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Abstract

This paper illustrates how to e¢ ciently compute and how to perform likelihood-

based inference in dynamic stochastic general equilibrium (DSGE) models with

Epstein-Zin preferences. This class of preferences has recently become a popular

device to account for asset pricing observations and other phenomena that are

challenging to address within the traditional state-separable utility framework.

However, there has been little econometric work in the area, particularly from

a likelihood perspective, because of the di¢ culty in computing an equilibrium

solution to the model and in deriving the likelihood function. To �ll this gap,

we build a real business cycle model with Epstein-Zin preferences and long-run

growth, solve it with perturbation techniques, and evaluate its likelihood with

the particle �lter. We estimate the model by maximum likelihood using U.S.

macro and yield curve data. We �nd a low elasticity of intertemporal substitu-

tion (around 0.06) and a large risk aversion (around 46). With our estimates,

we evaluate the cost of aggregate �uctuations to be around 9 percent of lifetime

consumption.
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1. Introduction

This paper illustrates how to e¢ ciently compute and how to perform likelihood-based infer-

ence in dynamic stochastic general equilibrium (DSGE) models with Epstein-Zin preferences.

Over the last years, this class of recursive utility functions (Kreps and Porteus, 1978, Epstein

and Zin, 1989 and 1991, and Weil, 1990) has become popular.1 The separation they allow

between the intertemporal elasticity of substitution (IES) and risk aversion is intuitively ap-

pealing and provides an extra degree of freedom that can be put to good use. For instance,

in the asset pricing literature, researchers have argued that Epstein-Zin preferences account

for many patterns in the data, possibly in combination with other features like long-run risk.

Bansal and Yaron (2004) is a prime representative of this line of work. From a policy per-

spective, Epstein-Zin preferences generate radically bigger welfare costs of the business cycle

than the standard expected utility framework (Tallarini, 2000). Hence, they may change the

trade-o¤s that policy-makers face, as in the example built by Levin, López-Salido, and Yun

(2007). Finally, Epstein-Zin preferences can be reinterpreted, under certain conditions, as a

particular case of robust control preferences (Hansen, Sargent, and Tallarini, 1999).

Unfortunately, much of the work with Epstein-Zin preferences has faced two limitations.

First, except in a few papers like Backus, Routledge, and Zin (2007), Campaneli, Castro, and

Clementi (2007), or Croce (2006), researchers have studied economies where consumption

follows an exogenous process. This is a potentially important shortcoming. Production

economies place tight restrictions on the comovements of endogenous variables that exogenous

consumption models are not forced to satisfy. Moreover, in DSGE models, the consumption

process itself is not independent of the parameters �xing the IES and risk aversion. Finally,

considering production economies with labor supply is quantitatively relevant. Uhlig (2007)

has shown how, with Epstein-Zin preferences, leisure a¤ects asset pricing in a signi�cant way

through the risk-adjusted expectation operator, even when leisure enters separately in the

period utility function.

The second limitation of the literature is that there has been little econometric guidance

in the selection of parameter values. Much of the intuition that we have about which para-

meter values are reasonable and about how to calibrate models e¢ ciently come from years of

experience with expected utility models. It is unclear how much of that accumulated learning

1Among dozens of papers, we can cite Backus, Routledge, and Zin (2007), Bansal, Dittman, and Kiku
(2007), Bansal, Gallant, and Tauchen (2008), Bansal, Kiku, and Yaron (2007), Bansal and Yaron (2004),
Bansal and Shaliastovich (2007), Campanale, Castro, and Clementi (2007), Campbell (1993 and (1996),
Campbell and Viceira (2001), Chen, Favilukis and Ludvigson (2007), Croce (2006), Dolmas (1998 and 2006),
Gomes and Michealides (2005), Hansen, Heaton, and Li (2008), Kaltenbrunner and Lochstoer (2007), Kruger
and Kubler (2005), Lettau and Uhlig (2002), Piazzesi and Schneider (2006), Restoy and Weil (1998), Tallarini
(2000), and Uhlig (2007). See also the handbook chapter by Hansen et al. (2008) for a survey of the literature.
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can be translated into models with Epstein-Zin preferences (see, for instance, the cautionary

arguments regarding identi�cation in Kocherlakota, 1990b). As we will demonstrate with our

analysis of the likelihood, the problem not only involves the obvious parameters controlling

IES and risk aversion, but also the other parameters in the model. Learning about them

from the data is important because some economists, like Cochrane (2008), have expressed

skepticism about the empirical plausibility of having simultaneously high IES and high risk

aversion, a condition that we need if we want Epstein-Zin preferences to have a large quan-

titative impact.

These two limitations, i.e., few production economies and few econometric exercises, share

to a large extent a common origin: the di¢ culty in working with Epstein-Zin preferences.

Instead of the simple optimality conditions of expected utility models, recursive preferences

imply necessary conditions that include the value function itself.2 Therefore, standard lin-

earization techniques are of restricted application. Instead, we need to resort to either sim-

plifying the problem by working only with an exogenous �ow for consumption, or employing

solution methods like value function iteration (Croce, 2006) or projection methods (Campan-

eli, Castro, and Clementi, 2007), which are computationally costly and su¤er from the curse

of dimensionality. The former solution precludes all those exercises where consumption reacts

endogenously to the dynamics of the model. The latter solution makes likelihood estimation

exceedingly challenging because of the time spent in the solution of the model for each set of

parameter values.

We overcome the di¢ culty in working with Epstein-Zin preferences through the use of

perturbation techniques and the particle �lter. To illustrate our procedure, we work with a

prototype real business cycle model. We take the stochastic neoclassical growth model and

introduce Epstein-Zin preferences and long-run growth through a unit root process in the law

of motion for technological progress.

First, we perturb the value function formulation of the household problem to obtain a

high-order approximation to the solution of the model given some parameter values in a

trivial amount of time. In companion work (Caldara, Fernández-Villaverde, Rubio-Ramírez,

and Yao, 2008), we document that this solution is highly accurate and we compare it with

alternative computational approaches.

Our perturbation shows analytically that the �rst order approximation to the policy

functions of our model with Epstein-Zin preferences is equivalent to that of the model with

2Epstein and Zin (1989) avoid this problem by showing that if we have access to the total wealth portfolio,
we can derive a �rst order condition in terms of observables that can be estimated using a method of moments.
However, in general we do not observe the total wealth portfolio because of the di¢ culties in measuring human
capital, forcing the researcher to proxy the return on wealth.
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standard utility and the same IES. The risk aversion parameter does not show up in this �rst

order approximation. Risk aversion appears, in comparison, in the constant of the second

order approximation that captures precautionary behavior. The new value of the constant

moves the ergodic distribution of states, a¤ecting, through this channel, allocations, prices,

and welfare up to a �rst order. More concretely, by changing the mean of capital in the ergodic

distribution, risk aversion in�uences the average level and the slope of the yield curve. Risk

aversion also a¤ects the coe¢ cients of the third order approximation that change the slope

of the response of the solution to variations in the states of the model.

An advantage of our solution technique is that we do not limit ourselves to the case with

unitary IES, as Tallerini (2000) and others are forced to do.3 There are three reasons why

this �exibility is welcomed. First, because restricting the IES to be equal to one seems an

unreasonably tight restriction that is hard to reconcile with previous econometric �ndings

(Hall, 1988). Indeed, in our own estimates, we �nd little support for the notion that the IES

is around one. Second, because a value of the IES equal to one implies that the consumption-

wealth ratio is constant over time. Checking for this implication of the model is hard because

wealth is not directly observable as it includes human wealth. However, di¤erent attempts at

measurement, like Lettau and Ludvigson (2001) or Lustig, van Nieuwerburgh, and Verdehaln

(2007), reject the hypothesis that the ratio of consumption to wealth is constant. Third, be-

cause the debate between Campbell (1996) and Bansal and Yaron (2004) about the usefulness

of the Epstein-Zin approach pertains to the right value of the IES. By directly estimating

this parameter, we contribute to this conversation.

The second step in our procedure is to use the particle �lter to �nd the likelihood function

of the model (Fernández-Villaverde and Juan Rubio-Ramírez, 2005 and 2007). Evaluating

the likelihood function of a DSGE model is equivalent to keeping track of the conditional

distribution of unobserved states of the model with respect to the data. Our perturbation

solution is inherently non-linear (otherwise, the parameter controlling risk-aversion would

not appear). These non-linearities make the conditional distribution of states intractable and

prevent the use of more conventional methods, such as the Kalman �lter. The particle �lter

is a sequential Monte Carlo method that replaces the conditional distribution of states by an

empirical distribution of states drawn by simulation.

We estimate the model with U.S. macro and yield curve data. Having Epstein-Zin prefer-

ences allows the model to have a �ghting chance at accounting for asset pricing observations

and brings to the table the information that �nancial data may have about the aggregate

3There is also another literature, based on Campbell (1993), that approximates the solution of the model
around a value of the IES equal to one. Since our perturbation is with respect to the volatility of the
productivity shock, we can deal with arbitrary values of the IES.
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economy. In a �nding reminiscent of Campbell (1993) and (1996), we document how macro

data help us learn about the IES while saying little about risk aversion. With respect to

�nancial data, the level of the yield curve teaches us much about the IES, while the slope

is informative about risk aversion. This result is also present in Campbell (1993). We ex-

plore the di¤erent modes of the likelihood, describe how the change when we vary the data

employed in the estimation, and document how those modes explain part of the variation

in point estimates in the literature regarding the IES. In our benchmark estimate, we �nd a

low elasticity of intertemporal substitution (around 0.06) and a large risk aversion (around

46). We complete our presentation by discussing the ability of the model to account for the

business cycle, asset prices, the comovements between these two, and the implications of our

point estimates for the welfare cost of aggregate �uctuations, which we evaluate to be around

9 percent of lifetime consumption.

We purposely select as our application a prototype business cycle model for three rea-

sons. First, because we develop several new techniques in this paper whose performance was

unknown to us ex-ante. It seems prudent to apply them �rst to a simple model that we

understand extremely well in the case where we have standard preferences. Second, because

even in such a simple model, we have faced computational challenges that have put us close

to the limit of what is currently feasible. As we get familiar with the techniques involved

and as hardware and software progresses, we are con�dent that we will be able to handle

more realistic models. Finally, because it is a necessary �rst step to map which observa-

tions an estimated prototype business cycle model can and cannot account for when we have

Epstein-Zin preferences. After we know the strengths and weaknesses of the model, we can

venture into incorporating richer mechanisms such as the ones that have been popular in the

business cycle and asset pricing literatures (habit formation, long-run risks, real and nominal

rigidities, etc.).

Of course, constraining ourselves to a prototype business cycle model exacts a steep trib-

ute: many aspects of interest will be left out. Most notably, we will take in�ation as an

exogenous process about which we will have little to say. This is a substantial weakness of

our paper and one about which we are totally up-front. For example, Piazzesi and Schneider

(2006) suggest that the interaction between in�ation risk and consumption is key to un-

derstanding the dynamics of the yield curve. We think, however, that the rewards of our

exploratory exercise are su¢ ciently high as to justify our heroic simpli�cations.

The rest of the paper is organized as follows. In section 1, we present a simple DSGE

model, rewrite it in a stationary recursive representation, and show how to price bonds with

it. Section 2 explains our computational algorithm and writes the model in a state space form.

Section 3 discusses the behavior of the model and illustrates how the likelihood function will
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identify the parameters. Section 4 builds the likelihood of the model. Section 5 describes the

data and reports the estimation results. Section 6 concludes. An appendix provides further

details about several aspects of the paper.

2. A Prototype DSGE Model

In this section, we present our prototype DSGE model, we rewrite it in a recursive, stationary

form, and we derive expressions for the nominal and real price of uncontingent bonds.

2.1. Basic Set-Up

As we explained in the introduction, we work with a conventional stochastic neoclassical

growth model where we incorporate only one peculiarity: the presence of Epstein-Zin prefer-

ences. There is a representative agent whose utility function over streams of consumption ct
and leisure lt is:

Ut =

��
c�t (1� lt)

1��� 1�
� + �
�
EtU1�
t+1

� 1
�

� �
1�


where 
 � 0 is the parameter that controls risk aversion,  � 0 is the IES, and:

� =
1� 


1� 1
 

:

The term
�
EtU1�
t+1

� 1
1�
 is often called the risk-adjusted expectation operator. When 
 = 1

 
;

� = 1, the recursive preferences collapse to the standard case of state-separable, CRRA utility.

Epstein-Zin preferences imply that the agents have preferences for early or later resolution of

uncertainty. In our notation, if 
 > 1
 
, they prefer an early resolution of uncertainty, and if


 < 1
 
, a later resolution. Finally, the discount factor is � and our period is one quarter.

The budget constraint of the households is given by:

ptct + ptkt+1 + qt;t+1bt = ptwtlt + ptrtkt + bt (1)

where pt is the price level at period t, kt is capital, bt is an uncontingent bond that pays one

nominal unit in period t; qt;t+1 is the nominal price at t of the uncontingent bond that pays

at period t + 1, wt is the real wage, and rt is the real rental price of capital. We explicitly

include in the budget constraint only a one-period uncontingent bond because below we will

derive its price. With that pricing and no-arbitrage conditions, we will determine the prices

of all the other possible securities. We omit them from the budget constraint in the interest

of clarity. In any case, their price in equilibrium will be such that the representative agent
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will hold a zero amount of them.

The technology is described by a neoclassical production function yt = k�t (ztlt)
1�� ; where

output yt is produced with capital, labor and technology zt. Technology evolves as a random

walk in logs with drift:

log zt+1 = �+ log zt + ��""zt+1 where "zt � N (0; 1)

The drift induces long-run technological progress and the random walk introduces a unit root

in the model. We pick this speci�cation over trend stationarity convinced by Tallarini�s (2000)

demonstration that a di¤erent stationary representation for technological progress facilitates

the work of a model similar to ours at matching the observed market price of risk.4 Part of

the reason, as emphasized by Rouwenhorst (1995), is that the presence of a unit root shifts,

period by period, the long-run growth path of the economy, increasing the variance of future

paths of the variables and hence the utility cost of risk. The parameter � scales the standard

deviation of the productivity shock. This parameter will facilitate the presentation of our

perturbation solution method later on.

Capital depreciates at rate �. This observation, together with the presence of competitive

markets for inputs, implies that the resource constraint of the economy is:

ct + kt+1 = k�t (ztlt)
1�� + (1� �) kt

We will use the resource constraint to derive allocations, and we will return to the budget

constraint in (1) to derive asset prices.

In our data, we will observe nominal bond prices. Hence, we need to take a stand on the

evolution of the nominal price level pt, how it evolves over time, and the expectations that

the representative household form about it. Since at this stage we want to keep the model as

stylized as possible, we take the price level; pt, as an exogenous process that does not a¤ect

allocations or relative prices. Therefore, our economy presents a strikingly strong form of

neutrality of nominal prices. But if we take in�ation as exogenous, we must, at least, choose

a reasonable process for it. Stock and Watson (2007) suggest that the following IMA(1,1)

process for in�ation:

log
pt+1
pt

� log pt
pt�1

= !t+1 � �!t where !t � N (0; �!) (2)

is a good representation of the evolution of prices in the U.S. and that it is di¢ cult to beat as

4Similarly, Álvarez and Jerman (2005) argue that the observed market price of risk strongly points out to
the presence of non-stationarities in the shocks that hit the economy.
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a forecasting model. Following Stock and Watson, we take this IMA representation as the law

of motion for prices in our economy. Also, households will have rational expectations: they

know process (2) and they observe the sequence of shocks !t (i.e., the process is invertible).

Under these assumptions, we show in the appendix that the expectation of the ratio of prices

between pt and pt+j, which we will use later when we price bonds, is given by:

Et
pt
pt+j

=

�
pt�1
pt

�j
exp

 
j�!t +

1

2
�2!

j�1X
i=0

(i� � (i+ 1))2
!

The de�nition of a competitive equilibrium in this economy is standard and we omit it

for the sake of brevity.

2.2. Rewriting the Problem in a Stationary Recursive Form

The problem of the household is indexed by the states kt and zt. Thus, we can rewrite its

problem in the form of a value function:

V (kt; zt;�) = max
ct;lt

��
c�t (1� lt)

1��� 1�
� + �
�
EtV 1�
 (kt+1; zt+1;�)

� 1
�

� �
1�


subject to the budget constraint:

ct + kt+1 = k�t (ztlt)
1�� + (1� �) kt

We index the value function by the parameter � because it will help us later when we perturb

the problem. For now, the reader can think about � as just one more parameter that we

chose to write explicitly in the value function.

A �rst task is to make this problem stationary. De�ne xt = zt�1 and gvart = vart
xt
for a

variable vart. Thus, given the law of motion of productivity, we have:

ezt+1 = zt+1
zt

=
xt+2
xt+1

= exp (�+ ��"zt+1)

First, we transform the budget constraint:

ectxt + ekt+1xt+1 = ek�t x�t (ztlt)1�� + (1� �)xtekt
Dividing both sides by xt:

ect + ekt+1ezt = ez1��t
ek�t l1��t + (1� �)ekt
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or: ekt+1 = ez��t ek�t l1��t + (1� �) ez�1t ekt � ez�1t ect (3)

Also: eyt = ek�t (eztlt)1��
Given the homotheticity of the utility function, the value function is homogeneous of

degree � in kt and zt (a more detailed explanation of this result is presented in the appendix):

V (kt; zt;�) = V
�ektxt; eztxt;�� = x�t V

�ekt; ezt;��
Then:

V
�ekt; ezt;�� x�t = max

ct;lt

�
x
�(1�
)

�
t

�ec�t (1� lt)
1��� 1�
� + �x

�(1�
)
�

t+1

�
EtV 1�


�ekt+1; ezt+1;��� 1
�

� �
1�


or

V
�ekt; ezt;�� = max

ct;lt

��ec�t (1� lt)
1��� 1�
� + �ez �(1�
)�

t

�
EtV 1�


�ekt+1; ezt+1;��� 1
�

� �
1�


(4)

In the transformed problem, the e¤ective discount factor is �ez �(1�
)�
t . This discount factor

depends positively on the IES because a higher IES makes easier to induce the households to

delay consumption towards the future, when productivity will be higher. Hence, higher IES

imply more patient consumers. It is easy to check that the model has a steady state in the

transformed variables (Dolmas, 1996).

Now, to save on notation below, de�ne:

Bt = B
�ekt; ezt;�� = �ec�t (1� lt)

1��� 1�
� + �ez �(1�
)�
t

�
EtV 1�


�ekt+1; ezt+1;��� 1
�

and we have:

V
�ekt; ezt;�� = max

ct;lt
B
�ekt; ezt;�� �

1�


Given our assumptions, B
�ekt; ezt;�� > 0:
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2.3. Pricing Bonds

To �nd the price of a bond in our model, we compute the derivative of the value function

with respect to consumption today:

@Vt
@ect =

�

1� 

B

�
1�
�1
t

1� 


�
�

�ec�t (1� lt)
1��� 1�
�ect

=
�

1� 

V

1�

� (

�+
�1
1�
 )

t

1� 


�
�

�ec�t (1� lt)
1��� 1�
�ect

= V
1� 1�


�
t �

�ec�t (1� lt)
1��� 1�
�ect

and the derivative of the value function with respect to consumption tomorrow:

@Vt
@ect+1 =

�

1� 

B

�
1�
�1
t �

1� 


�
ez �(1�
)�
t

�
EtV 1�


t+1

� 1
�
�1
V �

t+1

@Vt+1
@ect+1

= �V
1� 1�


�
t ez �(1�
)�

t

�
EtV 1�


t+1

� 1
�
�1
V �

t+1V

1� 1�

�

t+1 �

�ec�t+1 (1� lt+1)
1��� 1�
�ect+1

where in the last step we have used the result regarding the derivative of the value function

with respect to current consumption forwarded by one period.

Now, we de�ne the variable emt+1:

emt+1 = ez�1t @Vt=@ect+1
@Vt=@ect

= �ez �(1�
)�
�1

t

 ec�t+1 (1� lt+1)
1��

ec�t (1� lt)
1��

! 1�

� ectect+1

 
V 1�

t+1

EtV 1�

t+1

!1� 1
�

To see that emt+1 is the pricing kernel in our economy, we rewrite the budget constraint of

the household:

ptct + ptkt+1 + qt;t+1bt = ptwtlt + ptrtkt + bt

as: ectxt + ekt+1xt + 1

pt
qt;t+1bt = ewtxtlt + rtektxt + 1

pt
bt

Then, if we take �rst order conditions with respect to the uncontingent bond, we get:

1

xtpt
qt;t+1

@Vt
@ect = Et

�
@Vt
@ect+1 1

xt+1pt+1

�
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Using the fact that ezt = xt+1
xt

qt;t+1 = Et
�ez�1t @Vt=@ect+1

@Vt=@ect pt
pt+1

�
By iterating in the price of a bond one period ahead and using the law of iterated expec-

tations, the price of a j�period bond is given by:

qt;t+j = Et

(
jY
i=1

emt+j
pt
pt+j

)
= Et

 
jY
i=1

emt+j

!
Et
�
pt
pt+j

�

where the last equality exploits the fact that the evolution of the price level is independent

of the rest of the economy.

Before, we argued that, given our assumption about the law of motion for prices in this

economy, the expectation of the ratio of prices evolves as:

Et
pt
pt+j

=

�
pt�1
pt

�j
exp

 
j�!t +

1

2
�2!

j�1X
i=0

(i� � (i+ 1))2
!

Then:

qt;t+j =

�
pt�1
pt

�j
exp

 
j�!t +

1

2
�2!

j�1X
i=0

(i� � (i+ 1))2
!
Et

 
jY
i=1

emt+j

!
Also, note that the conditional expectation is a function of the states of the economy:

Et

 
jY
i=1

emt+j

!
= f j

�ekt; ezt;��
Our perturbation method will approximate this function f j using a high-order expansion.

We close by remembering that the real price of a bond is also given by f j:

qrt;t+j =
qt;t+j

Et
�

pt
pt+j

� = Et jY
i=1

emt+j

!
= f j

�ekt; ezt;��

3. Solution of the Model

This section explains how to use a perturbation approach to solve the model presented in the

previous section by working with the value function formulation of the problem in equation

(4). The steps that we take are the same as in the standard perturbation. The reader familiar

with that approach should have an easy time following our argument. We begin by �nding a
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set of equations that includes the value function and the �rst order conditions derived from

the value function. Then, we solve those equations in the case where there is no uncertainty.

We use this solution to build a �rst order approximation to the value function. Second, we

take derivatives of the previous equations and solve for the case with no uncertainty. With

this solution, we can build a second order approximation to the value function and a �rst

order approximation to the policy function. The procedure can be iterated by taking higher

derivatives and solving for the deterministic case to get arbitrarily high approximations to

the value function and policy function.

Perturbation methods have become a popular strategy for solving DSGE models (Judd

and Guu, 1992 and 1987; see also Judd, 1998, and references cited therein, for a textbook

introduction to the topic). Usually, the perturbation is undertaken on the set of equilibrium

conditions de�ned by the �rst order conditions of the agents, resource constraints, and exoge-

nous laws of motion (for a lucid exposition, see Schmitt-Grohé and Uribe, 2004). However,

when we deal with Epstein-Zin preferences, it is more transparent to perform the pertur-

bation starting from the value function of the problem. Moreover, if we want to perform

welfare computations, the object of interest is the value function itself. Hence, obtaining an

approximation to the value function is a natural goal.

We are not the �rst, of course, to explore the perturbation of value function problems.

Judd (1998) already presents the idea of perturbing the value function instead of the equi-

librium conditions. Unfortunately, he does not elaborate much on the topic. Schmitt-Grohé

and Uribe (2005) employ a perturbation approach to �nd a second order approximation to

the value function to be able to rank di¤erent policies in terms of welfare. We just emphasize

the generality of the approach and discuss some of its theoretical and numerical advantages.

Our approach is also linked with Benigno and Woodford (2006) and Hansen and Sargent

(1995). Benigno andWoodford present a new linear-quadratic approximation to solve optimal

policy problems that avoids some problems of the traditional linear-quadratic approximation

when the constraints of the problem are non-linear.5 Thanks to this alternative approxima-

tion, Benigno and Woodford �nd the correct local welfare ranking of di¤erent policies. Our

method, as theirs, can deal with non-linear constraints and obtain the correct local approxi-

mation to welfare and policies. One advantage of our method is that it is easily generalizable

to higher order approximations without adding further complications. Hansen and Sargent

(1995) modify the linear-quadratic regulator problem to include an adjustment for risk. In

that way, they can handle some versions of recursive utilities like the ones that motivate our

investigation. Hansen and Sargent�s method, however, requires imposing a tight functional

5See also Levine, Pearlman, and Pierse (2006) for a similar treatment of the problem.
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form for future utility. Moreover, as implemented in Tallarini (2000), it requires solving a

�xed point problem to recenter the approximation to control for precautionary behavior that

can be costly in terms of time. Our method does not su¤er from those limitations.

3.1. Perturbing the Value Function

To illustrate our procedure, we limit our exposition to derive the second order approximation

to the value function, which generates a �rst order approximation to the policy function.

Higher order terms are derived in similar ways, but the algebra becomes too cumbersome to

be developed explicitly in the paper (in our application, the symbolic algebra is undertaken by

the computer employing Mathematica which automatically generates Fortran 95 code that

we can evaluate numerically). Hopefully, our steps will be enough to understand the main

thrust of the procedure and to let the reader obtain higher order approximations by herself.

Under di¤erentiability conditions, the second order Taylor approximation of the value

function around the deterministic steady state
�ekss; ezss; 0� is:

V
�ekt; ezt;�� ' Vss + V1;ss

�ekt � ekss�+ V2;ss (ezt � ezss)�+V3;ss�
+
1

2
V11;ss

�ekt � ekss�2 + 1
2
V12;ss

�ekt � ekss� ezt + 1
2
V13;ss

�ekt � ekss��
+
1

2
V21;sszt

�ekt � ekss�+ 1
2
V22;ss (ezt � ezss)2 + 1

2
V23;ss (ezt � ezss)�

+
1

2
V31;ss�

�ekt � ekss�+ 1
2
V32;ss� (ezt � ezss) + 1

2
V33;ss�

2

where:

Vss = V
�ekss; ezss; 0�

Vi;ss = Vi

�ekss; ezss; 0� for i = f1; 2; 3g
Vij;ss = Vij

�ekss; ezss; 0� for i; j = f1; 2; 3g
We can extend this notation to higher order derivatives of the value functions.

By certainty equivalence, we will have that V3;ss = V13;ss = V23;ss = 0. Furthermore,

taking advantage of the equality of cross-derivatives, and setting � = 1; which is just a

normalization of the perturbation parameter implied by the standard deviation of the shock
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�, the approximation we search has the simpler form:

V
�ekt; ezt; 1� ' Vss + V1;ss

�ekt � ekss�+ V2;ss (ezt � ezss)
+
1

2
V11;ss

�ekt � ekss�2 + 1
2
V22;ss (ezt � ezss)2 + V12;ss (kt � kss) (ezt � ezss)

+
1

2
V33;ss

Note that V33;ss 6= 0, a di¤erence from the standard linear-quadratic approximation to the

utility functions, where the constants are dropped. However, this result is intuitive, since the

value function is, in general, translated by uncertainty. Since the term is a constant, it a¤ects

welfare (that will be an important quantity to measure in many situations) but not the policy

functions of the social planner.6 Furthermore, the term has a straightforward interpretation.

At the deterministic steady state, we have:

V
�ekss; ezss;�� ' Vss +

1

2
V33;ss

Hence:
1

2
V33;ss

is a measure of the welfare cost of the business cycle, i.e., of howmuch utility changes when the

variance of the productivity shocks is �2 instead of zero.7 This term is an approximation to

the welfare cost of third order because in the third order approximation of the value function,

all terms will drop when evaluated at the deterministic steady state, except potentially the

term V333;ss which happens to be equal to zero (as all the terms in odd powers of �).

Moreover, this cost of the business cycle can easily transformed into consumption equiv-

alent units. We can compute the decrease in consumption � that will make the household

indi¤erent between consuming (1� �) css units per period with certainty or ct units with

uncertainty. To do so, note that the steady state value function is just

Vss =

 
1

1� �ez �(1�
)�
ss

! �
1�
 ec�ss (1� lss)

1��

6Note that the converse is not true: changes in the policy functions, for example, those induced by changes
in the persistence of the shock, modify the value of V33;ss.

7Note that this quantity is not necessarily negative. In fact, it may be positive in many models, as in a real
business cycle model with leisure choice. See Cho and Cooley (2000) for an example and further discussion.
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which implies that:

ec�ss (1� lss)
1�� +

1

2

�
1� �ez �(1�
)�

t

� �
1�


V33;ss = (ecss (1� �))� (1� lss)
1��

Then:

� = 1�
"
1 +

1

2

1ec�ss (1� lss)
1��

�
1� �ez �(1�
)�

t

� �
1�


V33;ss

# 1
�

The policy functions for consumption, labor, and capital (our controls, the last one of

which is also the endogenous state variable) can be expanded as:

ect = c
�ekt; ezt;�� ' ecss + c1;ss

�ekt � ekss�+ c2;ss (ezt � ezss) + c3;ss�

lt = l
�ekt; ezt;�� ' lss + l1;ss

�ekt � ekss�+ l2;ss (ezt � ezss) + l3;ss�ekt+1 = k
�ekt; ezt;�� ' ekss + k1;ss

�ekt � ekss�+ k2;ss (ezt � ezss) + k3;ss�

where:

c1;ss = c1

�ekss; ezss; 0� ; c2;ss = c2

�ekss; ezss; 0� ; c3;ss = c3

�ekss; ezss; 0�
l1;ss = l1

�ekss; ezss; 0� ; l2;ss = l2

�ekss; ezss; 0� ; l3;ss = l3

�ekss; ezss; 0�
k1;ss = k1

�ekss; ezss; 0� ; k2;ss = k2

�ekss; ezss; 0� ; k3;ss = k3

�ekss; ezss; 0�
In addition we have functions that give us the evolution of other variables of interest, like the

real price of a one-period bond:8

qrt;t+1 = f 1
�ekt; ezt;�� ' f 1ss + f 11;ss

�ekt � ekss�+ f 12;ssezt + f 13;ss�

where

f 11;ss = f 11

�ekss; ezss; 0� ; f2;ss = f 12

�ekss; ezss; 0� ; f13;ss = f 13

�ekss; ezss; 0�
To �nd the linear approximation to the value function, we take derivatives of the value

function with respect to controls
�ect; lt;ekt+1�, the endogenous variable qrt;t+1, states �ekt; ezt�,

and the perturbation parameter �. These derivatives plus the value function in equation (4)

give us a system of 8 equations. By setting our perturbation parameter � = 0, we can solve

for the 8 unknowns Vss, V1;ss, V2;ss, V3;ss, ecss, ekss, lss; and f 1ss: As mentioned before, the system
8For clarity we present the price of only one bond. The approximating functions of all the other bonds

prices and endogenous variables can be found in an analogous manner.
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solution implies that V3;ss = 0.

To �nd the quadratic approximation to the value function, we come back to the 7 �rst

derivatives found in the previous step, and we take second derivatives with respect to the

states
�ekt; ezt�, and the perturbation parameter �. This step gives us 18 di¤erent second

derivatives. By setting our perturbation parameter � = 0 and plugging in the results from

the linear approximation, we �nd the value for V11;ss, V12;ss, V13;ss; V22;ss; V23;ss; V33;ss; c1;ss;

c2;ss, c3;ss; k1;ss; k2;ss, k3;ss; l1;ss; l2;ss, l3;ss; f11;ss; f
2
2;ss, and f

3
3;ss Since the �rst derivatives of

the policy function depend only on the �rst and second derivatives of the value function,

the solution of the system is such that c3;ss = k3;ss = l3;ss = f 13;ss = 0, i.e., precautionary

behavior depends on the third derivative of the value function, as demonstrated, for example,

by Kimball (1990).

To �nd the cubic approximation to the value function and the second order approximation

to the policy function, we take derivatives on the second derivatives found before with respect

to the states
�ekt; ezt�, set the perturbation parameter � = 0, plug in the results from the

previous step, and solve for the unknown variables. Repeating these steps, we can get any

arbitrary order approximation.

Our perturbation approach is extremely fast once it has been implemented in the com-

puter, taking only a fraction of a second to �nd a solution for some particular parameter

values.9 Also, even if it is a local solution method, it is highly accurate for a long range of

parameter values (Caldara, Fernández-Villaverde, Rubio-Ramírez, and Yao, 2008). Never-

theless, it is important to keep in mind some of its problems. The most important is that it

may handle badly big shocks that push us very far away from the steady state. This may be

a relevant concern if we want to explore, for instance, Barro�s (2005) claim that rare disasters

(i.e., very large shocks) may be a plausible explanation for asset pricing data. Implementing

variations of the basic perturbation scheme, as a matched asymptotic expansion, could be a

possible solution to this shortcoming.

3.2. Approximation

By following the previous procedure, and given some parameter values, we �nd a third order

approximation for our value function and a second order approximation to the policy function

for the controls.

Currently we are working on implementing a fourth order approximation to the value

function and a third order expansion to the policy function. We already have the code

that computes the solution but not the evaluation of the likelihood based on it. A third

9There is a �xed cost in �nding all the symbolic derivatives but this only has to be done once.

17



order approximation to the policy function is important to capture the time-varying risk

premium (the �rst order approximation does not have a term premium and the second order

approximation has a constant one).

The controls in our model are:

controlst =
nect; lt;ekt+1o0

with steady state values controlsss: Also, the other endogenous variables of interest for us

are:

endt =
�eyt; f1t ; f4t ; f8t ; f12t ; f16t ; f20t 	0

since, as we will explain later, we will use as our observables output and bonds of di¤erent

maturities (1 quarter, and 1, 2, 3, 4, and 5 years). Finally, the states of the model areest = �ekt; ezt�0 and three co-states that will be convenient for simplifying our state space
representation (ect�1; eyt�1; "zt�1) : We stack the states and co-states in:

St =
�ekt; ezt;ect�1; eyt�1; "zt�1�0

It is easier to express the solution in terms of deviations from steady state. For any

variable vart, letdvart = vart � varss. Then, the policy function for the control variable is:

bect = 	1;1best + 1
2
bes0t	1;2best +	1;3blt = 	2;1best + 1
2
bes0t	2;2best +	2;3bekt+1 = 	3;1best + 1
2
bes0t	3;2best +	3;3

where 	i;1 is a 1� 2 vector, 	i;2 is a 2� 2 matrix, and 	i;3 a scalar that captures precaution-
ary behavior (the second derivative of the policy function with respect to the perturbation

parameter) for i = f1; 2; 3g :
The approximation function for the endogenous variables is:

dendt = �j;1best + 1
2
bes0t�j;2best + �j;3

for j = f1; :::; 7g :

18



3.3. State Space Representation

Once we have our perturbation solution of the model, we write the state space representation

that will allow us to evaluate later the likelihood of the model.

We begin with the transition equation. Using the policy and approximation functions

from the previous section and the law of motion for productivity, we have:0BBBBBBB@

bekteztbect�1eyt�1
"zt�1

1CCCCCCCA
=

0BBBBBBB@

	2;1best�1 + 1
2
bes0t�1	2;2best�1 +	2;3

exp (�+ �"zt)

	1;1best�1 + 1
2
bes0t�1	1;2best�1 +	1;3

�1;1best�1 + 1
2
bes0t�1;2best�1 + �1;3

1
�
(log ezt�1 � �)

1CCCCCCCA
where we have already normalized � = 1: In a more compact notation:

St = h (St�1;Wt) (5)

where Wt = "zt is the system innovation.

Second, we build the measurement equations for our model. We will assume that we

observe consumption, output, hours per capita, a 1-quarter bond, and 1, 2, 3, 4, and 5 year

bonds. Consumption, output and hours per capita will provide macro information. Of the

relevant aggregate variables, we do not include investment because in our model it is the

residual of output minus consumption, which we already have. The price of bonds provides

us with �nancial data that are relatively straightforward to observe. We reserve the other

asset prices, like the return on equity, as a data set for validation of our estimates below.

Since our prototype DSGE model has only one source of uncertainty, the productivity

shock, we need to introduce measurement error to avoid stochastic singularity. While the

presence of measurement error is a plausible hypothesis in the case of aggregate variables,

we need to provide further justi�cation for its appearance in the price of bonds. However, it

is better to explain this issue in the next section when we talk about data. Su¢ ce it to say

at this moment that we have measurement error in the price of bonds because they are the

price of synthetic nominal bonds that are not directly observed and which need, moreover,

to be de�ated into real prices.

We will assume that all the variables are subject to some linear, Gaussian measurement

error. Then, our observables Yt are:

Yt = (� log Ct;� logYt; Lt; QRt;t+1; QRt;t+4; QRt;t+8; QRt;t+12; QRt;t+16; QRt;t+20)
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where � log Ct is the measured �rst di¤erence of log consumption per capita, � logYt is the
measured �rst di¤erence of log output per capita, Lt is measured hours, and QRt;t+j is the

measured real price of a j�period bond.
Since our observables are di¤erent from the variables in the model, which are re-scaled,

we need to map one into the other. We start with consumption. We observe:

� log ct = log ct � log ct�1

By our de�nition of re-scaled variables, ct = ectxt, we get log ct = log ect + log xt. Thus:
log ct � log ct�1 = log ect + log xt � logect�1 + log xt�1 = log ect � logect�1 + �+ �z"zt�1

Since bect = ect � ecss; we can write:
log ct � log ct�1 = log

�ecss +bect�� log �ecss +bect�1�+ �+ �z"zt�1

and by plugging in the policy function for consumption:

� log ct = log

�ecss +	1;1best + 1
2
bes0t	1;2best +	1;3�� log �ecss +bect�1�+ �+ �z"zt�1

Now, the variable reported by the statistical agency is:

� log Ct = � log ct + �1;t where �1;t � N (0; 1)

which is equal to

� log Ct = log
�ecss +	1;1best + 1

2
bes0t	1;2best +	1;3�� log �ecss +bect�1�+ �+ �z"zt�1 + ��1�1;t

The �rst di¤erence of log output is also observed with some measurement error:

� logYt = � log yt + �2;t where �2;t � N (0; 1)

and repeating the same steps as before for output, we get:

� logYt = log
�eyss + �1;1best + 1

2
bes0t�1;2best + �1;3�� log �eyss + beyt�1�+ �+ �z"zt�1 + ��2�2;t
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For hours, we have: blt = 	3;1best + 1
2
bes0t	3;2best +	3;3

or:

Lt = lt + �3;t = lss +	3;1best + 1
2
bes0t	3;2best +	3;3 + ��3�3;t where �3;t � N (0; 1)

For each of the bonds of di¤erent maturity we have:

QRt;t+1 = qrt;t+1 + �4;t = ef 1ss + �2;1best + 12bes0t�2;2best + �2;3 + ��4�4;t where �4;t � N (0; 1)

QRt;t+4 = qrt;t+4 + �5;t = ef 4ss + �3;1best + 12bes0t�3;2best + �3;3 + ��5�5;t where �5;t � N (0; 1)

QRt;t+8 = qrt;t+8 + �6;t = ef 8ss + �4;1best + 12bes0t�4;2best + �4;3 + ��6�6;t where �6;t � N (0; 1)

QRt;t+12 = qrt;t+12 + �7;t = ef 12ss + �5;1best + 12bes0t�5;2best + �5;3 + ��7�7;t where �7;t � N (0; 1)

QRt;t+16 = qrt;t+16 + �8;t = ef 16ss + �6;1best + 12bes0t�6;2best + �6;3 + ��8�8;t where �8;t � N (0; 1)

QRt;t+20 = qrt;t+20 + �9;t = ef 20ss + �7;1best + 12bes0t�7;2best + �7;3 + ��9�9;t where �9;t � N (0; 1)

Putting the di¤erent pieces together, we have the measurement equation:

0BBBBBBBBBBBBBBBB@

� log Ct
� logYt
Lt

QRt;t+1

QRt;t+4

QRt;t+8

QRt;t+12

QRt;t+16

QRt;t+20

1CCCCCCCCCCCCCCCCA
=

0BBBBBBBBBBBBBBBBBBBB@

log

�ecss+	1;1best+ 1
2
bes0t	1;2best+	1;3ecss+bect�1

�
+ �+ �z"zt�1

log

� eyss+�1;1best+ 1
2
bes0t�1;2best+�1;3eyss+beyt�1

�
+ �+ �z"zt�1

lss +	3;1best + 1
2
bes0t	3;2best +	3;3ef 1ss + �2;1best + 1
2
bes0t�2;2best + �2;3ef 4ss + �3;1best + 1
2
bes0t�3;2best + �3;3ef 8ss + �4;1best + 1
2
bes0t�4;2best + �4;3ef 12ss + �5;1best + 1
2
bes0t�5;2best + �5;3ef 16ss + �6;1best + 1
2
bes0t�6;2best + �6;3ef 20ss + �7;1best + 1
2
bes0t�7;2best + �7;3

1CCCCCCCCCCCCCCCCCCCCA

+

0BBBBBBBBBBBBBBBB@

��1�1;t

��2�2;t

��3�3;t

��4�4;t

��5�5;t

��6�6;t

��7�7;t

��8�8;t

��9�9;t

1CCCCCCCCCCCCCCCCA

In a more compact notation:

Yt = g (St; Vt) (6)

where Vt = (�1;t; �2;t; �3;t; �4;t; �5;t; �6;t; �7;t; �8;t; �9;t) is the system noise.
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4. Analysis of the Model

In this section, we analyze the behavior of the model by exploiting the convenient structure

of our perturbation solution. This study will help us to understand the equilibrium dynamics

and how the likelihood function will identify the di¤erent parameters from the variation in the

data. This step is crucial because it is plausible to entertain the idea that the richer structure

of Epstein-Zin preferences is not identi�ed (as in the example built by Kocherlakota, 1990b).

Fortunately, we will show that our model has su¢ ciently rich dynamics that we can learn

from the observations. This is not a surprise, though, as it con�rms previous, although

somehow more limited, theoretical results. In a simpler environment, when output growth

follows a Markov process, Wang (1993) shows that the preference parameters of Epstein-Zin

preferences are generically recoverable from the price of equity or from the price of bonds.

Furthermore, Wang (1993) shows that equity and bond prices are generically unique and

smooth with respect to parameters.

First, note that the deterministic steady state of the model with Epstein-Zin preferences

is the same as the one in the model with standard utility function and IES equal to  . To

see that, we can evaluate the value function at � = 0:

V (kt; zt; 0) = max
ct;lt

��
c�t (1� lt)

1��� 1�
� + �
�
V 1�
 (kt+1; zt+1; 0)

� 1
�

� �
1�


= max
ct;lt

��
c�t (1� lt)

1��� 1�
� + � (V (kt+1; zt+1; 0))
1�

�

� �
1�


which is just a monotone transformation of the value function of the standard model:

V (kt; zt; 0)
1�

� = max

ct;lt

�
c�t (1� lt)

1��� 1�
� + � (V (kt+1; zt+1; 0))
1�

� )

eV (kt; zt; 0) = max
ct;lt

�
c�t (1� lt)

1��� 1�
� + � eV (kt+1; zt+1; 0)
Second, the �rst order approximation of the policy function:

bect = 	1;1bestblt = 	2;1bestbekt+1 = 	3;1best
is also equivalent to the �rst order approximation of the policy function of the model with

standard utility function and IES  . Putting it in slightly di¤erent terms, the matrices 	i;1�s

depend on  but not on 
. To obtain this result, we need only to inspect the derivatives
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involved in the solution of the system and check that risk aversion, 
, cancels out in each

equation (we do not include the derivatives here in the interest of brevity). This result is not

surprising: the �rst order approximation to the policy function displays certainty equivalence.

Hence, it is independent of the variance of the shock indexed by �. But if the solution is

independent of �, it must also be independent of 
, because otherwise it will not provide the

right answer in the case when � = 0 and 
 is irrelevant. Remember, though, from section

3, that certainty equivalence in policy functions does not imply welfare equivalence. Indeed,

welfare is a¤ected by the term 1
2
V33;ss in the approximation to the value function, which

depends on 
. By reading this term, we can evaluate the �rst order approximation of the

welfare cost of aggregate �uctuations as a function of risk aversion.

In the second order approximation,

bect = 	1;1best + 1
2
bes0t	1;2best +	1;3blt = 	2;1best + 1
2
bes0t	2;2best +	2;3bekt+1 = 	3;1best + 1
2
bes0t	3;2best +	3;3

we �nd, again from inspection of the derivatives, that all the terms in the matrices 	i;2�s are

the same in the model with Epstein-Zin preferences and in the model with standard utility

function. The only di¤erences are the constant terms 	i;3�s. These three constants change

with the value of 
. This might seem a small di¤erence, but it in�uences the equilibrium

dynamics in an interesting way. The terms 	i;3�s capture precautionary behavior and they

move the ergodic distribution of states, a¤ecting, through this channel, allocations, prices,

and welfare up to a �rst order. More concretely, by changing the mean of capital in the

ergodic distribution, risk aversion in�uences the average level of the yield curve.10

To illustrate this channel, we simulate the model for a benchmark calibration. We �x the

discount factor � = 0:9985 to a number slightly smaller than one. The parameter that governs

labor supply, � = 0:34; matches the microeconomic evidence of labor supply to around one-

third of available time in the deterministic steady state. We set � = 0:3 to match labor share

of national income. The depreciation rate � = 0:0294 �xes the investment/output ratio, and

� = 0:0047 matches the average per capita output growth in the data sample that we will

use below. Finally, � = 0:007 follows the stochastic properties of the Solow residual of the

10Our result generalizes previous �ndings in the literature. For example, Piazzesi and Schneider (2006) also
derive, using an endowment economy and �xing the IES to one, that the average yield depends on having
recursive or expected preferences, but that the dynamics will be the same for both types of preferences. Dolmas
(2006) checks that, for a larger class of utility functions that includes Epstein-Zin preferences, the business
cycle dynamics of the model are esentially identical to the ones of the model with standard preferences.

23



U.S. economy. Table 4.1 gathers the di¤erent values of the calibration.

Table 4.1: Calibrated Parameters

Parameter � � � � � �

Value 0:9985 0:34 0:0294 0:3 0:0047 0:007

Since we do not have a tight prior on the values for 
 and  , and we want to explore

the dynamics of the model for a reasonable range of values, we select 3 values for 
, 2, 20,

and 100, and three values for  , 0.5, 1, and 2, which bracket most of the values used in the

literature (although many authors prefer smaller values for  , we found that the simulation

results for smaller  �s do not change much from the case when  = 0:5).11 We then compute

the model for all nine combinations of values of 
 and  , i.e., f2; 0:5g, f20; 0:5g ; f100; 0:5g,
and so on.

We simulate the model, starting from the deterministic steady state, for 1000 periods, and

using the policy functions for each of the nine combinations of risk aversion and IES discussed

above. To make the comparison meaningful, the shocks are common across all paths. We

disregard the �rst 800 periods as a burn-in. The burn-in is important because it eliminates

the transition from the deterministic steady state of the model to the middle regions of the

ergodic distribution of capital. This is usually achieved in many fewer periods than the ones

in our burn-in, but we want to be conservative in our results.

Figure 4.1 plots the simulated paths for capital. We have nine panels. In the �rst column,

we vary between panels the risk aversion, 
, and plot within each panel, the realizations for

all three di¤erent values of the IES. In the second column, we invert the order, changing

the IES across panels and plotting di¤erent values of 
 within each plot. With our plotting

strategy, we can gauge the e¤ect of changing one parameter at a time more easily. We extract

two lessons from �gure 4.1. First, all nine paths are very similar, except in their level. As

we increase the IES, as we explained above, we make the household e¤ectively more patient,

raising the level of capital. Similarly, as we increase 
, the households are more risk-adverse

and accumulate a larger amount of capital as a precautionary stock. Figure 4.2 shows this

point more clearly: we follow the same convention as in �gure 4.1 except that we subtract

the mean from each series.

The second lesson is that while changing the IES from 0.5 to 1 and from 1 to 2 has a

signi�cant e¤ect on the level of capital (around 7.6 percent when we move from 0.5 to 1 and

3.8 percent when we move from 1 to 2), changing risk aversion has a much smaller e¤ect.

11When the IES is equal to 1, the utility from current consumption and leisure collapses to a logarithmic
form.
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Increasing 
 from 2 to 20 increases the mean of capital by less than 1 percent and moving

from 20 to 100 raises capital by around 3 percent.

These patterns repeat themselves in our next �gures, where we plot output (�gures 4.3

and 4.4), consumption (�gures 4.5 and 4.6), the price of a 1-quarter bond (�gures 4.7 and 4.8),

labor (�gures 4.9 and 4.10), and dividends (�gures 4.11 and 4.12). There is a third aspect of

interest that is di¢ cult to see in the �gures for capital or output but which is clearer in the

�gures for labor or dividends. Once we remove the mean of the series, all the simulated paths

are nearly identical as we change 
 but we keep the IES constant (second column of �gures

4.1 to 4.12). This basically tells us that there is no information in the macro data about 


beyond a weak e¤ect on the level of the variables. However, when we keep 
 constant but we

change the IES, there is some variation in the simulated paths, indicating that the variables

have information, beyond the mean, about the value of IES.

Figure 4.13, which follows the same plotting convention as the previous �gures, draws the

yield curve evaluated at the deterministic steady state of the economy. A striking feature

of the second column is how the IES a¤ects only the level of the yield curve but not its

curvature. Raising the IES only has the e¤ect of translating down the curve as households

accumulate more capital. Interestingly, we can see how with our benchmark calibration and

values of 
 from 20 to 100, we can account for the mean level of the yields reported in the

data (we will report later that the mean of the 1-quarter yield in our sample is 2.096 percent).

It is in the �rst column, as we vary risk aversion, that we appreciate how the slope of the

curve can change.

All the yield curves in �gure 4.13 have a negative slope. The negative yield comes because,

for our parameter values, households have a preference for an early resolution of uncertainty.

Consequently, they prefer to buy a 5 years bond that to buy a 1 year bond and roll it over

for �ve years, since the second strategy exposes them to an interest rate risk. As the demand

for the 5 years bond raises, its price will increase, and thus the yield will fall. As we increase


; the preference for an early resolution of uncertainty become more acute, and the negative

slope becomes bigger.

Figure 4.13 seems to contradict the empirical observations. However, we need to remember

that the model produces a yield curve that is a function of the states. Figure 4.13 plots only

the curves for some particular values of the state, in this case the deterministic steady state.

Because of risk aversion and the precautionary saving it induces, capital will usually take

values above the deterministic steady state (the constant terms 	i;3�s are positive). Hence,

if we are at the steady state, capital is relatively scarce with respect to its mean and the

real interest rate relatively high. Since 	3;3 is positive, the next periods will be times of

accumulation of capital. Consequently, interest rates will fall in the next periods, inducing
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the negative slope of the curve.

To illustrate this argument, we repeat our exercise in �gure 4.14, where we plot the yield

curves in the mean of the ergodic distribution, and in �gure 4.15, for values of capital that

are 0.6 percent higher than the steady state. Of special interest is �gure 4.15, where capital is

su¢ ciently above the steady state that the curves become positive for all nine combinations

of parameter values. Similar �gures can easily be generated by variations in the productivity

shock: a positive productivity shock tends to make the curve downward sloping and a negative

shock, upward sloping.12 These variations in the level and slope of the yield curve will be key

to the success of our estimation exercise: the likelihood will be shaped by all the information

about states and parameter values encoded in the �nancial data.

5. Likelihood

The parameters of the model are stacked in the vector:

� = f�; 
;  ; �; �; �; � ; �"; �!; �1�; �2�; �3�; �4�; �5�; �6�; �7�; �8�; �9�g

and we can de�ne the likelihood function L
�
YT ; �

�
as the probability of the observations

given some parameter values; where YT = fYtgTt=1 is the sequence of observations. We will
adopt the notation XT = fXtgTt=1 for an arbitrary variable X below.
Unfortunately, this likelihood is di¢ cult to evaluate. Our procedure to address this prob-

lem is to use a sequential Monte Carlo method. First, we factorize the likelihood into its

conditional components:

L
�
YT ; �

�
=

TY
t=1

L
�
YtjYt�1; �

�
where L (Y1jY0; �) = L (Y1; �) :
Now, we can condition on the states and integrate with respect to them:

Yt = g (St; Vt) (7)

L
�
YT ; �

�
=

Z
L (Y1jS0; �) dS0

TY
t=2

Z
L (YtjSt; �) p

�
StjYt�1; �

�
dSt (8)

This expression illustrates how the knowledge of p (S0; 	) and the sequence fp (StjYt�1; �)gTt=2
is crucial. If we know St, computing L (YtjSt; 	) is relatively easy. Conditional on St; the

12Which some argue contradicts the observed cyclicality of the yield curves and hence uncovers one further
weakness of our model.
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measurement equation (6) is a change of variables from Vt to Yt: Since we know that the noise
is normally distributed, an application of the change of variable formula allows us to evaluate

the required probabilities. In the same way, if we have S0, we can compute L (Y1jS0; �) by
employing (5) and the measurement equation (6):

However, given our model, we cannot characterize the sequence fp (StjYt�1; �)gTt=2 ana-
lytically. Even if we could, these two previous computations still leave open the issue of how

to solve for the T integrals in (8).

A common solution to the problems of knowing the state distributions and how to com-

pute the required integrals is to substitute fp (StjYt�1; �)gTt=1and p (S0; �) by an empirical
distribution of draws from them. If we have such draws, we can approximate the likelihood

as:

L
�
YT ; �

�
' 1

N

NX
i=1

L
�
Y1jsi0j0; �

� TY
t=2

1

N

NX
i=1

L
�
Ytjsitjt�1; �

�
where si0j0 is the draw i from p (S0; �) and sitjt�1 is the draw i from p (StjYt�1; �) : Del Moral
and Jacod (2002) and Künsch (2005) provide weak conditions under which the right-hand side

of the previous equation is a consistent estimator of L
�
YT ; �

�
and a central limit theorem

applies. A Law of Large Numbers will ensure that the approximation error goes to 0 as the

number of draws, N , grows.

Drawing from p (S0; �) is straightforward in our model. Given parameter values, we solve

the model and simulate from the ergodic distribution of states. Santos and Peralta-Alva

(2005) show that this procedure delivers the empirical distribution of si0 that we require.

Drawing from fp (StjYt�1; �)gTt=2 is more challenging. A popular approach to do so is to

apply the particle �lter (see Fernández-Villaverde and Rubio-Ramírez, 2005 and 2007 for a

more detailed explanation and examples of how to implement the �lter to the estimation of

non-linear and/or non-normal DSGE models).13

The basic idea of the �lter is to generate draws through sequential importance resam-

pling (SIR), which extends importance sampling to a sequential environment. The following

proposition, due to Rubin (1998), formalizes the idea:

Proposition 1. Let
n
sitjt�1

oN
i=1

be a draw from p (StjYt�1; �). Let the sequence fesitgNi=1 be
13See also the collection of papers in Doucet, de Freitas, and Gordon (2001), which includes improved

sequential Monte Carlo algorithms, like Pitts and Shephard�s (1999) auxiliary particle �lter.
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a draw with replacement from
n
sitjt�1

oN
i=1

where the resampling probability is given by

qit =
L
�
Ytjsitjt�1; �

�
PN

i=1 L
�
Ytjsitjt�1; �

� ;
Then fesitgNi=1 is a draw from p (StjYt; �).

Proposition 1, a direct application of Bayes� theorem, shows how we can take a drawn
sitjt�1

oN
i=1

from p (StjYt�1; �) to get a draw
n
sitjt

oN
i=1

from p (StjYt; �) by building impor-
tance weights depending on Yt. This result is crucial because it allows us to incorporate the
information in Yt to change our current estimate of St. Thanks to SIR, the Monte Carlo
method achieves su¢ cient accuracy in a reasonable amount of time (Arulampalam et al.,

2002). A naïve Monte Carlo, in comparison, would just draw simultaneously a whole se-

quence of
�n

sitjt�1

oN
i=1

�T
t=1

without resampling. Unfortunately, this naïve scheme diverges

because all the sequences become arbitrarily far away from the true sequence of states, which

is a zero measure set. Then, the sequence of simulated states that is closer to the true state

in probability dominates all the remaining ones in weight. Simple simulations shows that the

degeneracy appears even after very few steps.

Given
n
sitjt

oN
i=1
, we draw N exogenous productivity shocks from the normal distribu-

tion, apply the law of motion for states that relates the sitjt and the shocks "
i
t+1 to generaten

sit+1jt

oN
i=1
. This transition step puts us back at the beginning of proposition 1, but with the

di¤erence that we have moved forward one period in our conditioning, from tjt� 1 to t+1jt.
The following pseudocode, copied from Fernández-Villaverde and Rubio-Ramírez (2007),

summarizes the algorithm:

Step 0, Initialization: Set t 1. Sample N values
n
si0j0

oN
i=1

from p (S0; �).

Step 1, Prediction: Sample N values
n
sitjt�1

oN
i=1

using
n
sit�1jt�1

oN
i=1
, the law of

motion for states and the distribution of shocks "t.

Step 2, Filtering: Assign to each
�
sitjt�1

�
the weight qit in proposition 1.

Step 3, Sampling: Sample N times with replacement from
n
sitjt�1

oN
i=1

using the

probabilities fqitg
N
i=1. Call each draw

�
sitjt

�
. If t < T set t  t + 1 and go to

step 1. Otherwise stop.
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6. Estimation

6.1. Data

We take as our sample the period 1984:1 to 2006:4. The end of the sample is determined by

the most current release of data. The start of the sample aims to cover only the period after

the �Great Moderation�(Stock and Watson, 2002). We eliminate the previous observations

because our model has little to say about the change in the volatility of output (see, among

others, the discussions of Justiniano and Primiceri, 2007, or Sims and Zha, 2006). Moreover,

elsewhere (Fernández-Villaverde and Rubio-Ramírez, 2007 and 2008), we have argued that

attempting to account for the observations before and after the Great Moderation using a

DSGE model without additional sources of variation (either in structural parameters or in

shock variances) may induce misleading estimates. In our application, this causes particular

concern because of the substantial changes in interest rates and asset pricing behavior during

the 1970s and early 1980s. Also, Stock and Watson (2007) detect a change in the process

for in�ation around 1984, and they recommend splitting the in�ation sample using the same

criterion that we use. Since we follow their in�ation speci�cation, we �nd it natural to be

consistent with their choice.

Our output and consumption data come from the Bureau of Economic Analysis NIPA

data. We de�ne nominal consumption as the sum of personal consumption expenditures on

non-durable goods and services. We de�ne nominal gross investment as the sum of personal

consumption expenditures on durable goods, private non-residential �xed investment, and

private residential �xed investment. Per capita nominal output is de�ned as the ratio between

our nominal output series and the civilian non-institutional population over 16. Finally, the

hours worked per capita series is constructed with the index of average weekly hours in the

private sector and the civilian non-institutional population over 16. Since our model implies

that hours worked per capita are between 0 and 1, we express hours as the percentage of

available week time, such that the average of hours worked is one-third. For in�ation, we use

the price index for gross domestic product.

The data on bond yields with maturities one year and longer are from CRSP Fama-Bliss

discount bond �les, which have fully taxable, non-callable, non-�ower bonds. Fama and Bliss

construe their data by interpolating observations from traded Treasuries. This procedure

introduces measurement error, possibly correlated across time.14 The 1-quarter yield is from

the CRSP Fama risk-free rate �le. The mean of this yield is 2.096 percent, which is a bit

14Furthermore, Piazzesi (2003) alerts us that there were data entry errors at the time at the CRSP, some
rather obvious. This warning raises the possibility that some less obvious errors may still persist in the
database.
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higher than the postwar mean but nearly the same that the mean of 2.020 percent for the

period 1891-1998 reported by Campbell (2003), table 1, page 812. To match the frequency

of the CRSP data set with NIPA data, we transform the monthly yield observations into

quarterly observations with an arithmetic mean.

6.2. Estimation of the Process for In�ation

A preliminary step in our empirical work is to estimate the process for in�ation:

log
pt+1
pt

� log pt
pt�1

= !t+1 � �!t where !t � N (0; �!) (9)

We report in table 1 our estimates (with the standard deviations in parenthesis), and for

comparison purposes, Stock and Watson�s point estimates in table 3, page 13 of their 2007

paper, which use a sample that stops in 2004.15

Table 5.1: Estimates of the MA(1)

Our Estimate Stock and Watson

� 0.6469 (0.0877) 0.656 (0.088)

�! 0.0019 (5.8684e-007) 0.0019 (4.375e-007

To gauge the performance of Stock and Watson�s speci�cation, we plot in �gure 6.1, in

the top panel, the one period ahead expected in�ation versus current in�ation, and in the

bottom panel, the expected in�ation versus realized in�ation. This second draw illustrates

the good performance of the MA representation in terms of �t.

Once we have the in�ation process, we can �nd the real bond yields, as described in the

second section. In �gure 6.2, we plot the evolution over time of the yields of the six bonds

that we include in our observables. In �gure 6.3, we plot the median real yield curve, which

displays with our procedure, a positive slope.

A simple extension of our estimation would recover a real yield curve using a more so-

phisticated procedure (see, for example, Ang, Bekaert, and Wei, 2008). Once we have that

real yield curve, we can repeat the exercises below in an analogous way. We are currently

working on implementing this analysis.

15Stock and Watson multiply in�ation for 400. The point estimate and standard error of � is una¤ected.
We adjust their point estimate of �! accordingly.
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6.3. Estimation Algorithms for the DSGE Model

Our paper emphasizes the likelihood estimation of DSGE models. In the interest of space,

we will show results for maximum likelihood and comment brie�y how to �nd results for

Bayesian estimation.

Obtaining the maximum likelihood point estimate is complicated because the shape of

the likelihood function is rugged and multimodal. Moreover, the particle �lter generates an

approximation to the likelihood that is not di¤erentiable with respect to the parameters,

precluding the use of optimization algorithms based on derivatives. To circumvent these

problems, we employ as our optimization routine a procedure known as Covariance Matrix

Adaptation Evolutionary Strategy, or CMA-ES (Hansen, Müeller, and Koumoutsakos, 2003,

and Andreasen, 2007). The CMA-ES is one of the most powerful evolutionary algorithms for

real-valued optimization and has been applied successfully to many problems.

The CMA-ES, described in further detail in the appendix, is an evolutionary algorithm

that approximates the inverse of the Hessian of the loglikelihood function by simulation. In

each step of the algorithm, we simulate m candidate parameter values from the weighted

mean and estimated variance-covariance matrix of the best candidate parameter values of

the previous step. By selecting the best parameter values in each step and by adapting the

variance-covariance matrix to the contour of the likelihood function, we direct the simula-

tion towards the global maximum of our objective function. Thanks to the estimation of

the variance-covariance matrix from the simulation, we by-pass the need of computing any

derivative. Andreasen (2007) documents the robust performance of CMA-ES and compares

it favorably with more common approaches as Simulating Annealing.

With respect to Bayesian inference, we mentioned in the main part of the text that the

posterior of the model:

p
�
	jYT

�
/

L
�
YT ; 	

�
p (	)R

L (YT ; 	) p (	) d	
is di¢ cult, if not impossible, to characterize because the likelihood itself is only approximated

by simulation. However, we can draw from the posterior and build its empirical counterpart

using a Metropolis-Hastings algorithm. We follow the standard practice and choose a random

walk proposal, 	�i = 	i�1 + �i, �i � N (0;��), where �� is a scaling matrix. This matrix

is selected to get the appropriate acceptance ratio of proposals (Roberts, Gelman and Gilks,

1997).

To reduce the �chatter�of the problem, we will keep the innovations in the particle �lter

(i.e., the draws from the exogenous shock distributions and the resampling probabilities)

constant across di¤erent passes of the optimization and Metropolis-Hastings algorithms. As

pointed out by McFadden (1989) and Pakes and Pollard (1989), this is required to achieve
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stochastic equicontinuity, and even if this condition is not strictly necessary in a Bayesian

framework, it reduces the numerical variance of the procedure.

6.4. Results

We report three set of estimates: estimates when we use only macro data, estimates when we

only use yield curve data, and estimates when we use both macro and yield curve data. In

that way, we learn about which type of information is driving the results. Moreover, we plot

the likelihood computed in each of the three cases in a neighborhood of the global maximum

that we �nd. In such a way, the reader can evaluate by herself the informativeness of the

data.

6.4.1. Macro data

The point estimates for the macro dataset are presented in table 6.1 and the likelihood

plotted in �gures 6.4 to 6.6.16 In each �gure, we plot the likelihood along two dimensions

of the preference parameters, �,  , and 
, while keeping all the other parameters at their

maximum likelihood point estimates. Figure 6.4 plots the likelihood along � and  , �gure

6.5 plots the likelihood along � and 
, and �gure 6.6 plots the likelihood along  and 
. We

will follow this convention in the next two sets of �gures for the two exercises below.

Table 6.1: Estimated Parameters

Parameter �  
 �

Value 0.9973 0.7872 11.66 0.3429

Parameter � � � �

Value 0.0323 0.2899 0.0047 0.0060

The point estimates for the non-preference parameters are rather conventional. First, we

have the stochastic process for productivity, with drift 0.0047 and standard deviation 0.0060:

Second, the share of capital is 0.2899 and depreciation rate is 0.0323. Among the preference

parameters, the weight of consumption in the utility function, 0.3429; is determined by the

average level of hours. More interesting for our discussion are the other three preference

parameters. The likelihood has a maximum along the IES dimension at 0.7872, which pins

down the relative variance of the growth rate of consumption versus the growth rate of

16Due to time constraints, we have not computed the standard errors yet. They are di¢ cult to compute
because of the non-di¤erentiability of the particle �lter requires some type of local smoothing. Moreover,
as illustrated by the plots of the likelihood, they may not provide a particularly accurate assessment of the
uncertainty about the parameters built into the likelihood.
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output. The value of 0.7872 is right in the middle of the values traditionally used by the

real business cycle literature, which typically vary between 0.25 and 1. This parameter

induces the right relative variability between the growth of consumption and the growth of

output. The discount factor, � =0.9973, rather close to one, induces su¢ cient patience on the

representative agent as to render the propagation mechanism of the model powerful enough

to generate enough variability of the variables.

Our last parameter, risk aversion, takes a value of 11.66. Unfortunately, if we go to the

plots of the likelihood, we see that this parameter is only weakly identi�ed. For example, in

�gure 6.6, we clearly see how the likelihood only has a very small slope along the 
 dimension.

This �nding is not surprising as we saw in section 4 that changes in 
 had quite small

consequences for macroeconomic quantities. Also, this �nding corroborates Hall�s (1988)

intuition that his estimation exercise was capturing the IES and not risk aversion: macro

data tells us about the IES, but only speaks very softly about risk aversion.

6.4.2. Yield curve data

Yield curve data only has only minor evidence about the non-preference parameter. To avoid

misleading estimates induced by weak identi�cation, we �x those parameters (plus �) at the

maximum likelihood point estimates from the �rst exercise. The point estimates for the yield

curve dataset are presented in table 6.2 and the likelihood plotted in �gures 6.7 to 6.9.

Table 6.2: Estimated Parameters

Parameter �  
 �

Value 1.1036 0.0153 2.00 0.3429

Parameter � � � �

Value 0.0323 0.2899 0.0047 0.0060

Interestingly enough, now we obtain rather di¤erent estimates for the remaining three

parameters. First, the IES dramatically drops to 0.0153 and the risk aversion goes to 2. Why

does the likelihood favor this parameter values? The real yield curve is, on average positive.

The model can generate such behavior in two di¤erent ways. First, as we saw in section 4

when we plotted yield curves for di¤erent parameterizations, if capital is su¢ ciently above its

steady state value. However, as the likelihood does not have information on macro variables

in this exercise, the likelihood shies away from this possibility. Second, by a strong preference

for late resolution of uncertainty, as we have in this case where 
 =2.00� 1= = 65:36:When

there is preference for a late resolution of uncertainty, agents prefer to buy short maturity

bonds and roll them over time instead of buying long maturities bonds, which locks them in
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a particular yield. Since the demand for short term bonds is high and the demand for long

term bonds is low, the prices of the short term bonds are high and the prices of the long

term bonds low. If this e¤ect is su¢ ciently strong that overcomes the usual negative term

premia induced by the less than linear growth of the variance of the pricing kernel on time

(Campbell, 1986), we have a yield curve with positive slope.17 Finally, the discount factor, a

quite implausible 1.1036, which is made possible by the very low IES, �xes the level of short

term interest rate.

6.4.3. Macro and yield curve data

Finally, the point estimates for the joint dataset of macro and yield curve data are presented

in table 6.3 and the likelihood plotted in �gures 6.10 to 6.12.

Table 6.3: Estimated Parameters

Parameter �  
 �

Value 1.0200 0.0611 46.00 0.3400

Parameter � � � �

Value 0.0353 0.3060 0.0047 0.0081

Not surprisingly, the non-preference parameters and � are nearly the same than in the

�rst exercise, except for a somehow higher standard deviation of the shocks. This estimates

will be of importance later.

Now, the IES is estimated to be 0.0611 and risk aversion is 46. To understand this result,

we come back to our previous discussion of how the yield curve can be positive, concretely,

to the observation that such result can be achieved if capital is above its steady state for a

long time. The likelihood prefers that explanation than the one based on late resolution of

uncertainty. The data that we use includes three long expansions and two short and mild

contractions. Hence, it is easy for the likelihood to interpret the economy as having received

a series of good and relatively large productivity shocks (here is where the higher estimated

value of � comes handy) and that those shocks have translated into long lasting deviations of

capital from the steady state, and hence the low IES, since it makes consumption more volatile

17John Campbell, in his comment to Piazzesi and Schneider (2006), shows that the lognormal approximation
of the risk premium of TIPS includes a term of the form:�


 � 1

 

��
� 1
 

�
�2g

where �2g is the variance of the consumption growth. When there is preference for a late resolution of
uncertainty, this term is positive.
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and investment and capital less volatile. Furthermore, by making capital less volatile, the

Solow residual is bigger, which is exactly how the model generates a higher estimated value

of �. Risk aversion helps out by inducing an extra level of capital through the precautionary

motive that appears as a constant in the policy function but not in the level of the steady

state. The sacri�ces created by these choices, like, for example, the loss in the persistence of

consumption growth caused by a rather small IES, are disregarded by the likelihood as being

of lesser magnitude (after all, the evidence in the data for persistence in consumption growth

is rather weak). The �nal job of pinning down the short interest rate is now taken care by

�; which now can take the more reasonable value of 1.0200.

Our estimation have important implications for the substantive economic questions. For

example, with our estimates, we evaluate the cost of aggregate �uctuations to be around 9

percent of lifetime consumption (9.0993 percent). This number is orders of magnitude bigger

than the classical measurement of Lucas (1987). However, our number is roughly comparable

with some of the entries in table 8 in Tallarini (2000). Since we have non-separabilities

between consumption and leisure, agents can change their labor supply to smooth the utility

aggregator intertemporally. This margin reduces the welfare cost of �uctuations substantially

(it can even generate welfare gains from �uctuations because while the utility aggregator is

concave, the indirect utility function can be convex in wages).

We obtain several conclusions from our point estimates. First, there seem to be a sub-

stantial di¤erence in the attitudes of agents with respect to substitution across time (the IES)

and substitution across states (risk aversion). Our �nding answers the criticism of Cochrane

(2008), who expresses doubts about how di¤erent these attitudes can be. Nevertheless, it is

perhaps useful to remember that we are estimating the parameters for a representative agent

model, and that those parameters, through the aggregation process, may have little resem-

blance with parameters at the individual level. This observation may reconcile Cochrane�s

introspection argument with our point estimates. Moreover, and this is a point that we need

to keep in mind in this whole section, we are estimating a very simple model to evaluate the

feasibility and potentialities of our approach. A richer speci�cation may uncover relatively

di¤erent parameter values. We are, however, relatively convinced that some of the features

of our estimation may survive in richer models. For example, among the main problems of

the model is that we do not have any in�ation risk. It is di¢ cult to gauge how bad this

assumption is until we re-estimate the model with a realistic structure for in�ation. But,

we could �nd that this channel is not able to overcome the main trust of the results. For

instance, Ravena and Seppälä (2007), in a calibrated DSGE model, �nd that in�ation risk

premia are very small and display little volatility.
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Second, we do not �nd much evidence that the IES is bigger than one. If anything, we

�nd an IES in the lower ranges of the estimates in the literature. Our �nding lowers our

posterior about the empirical plausibility of models, like Bansal and Yaron (2004) that rely

on IES bigger than one to explain the asset pricing observations.

6.4.4. Comparison with the literature

Our paper is the �rst to estimate a fully speci�ed DSGE model with Epstein-Zin preferences.

Previously, the literature has estimated recursive preferences using some variation on the

methods of moments. How do our estimates compare with previous �ndings? We focus on

the comparison with four papers that we �nd particularly relevant.

Epstein and Zin (1991), in one of the original papers that started the literature, estimated

IES and risk aversion using the �rst order conditions of the model when they assume that

the return of wealth is well approximated by the return of the stock market. Epstein and Zin

perform di¤erent estimation exercises, but they tend to �nd a IES varying between 0.2411

and 0.8652 and a risk aversion hovering around 1, suggesting that a log risk aggregator is

a reasonable approximation. We �nd even lower values of the IES than Epstein and Zin,

although well within their con�dence intervals (their estimates have relatively large standard

errors). However, we �nd values of risk aversion much bigger than 1.

Bansal, Gallant, and Tauchen (2008) estimate the preference parameters in the Epstein-

Zin utility function of an endowment economy using an indirect inference approach based on

Smith (1993). The authors �nd a large risk aversion, nearly 99, which is even higher than

our point estimate.18 The main di¤erence with our point estimates is in the IES, that they

�x at 2, but because their objective function is roughly �at between 1.5 and 2.5. This region,

1.5 to 2.5, is far away from our estimates of low IES.

This paper is complemented by Gallant and Hong (2007), who use Fama-French portfolios

and Bayesian methods to extract a pricing kernel and its transition probabilities. The authors

conclude that this pricing kernel is compatible with a pricing kernel generated by an agent

with recursive utility. However, as we do, Gallant and Hong uncover evidence that is di¢ cult

to reconcile with the Bansal and Yaron estimates. In particular, they �nd a pricing kernel

that is more persistent that the one Bansal and Yaron need. This evidence may be explained

by a low IES.

Finally, in a beautifully crafted paper, Chen, Favilukis, and Ludvigson (2007) estimate

the parameters in Epstein-Zin preferences using Fama-French type portfolios and the �rst

order conditions but where they substitute the unobservable utility-consumption ratio that

18Although we have leisure in our utility function, making the comparison of risk aversions di¢ cult.
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shows up in the pricing kernel by a nonparametric approximation. As we do, Chen, Favilukis,

and Ludvigson estimate a large value for risk aversion (between 17 and 60, depending of the

concrete details of the estimation). In comparison, though, they �nd much higher values for

the IES, between 1.11 and 2.22. Since, we di¤er in many aspects of the estimation, further

work is required to isolate the origin of this di¤erence.19

7. Conclusions

We have shown how to perform likelihood inference in DSGE models with Epstein-Zin prefer-

ences. We presented a simple perturbation method that computes the solution of the model

quickly and accurately and explained how the particle �lter allows the evaluation of the

likelihood function using macro and yield curve data.

Our point estimates of the IES is low, around 0.06, while the risk aversion estimate is

high, around 46. We learned that the level of the yield curve was informative about the IES

and the slope contained information about risk aversion. Also, we asserted that risk aversion

was only weakly identi�ed in macro data. Since we employed a very simple model, we are

cautious about the interpretation of our results. However, there seems to be little evidence

in our data set of high values of the IES.

This paper points out to many lines of future research. Among them, we highlight two.

First, we want to take this model more seriously and enrich it with mechanisms like long-run

risk and habit persistence. Can these mechanisms explain the empirical problems of the model

when we have recursive preferences? Which mechanisms are and which are not necessary in

this context? Second, we want to further explore the computation and estimation of DSGE

models with exotic preferences (see the review of Backus, Routledge, and Zin, 2004). The

implementation and empirical validation of all those new speci�cations of preferences is an

open �eld were much work is required.

19One prime suspect is the use of yield curve data instead of stock market portfolios as the �nancial data.
The problem of using Fama-French portfolios is that is di¢ cult to integrate them in a general equilibrium
model without heterogeneity of �rms. Unfortunately, DSGE models with heterogeneous agents are too onerous
to estimate at this moment.
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8. Appendix

This appendix o¤ers further details in some aspects of the paper. First, we show the homo-

theticity of the value function. Second, we explain how to compute expectations for price

from the process for in�ation. Finally, we elaborate on the computational methods employed

for estimation.

8.1. Homotheticity

The optimization problem can be summarized by:

V (kt; zt;�) = max
ct;lt

��
c�t (1� lt)

1��� 1�
� +
�
Et
�
V 1�
 (kt+1; zt+1;�)

�� 1
�

� �
1�


; (10)

subject to:

ct + kt+1 = k�t (ztlt)
1�� + (1� �) kt

We now show that the value function is homethetic of degree �, result that we use in the

main text to rewrite our problem in a stationary form. We build on he argument by Epstein

and Zin (1989), Dolmas (1996), and specially Backus, Routledge, and Zin (2007). First, note

that for some a > 0 :

ct
a
+
kt+1
a
=

�
kt
a

�� �zt
a
lt

�1��
+ (1� �)

kt
a
:

Because the solution to the value function is unique, it su¢ ces to show that a value

function that is homogeneous of degree � satis�es the Bellman equation in (10). If this is the

case, then by uniqueness of the solution to the Bellman equation, we know that V needs to

be homogenous of degree �. Hence, consider a value function that is homogenous of degree

�:
~V (kt+1; zt+1;�) = a�V (kt+1=a; zt+1=a;�) ;

which leads to:

V (kt; zt;�) = max
ct=a;lt

��
c�t (1� lt)

1��� 1�
� +
�
Et
�
a�(1�
)V 1�
 (kt+1=a; zt+1=a;�)

�� 1
�

� �
1�


= a� max
ct=a;lt

���ct
a

��
(1� lt)

1��
� 1�


�

+ (Et [V (kt+1=a; zt+1=a;�)])
1
�

� �
1�


;
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subject to:
ct
a
+
kt+1
a
=

�
kt
a

�� �zt
a
lt

�1��
+ (1� �)

kt
a
:

This in turn implies:

V (kt; zt;�) = a�V (kt=a; zt=a;�) :

Hence, if we divide capital and productivity by a, we divide consumption by a and still satisfy

the Bellman equation. This shows that the value function is homogenous of degree �.

The homotheticity result can be strengthen to show that

V (kt; zt;�) = z�t V
�
~kt; 1;�

�
= z�t ~V

�
~kt;�

�
: (11)

This stronger result can be useful in some investigations where we want to characterize the

structure of the value function. This formulation would not make much di¤erence in our

perturbation approach because, in any case, we would need to take derivatives of (11) with

respect to zt to �nd the coe¢ cients of the policy function associated with zt:

8.2. Computing Expectations for Prices

As explained in the main text, we follow Stock and Watson in postulating an IMA(1,1)

process for in�ation:

log
pt+1
pt

� log pt
pt�1

= !t+1 � �!t

This process implies that:
pt+1
pt

=
pt
pt�1

exp (!t+1 � �!t)

or, equivalently,
pt
pt+1

=
pt�1
pt

exp (�!t+1 + �!t)

i.e., the law of motion of the inverse of the ratio of prices between periods t and t+ 1.

We are interested in deriving expressions for ratios of prices between periods t and t+ j.
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To illustrate the procedure, we proceed recursively. We start with one period ahead:

pt
pt+2

=
pt+1
pt+2

pt
pt+1

=
pt
pt+1

exp (�!t+2 + �!t+1)
pt
pt+1

=

�
pt
pt+1

�2
exp (�!t+2 + �!t+1)

=

�
pt�1
pt

�2
exp (�2!t+1 + 2�!t � !t+2 + �!t+1)

=

�
pt�1
pt

�2
exp (�!t+2 + (� � 2)!t+1 + 2�!t)

We move to two periods ahead:

pt
pt+3

=
pt+2
pt+3

pt
pt+2

=
pt+1
pt+2

exp (�!t+3 + �!t+2)
pt
pt+2

=
pt
pt+1

exp (�!t+2 + �!t+1 � !t+3 + �!t+2)
pt
pt+2

=
pt�1
pt

exp (�!t+1 + �!t � !t+2 + �!t+1 � !t+3 + �!t+2)
pt
pt+2

=
pt�1
pt

exp (�!t+3 + (� � 1) (!t+2 + !t+1) + �!t)

�
pt�1
pt

�2
exp (�!t+2 + (� � 2)!t+1 + 2�!t)

=

�
pt�1
pt

�3
exp(�!t+3 + (� � 2)!t+2 + (2� � 3)!t+1 + 3�!t)

Iterating, we get to the general formula:

pt
pt+j

=

�
pt�1
pt

�j
exp(

j�1X
i=0

(i� � (i+ 1))!t+j + j�!t)

With the formula �nding expectations is direct:

Et
pt
pt+j

= Et
�
pt�1
pt

�j
exp(

j�1X
i=0

(i� � (i+ 1))!t+j + j�!t)

=

�
pt�1
pt

�j
Et exp(

j�1X
i=0

(i� � (i+ 1))!t+j + j�!t)

Note that in the exponent we have the sum of j� 1 independent normals with zero mean
and variance (i� � (i+ 1))2 �2! plus a constant j�!t. Then, we have a normal random variable
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with mean j�!t and variance:
j�1X
i=0

(i� � (i+ 1))2 �2!

Hence, the exponent has a lognormal distribution with expectation:

exp

 
j�!t +

1

2
�2!

j�1X
i=0

(i� � (i+ 1))2
!

and:

Et
pt
pt+j

=

�
pt�1
pt

�j
exp

 
j�!t +

1

2
�2!

j�1X
i=0

(i� � (i+ 1))2
!

8.3. Computation of the Estimates

The estimation of the MA process for in�ation is undertaken with Matlab�s garchset func-

tion.

The estimation of the model was done with mixed-programming as follows. Mathematica

computed the analytical derivatives of the value function of the representative household

and generated Fortran 95 code with expressions. The derivatives depend on the parameters

as symbolic variables. Then, we link the output into a Fortran 95 code that evaluates the

solution of the model for each parameter value as implied by the maximization algorithm

or by the Metropolis-Hastings algorithm The Fortran 95 code was compiled in Intel Visual

Fortran 10.3 to run on Windows-based machines. We use a Xeon Processor 5160 EMT64 at

3.00 GHz with 16 GB of RAM.

As we pointed out in the main text, the CMA-ES is an evolutionary algorithm that

approximates the inverse of the Hessian of the loglikelihood function by simulation. We

iterate in the procedure until the change in the objective function is lower than some tolerance

level. In each step g of the routine, m candidate n�parameter values are proposed from a

normal distribution:

�gi ~N
�
�g�1� ; (�g)2Cg�1

�

�
, for i = 1; :::;m

where �g�1� 2 Rn and Cg�1
� 2 Rn � Rn are the mean and variance-covariance matrix of the

� best candidates for optimal parameter values in step g � 1 and �g is a scaling parameters.
The normal distribution can be truncated to have support only on that part of the parameter

space where the parameters take admissible values (for example, positive discount factors).

To save on notation, we re-order the draws in decreasing relation to the value they attain in

the likelihood of the model:

L
�
YT ; �i

�
� L

�
YT ; �i+1

�
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The mean of step g is de�ned as:

�g� =

�X
i=1

wi�
g
i

where the weights wi are de�ned between 0 and 1 (and its sum normalizes to 1) and � is

smaller than m.

The variance-covariance of step g �ts the search distribution to the contour lines of the

likelihood function. To do so, we set:

Cg
� = (1� ccov)C

g�1
�| {z }

term 1

+

+
ccov
�cov

�
P g
c (P

g
c )
0 + cc (2� cc) (1�Hg)

�
| {z }

term 2

+ccov

�
1� 1

�cov

� �X
i=1

wi

(�g)2
�
�g1:� ��g�1�

� �
�g1:� ��g�1�

�0
| {z }

term 3

(12)

where:

P g
c = (1� cc)P

g�1
c +Hg

q
cc (2� cc)�eff

�
�g� ��

g�1
�

�g

�

Hg =

8<: 1 if kP gc kp
1�(1�cg)2g

<
�
1:5 + 1

n�0:5
�
E (kN (0; I)k)

0 otherwise

and cc; ccov; �eff , and �cov are constants. Term 1 of (12) is a standard persistence term

from previous variance-covariance matrix to dampen changes in Cg
�. Term 2 captures the

correlation across steps of the algorithm through the evolution of P g
c . Term 3 controls for a

large number of points in the simulation. The term

E (kN (0; I)k) =
p
2�

�
n+ 1

2

�.
�
�n
2

�
�
p
n+O

�
1

n

�
is the expectation of the euclidean norm of a random normal vector.
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Finally, the scaling parameter evolves according to:

�g = �g�1 exp

�
c�
d�

�
kP g

�k
E (kN (0; I)k) � 1

��
P g
� = (1� c�)P

g�1
� +

p
c� (2� c�)B

g�1 �Dg�1 � 1
��1 �

Bg�1�0 p�eff
�g

�
�g� ��g�1�

�
where c� and d� are constants and Bg�1 is an orthogonal matrix and Dg�1 a diagonal matrix

such that Cg
� = Bg (Dg)2 (Bg)0 :

Standard values for the constants of the algorithm are:

m = 4 + b3 lnnc
� = bm=2c

where b�c is the integer �oor of a real number, and

wi =
ln (�+ 1)� ln iPn

j=1 (ln (�+ 1)� ln j)

�eff = �cov =
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w2i

!�1
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�eff + 2

n+ �eff + 3

cc =
4

n+ 4

ccov =
1

�cov

2�
n+

p
2
�2 + �1� 1

�cov

�
min

 
1;

2�eff � 1
(n+ 2)2 + �eff

!

d� = 1 + 2max

 
0;

r
�eff � 2
n+ 1

� 1
!
max

0@0:3; 1� n

min
�
gmax;

Lmaxeval

m

�
1A+ c�

where gmax is the maximum number of steps and Lmaxeval is the maximum number of likelihood

evaluations. Finally, we can initialize the algorithm by setting �0� to some standard calibrated

parameters, �0 to 1, P g
c = 0, and �

0
� to an identity matrix. Of all these constants, Hansen

and Kern (2004) recommend only to changem to adapt the algorithm to particular problems.

As one could have guessed, Hansen and Kern show that increasing the number of simulations

m, the global properties of the search procedure improve.
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Figure 4.1: Capital
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Figure 4.2: Capital, re-centered
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Figure 4.3: Output
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Figure 4.4: Output, re-centered
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Figure 4.5: Price 1 Quarter Bond
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Figure 4.6: Price 1 Quarter Bond, re-centered
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Figure 4.7: Consumption
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Figure 4.8: Consumption, re-centered
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Figure 4.9: Labor
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Figure 4.10: Labor, re-centered
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Figure 4.11: Dividends
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Figure 4.12: Dividends, re-centered
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Figure 4.13: Yield Curves, Steady State
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Figure 4.14: Yield Curves, Mean Ergodic Distribution

0 1 2 3 4 5

1.018

1.019

1.02

1.021

1.022
Yield curve with  EIS = 2

 

 

2
20
100



0 1 2 3 4 5
1.01

1.015

1.02

1.025

1.03

1.035
Yield curve with  γ = 2

 

 
05
1
2

0 1 2 3 4 5
1.01

1.015

1.02

1.025

1.03

1.035
Yield curve with  γ = 20

 

 
05
1
2

0 1 2 3 4 5
1.014

1.016

1.018

1.02

1.022

1.024

1.026
Yield curve with  γ = 100

 

 

05
1
2

0 1 2 3 4 5
1.022

1.023

1.024

1.025

1.026

1.027
Yield curve with  EIS = 05

 

 

2
20
100

0 1 2 3 4 5
1.016

1.017

1.018

1.019

1.02

1.021
Yield curve with  EIS = 1

 

 

2
20
100

Figure 4.15: Yield Curves, Capital 0.6 over Steady State
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Figure 6.1: Expected Inflation versus Realized Inflation
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Figure 6.2: Prices of Bonds
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