Economics 172
Issues in African Economic Development

Lecture 6 – February 1, 2007
Health and wealth: cause or effect?

• How can we determine whether poor health is the cause of poverty (as Bloom and Sachs assert) or vice versa?
• This is a difficult problem

• More generally how to interpret $\text{Corr} (A, B) > 0$?
 1. “A causes B”: $A \rightarrow B$
 2. “B causes A”: $B \rightarrow A$
 3. $A \rightarrow B$ and $B \rightarrow A$ simultaneously
 4. Some other factor C causes both: $C \rightarrow A$ and $C \rightarrow B$
 5. The association is purely coincidental (but regression confidence intervals help address this)
Another approach: analysis with “micro-data”

- Both Bloom and Sachs (1998) and AJR (2001) focus on broad country-level historical trends
- But establishing causality and theoretical channels is exceedingly difficult in that setting

- Another approach uses data at the level of individuals, communities, or firms to test theories about the link between health and wealth
- Problem Set #1 features some analysis of this kind

• Education is a possible channel linking health, income

Poor health Lower income

- Education is a possible channel linking health, income

- Education

- Poor health

- Lower income

- Worms are among the world’s most prevalent diseases:

<table>
<thead>
<tr>
<th>Parasite</th>
<th># infections globally</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hookworm</td>
<td>1.3 billion</td>
</tr>
<tr>
<td>Roundworm</td>
<td>1.3 billion</td>
</tr>
<tr>
<td>Whipworm</td>
<td>900 million</td>
</tr>
<tr>
<td>Schistosomiasis</td>
<td>200 million</td>
</tr>
</tbody>
</table>
Figure 1. The global distribution of (a) *Ascaris lumbricoides*, (b) *Trichuris trichiura* and (c) hookworm. White areas represent countries not included in the present analysis. Data obtained from http://www.fic.nih.gov/dcpp/dcp2.html

- Worms are among the world’s most prevalent diseases:

<table>
<thead>
<tr>
<th>Parasite</th>
<th># infections globally</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hookworm</td>
<td>1.3 billion</td>
</tr>
<tr>
<td>Roundworm</td>
<td>1.3 billion</td>
</tr>
<tr>
<td>Whipworm</td>
<td>900 million</td>
</tr>
<tr>
<td>Schistosomiasis</td>
<td>200 million</td>
</tr>
</tbody>
</table>

- Health and nutritional consequences – anemia, weakness, listlessness, stunting, wasting, stomach pain – especially for heavy infections

- Transmission of worm infections through poor hygiene, sanitation. Eliminating one person’s infection may reduce transmission to others: “externalities” / spillovers

• Transmission of worm infections through poor hygiene, sanitation. Eliminating one person’s infection may reduce transmission to others: “externalities” / spillovers

• Treatment is cheap (<US$1 per year)
 – Drugs: albendazole, praziquantel
Health and education: cause or effect?

What is the impact of worm infections on education?
Health and education: cause or effect?

- What is the impact of worm infections on education?

- In data, children with worse worm infections tend to have worse educational performance than other children

- How to interpret $\text{Corr (Health, Education)} > 0$?
 1. “A causes B”: $\text{Health} \rightarrow \text{Education}$
 2. “B causes A”: $\text{Education} \rightarrow \text{Health}$
 3. $A \rightarrow B$ and $B \rightarrow A$ simultaneously
 4. Some other factor C causes both: $C \rightarrow A$ and $C \rightarrow B$
 5. The association is purely coincidental (but regression confidence intervals help address this)
Health and education: cause or effect?

• What is the impact of worm infections on education?

• In data, children with worse worm infections tend to have worse educational performance than other children.

• How to interpret $\text{Corr (Health, Education)} > 0$?
 1. “A causes B”: $\text{Health} \rightarrow \text{Education}$
 2. “B causes A”: $\text{Education} \rightarrow \text{Health}$
 3. $A \rightarrow B$ and $B \rightarrow A$ simultaneously
 4. Some other factor C causes both: $C \rightarrow A$ and $C \rightarrow B$
 5. The association is purely coincidental (but regression confidence intervals help address this)
Omitted variable bias in OLS
Omitted variable bias in OLS

(1) \[Y_i = a + bW_i + cX_i + e_i \]
Omitted variable bias in OLS

\[(1) \quad Y_i = a + bW_i + cX_i + e_i\]

- \(Y\): educational outcome (e.g., school attendance)
- \(W\): indicator variable (=0 or 1) for having worms
- \(X\): child characteristic (e.g., home socioeconomic status)
Omitted variable bias in OLS

(1) \[Y_i = a + bW_i + cX_i + e_i \]

\(Y \): educational outcome (e.g., school attendance)
\(W \): indicator variable (=0 or 1) for having worms
\(X \): child characteristic (e.g., home socioeconomic status)
\(a, b, c \): parameters / “coefficients” to be estimated
Omitted variable bias in OLS

(1) \[Y_i = a + bW_i + cX_i + e_i \]

Y: educational outcome (e.g., school attendance)
W: indicator variable (=0 or 1) for having worms
X: child characteristic (e.g., home socioeconomic status)
\(a, b, c \): parameters / “coefficients” to be estimated

e: white noise “error/disturbance” term, \(E(e) = 0 \)
i: denotes person “i” in the population, i from 1, …, N
Omitted variable bias in OLS

(1) \[Y_i = a + bW_i + cX_i + e_i \]

Expectations ("average") of the outcome for different cases:
1. \[E(Y_i | W_i=1, X_i=1) = ? \]
Omitted variable bias in OLS

(1) \[Y_i = a + bW_i + cX_i + e_i \]

Expectations ("average") of the outcome for different cases:
1. \[E(Y_i | W_i=1, X_i=1) = a + bE(W_i | W_i=1, X_i=1) \]
 \[+ cE(X_i | W_i=1, X_i=1) + E(e_i | W_i=1, X_i=1) \]
Omitted variable bias in OLS

(1) \[Y_i = a + bW_i + cX_i + e_i \]

Expectations ("average") of the outcome for different cases:
1. \[E(Y_i \mid W_i=1, X_i=1) = a + b + c + E(e_i \mid W_i=1, X_i=1) \]
Omitted variable bias in OLS

(1) \[Y_i = a + bW_i + cX_i + e_i \]

Expectations ("average") of the outcome for different cases:
1. \[E(Y_i \mid W_i=1, X_i=1) = a + b + c + E(e_i \mid W_i=1, X_i=1) = a+b+c \]
Omitted variable bias in OLS

(1) \[Y_i = a + bW_i + cX_i + e_i \]

Expectations (“average”) of the outcome for different cases:
1. \(E(Y_i \mid W_i=1, \ X_i=1) = a + b + c + E(e_i \mid W_i=1, \ X_i=1) = a+b+c \)
2. \(E(Y_i \mid W_i=1, \ X_i=0) = a + b + E(e_i \mid W_i=1, \ X_i=1) = a+b \)
Omitted variable bias in OLS

(1) \[Y_i = a + bW_i + cX_i + e_i \]

Expectations ("average") of the outcome for different cases:
1. \(E(Y_i \mid W_i=1, X_i=1) = a + b + c + E(e_i \mid W_i=1, X_i=1) = a+b+c \)
2. \(E(Y_i \mid W_i=1, X_i=0) = a + b + E(e_i \mid W_i=1, X_i=1) = a+b \)
3. \(E(Y_i \mid W_i=0, X_i=1) = a + c + E(e_i \mid W_i=1, X_i=1) = a+c \)
Omitted variable bias in OLS

(1) \[Y_i = a + bW_i + cX_i + e_i \]

Expectations (“average”) of the outcome for different cases:
1. \(E(Y_i \mid W_i=1, X_i=1) = a + b + c + E(e_i \mid W_i=1, X_i=1) = a+b+c \)
2. \(E(Y_i \mid W_i=1, X_i=0) = a + b + E(e_i \mid W_i=1, X_i=1) = a+b \)
3. \(E(Y_i \mid W_i=0, X_i=1) = a + c + E(e_i \mid W_i=1, X_i=1) = a+c \)
4. \(E(Y_i \mid W_i=0, X_i=0) = a + E(e_i \mid W_i=1, X_i=1) = c \)
Omitted variable bias in OLS

(1) \[Y_i = a + bW_i + cX_i + e_i \]

(2) \[E(Y_i \mid W_i=1) - E(Y_i \mid W_i=0) \]
Omitted variable bias in OLS

(1) \[Y_i = a + bW_i + cX_i + e_i \]

(2) \[E(Y_i | W_i=1) - E(Y_i | W_i=0) \]

\[= [a + b + cE(X_i | W_i=1) + E(e_i | W_i=1)] \]
\[- [a + 0 + cE(X_i | W_i=0) + E(e_i | W_i=0)] \]
Omitted variable bias in OLS

(1) \[Y_i = a + bW_i + cX_i + e_i \]

(2) \[E(Y_i \mid W_i=1) - E(Y_i \mid W_i=0) \]

\[= [a + b + cE(X_i \mid W_i=1) + E(e_i \mid W_i=1)] - [a + 0 + cE(X_i \mid W_i=0) + E(e_i \mid W_i=0)] \]

\[= b + c [E(X_i \mid W_i=1) - E(X_i \mid W_i=0)] \]
Omitted variable bias in OLS

\[Y_i = a + bW_i + cX_i + e_i \]

\[E(Y_i | W_i=1) - E(Y_i | W_i=0) \]

\[= [a + b + cE(X_i | W_i=1) + E(e_i | W_i=1)] \]
\[- [a + 0 + cE(X_i | W_i=0) + E(e_i | W_i=0)] \]

\[= b + c [E(X_i | W_i=1) - E(X_i | W_i=0)] \]

True effect
“Omitted variable/selection bias” term
• When is omitted variable bias not a problem?

Dealing with omitted variable bias
Dealing with omitted variable bias

• When is omitted variable bias not a problem?
 1) Collect information on X
Dealing with omitted variable bias

• When is omitted variable bias not a problem?
 1) Collect information on X

 Better data collection reduces OVB, fewer X’s
Dealing with omitted variable bias

- When is omitted variable bias not a problem?
 1) Collect information on X
 Better data collection reduces OVB, fewer X’s
 2) The omitted variable does not affect the outcome
Dealing with omitted variable bias

• When is omitted variable bias not a problem?
 1) Collect information on X
 Better data collection reduces OVB, fewer X’s
 2) The omitted variable does not affect the outcome
 \[c = 0 \]
Omitted variable bias in OLS

(1) \[Y_i = a + bW_i + cX_i + e_i \]

(2) \[E(Y_i \mid W_i=1) - E(Y_i \mid W_i=0) \]

\[= [a + b + cE(X_i \mid W_i=1) + E(e_i \mid W_i=1)] \]
\[- [a + 0 + cE(X_i \mid W_i=0) + E(e_i \mid W_i=0)] \]

\[= b + c [E(X_i \mid W_i=1) - E(X_i \mid W_i=0)] \]

True effect “Omitted variable/selection bias” term
Dealing with omitted variable bias

• When is omitted variable bias not a problem?
 1) Collect information on X
 Better data collection reduces OVB, fewer X’s
 2) The omitted variable does not affect the outcome
 \(c = 0 \)
 3) The omitted variables are not correlated with the explanatory variable of interest (here, \(W \))
Dealing with omitted variable bias

• When is omitted variable bias not a problem?
 1) Collect information on X
 \textit{Better data collection reduces OVB, fewer X’s}
 2) The omitted variable does not affect the outcome
 \[c = 0 \]
 3) The omitted variables are not correlated with the explanatory variable of interest (here, W)
 \textit{“Experimental” variation in variables of interest}
Dealing with omitted variable bias

• When is omitted variable bias not a problem?
 1) Collect information on X

 \textit{Better data collection reduces OVB, fewer X's}

 2) The omitted variable does not affect the outcome

 \[c = 0 \]

 3) The omitted variables are not correlated with the explanatory variable of interest (here, W)

 \textit{“Experimental” variation in variables of interest}

• If treatment with deworming drugs is assigned “randomly”, and reduces worm infection, then the reduction in worms should be uncorrelated with X

- Primary School Deworming Project (PSDP) in Kenya

• Primary School Deworming Project (PSDP) in Kenya

• Randomized evaluation design: Three steps
 (i) Schools divided by geographic zone, (ii) alphabetized,
 (iii) divided into three groups (1-2-3, 1-2-3, etc.)

- Primary School Deworming Project (PSDP) in Kenya

- Randomized evaluation design: Three steps
 (i) Schools divided by geographic zone, (ii) alphabetized,
 (iii) divided into three groups (1-2-3, 1-2-3, etc.)

<table>
<thead>
<tr>
<th>Group</th>
<th>1998</th>
<th>1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1 (25 schools)</td>
<td>Treatment</td>
<td>Treatment</td>
</tr>
<tr>
<td>Group 2 (25 schools)</td>
<td>Comparison</td>
<td>Treatment</td>
</tr>
<tr>
<td>Group 3 (25 schools)</td>
<td>Comparison</td>
<td>Comparison</td>
</tr>
</tbody>
</table>
PSDP Baseline differences (1998)

<table>
<thead>
<tr>
<th>Group</th>
<th>Average</th>
<th></th>
<th>Group</th>
<th>Average</th>
<th></th>
<th>Group</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td></td>
<td>(N=25)</td>
<td>Group 2</td>
<td></td>
<td>(N=25)</td>
<td>Group 3</td>
<td></td>
</tr>
</tbody>
</table>

PSDP Baseline differences (1998)

<table>
<thead>
<tr>
<th></th>
<th>Average</th>
<th>Average</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Group 1</td>
<td>Group 2</td>
<td>Group 3</td>
</tr>
<tr>
<td></td>
<td>(N=25)</td>
<td>(N=25)</td>
<td>(N=25)</td>
</tr>
<tr>
<td>Latrine at home</td>
<td>0.82</td>
<td>0.81</td>
<td>0.82</td>
</tr>
<tr>
<td>Livestock at home</td>
<td>0.66</td>
<td>0.67</td>
<td>0.66</td>
</tr>
<tr>
<td>Child sick often</td>
<td>0.10</td>
<td>0.10</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>(self-reported)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996 exam score</td>
<td>-0.10</td>
<td>0.09</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>(normalized mean 0, s.d. 1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Program impacts

• Three types of analysis:
 (1) Direct treatment effects: simple difference between treatment and comparison schools
 (2) Within-school externality impacts
 (3) Cross-school externality impacts
Health, nutrition impacts (1999)

<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th>Group 2</th>
<th>G1–G2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate of moderate-heavy infection</td>
<td>0.27</td>
<td>0.52</td>
<td>-0.25*</td>
</tr>
<tr>
<td>Sick in past week</td>
<td>0.41</td>
<td>0.45</td>
<td>-0.04*</td>
</tr>
<tr>
<td>Height for age (Z-score)</td>
<td>-1.13</td>
<td>-1.22</td>
<td>0.09*</td>
</tr>
<tr>
<td>Hemoglobin (Hb)</td>
<td>124.8</td>
<td>123.2</td>
<td>1.6</td>
</tr>
</tbody>
</table>
Within-school infection externalities (1999)

<table>
<thead>
<tr>
<th>Group 1 (Treated)</th>
<th>Group 1 (Untreated)</th>
<th>Group 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate of moderate-heavy Infection, 1999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.24</td>
<td>0.34</td>
<td>0.52</td>
</tr>
</tbody>
</table>
Within-school infection externalities (1999)

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Group 1 (Treated)</th>
<th>Group 2 (Untreated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate of moderate-heavy Infection, 1999</td>
<td>0.24</td>
<td>0.34</td>
</tr>
<tr>
<td>Rate of moderate-heavy Infection, 1998</td>
<td>0.39</td>
<td>0.41</td>
</tr>
</tbody>
</table>
Cross-school infection externalities (1999)

• Large reductions in moderate-heavy infection levels within 6 km of treatment schools in 1999
Cross-school infection externalities (1999)

• Large reductions in moderate-heavy infection levels within 6 km of treatment schools in 1999

• An average reduction in moderate-heavy infections of 23 percentage points in the study area can be attributed to cross-school externalities
Educational impacts – school participation

- “School participation” data collected by enumerators during unannounced primary school visits
Educational impacts – school participation

- “School participation” data collected by enumerators during unannounced primary school visits

<table>
<thead>
<tr>
<th>Group 1 (T)</th>
<th>Group 2 (C)</th>
<th>Group 3 (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Younger girls, and all boys</td>
<td>0.84</td>
<td>0.73</td>
</tr>
<tr>
<td>Older girls (\geq 13 years)</td>
<td>0.86</td>
<td>0.80</td>
</tr>
<tr>
<td>Pre-school, Grades 1-2</td>
<td>0.80</td>
<td>0.69</td>
</tr>
<tr>
<td>Grades 6-8</td>
<td>0.93</td>
<td>0.86</td>
</tr>
</tbody>
</table>
Educational impacts – academic tests

• Standardized academic exams administered in grades 3-8 in 1998 and 1999

• Why might deworming affect test scores?
Educational impacts – academic tests

• Standardized academic exams administered in grades 3-8 in 1998 and 1999

• Why might deworming affect test scores?
 1) Increased time in school (+)
 2) Greater efficiency of learning (+)
Educational impacts – academic tests

• Standardized academic exams administered in grades 3-8 in 1998 and 1999

• Why might deworming affect test scores?
 1) Increased time in school (+)
 2) Greater efficiency of learning (+)

• But the average test gain from deworming is zero. Why?
Educational impacts – academic tests

• Standardized academic exams administered in grades 3-8 in 1998 and 1999

• Why might deworming affect test scores?
 1) Increased time in school (+)
 2) Greater efficiency of learning (+)

• But the average test gain from deworming is zero. Why?
 – Congestion effects in the classroom
 – Time lags
Cost-benefit calculations
Cost-benefit calculations

- Cost of this program: US$1.46 per pupil per year
- Cost of a larger-scale program in neighboring Tanzania: only US$0.49 per pupil per year
Cost-benefit calculations

- Cost of this program: US$1.46 per pupil per year
- Cost of a larger-scale program in neighboring Tanzania: only US$0.49 per pupil per year

- Deworming as a human capital investment:
 Health gains \rightarrow More schooling \rightarrow Higher adult wages
Cost-benefit calculations

- Deworming as a human capital investment:
 Health gains → More schooling → Higher adult wages
- Deworming led to 7% gain in school participation
- Previous study: each year of school → 7% higher wages
- Take these gains in wages (7% x 7%) over 40 years in the workforce, discounted 5% per year
Cost-benefit calculations

• Deworming as a human capital investment:
 Health gains → More schooling → Higher adult wages

• Deworming led to 7% gain in school participation
• Previous study: each year of school → 7% higher wages
• Take these gains in wages (7% x 7%) over 40 years in the workforce, discounted 5% per year

→ Deworming benefits are at least three times (3x) as large as treatment costs (using the Tanzania costs)
Given the returns, why is take-up not 100%?
Given the returns, why is take-up not 100%?

• Possible explanations:
 (1) Free-riding / externalities
 -- Strong evidence people learned through their social network that the drugs were “not effective”
Given the returns, why is take-up not 100%?

- Possible explanations:
 1. Free-riding / externalities
 -- Strong evidence people learned through their social network that the drugs were “not effective”
 2. Socio-cultural explanations / resistance to new technologies (evidence from anthropology)
The Impact of Higher Drug Costs

- In 1998, 1999, 2000 deworming was given for free
- In 2001, parents in 25 randomly chosen Group 1 and Group 2 schools paid US$0.10-0.30 per child
The Impact of Higher Drug Costs

- In 1998, 1999, 2000 deworming was given for free
- In 2001, parents in 25 randomly chosen Group 1 and Group 2 schools paid US$0.10-0.30 per child

- 2001 deworming take-up:
 Free-treatment schools: 75%
 Cost-sharing schools: 18%
• For next time: Read Miguel (2005)