Program impacts

• Three types of analysis:
 (1) Direct treatment effects: simple difference between treatment and comparison schools
 (2) Within-school externality impacts
 (3) Cross-school externality impacts
Cross-school infection externalities (1999)

- Large reductions in moderate-heavy infection levels within 3 km (2 miles) of treatment schools in 1999, smaller positive reductions up to 6 km
Cross-school infection externalities (1999)

• Large reductions in moderate-heavy infection levels within 3 km (2 miles) of treatment schools in 1999, smaller positive reductions up to 6 km

• An average reduction in moderate-heavy infections of approximately 20 percentage points in the study area can be attributed to cross-school externalities
Implications of treatment externalities

• Standard public finance theory: individual behaviors that generate positive externalities for other people are “under-provided”, since people do not take into account the social benefits of their actions. Thus in the absence of a subsidy, there is too little deworming.
Implications of treatment externalities

- Standard public finance theory: individual behaviors that generate positive externalities for other people are “under-provided”, since people do not take into account the social benefits of their actions. Thus in the absence of a subsidy, there is too little deworming
 → a strong rationale for public deworming subsidies
Implications of treatment externalities

• Standard public finance theory: individual behaviors that generate positive externalities for other people are “under-provided”, since people do not take into account the social benefits of their actions. Thus in the absence of a subsidy, there is too little deworming
 → a strong rationale for public deworming subsidies

• Previous randomized studies of deworming within schools showed positive but small impacts on child health, nutrition. Why? Is “deworming not worth it”?
Within-school infection externalities (1999)

<table>
<thead>
<tr>
<th>Group 1 (Treated)</th>
<th>Group 1 (Untreated)</th>
<th>Group 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.24</td>
<td>0.34</td>
<td>0.52</td>
</tr>
</tbody>
</table>

Rate of moderate-heavy Infection, 1999
Within-school infection externalities (1999)

<table>
<thead>
<tr>
<th>Group 1 (Treated)</th>
<th>Group 1</th>
<th>Group 2 (Untreated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate of moderate-heavy Infection, 1999</td>
<td>0.24</td>
<td>0.34</td>
</tr>
</tbody>
</table>

This 10 percentage point “effect” is much smaller than the 25 point effect we estimate when we compare treatment and comparison schools – and even that is an underestimate (due to cross-school externalities).
Within-school infection externalities (1999)

<table>
<thead>
<tr>
<th>Group 1 (Treated)</th>
<th>Group 1 (Treated)</th>
<th>Group 2 (Untreated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate of moderate-heavy Infection, 1999</td>
<td>0.24</td>
<td>0.34</td>
</tr>
</tbody>
</table>

This 10 percentage point “effect” is much smaller than the 25 point effect we estimate when we compare treatment and comparison schools – and even that is an underestimate (due to cross-school externalities).

→ Simple T – C analysis may not give reliable estimates in the presence of externalities (e.g., infectious diseases)
Drugs or behavioral change? (1999)

- Did the health / hygiene education have any impact on worm prevention behaviors? (e.g., hand washing, wearing shoes, avoiding contact with fresh water)
Drugs or behavioral change? (1999)

<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th>Group 2</th>
<th>G1–G2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wearing shoes</td>
<td>0.24</td>
<td>0.26</td>
<td>-0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.03)</td>
</tr>
<tr>
<td>“Clean” hands, clothes (according to enumerators)</td>
<td>0.59</td>
<td>0.60</td>
<td>-0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.02)</td>
</tr>
</tbody>
</table>
Drugs or behavioral change? (1999)

<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th>Group 2</th>
<th>G1–G2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wearing shoes</td>
<td>0.24</td>
<td>0.26</td>
<td>-0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.03)</td>
</tr>
<tr>
<td>“Clean” hands, clothes (according to enumerators)</td>
<td>0.59</td>
<td>0.60</td>
<td>-0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.02)</td>
</tr>
<tr>
<td>Days of contact with fresh water in past week</td>
<td>2.4</td>
<td>2.2</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.3)</td>
</tr>
</tbody>
</table>
Drugs or behavioral change? (1999)

• Did the health / hygiene education have any impact on worm prevention behaviors? (e.g., hand washing, wearing shoes, avoiding contact with fresh water)
 – If deworming drugs and worm prevention practices are substitutes, then taking the drugs will make kids less conscientious about avoiding exposure
Focus on the girls aged 13+

<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th>Group 2</th>
<th>G1–G2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wearing shoes</td>
<td>0.39</td>
<td>0.42</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>(0.06)</td>
<td>(0.06)</td>
<td></td>
</tr>
<tr>
<td>“Clean” hands, clothes</td>
<td>0.75</td>
<td>0.77</td>
<td>0.02</td>
</tr>
<tr>
<td>(according to enumerators)</td>
<td></td>
<td>(0.02)</td>
<td></td>
</tr>
<tr>
<td>Days of contact with</td>
<td>2.3</td>
<td>2.2</td>
<td>0.0</td>
</tr>
<tr>
<td>fresh water in past week</td>
<td></td>
<td>(0.3)</td>
<td></td>
</tr>
</tbody>
</table>
Educational impacts – school participation
Educational impacts – school participation

• “School participation” data collected by enumerators during unannounced primary school visits
Educational impacts – school participation

- “School participation” data collected by enumerators during unannounced primary school visits

 Group 1 (T) Group 2 (C) Group 3 (C)

Younger girls, and all boys

0.84 0.73 0.77
Educational impacts – school participation

• “School participation” data collected by enumerators during unannounced primary school visits

<table>
<thead>
<tr>
<th>Group 1 (T)</th>
<th>Group 2 (C)</th>
<th>Group 3 (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Younger girls, and all boys</td>
<td>0.84</td>
<td>0.73</td>
</tr>
<tr>
<td>Older girls (≥ 13 years)</td>
<td>0.86</td>
<td>0.80</td>
</tr>
</tbody>
</table>
Educational impacts – school participation

- “School participation” data collected by enumerators during unannounced primary school visits

<table>
<thead>
<tr>
<th>Group</th>
<th>Group 1 (T)</th>
<th>Group 2 (C)</th>
<th>Group 3 (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Younger girls, and all boys</td>
<td>0.84</td>
<td>0.73</td>
<td>0.77</td>
</tr>
<tr>
<td>Older girls (≥ 13 years)</td>
<td>0.86</td>
<td>0.80</td>
<td>0.81</td>
</tr>
<tr>
<td>Pre-school, Grades 1-2</td>
<td>0.80</td>
<td>0.69</td>
<td>0.70</td>
</tr>
<tr>
<td>Grades 6-8</td>
<td>0.93</td>
<td>0.86</td>
<td>0.89</td>
</tr>
</tbody>
</table>
Educational impacts – school participation

• “School participation” data collected by enumerators during unannounced primary school visits

<table>
<thead>
<tr>
<th>Group 1 (T)</th>
<th>Group 2 (C)</th>
<th>Group 3 (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Younger girls, and all boys</td>
<td>0.84</td>
<td>0.73</td>
</tr>
<tr>
<td>Older girls (≥ 13 years)</td>
<td>0.86</td>
<td>0.80</td>
</tr>
<tr>
<td>Pre-school, Grades 1-2</td>
<td>0.80</td>
<td>0.69</td>
</tr>
<tr>
<td>Grades 6-8</td>
<td>0.93</td>
<td>0.86</td>
</tr>
</tbody>
</table>

→ Treating worms reduces school absenteeism a lot!
Educational impacts – academic tests
Educational impacts – academic tests

• Standardized academic exams were administered in grades 3-8 in 1998 and 1999

• Why might deworming affect test scores?
Educational impacts – academic tests

• Standardized academic exams were administered in grades 3-8 in 1998 and 1999

• Why might deworming affect test scores?
 1) Increased time in school (+)
 2) Greater efficiency of learning while in school (+)
Educational impacts – academic tests

• But the average test gain from deworming is zero. Why?
Educational impacts – academic tests

• But the average test gain from deworming is **zero**. Why?
 – Congestion effects in the classroom
 – Time lags
 – Other explanations?
Cost-benefit calculations
Cost-benefit calculations

- Cost of this program: US$1.46 per pupil per year
- Cost of a larger-scale program in neighboring Tanzania: only US$0.49 per pupil per year
Cost-benefit calculations

• Cost of this program: US$1.46 per pupil per year
• Cost of a larger-scale program in neighboring Tanzania: only US$0.49 per pupil per year

• Cost of health education component (classroom lessons, teacher training) was US$0.44 per pupil per year
Cost-benefit calculations

- Deworming as a human capital investment:
 Health gains \rightarrow More schooling \rightarrow Higher adult wages
Cost-benefit calculations

• Deworming as a human capital investment:
 Health gains → More schooling → Higher adult wages

• Deworming led to 7% gain in school participation
Cost-benefit calculations

- Deworming as a human capital investment: Health gains → More schooling → Higher adult wages
- Deworming led to 7% gain in school participation
- Previous study: each year of school → 7% higher wages
- Take these gains in wages (7% x 7%) over 40 years in the workforce, discounted at 5% per year
Cost-benefit calculations

- Deworming as a human capital investment:
 - Health gains → More schooling → Higher adult wages
 - Deworming led to 7% gain in school participation
 - Previous study: each year of school → 7% higher wages
 - Take these gains in wages (7% x 7%) over 40 years in the workforce, discounted at 5% per year
 - Deworming benefits are at least three times (3x) as large as treatment costs (using the Tanzania costs)
Given the returns, why is take-up not 100%?
Given the returns, why is take-up not 100%?

- Possible explanations:
 1. Free-riding / externalities
 -- The private benefits are much smaller than the social benefits (i.e., if everyone else in your school is taking the drugs, the returns to taking them are small)
Given the returns, why is take-up not 100%?

• Possible explanations:

 (1) Free-riding / externalities
 -- The private benefits are much smaller than the social benefits (i.e., if everyone else in your school is taking the drugs, the returns to taking them are small)
 -- Strong evidence people learned through their social network that the drugs were “not effective”
Given the returns, why is take-up not 100%?

• Possible explanations:
 (1) Free-riding / externalities
 -- The private benefits are much smaller than the social benefits (i.e., if everyone else in your school is taking the drugs, the returns to taking them are small)
 -- Strong evidence people learned through their social network that the drugs were “not effective”

(2) Socio-cultural explanations / resistance to new technologies. Evidence from anthropologist Wenzel Geissler: “worms are our life”
The Impact of Higher Drug Costs

- In 1998, 1999, 2000 deworming was given for free
- In 2001, parents in 25 randomly chosen Group 1 and Group 2 schools paid US$0.10-0.30 per child
The Impact of Higher Drug Costs

- In 1998, 1999, 2000 deworming was given for free
- In 2001, parents in 25 randomly chosen Group 1 and Group 2 schools paid US$0.10-0.30 per child

- 2001 deworming take-up:
 Free-treatment schools: 75%
 Cost-sharing schools: 18%
• For next time: the HIV/AIDS readings