that indeed, the typical standard devi-

ation of the growth rate of firm in Compustat is very high, with a point
estimate of 0.44% per year, which is robust to a variety of other measures
of dispersion.

It is clear that this must be accounted for by idiosyncratic shocks, as
the standard deviation of macroeconomic quantities such as GDP growth is
much lower. To verify this formally, we run the following regression with
fixed effects and AR(1) noise:

git = αi + ft + εit

εit = ρεit−1 + uit

where uit is i.i.d. with mean zero.
We find a standard deviation

σ (ft) = 0.044

σ (εit) = 0.400

σ (git − αi) = 0.402.

Hence aggregate shocks account for only 1.25% (= σ (ft)
2 /σ (git − αi)

2) of
the variance of firm growth rate. Likewise, the correlation of the growth
rate between two random firms is only ρ = 0.012.

9.2 Microeconomic scaling

The scaling law says that a unit of size S, in a year t, will have a standard
deviation:

σ (S, t) = standard deviation (lnSt+1 − lnSt | St = S) = btS
−αt . (30)
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Figure 7: Time series of the scaling exponent αt for the growth of sales. For
each year t we estimate the scaling exponent αt such that σ (gt | St = S) ∼
S−αt .

Amaral et al. (1997) present evidence for the scaling law for a particular
year t. Here we extend their empirical analysis.

We first proceed with size as a measure of sales. We estimate αt for each
year and plot in the resulting values of αt in Figure 7. We show here that αt
has remained fairly constant throughout the years. Its mean value is 0.188.

Interestingly, the coefficient bt has increased over the year.
We have estimated α for the firms in different SIC 1-digit codes. The

coefficient is constant across 1-digit industries.

10 Appendix C: Lévy’s theorem

The basic theorem can be found in most probability textbooks, e.g. Durrett,
(1996, p.153).

Theorem 6 (Levy, Gnedenko-Kolmogorov). Suppose that x1, x2, ... are i.i.d.
with a distribution that satisfies:
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(i) limx→∞ P (x1 > x) /P (|x1| > x) = θ ∈ [0, 1]
(ii) P (|x1| > x) = x−ζL (x)
with ζ ∈ (0, 2) and L (x) slowly varying19. Let sn =

Pn
i=1 xi, and

an = inf {x : P (|x1| > x) ≤ 1/n} and bn = nE
£
x11|x1|≤an

¤
As n→∞, (sn − bn) /an →d Y where Y is a Lévy distribution with exponent
ζ.

In practice, for a power law distribution P (x1 > x) = (x/x0)
−ζ ,

an = x0n
−1/ζ . (31)

A symmetrical Lévy distribution with exponent ζ ∈ (0, 2] has the distri-
bution:

λ (x, ζ) =
1

π

Z ∞

0
e−k

ζ
cos (kx) dk (32)

and the cumulative:

Λ (x, ζ) =
1

2
+
1

π

Z ∞

0
e−k

ζ sin (kx)

k
dk. (33)

For ζ = 2, a Levy distribution is a Gaussian. For ζ < 2, the distribution
has power law tail with exponent ζ. Unfortunately, there are no closed form
formulae for λ and Λ except in the case ζ = 1 (Cauchy distribution) and
ζ = 2 (normal distribution).

11 Appendix D: Longer derivations

11.1 Proof of Proposition 1

Because of σGDP = σh, we examine h.

N1/2h =

³
N−1PN

i=1 S
2
i

´1/2
N−1PN

i=1 Si

19L (x) is said to be slowly varying (e.g. Embrechts et al. 1997, p.564) if

lim
x→∞

L (tx) /L (x) = 1 for all t > 0.

Prototypical examples are L = a and L (x) = a lnx for a non-zero constant a.
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The law of large numbers ensures that

N−1
NX
i=1

S2i → a.s.E
£
S2
¤

N−1
NX
i=1

S2i → a.s.E [S]

and we can conclude: N1/2h→ E
£
S2
¤1/2

/E [S] .

11.2 Proof of Proposition 2

Because of σGDP = σh, we examine h.

h =

³PN
i=1 S

2
i

´1/2
PN

i=1 Si
(34)

We treat the cases where ζ > 1 and ζ = 1 separately.
Case A: 1 < ζ ≤ 2. By the law of large numbers,

N−1
NX
i=1

Si → E [S] .

However, S2i has power law exponent ζ/2 < 1, as shown by:

P
¡
S2 > x

¢
= P

³
S > x1/2

´
= a

³
x1/2

´−ζ
= ax−ζ/2.

So to handle the numerator of (34), we use Lévy’s Theorem from Appendix
A. This implies:

N−2/ζ
NX
i=1

S2i → u

where u is a Levy distributed random variable with exponent ζ/2. So

N1−1/ζh =

³
N−2/ζPN

i=1 S
2
i

´1/2
N−1PN

i=1 Si
→d u1/2

E [S]
.

Case B : ζ = 1. Some more care is required, because E [S] =∞. We use
Theorem 6, which gives bn = n lnn, hence:

N−1
Ã

NX
i=1

Si −N lnN

!
→d g
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where g is a Levy with exponent 1. We conclude:

lnN · h→d u1/2

g
.

11.3 Proof of Proposition 3

As ∆Si/Si = νS−αi ui:

∆Yt+1
Yt

=

PN
i=1∆Sit
Yt

= v

PN
i=1 S

1−α
i uitPN

i=1 Si
. (35)

By the law of large numbers:

N−1Yt = N−1
NX
i=1

Si → S.

To tackle the numerator, we observe that S1−αi has power law tails with
exponent ζ 0 = ζ/ (1− α). We need to consider two cases.

If ζ 0 < 2, xi = S1−αi ui, which has power law tails with exponent ζ 0, and
by Levy’s theorem:

N−1/ζ0∆Yt = N−1/ζ0
NX
i=1

S1−αi uit →d g

where g is a Levy with exponent ζ 0.
If ζ 0 ≥ 2, S1−αi ui has finite variance, and N−1/2∆Yt →d g, where g is a

Gaussian.
We conclude that in both cases:

N−max(1/2,1/ζ0)∆Yt →d g

for a distribution g. So

N1−max(1/2,1/ζ0)∆Yt+1
Yt

→d g

S
g.

We conclude that the Proposition holds, with

α0 = 1−max
¡
1/2, 1/ζ 0

¢
= 1 +min

¡
−1/2,−1/ζ 0

¢
= min

¡
1/2, 1− 1/ζ 0

¢
= min

µ
1/2, 1− 1− α

ζ

¶
.
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12 Proof of Proposition 5

We start by stating:

Proposition 7 If the subcomponents cannot have a size bigger than mN ,
for some finite m, the variance of Y scales as:

σ2Y ∼ Y −2αV

where V is a random variable whose Laplace transform is:

LV (k) := E
h
e−kV

i
= e−ψm,2−2α(k)

where ψ (k) is defined in (39)—(40). In the limit m → ∞, V is a totally
positive Lévy distribution with exponent 1/ (2− 2α) .

In particular, all the moments are finite. Indeed, one can easily calculate
the cumulants of V (the κi such that − lnLV (k) =

P
κik

i/i!) and find:

κi (V ) =
mγi−1

γi− 1 .

Recall that the 4 first cumulants (κi)i=1...4 are respectively hV i , varV ,
D
(V − hV i)3

E
,

and
D
(V − hV i)4

E
− 3varV ; i.e. the mean, variance, skewness and excess

kurtosis.
We define:

VN :=
1

N2−2α

NX
i=1

S2−2αi (36)

where Si is drawn from the above distribution. We study VN in the limit
of large N 0s. We know from the analysis above, that for m =∞, VN tends
to a Lévy distribution with exponent 1/ (2− 2α).We study its behavior for
m <∞. The tool of choice is the Laplace transform (using ζ = 1 + ε ' 1)

LVN (k) : = E
h
e−kVN

i
= E

"
exp

−k
N2−2α

NX
i=1

S2−2αi

#

= E

∙
exp
−k
Nγ

Sγ
i

¸N
with (37)

γ : = 2− 2α.
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Now

H : = E

∙
exp
−k
Nγ

Sγ
i

¸
=

Z mN

1

ζ

1− (mN)−ζ
S−ζ−1 exp

µ
−k
Nγ

Sγ
i

¶
dS

=
1

1− (mN)−1

Z mN

1
exp

µ
−k
Nγ

Sγ
i

¶
dS

S2

=
1

1− (mN)−1
N−1

Z mγ

N−γ

exp (−kt)
γt1+1/γ

dt by the change in variables S = Nt1/γ .

Note that as N →∞,

H ∼ N−1
Z mγ

N−γ

dt

γt1+1/γ
∼ 1.

So we use (verifying that H (k = 0) = 1)

H − 1 = N−1
Z mγ

N−γ

exp (−kt)− 1
γt1+1/γ

dt+ o

µ
1

N

¶
= − 1

N
ψ (k) + o

µ
1

N

¶
(38)

with the new function:

ψm,γ (k) :=

Z mγ

0

1− exp (−kt)
γt1+1/γ

dt (39)

which has a closed form in terms of the Gamma function (analytically con-
tinued for a < 0). With Γ (a, z) :=

R z
0 e

−tta−1dt we have:

ψm,γ (k) = −
k1/γ

γ
Γ

µ
−1
γ
, k mγ

¶
−m. (40)

Finally, expressions (37) and (38) give, in the limit of large N ’s:

lnLVN (k) = N lnH = N ln

µ
1− 1

N
ψ (k) + o

µ
1

N

¶¶
= −ψ (k) + o (1) .

Thus VN converges in distribution to a well-defined random variable V ,
whose Laplace transform is:

LV (k) = e−ψ(k). (41)
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We can also establish the distribution of the fluctuations in Y .
∆Y
Y =d Y −αV 1/2u from above. Thus the Fourier transform of the fluc-

tuations is:

F (k) = E
h
e−ikV

1/2u
i
= E

h
e−k

2V /2
i
= e−ψ(k

2/2)

so taking the inverse Fourier transform we get (22).
When m→∞,

ψm,γ=2−2α
¡
k2/2

¢
→
Z ∞

0

1− exp
¡
−k2/2t

¢
γt1+1/γ

dt =
k2/γΓ (−1/γ)

21/γγ
= bk1/(1−α)

for some b. The characteristic function is that of a symmetric Lévy distrib-
ution.

When m→ 0,

ψm,γ (k) =

Z mγ

0

1− exp (−kt)
γt1+1/γ

dt ∼
Z mγ

0

kt

γt1+1/γ
dt

=
mγ−1

γ − 1k =
m1−2α

1− 2αk

so that ψm,γ

¡
k2/2

¢
∼ m1−2α

1−2α k2/2, which shows that ∆Y/Y
³
m1−2α

1−2α

´−1/2
tends to a standard Gaussian distribution.

13 Appendix E: Hulten’s theorem

For clarity, we will here rederive and extend Hulten (1978)’s result, which
says that a productivity shock dπi to firm i causes an increase in GDP equal
to:

GDP growth =
X
i

Sales of firm i

GDP
dπi.

There are N firms. Firm i produces good i, and uses a quantity Xij is inter-
mediary inputs from firm j. It also uses Li units of labor, Ki units of capital.
It has productivity πi. If production is: Qi = F i (Ii1, ..., IiN , Li,Ki, πi).

The representative agent consumer Ci of good i, and has a utility func-
tion is U (C1, ..., CN). Production of firm i serves as consumption, and
intermediary inputs, so: Qi = Ci +

P
kXkiThe optimum in this economy

reads:
max

Ci,Xik,Li,Ki

U (C1, ..., CN ) s.t.
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Ci +
X
k

Xki = F i (Xi1, ...,XiN , Li,Ki, λi)X
i

Li = L,
X
i

Ki = K

The Lagragian is:

W = U (C1, ..., CN)+
X
i

pi

"
F i (Xi1, ...,XiN , Li,Ki, λi)− Ci −

X
k

Xki

#
+w

"
L−

X
i

Li

#
+r

"
K −

X
i

K

(42)
Assume marginal cost pricing20. GDP is this economy is

Y = wL+ rK =
X
i

piCi

So the value added of firm i is wLi + rKi, while its sales are: piQi.
Suppose that technological progress is Hicks-neutral productivity, so that

F i (Xi1, ...,XiN , Li,Ki, πi) = eπiGi (Xi1, ...,XiN , Li,Ki). Say that each firm
i has a shock dπi to productivity. Then, GDP changes by:

dW

W
=

1

W
d

(
U (C1, ..., CN) +

X
i

pi

"
eπiGi (Xi1, ...,XiN , Li,Ki, λi)−Ci −

X
k

Xki

#
+ w

"X
i

Li − L

=
1

W

X
i

pi
£
eπiGi (Xi1, ...,XiN , Li,Ki, λi) dπi

¤
=

X
i

Sales of firm i

GDP
dπi

which is Eq. 14.
This marginalist analysis shows that Hulten’s theorem holds even if, after

the shock, the capital, labor, and material inputs are not reallocated. This
is a simple consequence of the envelope’s theorem, and can alternatively be
seen in Eq. 43. Hence Hulten’s result holds also in a world with frictions to
labor, capital, and or intermediate inputs.

20See Basu (XXX) for the analysis with imperfect competition.
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